EP0676033B1 - Process and device for measuring geometries of technical surfaces - Google Patents

Process and device for measuring geometries of technical surfaces Download PDF

Info

Publication number
EP0676033B1
EP0676033B1 EP94902617A EP94902617A EP0676033B1 EP 0676033 B1 EP0676033 B1 EP 0676033B1 EP 94902617 A EP94902617 A EP 94902617A EP 94902617 A EP94902617 A EP 94902617A EP 0676033 B1 EP0676033 B1 EP 0676033B1
Authority
EP
European Patent Office
Prior art keywords
measured
light
plane
field
converted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94902617A
Other languages
German (de)
French (fr)
Other versions
EP0676033A1 (en
Inventor
Rolf KLÖDEN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MICROSPACE MESS- und SENSORTECHNIK GmbH
Original Assignee
MICROSPACE MESS- und SENSORTECHNIK GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MICROSPACE MESS- und SENSORTECHNIK GmbH filed Critical MICROSPACE MESS- und SENSORTECHNIK GmbH
Publication of EP0676033A1 publication Critical patent/EP0676033A1/en
Application granted granted Critical
Publication of EP0676033B1 publication Critical patent/EP0676033B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • G01B11/303Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces using photoelectric detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/34Measuring arrangements characterised by the use of electric or magnetic techniques for measuring roughness or irregularity of surfaces

Definitions

  • the invention relates to a method and a device for measuring geometries of technical surfaces.
  • This method is particularly suitable for fields of application in which sizes and / or two- or three-dimensional graphical representations are to be determined or generated quickly and easily for functional and technological reasons, which are meaningful about the shape of the surface of workpieces.
  • This affects a wide range of areas of machine, vehicle and device construction as well as areas of other industries where measurements of surface geometries, in particular the roughness of technical surfaces, are required, such as the electrical, electronics and semiconductor industries, plastics, rubber, paper and printing industry, aerospace industry, development and research areas, medical technology area and much more.
  • the touch-cut method is known in surface measurement technology. As can be seen from the name, this method scans the three-dimensional surface in a two-dimensional profile section. A fine diamond stylus is generally used to measure the surface micro shape. The probe tip is installed in a touch probe, almost friction-free. If the touch probe is moved over the surface with the aid of a feed device, the surface deviations are detected by the probe tip. The vertical position changes of the probe tip caused by the profile fissure of the surface are converted into electrical signals by an electromechanical transducer in the probe system and sent to the measurement and evaluation computer (Sander, M: surface measurement technology for the practitioner, Feinprüf GmbH, Göttingen 1989).
  • the surface characteristic values are determined from a two-dimensional profile cut, even though the surface is three-dimensional. Furthermore, the lower limit of the deviations that can still be detected is largely determined by the geometry of the probe tip. Due to the sensitivity of the touch probe and the set-up and measuring time of approx. 15 seconds, this measuring method is not suitable for automatic testing on the processing machine or in the automatic testing machine.
  • optically operating surface measuring devices are also used in special cases. These include the light section and interference microscope. The surface shape is represented in this process in the form of contour lines. The use of these devices requires a surface that is as flat and well reflective as possible. It is not possible to calculate the various surface parameters or to record a profile.
  • the scattered light method In addition to the light section and interference methods, optoelectronic surface measurement methods have received great attention and have been put into practice in recent years. A distinction is made between the scattered light method and the focus detector method.
  • the scattered light method a beam of rays emitted by an infrared light-emitting diode is focused on the surface by an optical system. The light spot diameter is approx. 2 mm. Depending on the roughness and structure of the surface, the light is scattered more or less. This scatter distribution arrives on a CCD line in which the different scatter angles are converted into electrical signals.
  • a microprocessor-controlled evaluation unit calculates an optical scatter value s N (standard deviation of the scatter) from these signals.
  • this optical roughness value s N has no relation to the standardized surface parameters and cannot be converted to these.
  • the roughness parameter s N is influenced by the surface structure of the test specimen surface, which is mainly determined by the manufacturing process and the material. Diffusely scattering surfaces can no longer be measured.
  • the focus detector method the light from a laser diode is focused by special micro-optics to a focus of around 1 ⁇ m and illuminates the measurement object.
  • the radiation reflected by the test object falls on two pairs of diodes, the output signals of which influence mechanical readjustment of the objective lens in such a way that the focus tracks the surface profile during the measurement process.
  • the tracking movement is recorded with an inductive distance meter and used to evaluate the measuring process (prospectus Micro-Focus, UBM Meßtechnik GmbH Ettlingen; prospect focodyn, Feinprüf GmbH Göttingen).
  • the minimum reflection of the test objects must be 4%.
  • steep-sided surface profile features pores, sintered materials
  • falsifications can occur in the records.
  • Pneumatic, non-contact measuring methods have been available for some time, which are used particularly in the field of production.
  • a pneumatic transducer is guided over the surface at a constant speed with the aid of a feed device.
  • the measured value is recorded pneumatically, based on the principle of differential pressure measurement.
  • the pneumatically recorded surface deviation is converted into electrical signals and fed to a surface measurement computer.
  • the measured values are influenced differently by the surface structure and roughness size.
  • the pneumatic measuring device is first calibrated (Sander, M: surface measurement technology for the practitioner, Feinprüf GmbH, Göttingen 1989).
  • Another method is the capacitive roughness measurement. This can be done tactilely or, using a newly developed method, without contact.
  • capacitive roughness measurement the surface is evaluated three-dimensionally. The measurement takes only a very short time and integrally delivers a surface-representative electrical signal over the entire surface, which correlates with the essential standardized roughness parameters. There is no point-by-point resolution, so that the surface cannot be represented geometrically.
  • the surface structure of the test specimen due to the manufacturing process must be known, since it influences the output signal (patent specification DD 297 509).
  • the known methods for measuring surface geometries are disadvantageous and unsatisfactory: the relatively long measuring times and unsatisfactory three-dimensional evaluation of the surface geometry, relatively large and fault-prone measuring structures, hand-held measuring devices with only very limited functional parameters and only very limited possibilities of the internal process measurement.
  • the invention has for its object to provide a method with which surface geometries of technical products in a very short time Time can be recorded three-dimensionally in a single measuring step. Furthermore, a device for performing this method is to be created that are very good as in-process sensors or handheld devices high-quality technical properties.
  • a flat, transparent electrode is arranged opposite the surface to be measured in such a way that it forms a capacitor with it and the electrical field which is inhomogeneous in accordance with the surface geometry and is produced by the application of an electrical voltage an optical substance located between the flat, transparent electrode and the surface to be measured, which changes its light-emitting or light-transparent properties as a function of the electrical field strength, is converted into optical information which is then detected via a matrix of photoelectric elements and converted into electrical signals which are finally converted into length information using evaluation electronics and / or special software.
  • an electrical field builds up between the test specimen surface and the transparent electrode, which in accordance with the different distances between the local surface points and the flat, transparent electrode inhomogeneities or has different field strengths over the entire surface to be measured.
  • These inhomogeneities which thus represent a function of the surface roughness, influence the light-emitting or light-transparent properties of the optical substance interspersed with the inhomogeneous field. Due to the locally different field strengths, these properties are also set locally differently, as a result of which the emerging light locally has different properties (such as intensity or color), corresponding to the surface irregularities of the test specimen.
  • This resulting gray value or color field is recorded with a CCD matrix or similar photoelectric elements and converted into length or height dimensions using a corresponding hardware and software evaluation using calibration data.
  • the pixel and matrix of the CCD element give the x and y coordinates, taking into account the optical enlargement or reduction of the image.
  • the z-coordinates result from the optical information of the sensor, with which the exact coordinates of the surface points can be determined.
  • a device is used to carry out the method proposed to be measured at a direct distance from the Surface a dielectric mirror, followed by the optical one Substance (preferably liquid crystal) arranged on both sides Orientation layers that reflect their light-transparent properties in the Interact with a polarizer depending on the electrical Field strength changes, followed by a light-transparent, level Electrode to which the constant electrical voltage is applied and between the surface and the surface to be measured, the optical substance penetrating electrical field, followed by one plane-parallel glass plate as a support with the polarizer and behind it following a lighting device, a beam splitter, optics and a matrix of photoelectric elements that hold the optical information capture and convert them into electrical signals via an evaluation electronics and / or via special software in length information are converted, are arranged.
  • the optical one Substance preferably liquid crystal
  • a Device proposed in the immediate distance from the measuring surface the optical substance that its light emitting Changes properties depending on the electric field strength, followed by a light-transparent, flat electrode on which the constant electrical voltage is applied and between the and the surface that penetrates the optical substance, electrical field, followed by a plane-parallel glass plate followed by a matrix of photoelectric elements that capture optical information and convert it into electrical signals that via evaluation electronics and / or via special software in Length information to be converted are arranged.
  • Electrodes are next to the flat, transparent electrode, in a plane parallel to this at the level of the surface to be measured lying side of the optical substance one or more electrodes arranged. These electrodes are transparent compared to the flat ones Electrode opposite potential, so that is between these Electrodes building up the test object from the electrical field non-conductive material in the form of an electrical stray field enforced.
  • a sufficient Giving mechanical stability is the arrangement of a field line plate on the side facing the surface to be measured the device advantageous.
  • This field line plate consists of a Large number of micro-columns standing side by side.
  • micro pillars are electrically isolated from each other, occur in the functional case in everyone Micro column different levels of influenza on what one electrical field line. Inhomogeneities of the electrical Fields are thus lossless, according to the micro-column cross-section, transfer.
  • the field line plate thus offers sufficient Strength, but only affects the inhomogeneous field in this area a negligibly small size. Because of the necessary isolation the metallic microcolumns opposite the surface of the test object the field line plate on this side with a wear-resistant dielectric layer coated.
  • the advantages achieved with the invention are in particular that the length information of the surface areally into an optical Information converted and almost all points via a CCD matrix be recorded simultaneously. This means that there is no need to scan the surface and the measurement is done in fractions of a second.
  • the very good miniaturizability of the device offers the possibility of it to be trained as a handheld device and even as an in-process sensor. Through the short measuring times compared to the stylus method can Interference on the measurement is no longer or only to a negligible extent Impact size.
  • the advantages are almost the same Number of measuring points in the x and y direction due to the uniform pixel arrangement the CCD matrix and the real determination of the surface roughness in three-dimensional space taking into account the Cross and longitudinal roughness. There are still no large test setups necessary and it is a flexible, uncomplicated and process-related Use of the device possible.
  • a lighting unit 6 and a PN beam splitter 5 of the primary converter 1 with light constant intensity illuminated (Fig. 1). That reflected by the primary converter and depending on the corresponding surface geometry of the DUT 2 light modified in intensity, in the form of a gray value field, is imaged on an optics 7 on a CCD matrix 3.
  • the optical information in the form of the gray values are here in electrical Signals converted and via appropriate electronics 4 fed to a computer 9. With the help of saved calibration data the gray value information becomes length or height information transformed.
  • Fig. 2 shows the basic structure of a primary converter with liquid crystal as a passive optical substance.
  • the modification of the light takes place in the primary converter in such a way that the light of constant intensity is polarized in the form of an axially parallel beam by the polarizer 1.6 and shines through the glass support 1.5, the transparent electrode 1.4, the orientation layers 1.3 and the liquid crystal 1.2 and on the dielectric mirror 1.7 is reflected and passes through the layers in reverse order until it emerges from the primary converter at the polarizer 1.6.
  • the liquid crystal 1.2 rotates the polarized light in a known manner in the liquid crystal displays, as a result of which certain components of the polarized light are filtered at the polarizer 1.6 and thus a reduction in intensity when the light emerges from the primary converter is recorded.
  • the orientation layers 1.3 serve to pre-orient the liquid crystals.
  • the electrical field generated by applying a constant electrical voltage U F between the surface of the test specimen 2 and the transparent, flat electrode 1.4 is inhomogeneous in accordance with the surface geometry of the test specimen 2. Due to the different distance between the local surface points of the test specimen 2 and the opposite local surface points of the transparent, flat electrode, the electrical field strengths in these areas are also different.
  • This field line plate 1.1 consists of a thin, wear-resistant, dielectric layer 1.1a arranged on the side facing the surface to be measured and of mutually adjacent, electrically insulated microcolumns arranged behind one another, whereby the inhomogeneities of the electrical field are caused by the appearance of influences on the end faces of the microcolumns According to the cross section of the microcolumns, they are conducted largely without loss over the distance of the thickness of the field line plate and mechanical stability of the device is achieved.
  • FIG. 3 shows the basic structure of a device for measuring the surface geometry with active, luminescent optical substance 8 and direct imaging of the gray value image on a CCD matrix 3.
  • a luminescent substance 8 e.g. copper-doped ZnS integrated in the dielectric.
  • the luminescent substance is penetrated by an inhomogeneous field corresponding to the surface geometry of the test specimen 2, as a result of which the luminescent substance 8 is excited to actively light up.
  • the intensity of the emitted light depends on the electric field strength in the area of the surface point in question, the distance from the opposite local point on the transparent, flat electrode determining the size of the electric field strength in this area, with a constant electric voltage U F.
  • the resulting gray value field is evaluated via a CCD matrix 3, which is arranged directly on the glass carrier 1.5, an electronic system 4 and a computer 9 and converted into length or height dimensions.

Abstract

The invention relates to a process and device for measuring geometries of technical surfaces. The aim achieved is to provide a process by means of which the surface geometries of technical products can be measured three-dimensionally in a single step and in a very short time. A device for implementing the process is also proposed to determine the surface roughness in three-dimensional space taking account of the transverse and longitudinal roughness. The longitudinal information on the surface is converted per surface into optical information and all points are virtually simultaneously recorded via a CCD matrix.

Description

Technisches GebietTechnical field

Die Erfindung betrifft ein Verfahren und eine vorrichtung zur Messung von Geometrien technischer Oberflächen.
Für Anwendungsgebiete, bei denen aus funktionellen und technologischen Gründen schnell und einfach Größen und/oder zwei- oder dreidimensionale grafische Darstellungen ermittelt bzw. erzeugt werden sollen, die aussagekräftig über die Gestalt der Oberfläche von Werkstücken sind, ist dieses Verfahren besonders geeignet. Dies betrifft vielfältige Bereiche des Maschinen-, Fahrzeug- und Gerätebaus sowie Gebiete anderer Industriezweige, bei denen Messungen von Oberflächengeometrien, insbesondere der Rauheit technischer Oberflächen, erforderlich sind, wie z.B. Elektro-, Elektronik- und Halbleiterindustrie, Kunststoff-, Gummi-, Papier- und Druckindustrie, Luft- und Raumfahrtindustrie, Entwicklungs- und Forschungsbereiche, medizintechnischer Bereich u.v.m..
The invention relates to a method and a device for measuring geometries of technical surfaces.
This method is particularly suitable for fields of application in which sizes and / or two- or three-dimensional graphical representations are to be determined or generated quickly and easily for functional and technological reasons, which are meaningful about the shape of the surface of workpieces. This affects a wide range of areas of machine, vehicle and device construction as well as areas of other industries where measurements of surface geometries, in particular the roughness of technical surfaces, are required, such as the electrical, electronics and semiconductor industries, plastics, rubber, paper and printing industry, aerospace industry, development and research areas, medical technology area and much more.

Stand der TechnikState of the art

Bekannt ist in der Oberflächenmeßtechnik das Tastschnittverfahren. Wie aus dem Namen bereits hervorgeht, wird bei diesem Verfahren die dreidimensionale Oberfläche in einem zweidimensionalen Profilschnitt abgetastet. Zur Erfassung der Oberflächenmikrogestalt dient im allgemeinen eine feine Diamant-Tastspitze. Die Tastspitze ist in einem Tastsystem, nahezu reibungsfrei gelagert, eingebaut. Wird das Tastsystem mit Hilfe eines Vorschubgerätes über die Oberfläche geführt, werden die Oberflächenabweichungen von der Tastspitze erfaßt. Die durch die Profilzerklüftung der Oberfläche bedingten vertikalen Lageveränderungen der Tastspitze werden durch einen im Tastsystem befindlichen elektromechanischen Wandler in elektrische Signale umgewandelt und dem Meß- und Auswerterechner zugeleitet (Sander,M: Oberflächenmeßtechnik für den Praktiker, Feinprüf GmbH, Göttingen 1989). Bei dem Tastschnittverfahren ist zu beachten, daß die Ermittlung der Oberflächenkennwerte aus einem zweidimensionalen Profilschnitt erfolgt, obwohl die Oberfläche dreidimensional ist. Weiterhin ist die untere Grenze der noch erfaßbaren Abweichungen weitgehend durch die Geometrie der Tastspitze bestimmt. Aufgrund der Empfindlichkeit des Tastsystems und der Rüst- und Meßzeit von ca. 15 Sekunden, ist dieses Meßverfahren zur automatischen Prüfung an der Bearbeitungsmaschine oder im Prüfautomat nicht geeignet. Neben den dominierenden Tastschnittgeräten werden in speziellen Fällen auch optisch arbeitende Oberflächenmeßgeräte eingesetzt. Es handelt sich hierbei u.a. um das Lichtschnitt- und Interferenzmikroskop. Die Darstellung der Oberflächengestalt erfolgt bei diesen Verfahren in Form von Höhenschichtlinien. Der Einsatz dieser Geräte setzt eine möglichst ebene und gut reflektierende Oberfläche voraus. Die Berechnung der verschiedenen Oberflächenkennwerte oder eine Profilaufzeichnung ist nicht möglich. Neben den Lichtschnitt- und Interferenzverfahren haben in den letzten Jahren optoelektronische Oberflächen-Meßverfahren große Aufmerksamkeit und Eingang in die Praxis gefunden. Unterschieden werden hierbei das Streulichtverfahren und das Fokusdetektorverfahren. Bei dem Streulichtverfahren wird ein von einer Infrarot-Leuchtdiode abgesendetes Strahlenbündel durch ein optisches System auf die Oberfläche fokussiert. Der Lichtfleckdurchmesser beträgt ca. 2 mm. Je nach Rauheit und Struktur der Oberfläche wird das Licht mehr oder weniger gestreut. Diese Streuverteilung gelangt auf eine CCD-Zeile, in der die unterschiedlichen Streuwinkel in elektrische Signale umgewandelt werden. Eine mikroprozessorgesteuerte Auswerteeinheit errechnet aus diesen Signalen einen optischen Streuwert sN (Standardabweichung der Streuung). Dieser optische Rauheitswert sN hat allerdings keinen Bezug zu den genormten Oberflächenkenngrößen und läßt sich auf diese auch nicht umrechnen. Außerdem wird die Rauheitskenngröße sN durch die Oberflächenstruktur der Prüflingsfläche, die hauptsächlich durch das Fertigungsverfahren und den Werkstoff bestimmt wird, beeinflußt. Diffusstreuende Oberflächen sind nicht mehr meßbar. Bei dem Fokusdetektorverfahren wird das Licht einer Laser-Diode durch eine spezielle Mikrooptik zu einem Fokus von rund 1 µm gebündelt und beleuchtet das Meßobjekt. Die vom Prüfling reflektierte Strahlung fällt auf 2 Diodenpaare, deren Ausgangssiqnale eine mechanische Nachjustierung der Objektivlinse so beeinflußt, daß der Fokus während des Meßvorganges dem Oberflächenprofil nachgeführt wird. Die Nachführbewegung wird, analog der Tastnadel eines Tastschnittgerätes, mit einem induktiven Wegmesser erfaßt und zur Auswertung des Meßvorganges herangezogen (Prospekt Micro-Focus, UBM Meßtechnik GmbH Ettlingen; Prospekt focodyn, Feinprüf GmbH Göttingen). Die Mindestreflektion der Prüflinge muß 4% betragen. Bei steilflankigen Oberflächenprofilmerkmalen (Poren, gesinterte Materialien) können Verfälschungen in den Aufzeichnungen entstehen. Seit einiger Zeit stehen pneumatische, berührungslose Meßverfahren zur Verfügung, die besonders im fertigungsnahen Bereich Anwendung finden. Hierbei wird ein pneumatischer Meßwertaufnehmer mit Hilfe einer Vorschubeinrichtung mit konstanter Geschwindigkeit über die Oberfläche geführt. Die Meßwerterfassung erfolgt pneumatisch, nach dem Prinzip der Differenzdruckmessung. Die pneumatisch erfaßte Oberflächenabweichung wird in elektrische Signale umgewandelt und einem Oberflächenmeßwertrechner zugeführt. Die Meßwerte werden durch die Oberflächenstruktur und Rauheitsgröße unterschiedlich beeinflußt. Vor Beginn der Messung ist es erforderlich, daß das pneumatische Meßgerät zunächst kalibriert wird (Sander,M: Oberflächenmeßtechnik für den Praktiker, Feinprüf GmbH, Göttingen 1989).
Ein weiteres Verfahren ist die kapazitive Rauheitsmessunq. Diese kann taktil oder, mit einem neu entwickelte Verfahren, berührungslos erfolgen. Bei der kapazitiven Rauheitsmessunq wird die Oberfläche dreidimensional ausgewertet. Die Messung benötigt nur sehr kurze Zeit und liefert integrierend über die gesamte Oberfläche ein oberflächenrepräsentatives elektrisches Signal, das mit den wesentlichen genormten Rauheitskenngrößen korreliert. Es erfolgt dabei keine punktweise Auflösung, so daß die Oberfläche nicht geometrisch dargestellt werden kann. Die Oberflächenstruktur des Prüflings aufgrund des Fertigungsverfahrens muß allerdings bekannt sein, da das Ausgangssignal von ihr beeinflußt wird (Patentschrift DD 297 509).
Bei den bekannten Verfahren zur Messung von Oberflächengeometrien sind zusammenfassend als nachteilig und nicht zufriedenstellend anzusehen: die relativ langen Meßzeiten und keine befriedigende dreidimensionale Auswertung der Oberflächengeometrie, relativ große und störanfällige Meßaufbauten, Handmeßgeräte mit nur sehr eingeschränkten funktionellen Parametern und nur sehr beschränkte Möglichkeiten der in-process-Messung.
The touch-cut method is known in surface measurement technology. As can be seen from the name, this method scans the three-dimensional surface in a two-dimensional profile section. A fine diamond stylus is generally used to measure the surface micro shape. The probe tip is installed in a touch probe, almost friction-free. If the touch probe is moved over the surface with the aid of a feed device, the surface deviations are detected by the probe tip. The vertical position changes of the probe tip caused by the profile fissure of the surface are converted into electrical signals by an electromechanical transducer in the probe system and sent to the measurement and evaluation computer (Sander, M: surface measurement technology for the practitioner, Feinprüf GmbH, Göttingen 1989). With the tactile cut method, it should be noted that the surface characteristic values are determined from a two-dimensional profile cut, even though the surface is three-dimensional. Furthermore, the lower limit of the deviations that can still be detected is largely determined by the geometry of the probe tip. Due to the sensitivity of the touch probe and the set-up and measuring time of approx. 15 seconds, this measuring method is not suitable for automatic testing on the processing machine or in the automatic testing machine. In addition to the dominant stylus devices, optically operating surface measuring devices are also used in special cases. These include the light section and interference microscope. The surface shape is represented in this process in the form of contour lines. The use of these devices requires a surface that is as flat and well reflective as possible. It is not possible to calculate the various surface parameters or to record a profile. In addition to the light section and interference methods, optoelectronic surface measurement methods have received great attention and have been put into practice in recent years. A distinction is made between the scattered light method and the focus detector method. In the scattered light method, a beam of rays emitted by an infrared light-emitting diode is focused on the surface by an optical system. The light spot diameter is approx. 2 mm. Depending on the roughness and structure of the surface, the light is scattered more or less. This scatter distribution arrives on a CCD line in which the different scatter angles are converted into electrical signals. A microprocessor-controlled evaluation unit calculates an optical scatter value s N (standard deviation of the scatter) from these signals. However, this optical roughness value s N has no relation to the standardized surface parameters and cannot be converted to these. In addition, the roughness parameter s N is influenced by the surface structure of the test specimen surface, which is mainly determined by the manufacturing process and the material. Diffusely scattering surfaces can no longer be measured. With the focus detector method, the light from a laser diode is focused by special micro-optics to a focus of around 1 µm and illuminates the measurement object. The radiation reflected by the test object falls on two pairs of diodes, the output signals of which influence mechanical readjustment of the objective lens in such a way that the focus tracks the surface profile during the measurement process. Analogous to the stylus of a stylus device, the tracking movement is recorded with an inductive distance meter and used to evaluate the measuring process (prospectus Micro-Focus, UBM Meßtechnik GmbH Ettlingen; prospect focodyn, Feinprüf GmbH Göttingen). The minimum reflection of the test objects must be 4%. With steep-sided surface profile features (pores, sintered materials), falsifications can occur in the records. Pneumatic, non-contact measuring methods have been available for some time, which are used particularly in the field of production. Here, a pneumatic transducer is guided over the surface at a constant speed with the aid of a feed device. The measured value is recorded pneumatically, based on the principle of differential pressure measurement. The pneumatically recorded surface deviation is converted into electrical signals and fed to a surface measurement computer. The measured values are influenced differently by the surface structure and roughness size. Before starting the measurement, it is necessary that the pneumatic measuring device is first calibrated (Sander, M: surface measurement technology for the practitioner, Feinprüf GmbH, Göttingen 1989).
Another method is the capacitive roughness measurement. This can be done tactilely or, using a newly developed method, without contact. In the case of capacitive roughness measurement, the surface is evaluated three-dimensionally. The measurement takes only a very short time and integrally delivers a surface-representative electrical signal over the entire surface, which correlates with the essential standardized roughness parameters. There is no point-by-point resolution, so that the surface cannot be represented geometrically. However, the surface structure of the test specimen due to the manufacturing process must be known, since it influences the output signal (patent specification DD 297 509).
In summary, the known methods for measuring surface geometries are disadvantageous and unsatisfactory: the relatively long measuring times and unsatisfactory three-dimensional evaluation of the surface geometry, relatively large and fault-prone measuring structures, hand-held measuring devices with only very limited functional parameters and only very limited possibilities of the internal process measurement.

Darstellung der ErfindungPresentation of the invention

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zu schaffen, mit welchem Oberflächengeometrien technischer Erzeugnisse in sehr kurzer Zeit dreidimensional in einem einzigen Meßschritt erfaßt werden können. Weiterhin soll eine Vorrichtung zur Durchführung dieses Verfahrens geschaffen werden, die sehr gut als in-process-Sensor oder Handgerät mit hochwertigen technischen Eigenschaften geeignet ist.The invention has for its object to provide a method with which surface geometries of technical products in a very short time Time can be recorded three-dimensionally in a single measuring step. Furthermore, a device for performing this method is to be created that are very good as in-process sensors or handheld devices high-quality technical properties.

Die Erfindung ist in den Patentansprüchen angegeben.The invention is specified in the claims.

Diese Aufgabe wird dabei dadurch gelöst, daß zunächst eine ebene, transparente Elektrode gegenüber der zu messenden Oberfläche in der Weise angeordnet wird, daß diese mit ihr einen Kondensator bildet und wobei weiterhin das durch Anlegen einer elektrischen Spannung entstehende, entsprechend der Oberflächengeometrie inhomogene elektrische Feld über eine zwischen der ebenen, transparenten Elektrode und der zu messenden Oberfläche befindliche optische Substanz, die in Abhängigkeit der elektrischen Feldstärke ihre lichtemittierenden oder lichttransparenten Eigenschaften ändert, in optische Informationen gewandelt wird, die daraufhin über eine Matrix aus fotoelektrischen Elementen erfaßt und in elektrische Signale umgewandelt werden, die mittels einer Auswerteelektronik und/oder einer speziellen Software schließlich in Längeninformationen umgewandelt werden. Wird zwischen der transparenten Elektrode und dem Prüfling mit der zu messenden rauhen Oberfläche eine Spannung angelegt, baut sich zwischen der Prüflingsoberfläche und der transparenten Elektrode ein elektrisches Feld auf, welches entsprechend durch die unterschiedlichen Abstände der lokalen Oberflächenpunkte und der ebenen, transparenten Elektrode Inhomogenitäten bzw. über die gesamte zu messende Oberfläche unterschiedliche Feldstärken aufweist.
Diese Inhomogenitäten, die somit eine Funktion der Oberflächenrauheit darstellen, beeinflussen die mit dem inhomogenen Feld durchsetzte optische Substanz in seinen lichtemittierenden bzw. lichttransparenten Eigenschaften. Durch die lokal unterschiedlichen Feldstärken werden diese Eigenschaften ebenfalls lokal unterschiedlich eingestellt, wodurch das austretende Licht lokal, entsprechend der Oberflächenunregelmäßigkeiten des Prüflings, unterschiedliche Eigenschaften (wie z.B. Intensität oder Farbe), aufweist. Dieses entstandene Grauwert- oder Farbfeld wird mit einer CCD-Matrix oder ähnlichen fotoelektrischen Elementen aufgenommen und über eine entsprechende hard- und softwaremäßige Auswertung mit Hilfe von Kalibrierdaten in Längen- bzw. Höhenmaße umgewandelt. Durch die Pixelmatrix des CCD-Elementes sind, unter Berücksichtigung der optischen Vergrößerung bzw. Verkleinerung des Bildes, die x- und y-Koordinaten gegeben. Die z-Koordinaten ergeben sich aus der optischen Information des Sensors, womit die genauen Koordinaten der Oberflächenpunkte bestimmt werden können.
This object is achieved in that first a flat, transparent electrode is arranged opposite the surface to be measured in such a way that it forms a capacitor with it and the electrical field which is inhomogeneous in accordance with the surface geometry and is produced by the application of an electrical voltage an optical substance located between the flat, transparent electrode and the surface to be measured, which changes its light-emitting or light-transparent properties as a function of the electrical field strength, is converted into optical information which is then detected via a matrix of photoelectric elements and converted into electrical signals which are finally converted into length information using evaluation electronics and / or special software. If a voltage is applied between the transparent electrode and the test specimen with the rough surface to be measured, an electrical field builds up between the test specimen surface and the transparent electrode, which in accordance with the different distances between the local surface points and the flat, transparent electrode inhomogeneities or has different field strengths over the entire surface to be measured.
These inhomogeneities, which thus represent a function of the surface roughness, influence the light-emitting or light-transparent properties of the optical substance interspersed with the inhomogeneous field. Due to the locally different field strengths, these properties are also set locally differently, as a result of which the emerging light locally has different properties (such as intensity or color), corresponding to the surface irregularities of the test specimen. This resulting gray value or color field is recorded with a CCD matrix or similar photoelectric elements and converted into length or height dimensions using a corresponding hardware and software evaluation using calibration data. The pixel and matrix of the CCD element give the x and y coordinates, taking into account the optical enlargement or reduction of the image. The z-coordinates result from the optical information of the sensor, with which the exact coordinates of the surface points can be determined.

Zur Durchführung des Verfahrens wird eine Vorrichtung vorgeschlagen, bei der in unmittelbarem Abstand von der zu messenden Oberfläche ein dielektrischer Spiegel, dahinter folgend die optische Substanz (vorzugsweise Flüssigkristall) mit beidseitig angeordneten Orientierungsschichten, die ihre lichttransparenten Eigenschaften im Zusammenwirken mit einem Polarisator in Abhängigkeit von der elektrischen Feldstärke ändert, dahinter folgend eine lichttransparente, ebene Elektrode, an der die konstante elektrische Spannung angelegt wird und zwischen der und der zu messenden Oberfläche sich das, die optische Substanz durchsetzende, elektrische Feld aufbaut, dahinter folgend eine planparallele Glasplatte als Träger mit dem Polarisator und dahinter folgend eine Beleuchtungseinrichtung, ein Strahlteiler, eine Optik und eine Matrix aus fotoelektrischen Elementen, die die optischen Informationen erfassen und in elektrische Signale wandeln, die über eine Auswerteelektronik und/oder über eine spezielle Software in Längeninformationen umgewandelt werden, angeordnet sind.A device is used to carry out the method proposed to be measured at a direct distance from the Surface a dielectric mirror, followed by the optical one Substance (preferably liquid crystal) arranged on both sides Orientation layers that reflect their light-transparent properties in the Interact with a polarizer depending on the electrical Field strength changes, followed by a light-transparent, level Electrode to which the constant electrical voltage is applied and between the surface and the surface to be measured, the optical substance penetrating electrical field, followed by one plane-parallel glass plate as a support with the polarizer and behind it following a lighting device, a beam splitter, optics and a matrix of photoelectric elements that hold the optical information capture and convert them into electrical signals via an evaluation electronics and / or via special software in length information are converted, are arranged.

Ferner wird zur Durchführung des Verfahrens eine Vorrichtung vorgeschlagen, bei der in unmittelbarem Abstand von der zu messenden Oberfläche die optische Substanz, die ihre lichtemittierenden Eigenschaften in Abhängigkeit von der elektrischen Feldstärke ändert, dahinter folgend eine lichttransparente, ebene Elektrode, an der die konstante elektrische Spannung angelegt wird und zwischen der und der zu messenden Oberfläche sich das, die optische Substanz durchsetzende, elektrische Feld aufbaut, dahinter folgend eine planparallele Glasplatte und dahinter folgend eine Matrix aus fotoelektrischen Elementen, die die optischen Informationen erfassen und in elektrische Signale wandeln, die über eine Auswerteelektronik und/oder über eine spezielle Software in Längeninformationen umgewandelt werden, angeordnet sind.Furthermore, a Device proposed in the immediate distance from the measuring surface the optical substance that its light emitting Changes properties depending on the electric field strength, followed by a light-transparent, flat electrode on which the constant electrical voltage is applied and between the and the surface that penetrates the optical substance, electrical field, followed by a plane-parallel glass plate followed by a matrix of photoelectric elements that capture optical information and convert it into electrical signals that via evaluation electronics and / or via special software in Length information to be converted are arranged.

Sind Oberflächengeometrien elektrisch nichtleitender Materialien zu messen, werden seitlich neben der ebenen, transparenten Elektrode, in einer parallelen Ebene zu dieser in Höhe der zur zu messenden Oberfläche hin liegenden Seite der optischen Substanz eine oder mehrere Elektroden angeordnet. Diese Elektroden besitzen gegenüber der ebenen, transparenten Elektrode entgegengesetztes Potential, so daß das sich zwischen diesen Elektroden aufbauende elektrische Feld den Prüfling aus dem elektrisch nichtleitenden Material in Form eines elektrischen Streufeldes durchsetzt. Um der Vorrichtung in ihrem schichtmäßigen Aufbau eine genügende mechanische Stabilität zu verleihen, ist die Anordnung einer Feldleitungsplatte an der zur zu messenden Oberfläche hin liegenden Seite der Vorrichtung vorteilhaft. Diese Feldleitungsplatte besteht aus einer Vielzahl von nebeneinander stehenden Mikrosäulen. Da diese Mikrosäulen voneinander elektrisch isoliert sind, treten im Funktionsfall in jeder Mikrosäule unterschiedlich starke Influenzerscheinungen auf, was einer elektrischen Feldleitung gleichkommt. Inhomogenitäten des elektrischen Feldes werden so verlustfrei, entsprechend des Mikrosäulenquerschnitts, übertragen. Die Feldleitungsplatte bietet somit eine ausreichende Festigkeit, beeinflußt aber das inhomogene Feld in diesem Bereich nur in einem vernachlässigbar geringen Maße. Aufgrund der notwendigen Isolation der metallischen Mikrosäulen gegenüber der Oberfläche des Prüflings ist die Feldleitungsplatte an dieser Seite mit einer verschleißfesten dielektrischen Schicht überzogen.Are surface geometries of electrically non-conductive materials too measure, are next to the flat, transparent electrode, in a plane parallel to this at the level of the surface to be measured lying side of the optical substance one or more electrodes arranged. These electrodes are transparent compared to the flat ones Electrode opposite potential, so that is between these Electrodes building up the test object from the electrical field non-conductive material in the form of an electrical stray field enforced. To the device in its layered structure a sufficient Giving mechanical stability is the arrangement of a field line plate on the side facing the surface to be measured the device advantageous. This field line plate consists of a Large number of micro-columns standing side by side. Because these micro pillars are electrically isolated from each other, occur in the functional case in everyone Micro column different levels of influenza on what one electrical field line. Inhomogeneities of the electrical Fields are thus lossless, according to the micro-column cross-section, transfer. The field line plate thus offers sufficient Strength, but only affects the inhomogeneous field in this area a negligibly small size. Because of the necessary isolation the metallic microcolumns opposite the surface of the test object the field line plate on this side with a wear-resistant dielectric layer coated.

Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, daß die Längeninformation der Oberfläche flächenhaft in eine optische Information umgewandelt und über eine CCD-Matrix alle Punkte nahezu gleichzeitig erfaßt werden. Damit ist kein Scannen der Oberfläche notwendig und die Messung erfolgt in Bruchteilen von Sekunden. Die sehr gute Miniaturisierbarkeit der Vorrichtung bietet die Möglichkeit, sie als Handgerät und sogar als in-process-Sensor auszubilden. Durch die geringen Meßzeiten gegenüber dem Tastschnittverfahren können sich Störeinflüsse auf die Messung nicht mehr bzw. nur in vernachlässigbarer Größe auswirken. Desweiteren bestehen die Vorteile in der nahezu gleichen Meßpunktanzahl in x- und y-Richtung durch die gleichmäßige Pixelanordnung der CCD-Matrix und in der dadurch realen Bestimmung der Oberflächenrauheit im dreidimensionalen Raum unter Berücksichtigung der Quer- und Längsrauheit. Es sind weiterhin keine qroßen Meßaufbauten notwendig und es ist ein flexibler, unkomplizierter und prozeßnaher Einsatz der Vorrichtung möglich.The advantages achieved with the invention are in particular that the length information of the surface areally into an optical Information converted and almost all points via a CCD matrix be recorded simultaneously. This means that there is no need to scan the surface and the measurement is done in fractions of a second. The very good miniaturizability of the device offers the possibility of it to be trained as a handheld device and even as an in-process sensor. Through the short measuring times compared to the stylus method can Interference on the measurement is no longer or only to a negligible extent Impact size. Furthermore, the advantages are almost the same Number of measuring points in the x and y direction due to the uniform pixel arrangement the CCD matrix and the real determination of the surface roughness in three-dimensional space taking into account the Cross and longitudinal roughness. There are still no large test setups necessary and it is a flexible, uncomplicated and process-related Use of the device possible.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Zwei Ausführungsbeispiele sind in den Zeichnungen dargestellt und im folgenden näher beschrieben.Two embodiments are shown in the drawings and in following described in more detail.

Es zeigen

Fig. 1:
Prinzipaufbau einer Vorrichtung zur Messung der Oberflächengeometrie mit Flüssigkristall als passive optische Substanz im Primärwandler
Fig. 2:
Prinzipaufbau des Primärwandlers mit Flüssigkristall als optische Substanz
Fig. 3:
Prinzipaufbau einer Vorrichtung zur Messung der Oberflächengeometrie mit aktiver, lumineszierender optischer Substanz und direkter Abbildung
Show it
Fig. 1:
Principle structure of a device for measuring the surface geometry with liquid crystal as passive optical substance in the primary converter
Fig. 2:
Principle structure of the primary converter with liquid crystal as optical substance
Fig. 3:
Principle structure of a device for measuring the surface geometry with active, luminescent optical substance and direct imaging

Bester Weg zur Ausführung der ErfindungBest way to carry out the invention

Bei Anwendung des erfindungsgemäßen Verfahrens wird über eine Beleuchtungseinheit 6 und einPn Strahlteiler 5 der Primärwandler 1 mit Licht konstanter Intensität beleuchtet (Fig.1). Das vom Primärwandler reflektierte und in Abhängigkeit der entsprechenden Oberflächengeometrie des Prüflings 2 in der Intensität modifizierte Licht, in Form eines Grauwertfeldes, wird über eine Optik 7 auf einer CCD-Matrix 3 abgebildet. Die optischen Informationen in Form der Grauwerte werden hier in elektrische Signale umgewandelt und über eine entsprechende Elektronik 4 einem Rechner 9 zugeführt. Mit Hilfe von gespeicherten Kalibrierdaten werden die Grauwertinformationen in Längen- bzw. Höheninformationen umgewandelt.When using the method according to the invention, a lighting unit 6 and a PN beam splitter 5 of the primary converter 1 with light constant intensity illuminated (Fig. 1). That reflected by the primary converter and depending on the corresponding surface geometry of the DUT 2 light modified in intensity, in the form of a gray value field, is imaged on an optics 7 on a CCD matrix 3. The optical information in the form of the gray values are here in electrical Signals converted and via appropriate electronics 4 fed to a computer 9. With the help of saved calibration data the gray value information becomes length or height information transformed.

Fig. 2 zeigt den Prinzipaufbau eines Primärwandlers mit Flüssigkristall als passive optische Substanz. Die Modifizierung des Lichtes erfolgt im Primärwandler in der Weise, daß das Licht konstanter Intensität in Form eines achsparallelen Strahlenbündels durch den Polarisator 1.6 polarisiert wird und den Glasträger 1.5, die transparente Elektrode 1.4, die Orientierungsschichten 1.3 und das Flüssigkristall 1.2 durchstrahlt und an dem dielektrischen Spiegel 1.7 reflektiert wird und die Schichten in umgekehrter Reihenfolge durchläuft, bis es am Polarisator 1.6 wieder aus dem Primärwandler austritt. Durch das Flüssigkristall 1.2 wird das polarisierte Licht in bekannter Weise der Flüssigkristallanzeigen gedreht, wodurch gewisse Komponenten des polarisierten Lichtes am Polarisator 1.6 gefiltert werden und somit gegebenenfalls eine Intensitätsverringerung beim Austritt des Lichtes aus dem Primärwandler zu verzeichnen ist. Die Orientierungsschichten 1.3 dienen der Vororientierung der Flüssigkristalle. Das durch Anlegen einer konstanten elektrischen Spannung UF erzeugte elektrische Feld zwischen der Oberfläche des Prüflings 2 und der transparenten, ebenen Elektrode 1.4 ist entsprechend der Oberflächengeometrie des Prüflings 2 inhomogen. Durch den unterschiedlichen Abstand der lokalen Oberflächenpunkte des Prüflings 2 und der gegenüberliegenden lokalen Oberflächenpunkte der transparenten, ebenen Elektrode sind die elektrischen Feldstärken in diesen Bereichen ebenfalls unterschiedlich. Das hat zur Folge, daß die Flüssigkristalle in diesen Bereichen unterschiedlich stark gedreht bzw. orientiert werden und somit das polarisierte Licht ebenso unterschiedlich stark gedreht wird, so daß das Licht hinter dem Polarisator 1.6 beim Austreten aus dem Primärwandler an den Stellen, entsprechend der Position der lokalen Oberflächenpunkte, unterschiedliche Intensitäten bzw. verschiedene Graustufen aufweist. Um eine Homogenisierung des inhomogenen elektrischen Feldes zu vermeiden, ist es notwendig, geringste Abstände zwischen der Oberfläche des Prüflings 2 und der transparenten, ebenen Elektrode 1.4 (optimal = Profiltiefe der Oberfläche des Prüflings 2) einzuhalten. Eine Realisierung dieser geringen Abstände unter Gewährleistung der notwendigen Stabilität des Primärwandlers, insbesondere der Ebenheit des dielektrischen Spiegels, wird erreicht durch Anordnen einer Feldleitungsplatte 1.1. Diese Feldleitungsplatte 1.1 besteht aus aus einer an der zur zu messenden Oberfläche hingewandten Seite angeordneten, dünnen, verschleißfesten, dielektrischen Schicht 1.1a und aus dahinter angeordneten nebeneinander stehenden, voneinander elektrisch isolierten Mikrosäulen, wodurch über Influenzerscheinungen an den Stirnseiten der Mikrosäulen die Inhomogenitäten des elektrischen Feldes entsprechend des Querschnitts der Mikrosäulen weitgehend verlustfrei über die Strecke der Dicke der Feldleitungsplatte geleitet werden und eine mechanische Stabilität der Vorrichtung erzielt wird.Fig. 2 shows the basic structure of a primary converter with liquid crystal as a passive optical substance. The modification of the light takes place in the primary converter in such a way that the light of constant intensity is polarized in the form of an axially parallel beam by the polarizer 1.6 and shines through the glass support 1.5, the transparent electrode 1.4, the orientation layers 1.3 and the liquid crystal 1.2 and on the dielectric mirror 1.7 is reflected and passes through the layers in reverse order until it emerges from the primary converter at the polarizer 1.6. The liquid crystal 1.2 rotates the polarized light in a known manner in the liquid crystal displays, as a result of which certain components of the polarized light are filtered at the polarizer 1.6 and thus a reduction in intensity when the light emerges from the primary converter is recorded. The orientation layers 1.3 serve to pre-orient the liquid crystals. The electrical field generated by applying a constant electrical voltage U F between the surface of the test specimen 2 and the transparent, flat electrode 1.4 is inhomogeneous in accordance with the surface geometry of the test specimen 2. Due to the different distance between the local surface points of the test specimen 2 and the opposite local surface points of the transparent, flat electrode, the electrical field strengths in these areas are also different. The result of this is that the liquid crystals are rotated or oriented to different extents in these areas and thus the polarized light is rotated to different extents, so that the light behind the polarizer 1.6 when it emerges from the primary converter at the points corresponding to the position of the local surface points, different intensities or different shades of gray. In order to avoid homogenization of the inhomogeneous electric field, it is necessary to keep the smallest distances between the surface of the test specimen 2 and the transparent, flat electrode 1.4 (optimal = profile depth of the surface of the test specimen 2). These short distances, while ensuring the necessary stability of the primary converter, in particular the flatness of the dielectric mirror, are achieved by arranging a field line plate 1.1. This field line plate 1.1 consists of a thin, wear-resistant, dielectric layer 1.1a arranged on the side facing the surface to be measured and of mutually adjacent, electrically insulated microcolumns arranged behind one another, whereby the inhomogeneities of the electrical field are caused by the appearance of influences on the end faces of the microcolumns According to the cross section of the microcolumns, they are conducted largely without loss over the distance of the thickness of the field line plate and mechanical stability of the device is achieved.

Fig. 3 zeigt den Prinzipaufbau einer Vorrichtung zur Messung der Oberflächengeometrie mit aktiver, lumineszierender optischer Substanz 8 und direkter Abbildung des Grauwertbildes auf einer CCD-Matrix 3. Zwischen der Feldleitungsplatte 1.1 und der transparenten, ebenen Elektrode 1.4 befindet sich eine lumineszierende Substanz 8 (z.B. kupferdotiertes ZnS in Dielektrikum eingebunden).
Analog dem ersten Ausführungsbeispiel wird die lumineszierende Substanz von einem der Oberflächengeometrie des Prüflings 2 entsprechenden inhomogenen Feld durchsetzt, wodurch die lumineszierende Substanz 8 zum aktiven Leuchten angeregt wird. Die Intensität des emittierten Lichtes ist abhängig von der elektrischen Feldstärke im Bereich des jeweils betrachteten Oberflächenpunktes, dessen Abstand von dem gegenüberliegenden lokalen Punkt auf der transparenten, ebenen Elektrode die Größe der elektrischen Feldstärke in diesem Bereich bestimmt, bei konstanter elektrischer Spannung UF. Das so entstehende Grauwertfeld wird analog des ersten Ausführungsbeispiels über eine CCD-Matrix 3, die direkt auf den Glasträger 1.5 angeordnet ist, eine Elektronik 4 und einem Rechner 9 ausgewertet und in Längen- bzw. Höhenmaße umgewandelt.
3 shows the basic structure of a device for measuring the surface geometry with active, luminescent optical substance 8 and direct imaging of the gray value image on a CCD matrix 3. Between the field line plate 1.1 and the transparent, flat electrode 1.4 there is a luminescent substance 8 (e.g. copper-doped ZnS integrated in the dielectric).
Analogously to the first exemplary embodiment, the luminescent substance is penetrated by an inhomogeneous field corresponding to the surface geometry of the test specimen 2, as a result of which the luminescent substance 8 is excited to actively light up. The intensity of the emitted light depends on the electric field strength in the area of the surface point in question, the distance from the opposite local point on the transparent, flat electrode determining the size of the electric field strength in this area, with a constant electric voltage U F. Analogously to the first exemplary embodiment, the resulting gray value field is evaluated via a CCD matrix 3, which is arranged directly on the glass carrier 1.5, an electronic system 4 and a computer 9 and converted into length or height dimensions.

Claims (4)

  1. A method for measuring three-dimensional geometries of technical surfaces, with a plane transparent electrode being arranged with respect to the surface to be measured in such a way that it forms a capacitor with said surface, characterized in that an electric field which arises by the application of a constant electrical voltage (UF) and is inhomogenous according to the surface geometry is converted into optical information through an optical substance (1.2; 8) disposed between the plane transparent electrode (1.4) and the surface to be measured (2), which substance changes its light-emitting or light-transparent properties depending on the electrical field strength, which information is thereupon detected in the known manner via a matrix of photoelectric elements (3) and is converted into electrical signals which are finally converted into length information by means of an electronic evaluation unit (4) and/or a special software.
  2. An apparatus for carrying out the method as claimed in claim 1, characterized in that in the ultimate vicinity of the surface (2) to be measured there are arranged the optical substance (8) which changes its light-emitting properties depending on the electrical field strength, following thereafter a light-transparent plane electrode (1.4) to which the constant electrical voltage (UF) is applied, with the electrical field building up between said electrode and the surface (2) to be measured and penetrating the optical substance (8), following thereafter a plane-parallel glass plate (1.5) and following thereafter in the known manner a matrix of photoelectric elements (3) which detect the optical information and convert them into electric signals which are converted into length information via an electronic evaluation unit (4) and/or via special software.
  3. An apparatus as claimed in claim 2, characterized in that one or several electrodes are arranged laterally adjacent to the plane transparent electrode (1.4) in a parallel plane thereto, at the level of the side of the optical substance (1.2; 8) being situated towards the surface to be measured (2), which electrodes are provided with a potential opposite of the plane transparent electrode (1.4) and whose electrical field penetrates the electrically non-conductive test piece with the surface to be measured (2) in form of a leakage field.
  4. An apparatus as claimed in claim 2, characterized in that a field conduction plate (1.1) is arranged at the side of the apparatus being disposed towards the surface (2) to be measured, which plate consists of a thin wear-proof dielectric layer (1.1a) being arranged at the side facing the surface to be measured and of mutually electrically insulated micropillars which are arranged behind the layer and stand next to one another, by means of which the inhomogeneities of the electric field are conducted substantially free of losses over the path of the thickness of the field conduction plate (1.1) via electrostatic phenomena at the face sides of the micropillars and a mechanical stability of the apparatus is achieved.
EP94902617A 1992-12-28 1993-12-22 Process and device for measuring geometries of technical surfaces Expired - Lifetime EP0676033B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4244332 1992-12-28
DE4244332A DE4244332C1 (en) 1992-12-28 1992-12-28 Method and device for measuring geometries of technical surfaces
PCT/DE1993/001233 WO1994015172A1 (en) 1992-12-28 1993-12-22 Process and device for measuring geometries of technical surfaces

Publications (2)

Publication Number Publication Date
EP0676033A1 EP0676033A1 (en) 1995-10-11
EP0676033B1 true EP0676033B1 (en) 1998-05-06

Family

ID=6476709

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94902617A Expired - Lifetime EP0676033B1 (en) 1992-12-28 1993-12-22 Process and device for measuring geometries of technical surfaces

Country Status (4)

Country Link
EP (1) EP0676033B1 (en)
AT (1) ATE165910T1 (en)
DE (1) DE4244332C1 (en)
WO (1) WO1994015172A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104880161A (en) * 2015-06-18 2015-09-02 哈尔滨工业大学 Method for measuring solid material surface roughness by using elliptical polarization parameter

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9725571D0 (en) * 1997-12-04 1998-02-04 Philips Electronics Nv Electronic apparatus comprising fingerprint sensing devices
EP2703772B1 (en) * 2012-08-28 2015-05-20 Texmag GmbH Vertriebsgesellschaft Sensor for detecting a moving strip

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55163463A (en) * 1979-06-08 1980-12-19 Furukawa Electric Co Ltd:The Local electric field strength meter
DE3922204C1 (en) * 1989-07-06 1990-05-10 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung Ev, 8000 Muenchen, De Non-contact voltage measurement method - has optically transparent plate in contact with liquid crystal coated IC with optical alignment and constant potential measurement
KR910015874A (en) * 1990-02-07 1991-09-30 미따 가쯔시게 LCD Display
US4983911A (en) * 1990-02-15 1991-01-08 Photon Dynamics, Inc. Voltage imaging system using electro-optics
DD297509A5 (en) * 1990-03-13 1992-01-09 Kloeden,Rolf,De CAPACITIVE SENSOR FOR CONTACTLESS ROUGHNESS MEASUREMENT
WO1992008947A1 (en) * 1990-11-16 1992-05-29 Moonstone Designs Limited Device for determining the presence and/or characteristics of an object or a substance
US5170127A (en) * 1991-02-19 1992-12-08 Photon Dynamics, Inc. Capacitance imaging system using electro-optics

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104880161A (en) * 2015-06-18 2015-09-02 哈尔滨工业大学 Method for measuring solid material surface roughness by using elliptical polarization parameter
CN104880161B (en) * 2015-06-18 2017-07-28 哈尔滨工业大学 A kind of method that utilization ellipsometric parameter measures solid material surface roughness

Also Published As

Publication number Publication date
ATE165910T1 (en) 1998-05-15
EP0676033A1 (en) 1995-10-11
WO1994015172A1 (en) 1994-07-07
DE4244332C1 (en) 1994-05-11

Similar Documents

Publication Publication Date Title
EP1606577B1 (en) Method for contactlessly and dynamically detecting the profile of a solid body
DE4324983C2 (en) Acoustic microscope
EP3004827B1 (en) Measuring device and method for ascertaining a pressure map
DE102008060621B3 (en) Optical arrangement for the contactless measurement or testing of a body surface
DE3937559C2 (en)
CH654914A5 (en) OPTOELECTRONIC MEASURING METHOD AND DEVICE FOR DETERMINING THE SURFACE QUALITY REFLECTIVELY REFLECTING OR TRANSPARENT SURFACES.
AT514500A1 (en) Optical measuring device and optical measuring method
DE3407850A1 (en) MICROWAVE MEASURING METHOD AND MEASURING APPARATUS FOR CONTACTLESS AND DESTRUCTION-FREE EXAMINATION OF PHOTO-SENSITIVE MATERIALS
EP0932816A1 (en) Method and device for measuring the course of reflective surfaces
DE102015113557A1 (en) Sample device with reference mark
DE4304678C1 (en) Method for continuously scanning and checking track applications on a moving surface and device for carrying out the method
EP0185167A1 (en) Opto-electronic measuring process, apparatus therefor and its use
EP1931941A1 (en) Interferometric determination of a layer thickness
DE3709598A1 (en) Device for the contactless three-dimensional measurement of deformations when investigating the strength of specimens (test species)
EP0676033B1 (en) Process and device for measuring geometries of technical surfaces
DE10244819B4 (en) Apparatus and method for detecting a fluorescent substance on a technical surface
EP3028031B1 (en) Method for detecting foreign bodies or other scattering centres in optically transparent containers
DE3509163C2 (en) Method and device for measuring the elongation of materials under tension
WO1999063299A1 (en) Feeling method and a device for determining the surface characteristics of a test piece according to the feeling method
DE102007008768A1 (en) Workpiece surface's periodic microstructures detection method, involves utilizing transformation illustrating accurately line-shaped periodic microstructure on points of transformation area, on local image signal set
CH711792A2 (en) Method for measuring a topographic profile and / or a topographic image of a surface of a sample.
DE10319711B4 (en) Method for high-precision dimensional measurement of measurement objects
EP1602919B1 (en) Measuring device for the survey of the transmittance of a coating
DE4209491A1 (en) Contactless measurement of static and dynamic deformation of micro-mechanical structures eg bridge or membrane - projecting laser line pattern perpendicular and at angles to surface and evaluating surface lines in real=time
DE4134689C1 (en) Optically measuring contour of toroidal opaque object - registering shadows cast by light source using line or matrix camera taking into account distance from object and imaging scale

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19950717

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH FR GB IT LI NL

ITCL It: translation for ep claims filed

Representative=s name: GIORGIOKARAGHIOSOFF

TCNL Nl: translation of patent claims filed
GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19961111

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH FR GB IT LI NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980506

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19980506

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980506

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980506

REF Corresponds to:

Ref document number: 165910

Country of ref document: AT

Date of ref document: 19980515

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
EN Fr: translation not filed
GBC Gb: translation of claims filed (gb section 78(7)/1977)
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19980506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL