EP0684625A1 - High power vacuum electron tube with anode cooled by forced flow circulation - Google Patents

High power vacuum electron tube with anode cooled by forced flow circulation Download PDF

Info

Publication number
EP0684625A1
EP0684625A1 EP95401110A EP95401110A EP0684625A1 EP 0684625 A1 EP0684625 A1 EP 0684625A1 EP 95401110 A EP95401110 A EP 95401110A EP 95401110 A EP95401110 A EP 95401110A EP 0684625 A1 EP0684625 A1 EP 0684625A1
Authority
EP
European Patent Office
Prior art keywords
anode
conduits
sections
section
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95401110A
Other languages
German (de)
French (fr)
Other versions
EP0684625B1 (en
Inventor
Olivier Friquet
Régis Combet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales Electron Devices SA
Original Assignee
Thomson Tubes Electroniques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson Tubes Electroniques filed Critical Thomson Tubes Electroniques
Publication of EP0684625A1 publication Critical patent/EP0684625A1/en
Application granted granted Critical
Publication of EP0684625B1 publication Critical patent/EP0684625B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J19/00Details of vacuum tubes of the types covered by group H01J21/00
    • H01J19/28Non-electron-emitting electrodes; Screens
    • H01J19/32Anodes
    • H01J19/36Cooling of anodes

Definitions

  • the invention relates to very high power electronic tubes of the triode and especially tetrode type, with a radial structure, that is to say in which a cathode of generally cylindrical structure with a circular base emits electrons radially towards an also cylindrical anode which surrounds and is coaxial with the cathode. Electron extraction grids, also cylindrical, are interposed between the cathode and the anode.
  • the powers considered here are of the order of megawatt, for frequencies of several tens to several hundred megahertz.
  • the voltage between the anode and the cathode is several kilovolts.
  • the anode receives almost all of the electron current emitted by the cathode and modulated by the grid (s). The kinetic energy of the electrons striking the anode is converted into heat.
  • the power flux received by the anode is very high (order of magnitude: one kilowatt per square centimeter of anode surface for areas of several hundred square centimeters).
  • the anode is a cylinder about 20 to 40 cm in diameter and several tens of centimeters high.
  • the references of the drawing are as follows: anode 10; grooves 12; a first cooling jacket 14 surrounding the anode for channeling water along the outer wall surface of the anode; a second jacket 16 defines the water inlet chamber; the second jacket 16 surrounds the first and communicates on one side with it, for example at the bottom of the anode, through an opening 18; a pipe 20 for supplying pressurized water which opens in the second jacket; a pipe 22 for evacuating water and steam bubbles.
  • the other elements of the figure are the classic elements of an electronic tube: cathode 24 with its external connections 26 and 28 (for a direct heating cathode); grid 30 with its external connection 32; anode 34 connection brazed at the foot of the anode.
  • connections are cylindrical and intended to be plugged into a suitable support, not shown.
  • the connections are separated by ceramic spacers 36.
  • the cooling jackets are not under vacuum.
  • the bubble formation grooves prevent the evacuation of these same bubbles.
  • the bubbles collide and coalesce and cause local overpressures and sudden detents by implosions and disappearance in the stream of water. This results in unacceptable shock and vibration for the fragile or non-rigid elements of the tubes, in particular the grids which are very close to the cathode and which risk touching or touching each other.
  • An object of the present invention is to search for means for dissipating on the anode a power much greater than that which the construction of the collector of US Patent 3,414,757 allows and much greater than that which the construction of the patent FR-A allows 2,627,898.
  • the order of magnitude sought is a doubling of the powers relative to the latter, which is considerable.
  • a very high power electronic vacuum tube having a cylindrical anode (that is to say an anode whose inner wall surface is essentially cylindrical in its active part opposite an equally cylindrical cathode ) formed by at least one cylindrical section (i.e.
  • each section is pierced with numerous longitudinal conduits for circulation of coolant extending linearly over the entire height of the section, characterized in that the longitudinal conduits all open out, at one end of the anode, preferably at the top of the anode, in a water distribution structure cooling uniformly supplying all of the longitudinal conduits leading to this upper part.
  • This structure makes it possible in particular to maintain as high a speed as possible of the water in all of the conduits, and a very good uniformity of cooling.
  • the distribution structure is preferably conical and without pressure losses.
  • the conduits are of completely circular (closed) section and extend linearly over the entire height of the anode (preferably strictly parallel to the axis of the cylindrical anode); they are therefore not open rectangular grooves formed by machining the outer wall surface of the anode and then closed by an outer jacket.
  • the cooling efficiency is considerably improved; and this is all the more so if it is further provided that the conduits are drilled closer to the interior wall surface than to the exterior wall surface of the anode.
  • the cylindrical anode is formed of cylindrical sections of copper, the edge of which is silver-plated and which are brazed on one another by their silver edges, without the addition of brazing material other than the silvering of the slices, so that there are no stray streaks of brazing material.
  • the anode has very fine linear conduits opening opposite each other on the edges of the adjacent cylindrical sections, this avoids the risks of sagging of brazing material which could at least partially block the conduits and which would not be cleanable given the fineness of the conduits.
  • an important aspect of the invention is the operation of brazing by silvering (electrolytic deposition in principle) of the sections of the individual cylindrical sections then superposition of these sections in an oven under conditions of temperature and atmosphere suitable for forming a silver solder between the silver slices in contact.
  • the cylindrical anode is pierced with fine conduits parallel to the axis of the anode and more closer to the inner surface of the anode wall than to the outer surface of this wall.
  • FIG. 2 there is shown the anode of a power tube according to the invention, with its cooling system.
  • the other elements of the tube are not shown so as not to make the figure heavier and may if desired be similar to that of FIG. 1.
  • the anode body is conventionally generally constituted by a cylinder of revolution of axis 100 open at its lower part, and closed at its upper part.
  • the upper part is essentially in the form of a disc transverse to the axis 100, provided with a pumping rod.
  • the anode consists of several superimposed sections. Each section is constituted by a generally cylindrical section, the upper section being however constituted both by a cylindrical section and by the upper closing disc of the anode.
  • the section upper 180 is divided into a cylindrical part 200 and the closing disc 220.
  • the pumping pipe is designated by the reference 240; it is placed in the center of the disc 220; it is intended to be hermetically closed after a vacuum has been made in the tube.
  • Each section has a cylindrical wall (with an inner wall surface and an outer wall surface), and two end sections, respectively an upper section and a lower section.
  • the sections are planar (plane perpendicular to the axis 100 of the tube.
  • the anode sections are brazed one on the other by their facing sections, that is to say that the lower section of a section is brazed on the upper edge of a section located immediately below, the planes of these sections are designated by the references 260, 280, 300.
  • the plane 280 is the brazing plane of the lower section of section 160 and of the upper edge of the section 140.
  • Centering pins 320 are provided in these planes, to position the different sections exactly with respect to each other, exact positioning is necessary both to ensure exact coaxial centering of the sections and to ensure, as will be seen below, the alignment of the cooling conduits of the different sections.
  • Several centering pins 320 are provided in each brazing plane, only one being shown in the fi gure 2 in each plan.
  • the pins are for example small vertical cylinders inserted in facing bores formed in the edges of two adjacent sections.
  • the anode has rectilinear cooling conduits, extending over the entire height of the anode.
  • Two conduits 340 and 360 are visible in FIG. 2: these are those which are in the axial section plane of the vacuum tube.
  • the conduits are drilled in the thickness of the wall of the sections. They are as numerous and as thin as possible so as to cool as uniformly as possible the entire wall of the anode. Their diameter is for example a few millimeters (section from a few square millimeters to a few tens of square millimeters), and they are very close together: spacing of a few millimeters also. For example, 3 to 5 millimeters in diameter and 2 to 5 millimeters of spacing between conduits constitute preferred dimensions. In an exemplary embodiment, there are approximately 160 conduits distributed in a ring all around the anode about thirty centimeters in diameter. The diameters and spacings are then about 3mm.
  • the conduits are preferably bores with circular cross-section, because the circulation of the cooling fluid (in principle water under pressure) is then optimal: if there were angles, the fluid would risk poorly cooling the angles.
  • the straight conduits are preferably closer to the inner wall surface of the anode than to the outer wall surface.
  • the space between the edge of a conduit and the internal wall surface of the anode can be a few millimeters, for example 3 to 5 millimeters.
  • the thickness of the anode wall can be 15 to 30 millimeters. Cooling is therefore better ensured by circulating the water closer to the inner wall surface where the generation of heat occurs.
  • the conduits are regularly distributed in a crown all around the anode.
  • the centering pins 320 are preferably located outside of this ring so as not to hinder the regular distribution of the conduits around the anode.
  • Figure 3 shows a cross section on the axis 100, by one of the soldering planes, and we see this ring of conduits.
  • conduits are placed near the internal surface of the wall of the anode, at a distance from this surface approximately equal to the diameter of the holes and the holes are distributed all around the anode, being separated. each other from a distance approximately equal to their diameter.
  • the height of the anode is several tens of centimeters. For these heights, it would be practically impossible to drill circular holes with a drill a few millimeters in diameter and this is one of the reasons for the constitution of the anode in several brazed sections: the height of each section is chosen compatible with the practical possibility of drilling fine holes on this height. In practice, holes can be drilled to a height that does not exceed 20 or 25 times the diameter of the hole. For holes 3 to 5 millimeters in diameter, anode sections which are not more than 10 centimeters high will be superimposed. As the height of the anode is much greater than 30 times the diameter of the conduits, and even more than 40 or 50 times this diameter, several sections of superimposed anode are necessary.
  • the cooling conduits open at the upper part of the upper section 180. They form a ring of openings and the cooling water will be distributed in these openings by a conical structure for supplying fluid, which will be discussed later.
  • the evacuation of the heated water is preferably ensured by recovery in a cylindrical jacket 380 surrounding the anode.
  • the water recovery configuration is, for example, as follows: radial orifices are drilled all around the exterior surface of the wall of the lower section 120 and make the downstream end of each vertical duct communicate with the exterior of the anode wall. Two radial holes 440, 460 are visible in Figure 2; these are those which are in the section plane of the figure and which communicate with the conduits 340 and 360 respectively.
  • the cylindrical jacket 380 constitutes a water confinement space. It is closed at its lower part by a ring 400. In the example shown, the anode connection 420 is supported on this ring.
  • the jacket 380 is also closed at its upper part by a plate 480 in which is provided an opening 500 for supplying water and an opening 520 for discharging water.
  • the conical structure for distributing pressurized water is placed inside the jacket 380, so that the water arrives from the opening 500, passes through the conical structure without leaking towards the inside of the jacket 380, then passes through the cooling conduits in the thickness of the anode wall, and finally rises through the jacket 380 to the discharge opening 520.
  • the conical structure is therefore constituted in the following manner: a hollow conical block 540 (due to the presence of the pump rod 240) is mounted on the closing disc 220 of the anode. This block 540 is screwed onto the anode (threaded bores 550 provided in the end section 180) after a vacuum has been made in the tube and the queusot of pumping was permanently closed.
  • the outer wall surface of the block 540 is conical and defines a first surface delimiting a conical channel 560 along which the water circulates (from top to bottom, i.e. from the opening of brought 500 to the opening holes of the cooling conduits such as 340 and 360).
  • a second block 580 whose inner wall surface is conical defines a second delimitation surface of the channel 560.
  • the top of the block 580 comprises a central duct 570 whose peripheral edge 590 is applied against the internal surface of the closure plate 480 around of the opening 500, so that the water brought under pressure into this opening is forced into the conical channel 560 between the conical surfaces of the two blocks 540 and 580.
  • the opening 580 is preferably formed in the center of the plate 480 to be in the axis of the anode, the conical blocks also being in the axis of the anode.
  • the channel 560 may have an annular section narrowing from the top to the bottom of the conical structure, that is to say that the angle of conicity of the interior wall surface of the block 580 is preferably smaller than the taper angle of the outer wall surface of block 540.
  • the inner surface of the block 540 and / or the outer surface of the block 58 could be machined so as to gradually form juxtaposed channels distributed in a crown and each opening facing a respective rectilinear conduit of the anode, but this is not not compulsory: the surfaces of blocks 540 and 580 can be smooth. In the latter case, there is a certain pressure drop at the point where the continuous annular channel 560 joins the discontinuous openings of the anode conduits, but this pressure drop is not very significant.
  • the upper conical block 580 can be screwed onto the lower block 540, for example by eight bolts distributed around the structure, penetrating into threaded bores 600 formed in the upper section 180 of the anode.
  • the upper conical block is not screwed but is simply clamped between the upper closure plate 480 of the jacket 380 and the upper disc of the anode. Clamping bolts pass through openings 620 of the plate 480, then through openings 640 of the conical block and are screwed into the bores 600.
  • a pressure water supply system is connected to the opening 500 of the upper plate 480.
  • the manufacturing process for this anode consists of making the different cylindrical sections 120, 140, 160, 180 separately by machining different blocks of copper separately.
  • the inner and outer wall surfaces of the sections are machined to the desired shape and dimensions so that the sections can then be superimposed axially and then form the desired complete anode.
  • the holes of the straight conduits are made in the wall of each section, as well as the holes to receive the centering pins 320.
  • the diameters of the conduits are in practice at least one twentieth of the height of the cylindrical section in which they are drilled (below drilling becomes very difficult, even impossible); this diameter is however at least forty or fifty times smaller than the total height of the anode.
  • the positions of the centering holes and the conduits are perfectly defined with respect to each other so that the conduits are facing each other when the sections are superimposed.
  • the slices are then machined to be perfectly flat and perpendicular to the axis of the cylinders.
  • the slices intended to be juxtaposed with another slice are then silvered by electrolytic process.
  • the sections are superimposed on each other without any other supply of brazing material between two adjacent sections, only the very thin electrolytic deposit constituting the brazing material.
  • the assembly of axially superimposed sections is placed in an oven at a sufficient temperature (about 820 ° C), preferably in a reducing atmosphere, to constitute a silver solder between the adjacent sections.
  • the solder is actually a diffusion of silver in the copper which leads to the formation of an Ag / Cu eutectic at 780 ° C.
  • Final machining of the tube (turning) can take place to adjust the inner and outer wall surfaces of the anode.
  • the other electrodes (cathode, grids) are mounted with their connections and the spacers of vacuum-tight ceramic (metal / metal and metal / ceramic solders). Then, a vacuum is created inside the tube. Finally, the conical structure for cooling water and the water recovery jacket are mounted.
  • the electronic tube according to the invention can withstand a power dissipation exceeding 2 megawatts, and even 2.5 megawatts (2 kW / cm2 on an area greater than 1000 cm2).
  • Water is brought under pressure through the inlet pipe 500 and it circulates at high speed in the fine pipes of the anode. It is brought to high temperature and comes to a boil.
  • the vapor bubbles which form are immediately removed thanks to the high speed of circulation of the water, contrary to what happened in the cooling systems of the prior art in which, to promote the formation of bubbles, one placed obstacles (grooves) which necessarily slowed down the circulation of water.
  • the cooling is considerably improved by this rapid evacuation of water and bubbles.
  • the conical structure of water supply which distributes water uniformly, without voluntary pressure loss to ensure this uniformity, also improves the speed of flow therefore cooling. Cooling is also improved by the fact that the conduits have a circular section and not rectangular or square. It is improved by the fact that the conduits are not placed around the anode but in the same wall of the anode, and moreover closer to the inner wall surface than to the outer wall surface.
  • the cooling is further improved thanks to the fineness of the channels (which makes it possible to place very many channels very close to each other), this fineness being made possible in this case by the production of the anode in several brazed sections on the others.
  • the brazing operation without adding added solder material but with simply a thin silver electrolytic layer forming an integral part of the anode sections, makes it possible to avoid any leakage of the solder material at undesirable locations. Indeed, when two parts are welded by inserting a solder bead between the two parts, there are two risks: first the risk of the material sinking while it melts, hence the presence of solder material in unwanted places; it would be unacceptable, for example, for solder material to flow into the fine conduits, risking partially or totally obstructing them and thus causing an absence of local cooling which is harmful to the tube.

Landscapes

  • Physical Vapour Deposition (AREA)
  • X-Ray Techniques (AREA)
  • Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)

Abstract

The triode anode structure is cylindrical. The inner section is made up of four cylindrical sections (120,140,160,180) braced together. There is an evacuation tube (24)) to form a vacuum. Very small, and a large number of cooling tubes (340) are formed in the wall of the structure, running axially along the length of the tube. The tubes are rectangular shape near the inner section, and circular in other locations. Each section is precision located with guide pins (320) and matching sections are braced to form the overall structure. An outer jacket (380) surrounds the tube, through which water escapes, and there is an input for water (570). <IMAGE>

Description

L'invention concerne les tubes électroniques de très fortes puissances du type triode et surtout tétrode, à structure radiale, c'est-à-dire dans lesquels une cathode de structure générale cylindrique à base circulaire émet radialement des électrons vers une anode également cylindrique qui entoure la cathode et est coaxiale à celle-ci. Des grilles d'extraction d'électrons, également cylindriques, sont interposées entre la cathode et l'anode.The invention relates to very high power electronic tubes of the triode and especially tetrode type, with a radial structure, that is to say in which a cathode of generally cylindrical structure with a circular base emits electrons radially towards an also cylindrical anode which surrounds and is coaxial with the cathode. Electron extraction grids, also cylindrical, are interposed between the cathode and the anode.

Les puissances considérées ici sont de l'ordre du mégawatt, pour des fréquences de plusieurs dizaines à plusieurs centaines de mégahertz. La tension entre l'anode et la cathode est de plusieurs kilovolts.The powers considered here are of the order of megawatt, for frequencies of several tens to several hundred megahertz. The voltage between the anode and the cathode is several kilovolts.

L'anode reçoit la quasi-totalité du courant d'électrons émis par la cathode et modulé par la ou les grilles. L'énergie cinétique des électrons frappant l'anode est convertie en chaleur. Le flux de puissance reçu par l'anode est très élevé (ordre de grandeur : un kilowatt par centimètre carré de surface d'anode pour des surfaces de plusieurs centaines de centimètres carrés). Typiquement, pour le type de tubes électroniques considéré ici, l'anode est un cylindre d'environ 20 à 40 cm de diamètre et plusieurs dizaines de centimètres de haut.The anode receives almost all of the electron current emitted by the cathode and modulated by the grid (s). The kinetic energy of the electrons striking the anode is converted into heat. The power flux received by the anode is very high (order of magnitude: one kilowatt per square centimeter of anode surface for areas of several hundred square centimeters). Typically, for the type of electronic tube considered here, the anode is a cylinder about 20 to 40 cm in diameter and several tens of centimeters high.

Pour refroidir l'anode on a imaginé des systèmes de circulation d'eau construits de telle manière qu'on provoque la formation intensive de bulles d'évaporation de l'eau qui circule. On utilise ainsi la chaleur latente de vaporisation de l'eau, qui est élevée, pour augmenter l'efficacité de refroidissement. Pour faciliter la formation de zones d'ébullition, on forme des cannelures circulaires parallèles autour de l'anode, on entoure l'anode cannelée avec une chemise cylindrique qui canalise l'eau dans un espace étroit entre l'extérieur de l'anode et l'intérieur de la chemise et on établit une circulation forcée d'eau entre le bas et le haut de l'anode. Un tel système de refroidissement est représenté à la figure 1 dans le cas d'une triode.To cool the anode, water circulation systems have been devised constructed in such a way that the intensive formation of bubbles of evaporation of the circulating water is caused. The latent heat of vaporization of water, which is high, is thus used to increase the cooling efficiency. To facilitate the formation of boiling zones, parallel circular grooves are formed around the anode, the fluted anode is surrounded with a cylindrical jacket which channels the water in a narrow space between the outside of the anode and inside the jacket and a forced circulation of water is established between the bottom and the top of the anode. Such a cooling system is shown in Figure 1 in the case of a triode.

Les références du dessin sont les suivantes : anode 10 ; cannelures 12 ; une première chemise de refroidissement 14 entourant l'anode pour canaliser l'eau le long de la surface de paroi extérieure de l'anode ; une deuxième chemise 16 définit la chambre d'entrée de l'eau ; la deuxième chemise 16 entoure la première et communique d'un côté avec elle, par exemple au bas de l'anode, par une ouverture 18 ; un conduit 20 d'amenée d'eau sous pression qui s'ouvre dans la deuxième chemise; un conduit 22 d'évacuation de l'eau et des bulles de vapeur. Les autres éléments de la figure sont les éléments classiques d'un tube électronique : cathode 24 avec ses connexions extérieures 26 et 28 (pour une cathode à chauffage direct) ; grille 30 avec sa connexion extérieure 32 ; connexion d'anode 34 brasée au pied de l'anode. Toutes ces connexions sont cylindriques et destinées à être enfichées dans un support adapté non représenté. Les connexions sont séparées par des entretoises de céramique 36. L'enceinte délimitée par la surface de paroi intérieure de l'anode, les surface de parois intérieures des connexions, et les entretoises de céramique, est sous vide. Les chemises de refroidissement ne sont pas sous vide.The references of the drawing are as follows: anode 10; grooves 12; a first cooling jacket 14 surrounding the anode for channeling water along the outer wall surface of the anode; a second jacket 16 defines the water inlet chamber; the second jacket 16 surrounds the first and communicates on one side with it, for example at the bottom of the anode, through an opening 18; a pipe 20 for supplying pressurized water which opens in the second jacket; a pipe 22 for evacuating water and steam bubbles. The other elements of the figure are the classic elements of an electronic tube: cathode 24 with its external connections 26 and 28 (for a direct heating cathode); grid 30 with its external connection 32; anode 34 connection brazed at the foot of the anode. All these connections are cylindrical and intended to be plugged into a suitable support, not shown. The connections are separated by ceramic spacers 36. The enclosure delimited by the interior wall surface of the anode, the interior wall surfaces of the connections, and the ceramic spacers, is under vacuum. The cooling jackets are not under vacuum.

Les cannelures usinées sur la surface de paroi extérieure de l'anode servent, comme on l'a dit, à favoriser l'apparition de points d'évaporation de l'eau qui circule sous pression. C'est le refroidissement le plus efficace connu à ce jour (système connu sous le nom de "hypervapotron"). Le brevet FR-A-2 627 898 décrit un tel tube.The grooves machined on the outer wall surface of the anode serve, as has been said, to promote the appearance of evaporation points of the water flowing under pressure. It is the most effective cooling known to date (system known as the "hypervapotron"). Patent FR-A-2 627 898 describes such a tube.

Mais on a pu constater un défaut de ce système : les cannelures de formation de bulles s'opposent à l'évacuation de ces mêmes bulles. Les bulles s'entrechoquent et coalescent et provoquent des surpressions locales et des détentes brusques par implosions et disparition dans le courant d'eau. Il en résulte des chocs et des vibrations inacceptables pour les éléments fragiles ou non rigides du tubes, notamment les grilles qui sont très proches de la cathode et qui risquent de la toucher ou de se toucher entre elles.However, we have been able to observe a defect in this system: the bubble formation grooves prevent the evacuation of these same bubbles. The bubbles collide and coalesce and cause local overpressures and sudden detents by implosions and disappearance in the stream of water. This results in unacceptable shock and vibration for the fragile or non-rigid elements of the tubes, in particular the grids which are very close to the cathode and which risk touching or touching each other.

On a également déjà proposé, dans le brevet US 3 414 757, un klystron, de puissance 100 à 200 kW, dont le collecteur est composé d'une succession axiale de tronçons de tubes brasés les uns aux autres par un jonc de brasure; chaque tube est percé sur sa circonférence de conduits cylindriques axiaux servant au refroidissement par eau du collecteur.It has also already been proposed, in US Pat. No. 3,414,757, a klystron, with a power of 100 to 200 kW, the collector of which is composed of an axial succession of sections of tubes brazed to each other by a solder ring; each tube is pierced on its circumference with axial cylindrical conduits used for water cooling of the collector.

Il apparaît que la construction envisagée ne permettrait pas d'obtenir des puissances largement supérieures, c'est-à-dire de l'ordre du mégawatt comme cela est recherché dans la présente invention.It appears that the envisaged construction would not allow much higher powers to be obtained, that is to say of the order of megawatt as is sought in the present invention.

Un but de la présente invention est de rechercher des moyens pour dissiper sur l'anode une puissance bien supérieure à celle que permet la construction du collecteur du brevet US 3 414 757 et bien supérieure à elle que permet la construction du brevet FR-A-2 627 898. L'ordre de grandeur recherché est un doublement des puissances par rapport à ce dernier, ce qui est considérable.An object of the present invention is to search for means for dissipating on the anode a power much greater than that which the construction of the collector of US Patent 3,414,757 allows and much greater than that which the construction of the patent FR-A allows 2,627,898. The order of magnitude sought is a doubling of the powers relative to the latter, which is considerable.

Selon l'invention on propose un tube électronique à vide de très forte puissance ayant une anode cylindrique (c'est-à-dire une anode dont la surface de paroi intérieure est essentiellement cylindrique dans sa partie active en regard d'une cathode également cylindrique) formée par au moins une section cylindrique (c'est-à-dire là encore à surface de paroi intérieure essentiellement cylindrique au moins là où cette surface de paroi est en regard d'une portion correspondante de cathode), et de préférence plusieurs sections cylindriques superposées coaxialement et brasées les unes sur les autres, la paroi de chaque section étant percée de nombreux conduits longitudinaux de circulation de fluide de refroidissement s'étendant linéairement sur toute la hauteur de la section, caractérisé en ce que les conduits longitudinaux débouchent tous, à une extrémité de l'anode, de préférence à la partie supérieure de celle-ci, dans une structure de distribution d'eau de refroidissement alimentant uniformément la totalité des conduits longitudinaux débouchant à cette partie supérieure.According to the invention there is provided a very high power electronic vacuum tube having a cylindrical anode (that is to say an anode whose inner wall surface is essentially cylindrical in its active part opposite an equally cylindrical cathode ) formed by at least one cylindrical section (i.e. again with an essentially cylindrical inner wall surface at least where this wall surface faces a corresponding portion of cathode), and preferably several sections cylindrical superimposed coaxially and brazed on each other, the wall of each section being pierced with numerous longitudinal conduits for circulation of coolant extending linearly over the entire height of the section, characterized in that the longitudinal conduits all open out, at one end of the anode, preferably at the top of the anode, in a water distribution structure cooling uniformly supplying all of the longitudinal conduits leading to this upper part.

Cette structure permet notamment de conserver une vitesse aussi élevée que possible de l'eau dans la totalité des conduits, et une très bonne uniformité de refroidissement.This structure makes it possible in particular to maintain as high a speed as possible of the water in all of the conduits, and a very good uniformity of cooling.

La structure de distribution est de préférence conique et sans pertes de charge.The distribution structure is preferably conical and without pressure losses.

Les conduits sont à section complètement circulaire (fermée) et s'étendent linéairement sur toute la hauteur de l'anode (de préférence rigoureusement parallèlement à l'axe de l'anode cylindrique); ce ne sont donc pas des rainures rectangulaires ouvertes formées par usinage de la surface de paroi extérieure de l'anode et fermées ensuite par une chemise extérieure. L'efficacité de refroidissement en est considérablement améliorée; et ceci d'autant plus si on prévoit en outre que les conduits sont percés plus près de la surface de paroi intérieure que de la surface de paroi extérieure de l'anode.The conduits are of completely circular (closed) section and extend linearly over the entire height of the anode (preferably strictly parallel to the axis of the cylindrical anode); they are therefore not open rectangular grooves formed by machining the outer wall surface of the anode and then closed by an outer jacket. The cooling efficiency is considerably improved; and this is all the more so if it is further provided that the conduits are drilled closer to the interior wall surface than to the exterior wall surface of the anode.

Etant donné les quantités de chaleur très élevées reçues par l'anode, on pense que des conduits de refroidissement à section rectangulaire laisseraient subsister des zones de surchauffe fatales pour le tube de puissance : ces zones de surchauffe sont les coins de la section rectangulaire, où l'eau de refroidissement circule moins bien.Given the very high amounts of heat received by the anode, it is believed that rectangular section cooling conduits would leave fatal overheating zones for the power tube: these overheating zones are the corners of the rectangular section, where the cooling water circulates less well.

On fera ici une remarque : dans les tubes du genre considéré ici (anode cylindrique circulaire et puissances de l'ordre du mégawatt ou plus) l'anode a une hauteur de plusieurs dizaines de centimètres, il est difficile de former des perçages circulaires parallèles à l'axe de l'anode (on ne sait pas faire des perçages à la fois très longs et très fins et il faut les faire fins si on veut en juxtaposer un nombre suffisant pour refroidir uniformément la totalité de la surface de paroi d'anode). On superpose donc de préférence plusieurs sections cylindriques d'anode après les avoir percés de conduits très fins, en mettant les conduits en regard les uns des autres pour aboutir à des conduits longitudinaux sur toute la hauteur de l'anode. Le diamètre des conduits peut alors être très faible (diamètre au moins 30 fois plus petit, et de préférence au moins 40 ou 50 fois plus petit, que la hauteur de l'anode).We will make a note here: in tubes of the kind considered here (circular cylindrical anode and powers of the order of megawatt or more) the anode has a height of several tens of centimeters, it is difficult to form circular holes parallel to the axis of the anode (we do not know how to make both very long and very fine holes and we must make them fine if we want to juxtapose a sufficient number to uniformly cool the entire surface of the anode wall ). Several cylindrical anode sections are therefore preferably superimposed after having pierced them with very fine conduits, putting the conduits opposite one another to result in longitudinal conduits over the entire height of the anode. The diameter of the conduits can then be very small (diameter at least 30 times smaller, and preferably at least 40 or 50 times smaller, than the height of the anode).

Selon encore un autre aspect important de l'invention, l'anode cylindrique est formée de sections cylindriques de cuivre dont la tranche est argentée et qui sont brasées les unes sur les autres par leurs tranches argentées sans apport de matériau de brasure autre que l'argenture des tranches, de sorte qu'il n'y a pas de coulures parasites de matériau de brasure. Et bien sûr, si l'anode comporte des conduits linéaires très fins débouchant en regard les uns des autres sur les tranches des sections cylindriques adjacentes, on évite ainsi les risques de coulure de matériau de brasure qui pourraient au moins partiellement boucher les conduits et qui ne seraient pas nettoyables compte tenu de la finesse des conduits.According to yet another important aspect of the invention, the cylindrical anode is formed of cylindrical sections of copper, the edge of which is silver-plated and which are brazed on one another by their silver edges, without the addition of brazing material other than the silvering of the slices, so that there are no stray streaks of brazing material. And of course, if the anode has very fine linear conduits opening opposite each other on the edges of the adjacent cylindrical sections, this avoids the risks of sagging of brazing material which could at least partially block the conduits and which would not be cleanable given the fineness of the conduits.

Par conséquent un aspect important de l'invention est l'opération de brasage par argenture (dépôt électrolytique en principe) des tranches des sections cylindriques individuelles puis superposition de ces tranches dans un four dans des conditions de température et d'atmosphère propres à former une brasure à l'argent entre les tranches argentées en contact.Consequently, an important aspect of the invention is the operation of brazing by silvering (electrolytic deposition in principle) of the sections of the individual cylindrical sections then superposition of these sections in an oven under conditions of temperature and atmosphere suitable for forming a silver solder between the silver slices in contact.

Selon encore un autre aspect général de l'invention, l'anode cylindrique est percée de conduits fins parallèles à l'axe de l'anode et plus proches de la surface intérieure de la paroi d'anode que de la surface extérieure de cette paroi.According to yet another general aspect of the invention, the cylindrical anode is pierced with fine conduits parallel to the axis of the anode and more closer to the inner surface of the anode wall than to the outer surface of this wall.

Enfin, il est important de noter que contrairement au cas des tubes classiquement refroidis par création de bulles de vapeur, dans lesquels on fait circuler l'eau dans le sens où les bulles tendent à partir (donc vers le haut), on choisit ici de préférence d'amener l'eau par le haut du tube. La structure est telle que la vitesse d'écoulement est élevée dans les conduits et les bulles sont entraînées rapidement vers le bas sans que la circulation de l'eau s'oppose à la circulation des bulles.Finally, it is important to note that unlike the case of tubes conventionally cooled by the creation of steam bubbles, in which water is circulated in the direction where the bubbles tend to leave (therefore upwards), here we choose to preferably bring water from the top of the tube. The structure is such that the flow speed is high in the conduits and the bubbles are quickly drawn down without the circulation of the water being opposed to the circulation of the bubbles.

D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée qui suit et qui est faite en référence aux dessins annexés dans lesquels :

  • la figure 1 déjà décrite représente un tube de forte puissance de la technique antérieure avec son système de refroidissement,
  • la figure 2 représente une coupe axiale de l'anode cylindrique d'un tube conforme à l'invention,
  • la figure 3 représente une coupe transversale de l'anode perpendiculairement à l'axe de celle-ci.
Other characteristics and advantages of the invention will appear on reading the detailed description which follows and which is given with reference to the appended drawings in which:
  • FIG. 1, already described, represents a high power tube of the prior art with its cooling system,
  • FIG. 2 represents an axial section of the cylindrical anode of a tube according to the invention,
  • Figure 3 shows a cross section of the anode perpendicular to the axis thereof.

Sur la figure 2, on a représenté l'anode d'un tube de puissance selon l'invention, avec son système de refroidissement. Les autres éléments du tube (cathode, grilles, connexions extérieures, entretoises de céramique assurant l'étanchéité au vide) ne sont pas représentés pour ne pas alourdir la figure et peuvent si on le désire être semblables à ceux de la figure 1.In Figure 2, there is shown the anode of a power tube according to the invention, with its cooling system. The other elements of the tube (cathode, grids, external connections, ceramic spacers ensuring vacuum tightness) are not shown so as not to make the figure heavier and may if desired be similar to that of FIG. 1.

Le corps de l'anode est classiquement constitué globalement par un cylindre de révolution d'axe 100 ouvert à sa partie inférieure, et fermé à sa partie supérieure. La partie supérieure est essentiellement en forme de disque transversal à l'axe 100, pourvu d'un queusot de pompage.The anode body is conventionally generally constituted by a cylinder of revolution of axis 100 open at its lower part, and closed at its upper part. The upper part is essentially in the form of a disc transverse to the axis 100, provided with a pumping rod.

L'anode est constituée de plusieurs tronçons superposés. Chaque tronçon est constitué par une section globalement cylindrique, le tronçon supérieur étant cependant constitué à la fois par une section cylindrique et par le disque de fermeture supérieure de l'anode.The anode consists of several superimposed sections. Each section is constituted by a generally cylindrical section, the upper section being however constituted both by a cylindrical section and by the upper closing disc of the anode.

Dans l'exemple représenté, il y a quatre sections cylindriques d'anode 120, 140, 160, 180 superposées coaxialement. La section supérieure 180 se divise en une partie cylindrique 200 et le disque de fermeture 220. Le queusot de pompage est désigné par la référence 240; il est placé au centre du disque 220; il est destiné à être fermé hermétiquement après que le vide aura été fait dans le tube.In the example shown, there are four cylindrical anode sections 120, 140, 160, 180 coaxially superimposed. The section upper 180 is divided into a cylindrical part 200 and the closing disc 220. The pumping pipe is designated by the reference 240; it is placed in the center of the disc 220; it is intended to be hermetically closed after a vacuum has been made in the tube.

Chaque section comporte une paroi cylindrique (avec une surface intérieure de paroi et une surface extérieure de paroi), et deux tranches d'extrémité, respectivement une tranche supérieure et une tranche inférieure. Les tranches sont planes (plan perpendiculaire à l'axe 100 du tube. Les sections d'anode sont brasées les unes sur les autres par leurs tranches en regard, c'est-à-dire que la tranche inférieure d'une section est brasée sur la tranche supérieure d'une section située immédiatement au dessous; les plans de ces tranches sont désignés par les références 260, 280, 300. Ainsi, par exemple, le plan 280 est le plan de brasage de la tranche inférieure de la section 160 et de la tranche supérieure de la section 140. Des pions de centrage 320 sont prévus dans ces plans, pour positionner exactement les unes par rapport aux autres les différentes sections; le positionnement exact est nécessaire aussi bien pour assurer un centrage coaxial exact des sections que pour assurer, comme on le verra plus loin, l'alignement des conduits de refroidissement des différents sections. Plusieurs pions de centrage 320 sont prévus dans chaque plan de brasage, un seul étant représenté sur la figure 2 dans chaque plan. Les pions sont par exemple des petits cylindres verticaux insérés dans des alésages en regard formés dans les tranches de deux sections adjacentes.Each section has a cylindrical wall (with an inner wall surface and an outer wall surface), and two end sections, respectively an upper section and a lower section. The sections are planar (plane perpendicular to the axis 100 of the tube. The anode sections are brazed one on the other by their facing sections, that is to say that the lower section of a section is brazed on the upper edge of a section located immediately below, the planes of these sections are designated by the references 260, 280, 300. Thus, for example, the plane 280 is the brazing plane of the lower section of section 160 and of the upper edge of the section 140. Centering pins 320 are provided in these planes, to position the different sections exactly with respect to each other, exact positioning is necessary both to ensure exact coaxial centering of the sections and to ensure, as will be seen below, the alignment of the cooling conduits of the different sections. Several centering pins 320 are provided in each brazing plane, only one being shown in the fi gure 2 in each plan. The pins are for example small vertical cylinders inserted in facing bores formed in the edges of two adjacent sections.

L'anode comporte des conduits de refroidissement rectilignes, s'étendant sur toute la hauteur de l'anode. Deux conduits 340 et 360 sont visibles sur la figure 2 : ce sont ceux qui sont dans le plan de coupe axiale du tube à vide. Les conduits sont percés dans l'épaisseur de la paroi des sections. Ils sont aussi nombreux et aussi fins que possible de manière à refroidir aussi uniformément que possible la totalité de la paroi de l'anode. Leur diamètre est par exemple de quelques millimètres (section de quelques millimètres carrés à quelques dizaines de millimètres carrés), et ils sont très rapprochés : espacement de quelques millimètres également. A titre d'exemple, 3 à 5 millimètres de diamètre et 2 à 5 millimètres d'espacement entre conduits constituent des dimensions préférées. Dans un exemple de réalisation, il y a environ 160 conduits répartis en couronne tout autour de l'anode d'une trentaine de centimètres de diamètre. Les diamètres et espacements sont alors d'environ 3mm.The anode has rectilinear cooling conduits, extending over the entire height of the anode. Two conduits 340 and 360 are visible in FIG. 2: these are those which are in the axial section plane of the vacuum tube. The conduits are drilled in the thickness of the wall of the sections. They are as numerous and as thin as possible so as to cool as uniformly as possible the entire wall of the anode. Their diameter is for example a few millimeters (section from a few square millimeters to a few tens of square millimeters), and they are very close together: spacing of a few millimeters also. For example, 3 to 5 millimeters in diameter and 2 to 5 millimeters of spacing between conduits constitute preferred dimensions. In an exemplary embodiment, there are approximately 160 conduits distributed in a ring all around the anode about thirty centimeters in diameter. The diameters and spacings are then about 3mm.

Les conduits sont de préférence des perçages à section circulaire, car la circulation du fluide de refroidissement (en principe de l'eau sous pression) est alors optimale : s'il y avait des angles, le fluide risquerait de mal refroidir les angles. Comme on le voit sur la figure, les conduits rectilignes sont de préférence plus près de la surface de paroi interne de l'anode que de la surface de paroi externe. L'espace entre le bord d'un conduit et la surface de paroi interne de l'anode peut être de quelques millimètres, par exemple 3 à 5 millimètres. L'épaisseur de la paroi d'anode peut être de 15 à 30 millimètres. Le refroidissement est donc mieux assuré en faisant circuler l'eau plus près de la surface de paroi interne où se produit le dégagement de chaleur. Les conduits sont répartis régulièrement en couronne tout autour de l'anode. Les pions de centrage 320 sont de préférence situés à l'extérieur de cette couronne pour ne pas gêner la répartition régulière des conduits autour de l'anode. La figure 3 représente une coupe transversale à l'axe 100, par un des plans de brasage, et on y voit cette couronne de conduits.The conduits are preferably bores with circular cross-section, because the circulation of the cooling fluid (in principle water under pressure) is then optimal: if there were angles, the fluid would risk poorly cooling the angles. As can be seen in the figure, the straight conduits are preferably closer to the inner wall surface of the anode than to the outer wall surface. The space between the edge of a conduit and the internal wall surface of the anode can be a few millimeters, for example 3 to 5 millimeters. The thickness of the anode wall can be 15 to 30 millimeters. Cooling is therefore better ensured by circulating the water closer to the inner wall surface where the generation of heat occurs. The conduits are regularly distributed in a crown all around the anode. The centering pins 320 are preferably located outside of this ring so as not to hinder the regular distribution of the conduits around the anode. Figure 3 shows a cross section on the axis 100, by one of the soldering planes, and we see this ring of conduits.

En pratique on peut considérer que les conduits sont placés à proximité de la surface interne de la paroi de l'anode, à une distance de cette surface environ égale au diamètre des perçages et les perçages sont distribués tout autour de l'anode en étant séparés les uns de autres d'une distance environ égale à leur diamètre.In practice, it can be considered that the conduits are placed near the internal surface of the wall of the anode, at a distance from this surface approximately equal to the diameter of the holes and the holes are distributed all around the anode, being separated. each other from a distance approximately equal to their diameter.

La hauteur de l'anode est de plusieurs dizaines de centimètres. Pour ces hauteurs, il serait pratiquement impossible de percer des trous circulaires par un foret de quelques millimètres de diamètre et c'est une des raisons de la constitution de l'anode en plusieurs sections brasées : la hauteur de chaque section est choisie compatible avec la possibilité pratique de forer des trous fins sur cette hauteur. En pratique, on peut forer des trous sur une hauteur qui ne dépasse pas 20 ou 25 fois le diamètre du trou. Pour des trous de 3 à 5 millimètres de diamètre, on superposera des sections d'anode qui n'excèdent pas 10 centimètres de haut. Comme la hauteur de l'anode est largement supérieure à 30 fois le diamètre des conduits, et même supérieure à 40 ou 50 fois ce diamètre, plusieurs sections d'anode superposées sont nécessaires.The height of the anode is several tens of centimeters. For these heights, it would be practically impossible to drill circular holes with a drill a few millimeters in diameter and this is one of the reasons for the constitution of the anode in several brazed sections: the height of each section is chosen compatible with the practical possibility of drilling fine holes on this height. In practice, holes can be drilled to a height that does not exceed 20 or 25 times the diameter of the hole. For holes 3 to 5 millimeters in diameter, anode sections which are not more than 10 centimeters high will be superimposed. As the height of the anode is much greater than 30 times the diameter of the conduits, and even more than 40 or 50 times this diameter, several sections of superimposed anode are necessary.

Des conduits rectilignes sont donc percés dans chaque section à des positions parfaitement définies de sorte que les conduits des différentes sections soient exactement en regard les uns des autres lorsque les sections sont superposées et positionnées par les pions de centrage 320.Straight pipes are therefore drilled in each section at perfectly defined positions so that the pipes of the different sections are exactly opposite one another when the sections are superimposed and positioned by the centering pins 320.

Les conduits de refroidissement débouchent à la partie supérieure de la section supérieure 180. Ils forment une couronne d'ouvertures et l'eau de refroidissement sera distribuée dans ces ouvertures par une structure conique d'amenée de fluide, dont on parlera plus loin.The cooling conduits open at the upper part of the upper section 180. They form a ring of openings and the cooling water will be distributed in these openings by a conical structure for supplying fluid, which will be discussed later.

A la base de l'anode, I'évacuation de l'eau réchauffée est assurée de préférence par récupération dans une chemise cylindrique 380 entourant l'anode. Il n'y a qu'une seule chemise et non deux chemises comme c'était le cas dans l'art antérieur. La configuration de récupération de l'eau est par exemple la suivante : des orifices radiaux sont percés tout autour de la surface extérieure de la paroi de la section inférieure 120 et font communiquer l'extrémité aval de chaque conduit vertical avec l'extérieur de la paroi d'anode. Deux orifices radiaux 440, 460 sont visibles sur la figure 2; ce sont ceux qui sont dans le plan de coupe de la figure et qui communiquent avec les conduits 340 et 360 respectivement. La chemise cylindrique 380 constitue un espace de confinement de l'eau. Elle est fermée à sa partie inférieure par une bague 400. Dans l'exemple représenté, la connexion d'anode 420 prend appui sur cette bague. La chemise 380 est par ailleurs fermée à sa partie supérieure par une plaque 480 dans laquelle est prévue une ouverture 500 d'amenée d'eau et une ouverture 520 d'évacuation de l'eau.At the base of the anode, the evacuation of the heated water is preferably ensured by recovery in a cylindrical jacket 380 surrounding the anode. There is only one shirt and not two shirts as was the case in the prior art. The water recovery configuration is, for example, as follows: radial orifices are drilled all around the exterior surface of the wall of the lower section 120 and make the downstream end of each vertical duct communicate with the exterior of the anode wall. Two radial holes 440, 460 are visible in Figure 2; these are those which are in the section plane of the figure and which communicate with the conduits 340 and 360 respectively. The cylindrical jacket 380 constitutes a water confinement space. It is closed at its lower part by a ring 400. In the example shown, the anode connection 420 is supported on this ring. The jacket 380 is also closed at its upper part by a plate 480 in which is provided an opening 500 for supplying water and an opening 520 for discharging water.

La structure conique de distribution d'eau sous pression est placée à l'intérieur de la chemise 380, de manière que l'eau arrive de l'ouverture 500, passe dans la structure conique sans fuite vers l'intérieur de la chemise 380, puis passe dans les conduits de refroidissement dans l'épaisseur de la paroi anodique, et enfin remonte par la chemise 380 jusqu'à l'ouverture d'évacuation 520.The conical structure for distributing pressurized water is placed inside the jacket 380, so that the water arrives from the opening 500, passes through the conical structure without leaking towards the inside of the jacket 380, then passes through the cooling conduits in the thickness of the anode wall, and finally rises through the jacket 380 to the discharge opening 520.

La structure conique est pour cela constituée de la manière suivante : un bloc conique 540 creux (à cause de la présence du queusot de pompage 240) est monté sur le disque de fermeture 220 de l'anode. Ce bloc 540 est vissé sur l'anode (alésages filetés 550 prévus dans la section terminale 180) après qu'on a fait le vide dans le tube et que le queusot de pompage a été définitivement fermé. La surface de paroi extérieure du bloc 540 est conique et définit une première surface de délimitation d'un canal conique 560 le long duquel circule l'eau (du haut vers le bas, c'est-à-dire de l'ouverture d'amenée 500 vers les orifices d'ouverture des conduits de refroidissement tels que 340 et 360).The conical structure is therefore constituted in the following manner: a hollow conical block 540 (due to the presence of the pump rod 240) is mounted on the closing disc 220 of the anode. This block 540 is screwed onto the anode (threaded bores 550 provided in the end section 180) after a vacuum has been made in the tube and the queusot of pumping was permanently closed. The outer wall surface of the block 540 is conical and defines a first surface delimiting a conical channel 560 along which the water circulates (from top to bottom, i.e. from the opening of brought 500 to the opening holes of the cooling conduits such as 340 and 360).

Un deuxième bloc 580 dont la surface de paroi intérieure est conique définit une deuxième surface de délimitation du canal 560. Le haut du bloc 580 comporte un conduit central 570 dont le bord périphérique 590 est appliqué contre la surface interne de la plaque de fermeture 480 autour de l'ouverture 500, de sorte que l'eau amenée sous pression dans cette ouverture est forcée dans le canal conique 560 entre les surfaces coniques des deux blocs 540 et 580. L'ouverture 580 est de préférence formée au centre de la plaque 480 pour être dans l'axe de l'anode, les blocs coniques étant également dans l'axe de l'anode.A second block 580 whose inner wall surface is conical defines a second delimitation surface of the channel 560. The top of the block 580 comprises a central duct 570 whose peripheral edge 590 is applied against the internal surface of the closure plate 480 around of the opening 500, so that the water brought under pressure into this opening is forced into the conical channel 560 between the conical surfaces of the two blocks 540 and 580. The opening 580 is preferably formed in the center of the plate 480 to be in the axis of the anode, the conical blocks also being in the axis of the anode.

Le canal 560 peut avoir une section annulaire allant en se rétrécissant du haut vers le bas de la structure conique, c'est-à-dire que l'angle de conicité de la surface de paroi intérieure du bloc 580 est de préférence plus faible que l'angle de conicité de la surface de paroi extérieure du bloc 540.The channel 560 may have an annular section narrowing from the top to the bottom of the conical structure, that is to say that the angle of conicity of the interior wall surface of the block 580 is preferably smaller than the taper angle of the outer wall surface of block 540.

La surface intérieure du bloc 540 et/ou la surface extérieure du bloc 58 pourraient être usinées de manière à constituer progressivement des canaux juxtaposés répartis en couronne et débouchant chacun en regard d'un conduit rectiligne respectif de l'anode, mais ce n'est pas obligatoire : les surfaces des blocs 540 et 580 peuvent être lisses. Dans ce dernier cas, il y a une certaine perte de charge à l'endroit où le canal 560 annulaire continu rejoint les ouvertures discontinues des conduits de l'anode, mais cette perte de charge n'est pas très importante.The inner surface of the block 540 and / or the outer surface of the block 58 could be machined so as to gradually form juxtaposed channels distributed in a crown and each opening facing a respective rectilinear conduit of the anode, but this is not not compulsory: the surfaces of blocks 540 and 580 can be smooth. In the latter case, there is a certain pressure drop at the point where the continuous annular channel 560 joins the discontinuous openings of the anode conduits, but this pressure drop is not very significant.

Le bloc conique supérieur 580 peut être vissé sur le bloc inférieur 540, par exemple par huit boulons répartis autour de la structure, pénétrant dans des alésages filetés 600 formés dans la section supérieure 180 de l'anode. Dans l'exemple représenté, le bloc conique supérieur n'est pas vissé mais est simplement serré entre la plaque supérieure de fermeture 480 de la chemise 380 et le disque supérieur de l'anode. Des boulons de serrage passent à travers des ouvertures 620 de la plaque 480, puis dans des ouvertures 640 du bloc conique et sont vissés dans les alésages 600.The upper conical block 580 can be screwed onto the lower block 540, for example by eight bolts distributed around the structure, penetrating into threaded bores 600 formed in the upper section 180 of the anode. In the example shown, the upper conical block is not screwed but is simply clamped between the upper closure plate 480 of the jacket 380 and the upper disc of the anode. Clamping bolts pass through openings 620 of the plate 480, then through openings 640 of the conical block and are screwed into the bores 600.

Un système d'amenée d'eau sous pression non représenté est relié à l'ouverture 500 de la plaque supérieure 480.A pressure water supply system, not shown, is connected to the opening 500 of the upper plate 480.

Le procédé de fabrication de cette anode consiste à réaliser séparément les différentes sections cylindriques 120, 140, 160, 180 en usinant séparément différents blocs de cuivre. Les surfaces de paroi interne et externe des sections sont usinées à la forme et aux dimensions désirées pour que les sections puissent être ensuite superposées axialement et former alors l'anode complète désirée. Les perçages des conduits rectilignes sont réalisés dans la paroi de chaque section, ainsi que les trous devant recevoir les pions de centrage 320. Les diamètres des conduits sont en pratique au moins de un vingtième de la hauteur de la section cylindrique dans laquelle ils sont percés (au dessous le perçage devient très difficile, voire impossible); ce diamètre est cependant au moins quarante ou cinquante fois plus petit que la hauteur totale de l'anode. Les positions des trous de centrage et des conduits sont parfaitement définies les unes par rapport aux autres pour que les conduits soient en regard les uns des autres lors de la superposition des sections. Les tranches sont ensuite usinées pour être parfaitement planes et perpendiculaires à l'axe des cylindres. Les tranches destinées à être juxtaposées à une autre tranche sont ensuite argentées par procédé électrolytique. Les sections sont superposées les unes aux autres sans autre apport de matériau de brasage entre deux sections adjacentes, seul le très mince dépôt électrolytiques constituant le matériau de brasure. L'assemblage de sections superposées axialement est placé dans un four à une température suffisante (environ 820°C), de préférence en atmosphère réductrice, pour constituer une brasure à l'argent entre les sections adjacentes. La brasure est en réalité une diffusion d'argent dans le cuivre ce qui conduit à la formation d'un eutectique Ag/Cu à 780°C. Un usinage final du tube (tournage) peut avoir lieu pour ajuster les surfaces de parois interne et externe de l'anode.The manufacturing process for this anode consists of making the different cylindrical sections 120, 140, 160, 180 separately by machining different blocks of copper separately. The inner and outer wall surfaces of the sections are machined to the desired shape and dimensions so that the sections can then be superimposed axially and then form the desired complete anode. The holes of the straight conduits are made in the wall of each section, as well as the holes to receive the centering pins 320. The diameters of the conduits are in practice at least one twentieth of the height of the cylindrical section in which they are drilled (below drilling becomes very difficult, even impossible); this diameter is however at least forty or fifty times smaller than the total height of the anode. The positions of the centering holes and the conduits are perfectly defined with respect to each other so that the conduits are facing each other when the sections are superimposed. The slices are then machined to be perfectly flat and perpendicular to the axis of the cylinders. The slices intended to be juxtaposed with another slice are then silvered by electrolytic process. The sections are superimposed on each other without any other supply of brazing material between two adjacent sections, only the very thin electrolytic deposit constituting the brazing material. The assembly of axially superimposed sections is placed in an oven at a sufficient temperature (about 820 ° C), preferably in a reducing atmosphere, to constitute a silver solder between the adjacent sections. The solder is actually a diffusion of silver in the copper which leads to the formation of an Ag / Cu eutectic at 780 ° C. Final machining of the tube (turning) can take place to adjust the inner and outer wall surfaces of the anode.

Ensuite, d'une manière classique, les autres électrodes (cathode, grilles) sont montées avec leurs connexions et les entretoises de céramique étanche au vide (brasures métal/métal et métal/céramique). Puis, le vide est fait à l'intérieur du tube. Enfin, la structure conique d'amenée d'eau de refroidissement et la chemise de récupération de l'eau sont montées.Then, in a conventional manner, the other electrodes (cathode, grids) are mounted with their connections and the spacers of vacuum-tight ceramic (metal / metal and metal / ceramic solders). Then, a vacuum is created inside the tube. Finally, the conical structure for cooling water and the water recovery jacket are mounted.

En fonctionnement, le tube électronique selon l'invention peut supporter une dissipation de puissance dépassant 2 mégawatts, et même 2,5 mégawatts (2 kW/cm² sur une surface supérieure à 1000 cm²). L'eau est amenée sous pression par le conduit d'entrée 500 et elle circule à grande vitesse dans les conduits fins de l'anode. Elle est portée à haute température et entre en ébullition. Les bulles de vapeur qui se forment sont immédiatement évacuées grâce à la vitesse élevée de circulation de l'eau, contrairement à ce qui se passait dans les systèmes de refroidissement de l'art antérieur dans lesquels, pour favoriser la formation de bulles, on plaçait des obstacles (cannelures) qui ralentissaient obligatoirement la circulation de l'eau. Le refroidissement est considérablement amélioré par cette évacuation rapide de l'eau et des bulles. La structure conique d'amenée d'eau, qui distribue uniformément l'eau, sans perte de charge volontaire pour assurer cette uniformité, améliore aussi la vitesse d'écoulement donc le refroidissement. Le refroidissement est amélioré aussi par le fait que les conduits ont une section circulaire et non rectangulaire ou carrée. Il est amélioré par le fait que les conduits ne sont pas placés autour de l'anode mais dans la paroi même de l'anode, et en outre plus près de la surface de paroi intérieure que de la surface de paroi extérieure. Le refroidissement est encore amélioré grâce à la finesse des canaux (ce qui permet de placer de très nombreux canaux très proches les uns des autres), cette finesse étant rendue possible dans ce cas par la réalisation de l'anode en plusieurs sections brasées les unes sur les autres.In operation, the electronic tube according to the invention can withstand a power dissipation exceeding 2 megawatts, and even 2.5 megawatts (2 kW / cm² on an area greater than 1000 cm²). Water is brought under pressure through the inlet pipe 500 and it circulates at high speed in the fine pipes of the anode. It is brought to high temperature and comes to a boil. The vapor bubbles which form are immediately removed thanks to the high speed of circulation of the water, contrary to what happened in the cooling systems of the prior art in which, to promote the formation of bubbles, one placed obstacles (grooves) which necessarily slowed down the circulation of water. The cooling is considerably improved by this rapid evacuation of water and bubbles. The conical structure of water supply, which distributes water uniformly, without voluntary pressure loss to ensure this uniformity, also improves the speed of flow therefore cooling. Cooling is also improved by the fact that the conduits have a circular section and not rectangular or square. It is improved by the fact that the conduits are not placed around the anode but in the same wall of the anode, and moreover closer to the inner wall surface than to the outer wall surface. The cooling is further improved thanks to the fineness of the channels (which makes it possible to place very many channels very close to each other), this fineness being made possible in this case by the production of the anode in several brazed sections on the others.

L'opération de brasage sans apport de matériau de brasure rapporté mais avec simplement une mince couche électrolytique d'argent faisant partie intégrante des sections d'anode, permet d'éviter toute coulure du matériau de brasure à des endroits indésirables. En effet, lorsqu'on soude deux pièces en insérant un cordon de brasure entre les deux pièces, il y a deux risques : d'abord le risque de coulure du matériau pendant qu'il fond, d'où la présence de matériau de brasure à des endroits indésirables ; il serait inacceptable par exemple que du matériau de brasure coule dans les conduits fins, risquant de les obstruer partiellement ou totalement et provoquant donc une absence de refroidissement local préjudiciable au tube. D'autre part, on a aussi le risque que les coulures de matériau de brasure entraînent une absence de matériau de brasure à certains endroits; dans ce cas il n'y a pas d'étanchéité au vide à ces endroits; dans le cas de l'invention, les zones qui doivent assurer l'étanchéité ont quelques millimètres de largeur (par exemple entre un conduit de refroidissement et la surface de paroi intérieure de l'anode). Une coulure de matériau de brasure pourrait créer un manque de soudure local, d'où un défaut d'étanchéité irrémédiable. Avec le procédé selon l'invention sans brasure rapportée, ce risque est suppriméThe brazing operation without adding added solder material but with simply a thin silver electrolytic layer forming an integral part of the anode sections, makes it possible to avoid any leakage of the solder material at undesirable locations. Indeed, when two parts are welded by inserting a solder bead between the two parts, there are two risks: first the risk of the material sinking while it melts, hence the presence of solder material in unwanted places; it would be unacceptable, for example, for solder material to flow into the fine conduits, risking partially or totally obstructing them and thus causing an absence of local cooling which is harmful to the tube. On the other hand, there is also the risk that the streaks of brazing material cause an absence of brazing material in certain places; in this case there is no vacuum seal at these locations; in the case of the invention, the zones which must ensure the seal are a few millimeters in width (for example between a cooling duct and the surface of the interior wall of the anode). A run of brazing material could create a lack of local solder, resulting in an irremediable leak. With the process according to the invention without added soldering, this risk is eliminated

Claims (12)

Tube électronique à vide de très forte puissance à anode essentiellement cylindrique, caractérisé en ce que l'anode est formée d'au moins une section globalement cylindriques (120, 140, 160, 180), la paroi cylindrique de chaque section étant percée de nombreux conduits de circulation de fluide de refroidissement longitudinaux (340, 360) s'étendant linéairement sur toute la hauteur de la section, caractérisé en ce que les conduits longitudinaux débouchent tous, à une extrémité de l'anode, dans une structure (540, 580) de distribution d'eau de refroidissement alimentant uniformément la totalité des conduits longitudinaux débouchant à cette partie supérieure.Very high power electronic vacuum tube with essentially cylindrical anode, characterized in that the anode is formed of at least one generally cylindrical section (120, 140, 160, 180), the cylindrical wall of each section being pierced with numerous longitudinal coolant circulation conduits (340, 360) extending linearly over the entire height of the section, characterized in that the longitudinal conduits all open, at one end of the anode, into a structure (540, 580 ) cooling water distribution uniformly supplying all of the longitudinal conduits leading to this upper part. Tube selon la revendication 1, caractérisé en ce que l'anode comporte plusieurs sections cylindriques superposées axialement, brasées les unes sur les autres, chaque conduit d'une section étant exactement en regard d'un conduit correspondant d'une section adjacente.Tube according to claim 1, characterized in that the anode comprises several cylindrical sections superimposed axially, brazed on each other, each duct of a section being exactly opposite a corresponding duct of an adjacent section. Tube selon l'une des revendications 1 et 2, caractérisé en ce que la structure de distribution uniforme d'eau de refroidissement est placée à la partie supérieure de l'anode.Tube according to either of Claims 1 and 2, characterized in that the structure for the uniform distribution of cooling water is placed at the top of the anode. Tube selon l'une des revendications 1 à 3, caractérisé en ce que les conduits sont percés dans l'épaisseur de la paroi de l'anode, plus près de la surface intérieure de cette paroi que de la surface extérieure.Tube according to one of claims 1 to 3, characterized in that the conduits are drilled in the thickness of the wall of the anode, closer to the inner surface of this wall than to the outer surface. Tube selon l'une des revendications précédentes, caractérisé en ce que les conduits ont une section de quelques millimètres carrés à quelques dizaines de mm², la hauteur de l'anode étant de quelques dizaines de centimètres.Tube according to one of the preceding claims, characterized in that the conduits have a section of a few square millimeters to a few tens of mm², the height of the anode being a few tens of centimeters. Tube selon l'une des revendications 1 à 5, caractérisé en ce que les conduits sont des perçages à section circulaire placés à proximité de la surface interne de la paroi de l'anode, à une distance de cette surface environ égale au diamètre des perçages et les perçages sont distribués tout autour de l'anode en étant séparés les uns de autres d'une distance environ égale à leur diamètre.Tube according to one of claims 1 to 5, characterized in that the conduits are holes of circular section placed near the internal surface of the anode wall, at a distance from this surface approximately equal to the diameter of the holes and the holes are distributed all around the anode, being separated from each other by a distance approximately equal to their diameter. Tube électronique à vide selon l'une des revendications précédentes, caractérisé en ce que les conduits sont des perçages circulaires très fins de diamètre au moins trente fois et de préférence au moins quarante à cinquante fois plus petits que la hauteur de l'anode.Electronic vacuum tube according to one of the preceding claims, characterized in that the conduits are very fine circular bores with a diameter at least thirty times and preferably at least forty to fifty times smaller than the height of the anode. Tube électronique selon lune des revendications précédentes, caractérisé en ce que la structure de distribution d'eau de refroidissement est une structure conique.Electronic tube according to one of the preceding claims, characterized in that the cooling water distribution structure is a conical structure. Tube selon la revendication 8, caractérisé en ce que la structure conique comprend un premier bloc (540) ayant une paroi à surface extérieure conique et un deuxième bloc (580) ayant une paroi à surface intérieure conique entourant le premier bloc, de manière à former un canal de circulation d'eau (540) entre ces parois, les conduits longitudinaux étant situés entre les deux parois coniques à la base de celles-ci, et une entrée d'eau sous pression (500) étant prévue à la partie supérieure du canal formé entre les parois coniques.Tube according to claim 8, characterized in that the conical structure comprises a first block (540) having a wall with a conical outer surface and a second block (580) having a wall with a conical inner surface surrounding the first block, so as to form a water circulation channel (540) between these walls, the longitudinal conduits being located between the two conical walls at the base of these, and a pressurized water inlet (500) being provided at the top of the channel formed between the conical walls. Tube électronique selon l'une des revendications 1 à 9, caractérisé en ce que l'anode est entourée d'une chemise (380) de récupération du fluide de refroidissement, I'extrémité aval des conduits longitudinaux de circulation de fluide communiquant avec la chemise.Electronic tube according to one of claims 1 to 9, characterized in that the anode is surrounded by a jacket (380) for recovering the coolant, the downstream end of the longitudinal fluid circulation conduits communicating with the jacket . Procédé de fabrication d'un tube électronique à vide de très forte puissance selon l'une des revendications précédentes, caractérisé en ce que la réalisation de l'anode comprend les opérations consistant à usiner plusieurs sections cylindriques de cuivre, à argenter la tranche de ces sections, à superposer les sections axialement, tranche contre tranche, et à placer l'ensemble superposé dans un four pendant une durée et à une température suffisantes pour réaliser une brasure argent-cuivre entre les sections sans apport de matériau de brasure rapporté entre les sections à tranches argentées.Method for manufacturing a very high power electronic vacuum tube according to one of the preceding claims, characterized in that the production of the anode comprises the operations consisting in machining several cylindrical sections of copper, in silvering the edge of these sections, to superimpose the sections axially, edge to edge, and to place the superimposed assembly in an oven for a time and at a temperature sufficient to achieve a silver-copper brazing between the sections without the addition of brazing material added between the sections with silver slices. Procédé selon la revendication 11, caractérisé en ce que les sections cylindriques sont percées de nombreux conduits cylindriques avant superposition et brasure, les conduits étant percés dans la paroi des sections parallèlement à l'axe des sections et sur toute la hauteur de celles-ci, les conduits des différents sections étant placés très précisément à des endroits correspondants de chaque section pour que tous les conduits d'une section soient en regard de conduits correspondants d'une section adjacente lorsque les sections sont superposées.Method according to claim 11, characterized in that the cylindrical sections are pierced with numerous cylindrical conduits before superimposition and brazing, the conduits being pierced in the wall of the sections parallel to the axis of the sections and over the entire height thereof, the conduits of the different sections being placed very precisely at corresponding places in each section so that all the conduits of a section are opposite corresponding conduits of an adjacent section when the sections are superimposed.
EP95401110A 1994-05-27 1995-05-12 High power vacuum electron tube with anode cooled by forced flow circulation Expired - Lifetime EP0684625B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9406464 1994-05-27
FR9406464A FR2720550B1 (en) 1994-05-27 1994-05-27 Very high power vacuum electronic tube with anode cooled by forced circulation.

Publications (2)

Publication Number Publication Date
EP0684625A1 true EP0684625A1 (en) 1995-11-29
EP0684625B1 EP0684625B1 (en) 1999-02-10

Family

ID=9463583

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95401110A Expired - Lifetime EP0684625B1 (en) 1994-05-27 1995-05-12 High power vacuum electron tube with anode cooled by forced flow circulation

Country Status (5)

Country Link
US (1) US5705881A (en)
EP (1) EP0684625B1 (en)
JP (1) JPH07326292A (en)
DE (1) DE69507740T2 (en)
FR (1) FR2720550B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2428513A (en) * 2005-07-20 2007-01-31 E2V Tech Collector cooling arrangement
CN109767962B (en) * 2018-12-29 2021-04-02 中国电子科技集团公司第十二研究所 Integrated cooling klystron high-frequency structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1326936A (en) * 1962-06-28 1963-05-10 Siemens Ag High power electric discharge tube or electron tube
US3414757A (en) * 1965-10-07 1968-12-03 Varian Associates High power beam tube having improved beam collector and method of fabricating same
FR1554633A (en) * 1966-05-31 1969-01-24
US3845341A (en) * 1973-08-01 1974-10-29 Aerojet General Co Actively cooled anode for current-carrying component
FR2627898A1 (en) * 1988-02-26 1989-09-01 Thomson Csf HF high powder electron tube with fluid flow cooling - has envelope covering anode and containing cooling fluid which is directed by projection of internal wall over anode surface

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2627899B1 (en) * 1988-02-26 1990-06-22 Thomson Csf ELECTRONIC TUBE COOLED BY CIRCULATION OF A FLUID

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1326936A (en) * 1962-06-28 1963-05-10 Siemens Ag High power electric discharge tube or electron tube
US3414757A (en) * 1965-10-07 1968-12-03 Varian Associates High power beam tube having improved beam collector and method of fabricating same
FR1554633A (en) * 1966-05-31 1969-01-24
US3845341A (en) * 1973-08-01 1974-10-29 Aerojet General Co Actively cooled anode for current-carrying component
FR2627898A1 (en) * 1988-02-26 1989-09-01 Thomson Csf HF high powder electron tube with fluid flow cooling - has envelope covering anode and containing cooling fluid which is directed by projection of internal wall over anode surface

Also Published As

Publication number Publication date
FR2720550A1 (en) 1995-12-01
DE69507740D1 (en) 1999-03-25
DE69507740T2 (en) 1999-09-02
US5705881A (en) 1998-01-06
FR2720550B1 (en) 1996-12-06
JPH07326292A (en) 1995-12-12
EP0684625B1 (en) 1999-02-10

Similar Documents

Publication Publication Date Title
FR3047063A1 (en) THERMAL EXCHANGING DEVICE FOR CONDENSED HEAT EXCHANGER
EP1636818B1 (en) X-ray generator tube comprising an orientable target carrier system
EP0684625B1 (en) High power vacuum electron tube with anode cooled by forced flow circulation
EP3465030B1 (en) Cryogenic device with compact exchanger
EP3737901B1 (en) Cold crucible and associated cooling manifold for an induction heating device
EP0048690B1 (en) High stability gas discharge tube for high power laser emission
EP0231778B1 (en) Sealed-off gas laser
FR2496337A1 (en) PERMANENT MAGNET STRUCTURE FOR LINEAR BEAM ELECTRONIC TUBES
FR2463502A1 (en) IMPROVEMENTS TO MICNETRON TYPE HYPERFREQUENCY DEVICES
EP0330542B1 (en) Electronic power tube cooled by means of a circulating fluid
WO1995022038A1 (en) Fluid flow heat exchanger, particularly for electron tubes
FR2585598A1 (en) PROCESS FOR THE MANUFACTURE BY CASTING OF A METAL PART INTERNALLY PROVIDED WITH A HOLLOW PART SURROUNDED BY A TUBE
EP0212171B1 (en) Blanket for a plasma nuclear fusion reactor and method for its manufacture
FR2935787A1 (en) HETEROGENEOUS CALODUC AND METHOD OF MANUFACTURE
FR2525812A1 (en) SLOW WAVE CIRCUIT FOR PROGRESSIVE WAVE TUBE
FR2878944A1 (en) Heat exchange device for nuclear reactor, has fluid recovery and distribution units, in ducts successively arranged in longitudinal direction of heat exchange module, allowing circulation of respective fluids in ducts of respective layers
FR2627898A1 (en) HF high powder electron tube with fluid flow cooling - has envelope covering anode and containing cooling fluid which is directed by projection of internal wall over anode surface
WO2012107699A1 (en) Inductive plasma torch
FR3130109A1 (en) PART OF INDUCTION HEATING EQUIPMENT SUITABLE TO RECEIVE A COOLING FLUID
FR3097796A1 (en) Hollow body heating unit for plastic container manufacturing machine
FR2925757A1 (en) COOLING AN ELECTRONIC TUBE
CH653182A5 (en) Gas discharge tube for laser power emission with very high stability
BE545711A (en)
WO1996020383A1 (en) Circulating fluid heat exchanger
FR2493615A1 (en) Gas-discharge tube for high-power argon laser - has coolant fluid circulation and gas recirculation circuit elements mounted externally of ionisation chamber

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19960119

17Q First examination report despatched

Effective date: 19960911

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 69507740

Country of ref document: DE

Date of ref document: 19990325

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990414

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040510

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040512

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040520

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060131

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060131