EP0680948B1 - Process for preparing N-acylglycin derivatives - Google Patents

Process for preparing N-acylglycin derivatives Download PDF

Info

Publication number
EP0680948B1
EP0680948B1 EP95106329A EP95106329A EP0680948B1 EP 0680948 B1 EP0680948 B1 EP 0680948B1 EP 95106329 A EP95106329 A EP 95106329A EP 95106329 A EP95106329 A EP 95106329A EP 0680948 B1 EP0680948 B1 EP 0680948B1
Authority
EP
European Patent Office
Prior art keywords
acid
employed
branched
alkyl
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95106329A
Other languages
German (de)
French (fr)
Other versions
EP0680948A1 (en
Inventor
Matthias Dr. Beller
Hartmut Dr. Fischer
Thomas Dr. Gerdau
Peter Gross
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aventis Research and Technologies GmbH and Co KG
Evonik Operations GmbH
Original Assignee
Hoechst AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst AG filed Critical Hoechst AG
Publication of EP0680948A1 publication Critical patent/EP0680948A1/en
Application granted granted Critical
Publication of EP0680948B1 publication Critical patent/EP0680948B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/08Preparation of carboxylic acid amides from amides by reaction at nitrogen atoms of carboxamide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/30Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by doubly-bound oxygen atoms
    • C07C233/31Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by doubly-bound oxygen atoms with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom

Definitions

  • the present invention relates to a new, improved method for Production of N-acyl- ⁇ -amino acid derivatives, in particular N-acyl sarcosines, by reacting carboxamides with aldehydes and CO under Acid catalysis by cobalt carbonyl compounds.
  • N-acyl- ⁇ -amino acid derivatives in particular those which have N-acyl sarcosines technical importance as a component of surfactants, soaps and emulsifiers.
  • GB 2 252 770 describes a one-step synthesis of N-acylamino acids by reacting a carboxamide with an aldehyde and CO in Presence of a metal catalyst and an acid as a cocatalyst.
  • the carboxamide becomes in a very large excess based on the aldehyde (1.78 to 1.0) used, so this method provides only moderate yields based on the acetamide used. Furthermore the product is thereby contaminated with at least 80% educt, which is what Makes processes unusable for technical use.
  • DE-A-364 204 only describes a process for the production of N-acylglycines starting from N-hydroxymethylamides with carbon monoxide and Hydrogen in the presence of a cobalt carbonyl compound in water or a inert water-containing solvents as the reaction medium.
  • a disadvantage of this process is the reaction in water or in strong water-based solvents.
  • the radicals R 1 , R 2 and R 3 can optionally be substituted. Suitable substituents are the hydroxyl group, (C 1 -C 10 ) alkoxy radicals and halogen atoms.
  • Suitable amides are e.g. Formamide, acetamide, N-methylacetamide, Propionamide, butyramide, acrylamide, N-methylformamide, N-methylbenzamide, Benzamide and crotonamide.
  • Amides are amides and N-alkylamides, especially N-methylamides straight-chain or branched, saturated or unsaturated carboxylic acids with 8 to 24 carbon atoms.
  • Particularly preferred amides are the N-methylamides of natural ones Fatty acids such as lauric acid, palmitic acid, stearic acid and oleic acid.
  • the amides of the formula (II) can be used as pure substances or as mixtures be used. Suitable mixtures are those that occur naturally Represent fats, e.g. Coconut, Babassu, Palm Kernel, Palm, Olive, Ricinus, Peanut, rapeseed, beef, pork, whale fat or oil (for Composition of these fats s. Fieser and Fieser, Organic Chemistry, Publishing House Chemistry 1972, page 1208).
  • Suitable aldehydes are e.g. Formaldehyde, acetaldehyde, propionaldehyde, Butyraldehyde, isobutyraldehyde, furfural, crotonaldehyde, acrolein, benzaldehyde, Phenylacetaldehyde, 2,4-dihydroxyphenylacetaldehyde and ⁇ -acetoxypropionaldehyde.
  • Substances which are among the can form an aldehyde, e.g. Aldehyde oligomers such as paraformaldehyde and paraldehyde. It has changed in many Cases proven to use formaldehyde in the form of paraformaldehyde.
  • the method according to the invention is carried out in two stages.
  • the first step is the acylaminomethylol from the aldehyde and the carboxamide of formula (III) formed, which in the second step with CO to End product is implemented.
  • This two-step procedure enables surprisingly a significant increase in sales and selectivity in each stage, so that sales of 100% of the total process Carboxamides with selectivities of 98% to the N-acyl- ⁇ -amino acid derivative be achieved, i.e. the yields of the target product are 98%.
  • aldehyde to the carboxamide in the presence of an acid takes place when heated in solution.
  • organic acids such as toluenesulfonic acid, hexafluoropropanesulfonic acid or Trifluoroacetic acid
  • inorganic acids such as sulfuric acid, Phosphoric acid ion exchange resins can also be used.
  • Sulfuric acid is very suitable.
  • the one brought into the reaction system Acid can remain in the solution of the acyl aminomethylol formed without that the subsequent carbonylation is disturbed.
  • the reaction sequence is expedient in a polar aprotic solvent carried out, e.g. Tetrahydrofuran, glycol dimethyl ether, methyl t-butyl ether, Diglycol dimethyl ether, dimethylformamide, dimethylacetamide or Acetonitrile. Tetrahydrofuran, Glycol dimethyl ether (Glyme) and methyl t-butyl ether proved.
  • the stage is the carboxylic acid amide with the in a stirred reactor at normal pressure Aldehyde implemented. This reaction runs at 65 to 120 ° C within 10 to 60 min from.
  • the amount of water present or forming is as small as possible to keep.
  • Water volumes of up to are aimed for 2 wt .-%, usually between 0.1 to 1 wt .-%, based on the Reaction approach. For this reason, the use of anhydrous solvents prefers.
  • the use of so-called technical solvents is conceivable with regard to the water content must meet the above requirements.
  • the carbonylation of the intermediate of formula (III) to the end product of formula (I) is carried out with carbon monoxide from 1 to 150 bar in a suitable reactor at temperatures from 20 to 150 ° C, in particular at 25 to 100 ° C, preferably at 30 to 70 ° C carried out under catalysis by cobalt carbonyl compounds.
  • Carbon monoxide is expediently used as a pure gas because the residual gas can then be easily circulated.
  • the carbon monoxide used can also contain a limited amount of hydrogen. Even if the carbon monoxide used is contaminated with other gases, for example nitrogen, methane, carbon dioxide, which water gas usually contains, this has no adverse effect on the reaction.
  • the pressure to be used is at least 1 bar and must not exceed 100 bar.
  • the CO pressure can easily be reduced to less than 50 bar.
  • the process is therefore preferably carried out at 1 to 50, particularly preferably at 3 to 20 bar CO pressure.
  • CO-containing gas mixtures for example synthesis gas CO + H 2 in a ratio of 1: 1, can also be used.
  • hydrogen is then enriched in the residual gas, which complicates the cycle procedure and increases the total pressure of the reaction system.
  • the carbonylation is catalyzed by cobalt carbonyl.
  • This can be added as solid Co 2 (CO) 8 to the solutions of the methylol (III), dissolved and then introduced into the carbonylation reactor.
  • the cobalt carbonyl can also be stored in large quantities in a separate pressure reactor made from a suitable cobalt (II) compound such as cobalt (II) acetate, basic cobalt (II) carbonate or cobalt (II) ethylhexanoate and CO, if appropriate with addition of H 2 in the same solvent used for the methylol stage. A portion of this cobalt carbonyl solution is then added to the carbonylation reactor to dissolve the methylol III.
  • the preparation and storage of the Co 2 (CO) 8 in solution has the advantage that one does not have to handle the air-sensitive toxic substance as a solid; the solutions can be stabilized by superposition with CO.
  • the amount of Co 2 (CO) 8 added is to be measured so that the reaction mixture contains 0.1 to 5.0, preferably 0.6 to 2.0 mol% Co, based on the carboxamide used in step 1.
  • the reaction starts at approx. 20 ° C, recognizable by the CO uptake.
  • the reaction becomes so rapid that space / time yields of 300 g / lh are reached and exceeded.
  • the solvent is in separated by distillation in a thin film evaporator; the distillate can be without Restriction in the process.
  • the expiring concentrate consisting of melted raw product, is added to hot water, well dispersed and crystallized by cooling. It is isolated by filtration white, water-moist product that can be used immediately for most applications suitable is. Careful determination of the water content combined with HPLC analyzes both the wet and the dry product prove that the Yields of target product, based on the particular one used Carboxamide, 94 to 98% of theory be.
  • N-acyl- ⁇ -amino acid derivatives especially N-acylglycine and N-acylsarcosine in very good purity practically quantitative yield, without by-products or a elaborate refurbishment or post-cleaning would be required.
  • the process according to the invention is advantageously suitable for the preparation of N-acyl sarcosines based on N-acylamides long-chain saturated or unsaturated fatty acids.
  • the cobalt carbonyl-containing solution is mixed with 2 g (22 mmol) of oxalic acid and air is introduced with thorough stirring.
  • the precipitation of the cobalt oxalate is complete after 1 h. This is filtered off.
  • the glyme is then removed from the solution in a thin-film evaporator (oil temperature 140 to 150 ° C).
  • the melted crude product flowing off as a concentrate is dispersed (emulsified) in 1 liter of water at 60-80 ° C. in order to remove residues of solvent, formaldehyde and the acid from reaction stage 1.
  • the emulsion is slowly cooled with stirring, at 15 to 5 ° C the lauroyl sarcosine crystallizes.
  • the cobalt carbonyl-containing solution is mixed with 0.5 g (5.5 mmol) of oxalic acid and air is introduced with good stirring. After 1 h the precipitation of the Cobalt oxalate complete. This is filtered off. Then in one Thin film evaporator (oil temperature 140 to 150 ° C) from the solution Removed ethyl acetate. The melted raw product that flows away as a concentrate is dispersed in 200 ml of 60 - 80 ° C warm water (emulsified) to remove residues of solvent, formaldehyde and the acid from reaction stage 1. The emulsion is slowly cooled with stirring and crystallized at 15 to 5 ° C the N-lauroyl-1-propyl sarcosine. It is suctioned off, washed with water and pressed dry.

Abstract

Prodn. of N-acyl glycine derivs. of formula (I) comprises (a) reacting a carboxamide of formula (II) with an aldehyde of formula (III) in the presence of a solvent and an acid to form an acylaminomethanol deriv. of formula (IV), and (b) carbonylating (IV) in the presence of a Co carbonyl catalyst at 20-150 deg. C and a CO pressure of 1-150 bar. R1 = H, linear, branched or cyclic 1-26C alkyl, mono- or polyunsaturated linear, branched or cyclic 2-24C alkenyl, 6-18C aryl, (1-10C)alkyl(6-18C) aryl or opt. polyunsaturated (1-10C)alkenyl(6-18C)aryl; R2 = H, linear, branched or cyclic 1-26C alkyl, mono- or polyunsaturated linear, branched or cyclic 2-23C alkenyl, 6-18C aryl, (1-10C)alkyl(6-18C)aryl or opt. polyunsaturated (2-10C)alkenyl(6-18C)aryl; R3 = H, linear branched or cyclic 1-10C alkyl, mono- or polyunsaturated linear, branched or cyclic 2-10C alkenyl, 6-18C aryl, (1-10C)alkyl(6-18C)aryl or opt. polyunsaturated (2-10C)alkenyl(6-18C)aryl.

Description

Die vorliegende Erfindung betrifft ein neues, verbessertes Verfahren zur Herstellung von N-Acyl-α-aminosäurederivaten, insbesondere N-Acylsarkosinen, durch Umsetzung von Carbonsäureamiden mit Aldehyden und CO unter Säurekatalyse durch Cobaltcarbonylverbindungen.The present invention relates to a new, improved method for Production of N-acyl-α-amino acid derivatives, in particular N-acyl sarcosines, by reacting carboxamides with aldehydes and CO under Acid catalysis by cobalt carbonyl compounds.

N-Acyl-α-aminosäurederivate, insbesondere die N-Acylsarkosine haben technische Bedeutung als Bestandteil von Tensiden, Seifen und Emulgatoren.N-acyl-α-amino acid derivatives, in particular those which have N-acyl sarcosines technical importance as a component of surfactants, soaps and emulsifiers.

Das heute in der Technik benutzte Verfahren zur Synthese derartiger Verbindungen besteht darin, Fettsäurechloride mit dem Natriumsalz des Glycins oder Sarcosins in einer klassischen Schotten-Baumann-Reaktion umzusetzen. Das dabei zwingend anfallende Salz sowie die Nutzung von Chlorierungsmitteln wie Phosgen oder Phosphortrichlorid zur Herstellung der Fettsäurechloride sind unter ökologischen Aspekten sehr nachteilig (J. Am. Chem. Soc. 78, 172, (1956)).The method used today in the art for the synthesis of such compounds consists in reacting fatty acid chlorides with the sodium salt of glycine or sarcosine in a classic Schotten-Baumann reaction. The salt which is mandatory and the use of chlorinating agents such as phosgene or phosphorus trichloride for the production of the fatty acid chlorides are very disadvantageous from an ecological point of view (J. Am. Chem. Soc. 78 , 172, (1956)).

Ein ökologisch verbessertes Verfahren besteht in der Umsetzung von Fettsäureamiden, die durch Aminolyse direkt aus natürlichen Fettsäuren oder Fetten zugänglich sind, mit Formaldehyd und CO in Gegenwart eines Katalysators. Diese als Amidocarbonylierung bezeichnete Reaktion wurde zuerst von Wakamatsu beschrieben in Chem. Commun. 1971, 1540 und in DE 2.115.985. Danach wurde aus Acetamid, Paraformaldehyd und CO N-Acetylglycin jedoch lediglich in 26 % Ausbeute erhalten.An ecologically improved process is the implementation of Fatty acid amides obtained directly from natural fatty acids or by aminolysis Fats are accessible with formaldehyde and CO in the presence of a Catalyst. This reaction, called amidocarbonylation, was first by Wakamatsu described in Chem. Commun. 1971, 1540 and in DE 2,115,985. Thereafter, acetamide, paraformaldehyde and CO However, N-acetylglycine was only obtained in 26% yield.

Weitere Varianten sind z.B. in der EP 170.830 und EP 197.659 beschrieben. Hier wird die Amidocarbonylierung von Paraformaldehyd mit Acetamid zu Acetylglycin aufgeführt, wobei Promotoren wie Nitrile, Sulfoxide oder Phosphane die Selektivitäten erhöhen und die Rückführung des Katalysators verbessern sollen. Das N-Acetylglycin wird jedoch selbst unter optimierten Bedingungen im besten Fall lediglich in 70 % Ausbeute gewonnen.Other variants are e.g. described in EP 170.830 and EP 197.659. Here the amidocarbonylation of paraformaldehyde with acetamide becomes too Acetylglycine listed, with promoters such as nitriles, sulfoxides or Phosphanes increase the selectivities and the recycling of the catalyst should improve. However, the N-acetylglycine is optimized even under In the best case, conditions only obtained in 70% yield.

In der Literatur wird auch beschrieben, daß am N-Atom alkylierte Amide deutlich schlechtere Ausbeuten an den N-Alkyl-acylaminosäuren liefern als vergleichbare primäre Amide (P. Magnus, M. Slater, Tetrahedron Lett. 1987, 28, 2829).The literature also describes that amides alkylated on the N atom provide significantly poorer yields on the N-alkyl acylamino acids than comparable primary amides (P. Magnus, M. Slater, Tetrahedron Lett. 1987, 28 , 2829).

In J. Org. Chem. 147, 99 (1991) ist die Herstellung von N-Acylsarcosin durch Carbonylierung von N-Methyllaurylamid bei einem CO + H2 (3:1)-Druck von über 200 bar beschrieben. Bei diesem Verfahren wird das gewünschte Produkt nur sehr verunreinigt erhalten.J. Org. Chem. 147, 99 (1991) describes the preparation of N-acylsarcosine by carbonylation of N-methyllaurylamide at a CO + H 2 (3: 1) pressure of over 200 bar. In this process, the desired product is only very contaminated.

Die GB 2 252 770 beschreibt eine Einstufensynthese von N-Acylaminosäuren durch Umsetzung eines Carbonsäureamids mit einem Aldehyd und CO in Gegenwart eines Metallkatalysators und einer Säure als Cokatalysator.GB 2 252 770 describes a one-step synthesis of N-acylamino acids by reacting a carboxamide with an aldehyde and CO in Presence of a metal catalyst and an acid as a cocatalyst.

Bei diesem Verfahren wird das Carbonsäureamid in sehr hohem Überschuß bezogen auf den Aldehyd (1.78 zu 1.0) eingesetzt, so daß dieses Verfahren bezogen auf das eingesetzte Acetamid nur mäßige Ausbeuten liefert. Außerdem ist hierdurch das Produkt mit mindestens 80 % Edukt verunreinigt, was das Verfahren für technische Anwendung unbrauchbar macht.In this process, the carboxamide becomes in a very large excess based on the aldehyde (1.78 to 1.0) used, so this method provides only moderate yields based on the acetamide used. Furthermore the product is thereby contaminated with at least 80% educt, which is what Makes processes unusable for technical use.

Alle beschriebenen Verfahren laufen mit nur unzureichenden Umsätzen und Selektivititäten ab, liefern verunreinigte Produkte oder benötigten sehr hohe CO-Drucke.All of the described processes run with insufficient sales and Selectivities, supply contaminated products or require very high ones CO prints.

DE-A-364 204 beschreibt lediglich ein Verfahren zur Herstellung von N-Acylglycinen ausgehend von N-Hydroxymethylamiden mit Kohlenmonoxid und Wasserstoff in Gegenwart einer Cobaltcarbonylverbindung in Wasser oder einem inerten, Wasser enthaltenden Lösemittel als Reaktionsmedium. DE-A-364 204 only describes a process for the production of N-acylglycines starting from N-hydroxymethylamides with carbon monoxide and Hydrogen in the presence of a cobalt carbonyl compound in water or a inert water-containing solvents as the reaction medium.

Nachteilig an diesem Verfahren ist die Umsetzung in Wasser oder in stark wasserhaltigen Lösemitteln.A disadvantage of this process is the reaction in water or in strong water-based solvents.

Es bestand somit ein großer Bedarf nach einem Verfahren, das N-Acyl-α-aminosäurederivate, insbesondere N-Acylsarkosine in hoher Ausbeute und Reinheit auf technisch leicht realisierbare Weise zugänglich macht.There was therefore a great need for a process which could use N-acyl-α-amino acid derivatives especially N-acylsarcosines in high yield and Makes purity accessible in a technically easily realizable way.

Diese Aufgabe wird gelöst durch ein Verfahren zur Herstellung von Acylglycinderivaten der allgemeinen Formel (I)

Figure 00030001
worin

R1
Wasserstoff, ein gesättigter, geradkettiger, verzweigter oder zyklischer (C1-C26)Alkylrest, ein ein- oder mehrfach ungesättigter, geradkettiger, verzweigter oder zyklischer (C2-C24)Alkenylrest, ein (C6-C18)Arylrest, ein (C1-C10)Alkyl-(C6-C18)Arylrest oder ein gegebenenfalls mehrfach ungesättigter (C2-C10)Alkenyl-(C6-C18)Arylrest,
R2
Wasserstoff, ein gesättigter, geradkettiger, verzweigter oder zyklischer (C1-C26)Alkylrest, ein ein- oder mehrfach ungesättigter, geradkettiger, verzweigter oder zyklischer (C2-C23)Alkenylrest, ein (C6-C18)Arylrest, ein (C1-C10)Alkyl-(C6-C18)-Arylrest oder ein gegebenenfalls mehrfach ungesättiger (C2-C10)Alkenyl-(C6-C18)Arylrest
und
R3
Wasserstoff, ein gesättigter, geradkettiger, verzweigter oder zyklischer (C1-C10)Alkylrest, ein ein- oder mehrfach ungesättigter, geradkettiger, verzweigter oder zyklischer (C2-C10)Alkenylrest, ein (C6-C18)-Arylrest, ein (C1-C10)Alkyl-(C6-C18)Arylrest oder ein gegebenenfalls mehrfach ungesättigter (C2-C10)Alkenyl-(C6-C18)-Arylrest bedeuten,
das dadurch gekennzeichnet ist, daß man ein Carbonsäureamid der allgemeinen Formel (II)
Figure 00040001
worin R1 und R2 die oben angegebene Bedeutung besitzen mit einem Aldehyd der Formel R3-CHO in Gegenwart eines Lösungsmittels und einer Säure zu einem Acylaminomethylol der Formel (III)
Figure 00040002
umsetzt und dieses anschließend nach Zusatz eines Cobaltcarbonylkatalysators und einer Säure als Cokatalysator bei einer Temperatur von 20 bis 150°C und einem CO-Druck von 1 bis 150 bar carbonyliert.This object is achieved by a process for the preparation of acylglycine derivatives of the general formula (I)
Figure 00030001
wherein
R 1
Hydrogen, a saturated, straight-chain, branched or cyclic (C 1 -C 26 ) alkyl radical, a mono- or polyunsaturated, straight-chain, branched or cyclic (C 2 -C 24 ) alkenyl radical, a (C 6 -C 18 ) aryl radical, a (C 1 -C 10 ) alkyl (C 6 -C 18 ) aryl radical or an optionally polyunsaturated (C 2 -C 10 ) alkenyl (C 6 -C 18 ) aryl radical,
R 2
Hydrogen, a saturated, straight-chain, branched or cyclic (C 1 -C 26 ) alkyl radical, a mono- or polyunsaturated, straight-chain, branched or cyclic (C 2 -C 23 ) alkenyl radical, a (C 6 -C 18 ) aryl radical, a (C 1 -C 10 ) alkyl (C 6 -C 18 ) aryl radical or an optionally polyunsaturated (C 2 -C 10 ) alkenyl (C 6 -C 18 ) aryl radical
and
R 3
Hydrogen, a saturated, straight-chain, branched or cyclic (C 1 -C 10 ) alkyl radical, a mono- or polyunsaturated, straight-chain, branched or cyclic (C 2 -C 10 ) alkenyl radical, a (C 6 -C 18 ) aryl radical , a (C 1 -C 10 ) alkyl (C 6 -C 18 ) aryl radical or an optionally polyunsaturated (C 2 -C 10 ) alkenyl (C 6 -C 18 ) aryl radical,
which is characterized in that a carboxamide of the general formula (II)
Figure 00040001
wherein R 1 and R 2 have the meaning given above with an aldehyde of the formula R 3 -CHO in the presence of a solvent and an acid to give an acylaminomethylol of the formula (III)
Figure 00040002
implemented and then carbonylated after addition of a cobalt carbonyl catalyst and an acid as a cocatalyst at a temperature of 20 to 150 ° C and a CO pressure of 1 to 150 bar.

Bevorzugt bedeuten:

R1
einen gesättigten, geradkettigen oder verzweigten (C8-C24)Alkylrest, insbesondere (C10-C18)Alkylrest, einen ein- oder mehrfach ungesättigten, geradkettigen oder verzweigten (C8-C24)Alkenylrest, insbesondere (C10-C18)Alkenylrest,
R2
Wasserstoff, einen gesättigten, geradkettigen oder verzweigten (C1-C8)Alkylrest, insbesondere (C1-C4)Alkylrest oder einen ein- oder mehrfach ungesättigten, geradkettigen oder verzweigten (C2-C8)Alkenylrest,
R3
Wasserstoff, einen gesättigten, geradkettigen oder verzweigten (C1-C6)Alkylrest oder einen ein- oder mehrfach ungesättigten, geradkettigen oder verzweigten (C2-C6)Alkenylrest.
Preferably mean:
R 1
a saturated, straight-chain or branched (C 8 -C 24 ) alkyl radical, in particular (C 10 -C 18 ) alkyl radical, a mono- or polyunsaturated, straight-chain or branched (C 8 -C 24 ) alkenyl radical, in particular (C 10 -C 18 ) alkenyl radical,
R 2
Hydrogen, a saturated, straight-chain or branched (C 1 -C 8 ) alkyl radical, in particular (C 1 -C 4 ) alkyl radical or a mono- or polyunsaturated, straight-chain or branched (C 2 -C 8 ) alkenyl radical,
R 3
Hydrogen, a saturated, straight-chain or branched (C 1 -C 6 ) alkyl radical or a mono- or polyunsaturated, straight-chain or branched (C 2 -C 6 ) alkenyl radical.

Die Reste R1, R2 und R3 können gegebenenfalls substituiert sein. Geeignete Substituenten sind die Hydroxylgruppe, (C1-C10)Alkoxyreste und Halogenatome.The radicals R 1 , R 2 and R 3 can optionally be substituted. Suitable substituents are the hydroxyl group, (C 1 -C 10 ) alkoxy radicals and halogen atoms.

Geeignete Amide sind z.B. Formamid, Acetamid, N-Methylacetamid, Propionamid, Butyramid, Acrylamid, N-Methylformamid, N-Methylbenzamid, Benzamid und Crotonamid.Suitable amides are e.g. Formamide, acetamide, N-methylacetamide, Propionamide, butyramide, acrylamide, N-methylformamide, N-methylbenzamide, Benzamide and crotonamide.

Als Ausgangsstoffe für das erfindungsgemäße Verfahren besonders geeignete Amide sind Amide und N-Alkylamide, insbesondere N-Methylamide der geradkettigen oder verzweigten, gesättigten oder ungesättigten Carbonsäuren mit 8 bis 24 C-Atomen. Im einzelnen sind zu nennen: Octansäureamid, 2-Ethylhexansäureamid, Decansäureamid, Laurinsäureamid, Palmitinsäureamid, Stearinsäureamid, Ölsäureamid, Linolsäureamid, Linolensäureamid, Gadoleinsäureamid und Nervonsäureamid.Particularly suitable as starting materials for the process according to the invention Amides are amides and N-alkylamides, especially N-methylamides straight-chain or branched, saturated or unsaturated carboxylic acids with 8 to 24 carbon atoms. The following should be mentioned in detail: Octanoic acid amide, 2-ethylhexanoic acid amide, decanoic acid amide, lauric acid amide, Palmitic acid amide, stearic acid amide, oleic acid amide, linoleic acid amide, Linolenic acid amide, gadoleic acid amide and nervonic acid amide.

Besonders bevorzugte Amide sind die N-Methylamide von natürlichen Fettsäuren, wie Laurinsäure, Palmitinsäure, Stearinsäure und Ölsäure.Particularly preferred amides are the N-methylamides of natural ones Fatty acids such as lauric acid, palmitic acid, stearic acid and oleic acid.

Die Amide der Formel (II) können als Reinsubstanzen oder als Gemische eingesetzt werden. Geeignete Gemische stellen die natürlich vorkommenden Fette dar, z.B. Kokosnuß-, Babassu-, Palmkern-, Palm-, Oliven-, Ricinus-, Erdnuß-, Raps-, Rinder-, Schweine-, Walfischfett bzw. -öl (zur Zusammensetzung dieser Fette s. Fieser und Fieser, Organische Chemie, Verlag Chemie 1972, Seite 1208).The amides of the formula (II) can be used as pure substances or as mixtures be used. Suitable mixtures are those that occur naturally Represent fats, e.g. Coconut, Babassu, Palm Kernel, Palm, Olive, Ricinus, Peanut, rapeseed, beef, pork, whale fat or oil (for Composition of these fats s. Fieser and Fieser, Organic Chemistry, Publishing House Chemistry 1972, page 1208).

Geeignete Aldehyde sind z.B. Formaldehyd, Acetaldehyd, Propionaldehyd, Butyraldehyd, Isobutyraldehyd, Furfural, Crotonaldehyd, Acrolein, Benzaldehyd, Phenylacetaldehyd, 2,4-Dihydroxyphenylacetaldehyd und α-Acetoxypropionaldehyd. Ebenfalls geeignet sind Substanzen, welche unter den genannten Reaktionsbedingungen einen Aldehyd bilden können, z.B. Aldehydoligomere, wie Paraformaldehyd und Paraldehyd. Es hat sich in vielen Fällen bewährt, Formaldehyd in Form von Paraformaldehyd einzusetzen. Suitable aldehydes are e.g. Formaldehyde, acetaldehyde, propionaldehyde, Butyraldehyde, isobutyraldehyde, furfural, crotonaldehyde, acrolein, benzaldehyde, Phenylacetaldehyde, 2,4-dihydroxyphenylacetaldehyde and α-acetoxypropionaldehyde. Substances which are among the can form an aldehyde, e.g. Aldehyde oligomers such as paraformaldehyde and paraldehyde. It has changed in many Cases proven to use formaldehyde in the form of paraformaldehyde.

Das erfindungsgemäße Verfahren wird in zwei Stufen ausgeführt. In der ersten Stufe wird zunächst aus dem Aldehyd und dem Carbonsäureamid das Acylaminomethylol der Formel (III) gebildet, welches im zweiten Schritt mit CO zum Endprodukt umgesetzt wird. Diese zweistufige Verfahrensweise ermöglicht überraschenderweise eine deutliche Steigerung von Umsatz und Selektivität in jeder Stufe, so daß für den Gesamtprozeß Umsätze von 100 % des Carbonsäureamids bei Selektivitäten von 98 % zum N-Acyl-α-aminosäurederivat erreicht werden, d.h. auch die Ausbeuten an Zielprodukt 98 % betragen.The method according to the invention is carried out in two stages. In the first The first step is the acylaminomethylol from the aldehyde and the carboxamide of formula (III) formed, which in the second step with CO to End product is implemented. This two-step procedure enables surprisingly a significant increase in sales and selectivity in each stage, so that sales of 100% of the total process Carboxamides with selectivities of 98% to the N-acyl-α-amino acid derivative be achieved, i.e. the yields of the target product are 98%.

Besonders günstig an dem erfindungsgemäßen Verfahren ist, daß schon äquimolare Mengen Aldehyd hohe Ausbeuten ergeben und so Produkte erhalten werden können, die nicht durch Aldehyd verunreinigt sind. Es ist jedoch auch möglich mit Aldehydüberschüssen zu arbeiten.What is particularly favorable about the process according to the invention is that it does Equimolar amounts of aldehyde give high yields and thus products are obtained that are not contaminated by aldehyde. However, it is also possible to work with excess aldehyde.

Es hat sich als vorteilhaft erwiesen, 70 bis 200 Mol-%, insbesondere 100 bis 140 Mol-%, bevorzugt 100 bis 120 Mol-% Aldehyd, bezogen auf das Carbonsäureamid einzusetzen.It has proven to be advantageous to use 70 to 200 mol%, in particular 100 to 140 mol%, preferably 100 to 120 mol% of aldehyde, based on the Use carboxamide.

Die Addition des Aldehyds an das Carbonsäureamid in Gegenwart einer Säure erfolgt beim Erwärmen in Lösung. Als Säuren können neben organischen Säuren, wie Toluolsulfonsäure, Hexafluorpropansulfonsäure oder Trifluoressigsäure und anorganischen Säuren, wie Schwefelsäure, Phosphorsäure auch Ionenaustauscherharze verwendet werden.The addition of the aldehyde to the carboxamide in the presence of an acid takes place when heated in solution. In addition to organic acids Acids such as toluenesulfonic acid, hexafluoropropanesulfonic acid or Trifluoroacetic acid and inorganic acids, such as sulfuric acid, Phosphoric acid ion exchange resins can also be used.

Sehr gut geeignet ist Schwefelsäure. Die in das Reaktionssystem eingebrachte Säure kann in der Lösung des gebildeten Acyl-aminomethylols verbleiben, ohne daß die nachfolgende Carbonylierung dadurch gestört wird.Sulfuric acid is very suitable. The one brought into the reaction system Acid can remain in the solution of the acyl aminomethylol formed without that the subsequent carbonylation is disturbed.

Es hat sich in vielen Fällen bewährt mit Säurekonzentrationen von 0,2 bis 5 Mol-%, insbesondere 0,5 bis 4 Mol-%, bevorzugt 1,0 bis 2,5 Mol-%, bezogen auf das Amid, zu arbeiten. It has proven itself in many cases with acid concentrations from 0.2 to 5 mol%, in particular 0.5 to 4 mol%, preferably 1.0 to 2.5 mol%, based on the amide to work.

Die Reaktionsfolge wird zweckmäßig in einem polar-aprotischen Lösemittel durchgeführt, wie z.B. Tetrahydrofuran, Glykoldimethylether, Methyl-t-butylether, Diglykoldimethylether, Dimethylformamid, Dimethylacetamid oder Acetonitril. Als besonders geeignet haben sich Tetrahydrofuran, Glykoldimethylether (Glyme) und Methyl-t-butylether erwiesen. In der ersten Stufe wird in einem Rührreaktor bei Normaldruck das Carbonsäureamid mit dem Aldehyd umgesetzt. Diese Reaktion läuft bei 65 bis 120°C innerhalb von 10 bis 60 min ab.The reaction sequence is expedient in a polar aprotic solvent carried out, e.g. Tetrahydrofuran, glycol dimethyl ether, methyl t-butyl ether, Diglycol dimethyl ether, dimethylformamide, dimethylacetamide or Acetonitrile. Tetrahydrofuran, Glycol dimethyl ether (Glyme) and methyl t-butyl ether proved. In the first The stage is the carboxylic acid amide with the in a stirred reactor at normal pressure Aldehyde implemented. This reaction runs at 65 to 120 ° C within 10 to 60 min from.

Bei der Durchführung des erfindungsgemäßen Verfahrens ist die in dem Reaktionsansatz vorhandene bzw. sich bildende Wassermenge möglichst gering zu halten. Angestrebt werden hierbei Wassermengen von bis zu 2 Gew.-%, üblicherweise zwischen 0,1 bis 1 Gew.-%, bezogen auf den Reaktionsansatz. Aus diesem Grund wird der Einsatz wasserfreier Lösungsmittel bevorzugt. Denkbar ist der Einsatz sogenannter technischer Lösungsmittel, die im Hinblick auf den Wassergehalt den obigen Anforderungen genügen müssen.When carrying out the method according to the invention, the The amount of water present or forming is as small as possible to keep. Water volumes of up to are aimed for 2 wt .-%, usually between 0.1 to 1 wt .-%, based on the Reaction approach. For this reason, the use of anhydrous solvents prefers. The use of so-called technical solvents is conceivable with regard to the water content must meet the above requirements.

Man erhält dann klare Lösungen, aus denen auch bei längerem Stehen (mehrere Tage) bei Zimmertemperatur kein Feststoff auskristallisiert. Diese Lösungen werden aus Gründen der Reaktionsführung unmittelbar nach ihrer Herstellung zur Carbonylierung eingesetzt. Überraschenderweise sind die erhaltenen Lösungen relativ stabil, so daß die Weiterverarbeitung auch nach einer gewissen Aufbewahrungszeit erfolgen kann.Clear solutions are then obtained, from which even when standing for a long time (several Days) no solid crystallized at room temperature. These solutions are for reasons of reaction immediately after their preparation used for carbonylation. Surprisingly, the ones obtained Solutions relatively stable, so that the processing even after a certain Storage time can take place.

Es ist ein wichtiger technischer Vorteil des Verfahrens, daß man diese Lösungen kontinuierlich über eine Druckdosierpumpe dem Carbonylierungsreaktor zuführen kann, wodurch die exotherme Reaktion gut zu steuern ist.It is an important technical advantage of the process that one can find these solutions feed continuously to the carbonylation reactor via a pressure metering pump can, which makes the exothermic reaction easy to control.

Die Carbonylierung des Zwischenproduktes der Formel (III) zu dem Endprodukt der Formel (I) wird mit Kohlenmonoxid von 1 bis 150 bar in einem geeigneten Reaktor bei Temperaturen von 20 bis 150°C, insbesondere bei 25 bis 100°C, bevorzugt bei 30 bis 70°C unter Katalyse durch Cobaltcarbonylverbindungen durchgeführt. Kohlenmonoxid wird zweckmäßig als reines Gas angewendet, weil das Restgas dann ohne weiteres im Kreis gefahren werden kann. Das eingesetzte Kohlenmonoxid kann auch eine begrenzte Menge Wasserstoff enthalten. Selbst wenn das eingesetzte Kohlenmonoxid mit anderen Gasen, z.B. Stickstoff, Methan, Kohlendioxid, welche Wassergas gewöhnlich enthält, verunreinigt ist, hat dies keinen nachteiligen Einfluß auf die Reaktion. Der anzuwendende Druck beträgt mindestens 1 bar und muß 100 bar nicht übersteigen. Bei geeigneter Gestaltung des Reaktors zum wirkungsvollen Gaseintrag in die Lösung, z.B. in einem Rührreaktor mit Begasungsrührer oder in einer Blasensäule, kann der CO-Druck ohne weiteres auf weniger als 50 bar gesenkt werden. Das Verfahren wird deshalb bevorzugt bei 1 bis 50, besonders bevorzugt bei 3 bis 20 bar CO-Druck ausgeführt. Es können auch CO-haltige Gasgemische, z.B. Synthesegas CO + H2 im Verhältnis 1:1 eingesetzt werden. Im Restgas wird dann allerdings Wasserstoff angereichert, was die Kreislauffahrweise kompliziert und den Gesamtdruck des Reaktionssystems erhöht.The carbonylation of the intermediate of formula (III) to the end product of formula (I) is carried out with carbon monoxide from 1 to 150 bar in a suitable reactor at temperatures from 20 to 150 ° C, in particular at 25 to 100 ° C, preferably at 30 to 70 ° C carried out under catalysis by cobalt carbonyl compounds. Carbon monoxide is expediently used as a pure gas because the residual gas can then be easily circulated. The carbon monoxide used can also contain a limited amount of hydrogen. Even if the carbon monoxide used is contaminated with other gases, for example nitrogen, methane, carbon dioxide, which water gas usually contains, this has no adverse effect on the reaction. The pressure to be used is at least 1 bar and must not exceed 100 bar. With a suitable design of the reactor for effective gas introduction into the solution, for example in a stirred reactor with a gassing stirrer or in a bubble column, the CO pressure can easily be reduced to less than 50 bar. The process is therefore preferably carried out at 1 to 50, particularly preferably at 3 to 20 bar CO pressure. CO-containing gas mixtures, for example synthesis gas CO + H 2 in a ratio of 1: 1, can also be used. However, hydrogen is then enriched in the residual gas, which complicates the cycle procedure and increases the total pressure of the reaction system.

Die Carbonylierung wird durch Cobaltcarbonyl katalysiert. Dieses kann als festes Co2(CO)8 zu den Lösungen des Methylols (III) zugegeben, gelöst und dann in den Carbonylierungsreaktor eingebracht werden. Das Cobaltcarbonyl kann jedoch auch in großer Menge auf Vorrat in einem separaten Druckreaktor aus einer geeigneten Cobalt(II)-verbindung wie z.B. Cobalt(II)acetat, basischem Cobalt(II)carbonat oder Cobalt(II)-ethylhexanoat und CO, gegebenenfalls unter Zusatz von H2, im gleichen Lösemittel wie für die Methylol-Stufe benutzt, gebildet werden. Von dieser Cobaltcarbonyl-Lösung wird dann ein Anteil in den Carbonylierungsreaktor zur Lösung des Methylols III gegeben. Die Herstellung und Vorratshaltung des Co2(CO)8 in Lösung hat den Vorteil, daß man den luftempfindlichen toxischen Stoff nicht als Feststoff handhaben muß; die Lösungen können durch Überlagerung mit CO stabilisiert werden. Die Menge an zugegebenem Co2(CO)8 ist so zu bemessen, daß die Reaktionsmischung 0,1 bis 5,0, bevorzugt 0,6 bis 2,0 Mol-% Co, bezogen auf das in Stufe 1 eingesetzte Carbonsäureamid enthält. Mit der bevorzugten Katalysatorkonzentration springt die Reaktion bei ca. 20°C an, erkennbar an der CO-Aufnahme. Bei 70°C Reaktionstemperatur wird die Reaktion so schnell, daß Raum/Zeit-Ausbeuten von 300 g/l.h erreicht und überschritten werden. Während der Carbonylierung ist auf einen hinreichend intensiven Gaseintrag in die Lösung zu achten, um einen quantitativen Umsatz zu erreichen.The carbonylation is catalyzed by cobalt carbonyl. This can be added as solid Co 2 (CO) 8 to the solutions of the methylol (III), dissolved and then introduced into the carbonylation reactor. However, the cobalt carbonyl can also be stored in large quantities in a separate pressure reactor made from a suitable cobalt (II) compound such as cobalt (II) acetate, basic cobalt (II) carbonate or cobalt (II) ethylhexanoate and CO, if appropriate with addition of H 2 in the same solvent used for the methylol stage. A portion of this cobalt carbonyl solution is then added to the carbonylation reactor to dissolve the methylol III. The preparation and storage of the Co 2 (CO) 8 in solution has the advantage that one does not have to handle the air-sensitive toxic substance as a solid; the solutions can be stabilized by superposition with CO. The amount of Co 2 (CO) 8 added is to be measured so that the reaction mixture contains 0.1 to 5.0, preferably 0.6 to 2.0 mol% Co, based on the carboxamide used in step 1. With the preferred catalyst concentration, the reaction starts at approx. 20 ° C, recognizable by the CO uptake. At 70 ° C reaction temperature, the reaction becomes so rapid that space / time yields of 300 g / lh are reached and exceeded. During the carbonylation, it is important to ensure that the gas is sufficiently intensely introduced into the solution in order to achieve quantitative conversion.

Nach Abklingen der Reaktion, die in Abhängigkeit vom angewendeten CO-Druck 0.5 bis 2.0 h erfordert, wird abgekühlt und das überschüssige Gas entspannt. Aus dem Reaktor entnimmt man eine klare, gelb bis braun gefärbte Lösung, aus der zunächst der homogen gelöste Katalysator entfernt werden muß. Dies wird in üblicher Weise durchgeführt, indem die Cobaltcarbonylverbindungen durch Einblasen von Luft oxidativ zerstört werden und das sich dabei bildende zweiwertige Cobalt als schwerlösliches Salz, z.B. Oxalat, Phosphat, Sulfat oder Carbonat ausgefällt wird. Dieses wird abfiltriert. Die resultierende Lösung ist höchstens schwach gelb gefärbt und enthält das Zielprodukt in 98 %iger Ausbeute. Die Isolierung und Reinigung gelingt einfach, so daß bei dieser Operation nur minimale Ausbeute-Verluste auftreten. Das Lösemittel wird in einem Dünnschichtverdampfer destillativ abgetrennt; das Destillat kann ohne Einschränkung in den Prozeß zurückgeführt werden. Das ablaufende Konzentrat, bestehend aus geschmolzenem Rohprodukt, wird in heißes Wasser eingetragen, gut dispergiert und durch Abkühlen kristallisiert. Durch Filtration isoliert man ein weißes, wasserfeuchtes Produkt, das sofort für die meisten Anwendungen geeignet ist. Sorgfältige Bestimmung des Wassergehaltes verbunden mit HPLC-Analysen sowohl des Feucht- als auch des Trockenproduktes belegen, daß die Ausbeuten an Zielprodukt, bezogen auf das jeweils eingesetzte Carbonsäureamid, 94 bis 98 % d.Th. betragen.After the reaction subsided, depending on the CO pressure applied 0.5 to 2.0 h required, is cooled and the excess gas is released. A clear, yellow to brown colored solution is removed from the reactor which first has to remove the homogeneously dissolved catalyst. this will carried out in a conventional manner by the cobalt carbonyl compounds Blowing air can be oxidatively destroyed and the resultant divalent cobalt as a sparingly soluble salt, e.g. Oxalate, phosphate, sulfate or Carbonate is precipitated. This is filtered off. The resulting solution is colored at most pale yellow and contains the target product in 98% Yield. The isolation and cleaning is easy, so that with this Operation with minimal yield losses occurs. The solvent is in separated by distillation in a thin film evaporator; the distillate can be without Restriction in the process. The expiring concentrate, consisting of melted raw product, is added to hot water, well dispersed and crystallized by cooling. It is isolated by filtration white, water-moist product that can be used immediately for most applications suitable is. Careful determination of the water content combined with HPLC analyzes both the wet and the dry product prove that the Yields of target product, based on the particular one used Carboxamide, 94 to 98% of theory be.

Das erfindungsgemäße Verfahren liefert N-Acyl-α-aminosäurederivate, insbesondere N-Acylglycine und N-Acylsarkosine in sehr guter Reinheit in praktisch quantitativer Ausbeute, ohne daß Nebenprodukte anfallen oder eine aufwendige Aufarbeitung oder Nachreinigung erforderlich wäre. The process according to the invention provides N-acyl-α-amino acid derivatives, especially N-acylglycine and N-acylsarcosine in very good purity practically quantitative yield, without by-products or a elaborate refurbishment or post-cleaning would be required.

Das erfindungsgemäße Verfahren eignet sich vorteilhaft zur Herstellung von N-Acylsarkosinen auf Basis von N-Acylamiden langkettiger gesättigter bzw. ungesättigter Fettsäuren.The process according to the invention is advantageously suitable for the preparation of N-acyl sarcosines based on N-acylamides long-chain saturated or unsaturated fatty acids.

Die nachstehenden Beispiele sollen das Verfahren erläutern.The following examples are intended to illustrate the process.

Beispiel 1example 1 Herstellung von LauroylsarcosinProduction of lauroylsarcosine

  • 213 g (1 Mol) Laurinsäure-N-methylamid und213 g (1 mole) lauric acid N-methylamide and
  • 34 g Paraformaldehyd (95 %ig ≙ 1,08 Mol) werden in34 g paraformaldehyde (95% ≙ 1.08 mol) are in
  • 350 ml Dimethoxyethan (glyme) suspendiert und mit350 ml of dimethoxyethane (glyme) suspended and with
  • 2 g (0,02 Mol) H2SO4 versetzt.2 g (0.02 mol) of H 2 SO 4 were added.
  • 1) Diese Mischung wird unter Rühren zum Sieden erhitzt (Kp = 84°) und 5 bis 10 min bei dieser Temperatur gehalten. Dabei lösen sich die Feststoffe weitgehend auf. Man läßt auf ca. 60°C abkühlen und filtriert die noch warme, leicht getrübte Lösung. Man erhält eine klare Lösung, die bei Zimmertemperatur in geschlossenen Gefäßen ohne Zersetzung aufbewahrt werden kann. In offenen Gefäßen verliert die Lösung allerdings langsam gasförmigen Formaldehyd und nach einigen Tagen beginnt Laurinsäure-N-methylamid auszukristallisieren.1) This mixture is heated to boiling with stirring (bp = 84 °) and 5 held at this temperature for up to 10 min. The solids dissolve largely on. Allow to cool to about 60 ° C and filter the still warm, slightly cloudy solution. A clear solution is obtained, which is closed at room temperature Vessels can be stored without decomposition. Loses in open vessels the solution, however, slowly gaseous formaldehyde and after a few days begins to crystallize lauric acid-N-methylamide.
  • 2) Die Lösung des Additionsproduktes aus Laurinsäure-N-methylamid und Formaldehyd wird mit 2,02 g (5,85 mMol) Co2(CO)8 versetzt (entsprechend 11,7 mMol CO oder 1,17 %) und in einen 1l-Autoklaven eingefüllt. Es wird 20 bar CO aufgedrückt und auf 70°C erwärmt. Das Einsetzen der Reaktion ist am fallenden Druck zu erkennen; es wird dann CO nachgegeben, um den Druck im Reaktor zu halten. Der größte Teil des Gases wird innerhalb von 30 bis 60 min aufgenommen; um den Umsatz sicher auf 100 % zu bringen, wird 1 h nachgerührt. Der Reaktor wird abgekühlt, das überschüssige Gas entspannt und die gelbe, klare Produktlösung entnommen.2) 2.02 g (5.85 mmol) of Co 2 (CO) 8 (corresponding to 11.7 mmol CO or 1.17%) are added to the solution of the addition product consisting of lauric acid-N-methylamide and formaldehyde and poured into a 1 liter -Autoclave filled. 20 bar CO is injected and heated to 70 ° C. The onset of the reaction can be recognized by the falling pressure; CO is then added to maintain the pressure in the reactor. Most of the gas is absorbed within 30 to 60 minutes; to bring the turnover to 100% safely, stirring is continued for 1 h. The reactor is cooled, the excess gas is let down and the yellow, clear product solution is removed.
  • Die cobaltcarbonylhaltige Lösung wird mit 2 g (22 mMol) Oxalsäure versetzt und unter gutem Rühren wird Luft eingeleitet. Nach 1 h ist die Ausfällung des Cobaltoxalats komplett. Dieses wird abfiltriert. Anschließend wird in einem Dünnschichtverdampfer (Öltemperatur 140 bis 150°C) aus der Lösung das Glyme entfernt. Das als Konzentrat abfließende, geschmolzene Rohprodukt wird in 1 l 60-80°C warmem Wasser dispergiert (emulgiert), um Reste von Lösemittel, Formaldehyd und der Säure aus Reaktionsstufe 1, zu entfernen. Die Emulsion wird unter Rühren langsam abgekühlt, bei 15 bis 5°C kristallisiert das Lauroylsarcosin. Es wird abgesaugt, mit Wasser nachgewaschen und trockengepreßt.
    Ausbeute wasserfeuchtes Produkt: 451,7 g
    Die Feuchtebestimmung ergab einen Wasseranteil von 41.2 % = 186 g H2O.
    Ausbeute an Lauroylsarcosin = 265.6 ≙ 98 % d.Th.
    Das trockene Produkt hat einen Fp = 49 bis 50°C.
    HPLC und H-NMR bestätigen eine hohe Reinheit > 99.7 %.
    The cobalt carbonyl-containing solution is mixed with 2 g (22 mmol) of oxalic acid and air is introduced with thorough stirring. The precipitation of the cobalt oxalate is complete after 1 h. This is filtered off. The glyme is then removed from the solution in a thin-film evaporator (oil temperature 140 to 150 ° C). The melted crude product flowing off as a concentrate is dispersed (emulsified) in 1 liter of water at 60-80 ° C. in order to remove residues of solvent, formaldehyde and the acid from reaction stage 1. The emulsion is slowly cooled with stirring, at 15 to 5 ° C the lauroyl sarcosine crystallizes. It is suctioned off, washed with water and pressed dry.
    Yield water-moist product: 451.7 g
    The moisture determination showed a water content of 41.2% = 186 g H 2 O.
    Yield of lauroylsarcosine = 265.6 ≙ 98% of theory
    The dry product has a mp = 49 to 50 ° C.
    HPLC and H-NMR confirm a high purity> 99.7%.

    Beispiele 2 bis 9Examples 2 to 9

    Diese Beispiele wurden analog zu Beispiel 1 mit anderen Ausgangsstoffen durchgeführt, teilweise in verkleinertem Maßstab. Stoffmengen und Ergebnisse sind in Tabelle 1 zusammengefaßt. Die 0,2 Mol-Ansätze wurden in einem 200 ml-Autoklaven durchgeführt, wobei der CO-Druck auf 50 bar erhöht war.

    Figure 00120001
    These examples were carried out analogously to Example 1 with other starting materials, sometimes on a smaller scale. Amounts and results are summarized in Table 1. The 0.2 mol batches were carried out in a 200 ml autoclave, the CO pressure being increased to 50 bar.
    Figure 00120001

    Beispiel 10Example 10 Herstellung von N-Lauroyl-1-propyl-sarkosinProduction of N-lauroyl-1-propyl-sarcosine

  • 21,3 g (0,1 Mol) Laurinsäure-N-methylamid und21.3 g (0.1 mol) of lauric acid N-methylamide and
  • 8,8 g Butyraldehyd (0,12 Mol) werden in8.8 g of butyraldehyde (0.12 mol) are in
  • 35 ml Ethylacetat suspendiert und mitSuspended 35 ml of ethyl acetate and with
  • 0,3 g (1,3 mMol) Hexafluorpropansulfonsäure versetzt.0.3 g (1.3 mmol) of hexafluoropropanesulfonic acid were added.
  • 1) Diese Mischung wird unter Rühren im Autoklaven auf 95°C erhitzt und 5 bis 10 min bei dieser Temperatur gehalten. Man läßt anschließend auf Raumtemperatur abkühlen.1) This mixture is heated to 95 ° C. with stirring in an autoclave and 5 held at this temperature for up to 10 min. You then let go Cool down to room temperature.
  • 2) Die Lösung des Additionsproduktes aus Laurinsäure-N-methylamid und Butyraldehyd wird mit 0,35 g (1,02 mMol) Co2(CO)8 versetzt. Es wird 50 bar CO aufgedrückt und auf 70°C erwärmt. Das Einsetzen der Reaktion ist am fallenden Druck zu erkennen; es wird dann CO nachgegeben, um den Druck im Reaktor zu halten. Der größte Teil des Gases wird innerhalb von 60 min aufgenommen; um den Umsatz sicher auf 100 % zu bringen, wird 2 h nachgerührt. Der Reaktor wird abgekühlt, das überschüssige Gas entspannt und die gelbe, klare Produktlösung entnommen.2) The solution of the addition product of lauric acid-N-methylamide and butyraldehyde is mixed with 0.35 g (1.02 mmol) of Co 2 (CO) 8 . 50 bar CO is injected and heated to 70 ° C. The onset of the reaction can be recognized by the falling pressure; CO is then added to maintain the pressure in the reactor. Most of the gas is absorbed within 60 minutes; to bring the turnover to 100% safely, stirring is continued for 2 hours. The reactor is cooled, the excess gas is let down and the yellow, clear product solution is removed.
  • Die cobaltcarbonylhaltige Lösung wird mit 0,5 g (5,5 mMol) Oxalsäure versetzt und unter gutem Rühren wird Luft eingeleitet. Nach 1 h ist die Ausfällung des Cobaltoxalats komplett. Dieses wird abfiltriert. Anschließend wird in einem Dünnschichtverdampfer (Öltemperatur 140 bis 150°C) aus der Lösung das Ethylacetat entfernt. Das als Konzentrat abfließende, geschmolzene Rohprodukt wird in 200 ml 60 - 80°C warmem Wasser dispergiert (emulgiert), um Reste von Lösemittel, Formaldehyd und der Säure aus Reaktionsstufe 1, zu entfernen. Die Emulsion wird unter Rühren langsam abgekühlt, bei 15 bis 5°C kristallisiert das N-Lauroyl-1-propyl-sarkosin. Es wird abgesaugt, mit Wasser nachgewaschen und trockengepreßt. The cobalt carbonyl-containing solution is mixed with 0.5 g (5.5 mmol) of oxalic acid and air is introduced with good stirring. After 1 h the precipitation of the Cobalt oxalate complete. This is filtered off. Then in one Thin film evaporator (oil temperature 140 to 150 ° C) from the solution Removed ethyl acetate. The melted raw product that flows away as a concentrate is dispersed in 200 ml of 60 - 80 ° C warm water (emulsified) to remove residues of solvent, formaldehyde and the acid from reaction stage 1. The emulsion is slowly cooled with stirring and crystallized at 15 to 5 ° C the N-lauroyl-1-propyl sarcosine. It is suctioned off, washed with water and pressed dry.

    Ausbeute an N-Lauroyl-1-propyl-sarkosin = 27,0 g ≙ 86 % d.Th. Das trockne Produkt hat einen Fp = 50 bis 51°C.Yield of N-lauroyl-1-propyl-sarcosine = 27.0 g ≙ 86% of theory The dry product has a melting point of 50 to 51 ° C.

    Claims (17)

    1. A process for the preparation of an acylglycine derivative of the formula (I)
      Figure 00190001
      in which
      R1
      is hydrogen, a saturated, straight-chain, branched or cyclic (C1-C26)alkyl radical, a mono- or polyunsaturated, straight-chain, branched or cyclic (C2-C24) alkenyl radical, a (C6-C18)aryl radical, a (C1-C10)alkyl- (C6-C18)aryl radical or an optionally polyunsaturated (C2-C10) alkenyl-(C6-C18)aryl radical,
      R2
      is hydrogen, a saturated, straight-chain, branched or cyclic (C1-C26)alkyl radical, a mono- or polyunsaturated, straight-chain, branched or cyclic (C2-C23)alkenyl radical, a (C6-C18)aryl radical, a (C1-C10)alkyl- (C6-C18)aryl radical or an optionally polyunsaturated (C2-C10) alkenyl-(C6-C18)aryl radical
      and
      R3
      is hydrogen, a saturated, straight-chain, branched or cyclic (C1-C10)alkyl radical, a mono- or polyunsaturated, straight-chain, branched or cyclic (C2-C10)alkenyl radical, a (C6-C18)aryl radical, a (C1-C10)alkyl-(C6-C18)aryl radical or an optionally polyunsaturated (C2-C10)alkenyl-(C6-C18)aryl radical,
      which comprises reacting a carboxylic acid amide of the formula (II)
      Figure 00200001
      in which R1 and R2 have the abovementioned meaning, with an aldehyde of the formula R3CHO in the presence of a solvent and an acid to give an acylaminomethylol of the formula (III)
      Figure 00200002
      and then carbonylating this, after addition of a cobalt carbonyl catalyst, at a temperature of 20 to 150°C under a CO pressure of 1 to 150 bar.
    2. The process as claimed in claim 1, wherein the amide of a naturally occurring fatty acid is employed as the compound of the formula II.
    3. The process as claimed in claim 1, wherein R2 is hydrogen or (C1-C4)alkyl, in particular methyl.
    4. The process as claimed in claim 1, wherein octanoic acid amide, 2-ethylhexanoic acid amide, decanoic acid amide, lauric acid amide, palmitic acid amide, stearic acid amide, lauric acid N-methylamide, palmitic acid N-methylamide, stearic acid N-methylamide or oleic acid N-methylamide is employed as the compound of the formula (II).
    5. The process as claimed in at least one of claims 1 to 4, wherein the compound of the formula (II) is employed as a mixture such as is obtainable from natural products.
    6. The process as claimed in at least one of claims 1 to 5, wherein formaldehyde is employed in the form of paraformaldehyde.
    7. The process as claimed in at least one of claims 1 to 6, wherein the aldehyde is employed in an amount of 70 to 200 mol%, in particular 100 to 140 mol%, preferably 100 to 120 mol%, based on the carboxylic acid amide.
    8. The process as claimed in at least one of claims 1 to 7, wherein an ion exchanger resin or an organic or inorganic acid, in particular toluenesulfonic acid, hexafluoropropanesulfonic acid, trifluoroacetic acid, sulfuric acid or phosphoric acid, preferably sulfuric acid, is employed as the acid.
    9. The process as claimed in at least one of claims 1 to 8, wherein the acid is employed in an amount of 0.2 to 5 mol%, in particular 0.5 to 4 mol%, preferably 1.0 to 2.5 mol%, based on the amide.
    10. The process as claimed in at least one of claims 1 to 9, wherein a dipolar aprotic solvent, in particular tetrahydrofuran, glycol dimethyl ether, diglycol dimethyl ether, dimethylformamide or dimethylacetamide, preferably tetrahydrofuran, glycol dimethyl ether or methyl t-butyl ether, is employed as solvent.
    11. The process as claimed in at least one of claims 1 to 10, wherein the reaction of the amide with the aldehyde is carried out at a temperature of 65° to 120°C.
    12. The process as claimed in at least one of claims 1 to 11, wherein the carbonylation is carried out at a temperature of 25 to 100°C, in particular 30 to 70°C.
    13. The process as claimed in at least one of claims 1 to 12, wherein the carbonylation is carried out under a CO pressure of 1 to 50 bar, preferably 3 to 20 bar.
    14. The process as claimed in at least one of claims 1 to 13, wherein pure carbon monoxide is employed for the carbonylation.
    15. The process as claimed in at least one of claims 1 to 13, wherein a mixture of carbon monoxide and hydrogen is employed for the carbonylation.
    16. The process as claimed in at least one of claims 1 to 15, wherein Co2(CO)8 is employed as cobalt carbonyl.
    17. The process as claimed in at least one of claims 1 to 16, wherein the cobalt carbonyl is employed in an amount of 0.1 to 5.0 mol%, in particular 0.6 to 2.0 mol% of cobalt, based on the carboxylic acid amide.
    EP95106329A 1994-05-02 1995-04-27 Process for preparing N-acylglycin derivatives Expired - Lifetime EP0680948B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE4415312 1994-05-02
    DE4415312A DE4415312A1 (en) 1994-05-02 1994-05-02 Process for the preparation of N-acylglycine derivatives

    Publications (2)

    Publication Number Publication Date
    EP0680948A1 EP0680948A1 (en) 1995-11-08
    EP0680948B1 true EP0680948B1 (en) 1998-04-08

    Family

    ID=6516994

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP95106329A Expired - Lifetime EP0680948B1 (en) 1994-05-02 1995-04-27 Process for preparing N-acylglycin derivatives

    Country Status (19)

    Country Link
    US (1) US5650537A (en)
    EP (1) EP0680948B1 (en)
    JP (1) JPH0848660A (en)
    KR (1) KR950032085A (en)
    CN (1) CN1120533A (en)
    AT (1) ATE164832T1 (en)
    AU (1) AU697803B2 (en)
    BG (1) BG62649B1 (en)
    BR (1) BR9501851A (en)
    CA (1) CA2148335A1 (en)
    CZ (1) CZ111295A3 (en)
    DE (2) DE4415312A1 (en)
    ES (1) ES2116645T3 (en)
    HU (1) HU216071B (en)
    PL (1) PL308418A1 (en)
    RU (1) RU2140903C1 (en)
    SI (1) SI9500148A (en)
    TW (1) TW336928B (en)
    ZA (1) ZA953435B (en)

    Families Citing this family (21)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE19642494A1 (en) * 1996-10-15 1998-04-16 Clariant Gmbh Use of sarcosinates as asphaltene dispersants
    DE19650501A1 (en) * 1996-12-05 1998-06-10 Hoechst Ag Process for the recovery of cobalt carbonyl catalysts used in the production of N-acyl-alpha-amino acid derivatives by amidocarbonylation
    HUP0002032A3 (en) 1997-02-13 2001-12-28 Monsanto Company Saint Louis Method of preparing amino carboxylic acids
    US6232494B1 (en) 1998-02-12 2001-05-15 Monsanto Company Process for the preparation of N-(phosphonomethyl)glycine by oxidizing N-substituted N-(phosphonomethyl)glycine
    CZ164699A3 (en) * 1998-02-12 1999-12-15 Monsanto Company Process for preparing glyphosate, salt or ester thereof by oxidation of n-substituted glyphosates a oxidation catalyst used during execution of this process
    US6417133B1 (en) 1998-02-25 2002-07-09 Monsanto Technology Llc Deeply reduced oxidation catalyst and its use for catalyzing liquid phase oxidation reactions
    CN1319102A (en) * 1998-08-12 2001-10-24 孟山都公司 Continuous process for the preparation of N-(phosphonomethyl) iminodiacetic acid
    BR0111041A (en) 2000-05-22 2004-06-15 Monsanto Technology Llc Reaction systems for producing n- (phosphonomethyl) glycine compounds
    US7293871B2 (en) 2000-11-27 2007-11-13 Ophthonix, Inc. Apparatus and method of correcting higher-order aberrations of the human eye
    GB0112324D0 (en) * 2001-05-21 2001-07-11 Croda Int Plc Compounds
    GB0413090D0 (en) 2004-06-11 2004-07-14 Degussa Process for preparing amino acids using the amidocarbonylation reaction (2)
    GB0413092D0 (en) * 2004-06-11 2004-07-14 Degussa Process for preparing amino acids using the amidocarbonylation reaction (1)
    TW200624171A (en) 2004-09-15 2006-07-16 Monsanto Technology Llc Oxidation catalyst and its use for catalyzing liquid phase oxidation reactions
    DE102007055265A1 (en) * 2007-11-20 2009-05-28 Clariant International Ltd. Process for the preparation of acylglycinates
    US8252953B2 (en) 2008-05-01 2012-08-28 Monsanto Technology Llc Metal utilization in supported, metal-containing catalysts
    CA2731967C (en) * 2008-08-15 2014-08-12 The Procter & Gamble Company Synthesis of cyclohexane derivatives useful as sensates in consumer products
    DE102011107503A1 (en) * 2011-07-15 2012-03-01 Clariant International Ltd. Preparing acylglycinate compound useful in a composition, which is used as a surfactant in a cosmetic preparation, comprises reacting glycine with fatty acid chloride in water and in the presence of a basic alkali metal compound
    CN102268101A (en) * 2011-08-31 2011-12-07 南京财经大学 Enzyme-assisted extraction method of high-purity porphyra polysaccharide
    KR101253462B1 (en) 2012-10-22 2013-04-10 재 욱 한 Self-assembly display stand
    EP2805976A1 (en) * 2013-05-24 2014-11-26 Huntsman International Llc Aldehyde comprising compositions suitable for making curable polyisocyanate compositions
    CN111518047A (en) * 2019-02-01 2020-08-11 鲁南制药集团股份有限公司 MAGL inhibitor and preparation method and application thereof

    Family Cites Families (5)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR862365A (en) * 1938-12-15 1941-03-05 Du Pont Production of alkylolamide esters
    DE849554C (en) * 1943-03-26 1952-09-15 Ciba Geigy Process for the production of new amide cores
    US4918222A (en) * 1984-07-27 1990-04-17 Texaco Inc. Process for synthesis of N-acetylglycine
    US4891442A (en) * 1987-03-09 1990-01-02 Texaco Inc. Process for synthesis of β-phenylalanine
    GB2252770A (en) * 1991-02-14 1992-08-19 Shell Int Research The preparation of n-acyl-alpha-amino acids

    Also Published As

    Publication number Publication date
    ATE164832T1 (en) 1998-04-15
    BR9501851A (en) 1996-04-09
    PL308418A1 (en) 1995-11-13
    BG99598A (en) 1996-04-30
    ZA953435B (en) 1996-01-17
    AU1771995A (en) 1995-11-09
    ES2116645T3 (en) 1998-07-16
    HUT71261A (en) 1995-11-28
    TW336928B (en) 1998-07-21
    EP0680948A1 (en) 1995-11-08
    KR950032085A (en) 1995-12-20
    RU2140903C1 (en) 1999-11-10
    DE4415312A1 (en) 1995-11-09
    SI9500148A (en) 1995-12-31
    BG62649B1 (en) 2000-04-28
    JPH0848660A (en) 1996-02-20
    RU95106642A (en) 1997-01-10
    CA2148335A1 (en) 1995-11-03
    HU216071B (en) 1999-04-28
    CZ111295A3 (en) 1995-12-13
    US5650537A (en) 1997-07-22
    HU9501217D0 (en) 1995-06-28
    AU697803B2 (en) 1998-10-15
    DE59501814D1 (en) 1998-05-14
    CN1120533A (en) 1996-04-17

    Similar Documents

    Publication Publication Date Title
    EP0680948B1 (en) Process for preparing N-acylglycin derivatives
    EP0144885B1 (en) Method for the simultanous preparation of nitriles and acryl amide or methacryl amide
    EP0115295B1 (en) Process for the preparation of riboflavine
    DE3313440C2 (en) Process for the production of thio-bis-phenols
    DE2323867A1 (en) PROCESS FOR MANUFACTURING UNSATATURATED ALDEHYDCYANHYDRINES
    DE2932198A1 (en) METHOD FOR PRODUCING O- (2,6-DICHLORANILINO) -PHENYL ACETIC ACID AND NEW INTERMEDIATE PRODUCTS FOR CARRYING OUT THE METHOD
    DE2057956A1 (en) Process for the preparation of aliphatic carboxylic acid chlorides
    EP0529449A1 (en) Process for the preparation of bis-benzothiazolyl-alkyl-sulfenimides
    DE2614241A1 (en) PROCESS FOR THE PREPARATION OF ACYLCYANIDES
    EP0811607B1 (en) Process for the nitrosation of C-H- acid compounds
    EP1530561A1 (en) Method for producing phthalic acid dichloride
    DE2729363A1 (en) ANTIOXIDANTS
    AT242676B (en) Process for the preparation of N-monoacylcysteine
    EP0006140B1 (en) Process for the preparation of alpha-hydroxycarboxylic acid amides
    AT218494B (en) Process for the preparation of polychloropropionic acid chlorides
    EP0811602A1 (en) Process for the preparation of salts of the aminomalonic ester
    DE2538231A1 (en) PROCESS FOR THE PRODUCTION OF AMINOACETALDEHYDACETALS
    DE3937282A1 (en) METHOD FOR PRODUCING ALKYL (3-CHLORPHENYL) SULPHONES
    DE3347526A1 (en) METHOD FOR PRODUCING SUBSTITUTED CHINAZOLIN-2.4 (1H.3H) DIONE
    AT360499B (en) METHOD FOR PRODUCING ESTERS OF MONO - OR DICARBONIC ACIDS AND AMMON SULFATE
    EP0046859A1 (en) Process for the preparation of 1-bromo-3,5-dichlorobenzene
    AT364836B (en) METHOD FOR PRODUCING NEW O-SUBSTITUTED DERIVATIVES OF (+) - CYANIDAN-3-OLS AND THE SALTS THEREOF
    DE2017397A1 (en) N-acyl-glycines prepn by carbonylation reaction
    DE1148226B (en) Process for the preparation of terephthalic acid or its monomeric functional derivatives
    DE3922362A1 (en) METHOD FOR THE PRODUCTION OF CARBONIC ACID CHLORIDES

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH DE DK ES FR GB IT LI NL PT SE

    17P Request for examination filed

    Effective date: 19960508

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    17Q First examination report despatched

    Effective date: 19970602

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE DK ES FR GB IT LI NL PT SE

    REF Corresponds to:

    Ref document number: 164832

    Country of ref document: AT

    Date of ref document: 19980415

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REF Corresponds to:

    Ref document number: 59501814

    Country of ref document: DE

    Date of ref document: 19980514

    ITF It: translation for a ep patent filed

    Owner name: ING. C. GREGORJ S.P.A.

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 19980610

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2116645

    Country of ref document: ES

    Kind code of ref document: T3

    ET Fr: translation filed
    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: SC4A

    Free format text: AVAILABILITY OF NATIONAL TRANSLATION

    Effective date: 19980521

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 19990324

    Year of fee payment: 5

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 19990325

    Year of fee payment: 5

    Ref country code: DK

    Payment date: 19990325

    Year of fee payment: 5

    26N No opposition filed
    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 19990414

    Year of fee payment: 5

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: PT

    Payment date: 19990419

    Year of fee payment: 5

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 19990423

    Year of fee payment: 5

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20000427

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20000427

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20000428

    Ref country code: ES

    Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

    Effective date: 20000428

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20000430

    BERE Be: lapsed

    Owner name: HOECHST A.G.

    Effective date: 20000430

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20001031

    EUG Se: european patent has lapsed

    Ref document number: 95106329.6

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: EBP

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: MM4A

    Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

    Effective date: 20001031

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20020204

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: TP

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PUE

    Owner name: DEGUSSA AG

    Free format text: AVENTIS RESEARCH & TECHNOLOGIES GMBH & CO KG##65926 FRANKFURT AM MAIN (DE) -TRANSFER TO- DEGUSSA AG##40474 DUESSELDORF (DE)

    Ref country code: CH

    Ref legal event code: PUE

    Owner name: HOECHST RESEARCH & TECHNOLOGY DEUTSCHLAND GMBH &

    Free format text: HOECHST AKTIENGESELLSCHAFT#BRUENINGSTRASSE 50#65929 FRANKFURT AM MAIN (DE) -TRANSFER TO- HOECHST RESEARCH & TECHNOLOGY DEUTSCHLAND GMBH & CO. KG##65926 FRANKFURT AM MAIN (DE)

    Ref country code: CH

    Ref legal event code: PFA

    Owner name: AVENTIS RESEARCH & TECHNOLOGIES GMBH & CO KG

    Free format text: HOECHST RESEARCH & TECHNOLOGY DEUTSCHLAND GMBH & CO. KG##65926 FRANKFURT AM MAIN (DE) -TRANSFER TO- AVENTIS RESEARCH & TECHNOLOGIES GMBH & CO KG##65926 FRANKFURT AM MAIN (DE)

    NLS Nl: assignments of ep-patents

    Owner name: DEGUSSA AG

    Owner name: AVENTIS RESEARCH & TECHNOLOGIES GMBH & CO. KG

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: 732E

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: 732E

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: TP

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20040331

    Year of fee payment: 10

    Ref country code: GB

    Payment date: 20040331

    Year of fee payment: 10

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20040402

    Year of fee payment: 10

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20040408

    Year of fee payment: 10

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20040415

    Year of fee payment: 10

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050427

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050427

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050430

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050430

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20051101

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20051101

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20050427

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20051230

    NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

    Effective date: 20051101

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20051230