EP0673350B1 - Metal accumulation - Google Patents
Metal accumulation Download PDFInfo
- Publication number
- EP0673350B1 EP0673350B1 EP19930924753 EP93924753A EP0673350B1 EP 0673350 B1 EP0673350 B1 EP 0673350B1 EP 19930924753 EP19930924753 EP 19930924753 EP 93924753 A EP93924753 A EP 93924753A EP 0673350 B1 EP0673350 B1 EP 0673350B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- phosphate
- polyphosphate
- metal
- microorganism
- medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 44
- 239000002184 metal Substances 0.000 title claims abstract description 44
- 238000009825 accumulation Methods 0.000 title description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims abstract description 56
- 244000005700 microbiome Species 0.000 claims abstract description 23
- 229920000388 Polyphosphate Polymers 0.000 claims abstract description 20
- 239000001205 polyphosphate Substances 0.000 claims abstract description 20
- 235000011176 polyphosphates Nutrition 0.000 claims abstract description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229910052793 cadmium Inorganic materials 0.000 claims abstract description 9
- 150000002739 metals Chemical class 0.000 claims abstract description 9
- 229910052770 Uranium Inorganic materials 0.000 claims abstract description 5
- 229910052695 Americium Inorganic materials 0.000 claims abstract description 3
- 229910052781 Neptunium Inorganic materials 0.000 claims abstract description 3
- 229910052802 copper Inorganic materials 0.000 claims abstract description 3
- 229910052712 strontium Inorganic materials 0.000 claims abstract description 3
- 229910052746 lanthanum Inorganic materials 0.000 claims description 31
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 claims description 31
- 238000000034 method Methods 0.000 claims description 22
- 230000008569 process Effects 0.000 claims description 16
- ZKHQWZAMYRWXGA-KQYNXXCUSA-J ATP(4-) Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O ZKHQWZAMYRWXGA-KQYNXXCUSA-J 0.000 claims description 10
- ZKHQWZAMYRWXGA-UHFFFAOYSA-N Adenosine triphosphate Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)C(O)C1O ZKHQWZAMYRWXGA-UHFFFAOYSA-N 0.000 claims description 10
- 241000894006 Bacteria Species 0.000 claims description 9
- 239000010802 sludge Substances 0.000 claims description 9
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 claims description 8
- 239000011133 lead Substances 0.000 claims description 7
- 241000589291 Acinetobacter Species 0.000 claims description 6
- 229910021645 metal ion Inorganic materials 0.000 claims description 6
- 229910001463 metal phosphate Inorganic materials 0.000 claims description 6
- 230000002407 ATP formation Effects 0.000 claims description 5
- 241000588625 Acinetobacter sp. Species 0.000 claims description 5
- 239000001963 growth medium Substances 0.000 claims description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 4
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 claims description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052778 Plutonium Inorganic materials 0.000 claims description 2
- LXQXZNRPTYVCNG-UHFFFAOYSA-N americium atom Chemical compound [Am] LXQXZNRPTYVCNG-UHFFFAOYSA-N 0.000 claims description 2
- 229910052791 calcium Inorganic materials 0.000 claims description 2
- 239000011575 calcium Substances 0.000 claims description 2
- 229910017052 cobalt Inorganic materials 0.000 claims description 2
- 239000010941 cobalt Substances 0.000 claims description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 2
- 239000010949 copper Substances 0.000 claims description 2
- 229910052747 lanthanoid Inorganic materials 0.000 claims description 2
- 150000002602 lanthanoids Chemical class 0.000 claims description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims description 2
- LFNLGNPSGWYGGD-UHFFFAOYSA-N neptunium atom Chemical compound [Np] LFNLGNPSGWYGGD-UHFFFAOYSA-N 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- OYEHPCDNVJXUIW-UHFFFAOYSA-N plutonium atom Chemical compound [Pu] OYEHPCDNVJXUIW-UHFFFAOYSA-N 0.000 claims description 2
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims description 2
- 229910052727 yttrium Inorganic materials 0.000 claims description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims description 2
- 229910019142 PO4 Inorganic materials 0.000 abstract description 61
- 235000021317 phosphate Nutrition 0.000 abstract description 51
- 239000010452 phosphate Substances 0.000 abstract description 50
- 238000006243 chemical reaction Methods 0.000 abstract description 3
- 229910052745 lead Inorganic materials 0.000 abstract 1
- 229910052748 manganese Inorganic materials 0.000 abstract 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 abstract 1
- 239000002609 medium Substances 0.000 description 47
- 210000004027 cell Anatomy 0.000 description 34
- 238000002474 experimental method Methods 0.000 description 22
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 16
- DHCLVCXQIBBOPH-UHFFFAOYSA-N Glycerol 2-phosphate Chemical compound OCC(CO)OP(O)(O)=O DHCLVCXQIBBOPH-UHFFFAOYSA-N 0.000 description 14
- 229910001385 heavy metal Inorganic materials 0.000 description 13
- 239000011324 bead Substances 0.000 description 12
- 239000000243 solution Substances 0.000 description 11
- 229910052698 phosphorus Inorganic materials 0.000 description 9
- 239000011574 phosphorus Substances 0.000 description 9
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 8
- 239000006285 cell suspension Substances 0.000 description 8
- 238000011534 incubation Methods 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 7
- 230000012010 growth Effects 0.000 description 7
- FYDKNKUEBJQCCN-UHFFFAOYSA-N lanthanum(3+);trinitrate Chemical compound [La+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O FYDKNKUEBJQCCN-UHFFFAOYSA-N 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 239000006228 supernatant Substances 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- 239000000725 suspension Substances 0.000 description 6
- 238000011282 treatment Methods 0.000 description 6
- 125000005289 uranyl group Chemical group 0.000 description 6
- 241000588624 Acinetobacter calcoaceticus Species 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 238000005119 centrifugation Methods 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 235000015097 nutrients Nutrition 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000008188 pellet Substances 0.000 description 5
- 239000002028 Biomass Substances 0.000 description 4
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 4
- -1 phosphorus ions Chemical class 0.000 description 4
- 238000003969 polarography Methods 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 239000001632 sodium acetate Substances 0.000 description 4
- 235000017281 sodium acetate Nutrition 0.000 description 4
- DVLFYONBTKHTER-UHFFFAOYSA-N 3-(N-morpholino)propanesulfonic acid Chemical compound OS(=O)(=O)CCCN1CCOCC1 DVLFYONBTKHTER-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 229910002651 NO3 Inorganic materials 0.000 description 3
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 239000006916 nutrient agar Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- 239000002351 wastewater Substances 0.000 description 3
- 229920001817 Agar Polymers 0.000 description 2
- 229920000936 Agarose Polymers 0.000 description 2
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical compound C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 description 2
- 239000007993 MOPS buffer Substances 0.000 description 2
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 2
- 102000004316 Oxidoreductases Human genes 0.000 description 2
- 108090000854 Oxidoreductases Proteins 0.000 description 2
- 229920000331 Polyhydroxybutyrate Polymers 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- 239000008186 active pharmaceutical agent Substances 0.000 description 2
- 239000008272 agar Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000001351 cycling effect Effects 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- WYICGPHECJFCBA-UHFFFAOYSA-N dioxouranium(2+) Chemical compound O=[U+2]=O WYICGPHECJFCBA-UHFFFAOYSA-N 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 210000001822 immobilized cell Anatomy 0.000 description 2
- 229910052816 inorganic phosphate Inorganic materials 0.000 description 2
- LQFNMFDUAPEJRY-UHFFFAOYSA-K lanthanum(3+);phosphate Chemical compound [La+3].[O-]P([O-])([O-])=O LQFNMFDUAPEJRY-UHFFFAOYSA-K 0.000 description 2
- 229940046892 lead acetate Drugs 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 229940085991 phosphate ion Drugs 0.000 description 2
- 239000005015 poly(hydroxybutyrate) Substances 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 2
- 229910002007 uranyl nitrate Inorganic materials 0.000 description 2
- UFBJCMHMOXMLKC-UHFFFAOYSA-N 2,4-dinitrophenol Chemical compound OC1=CC=C([N+]([O-])=O)C=C1[N+]([O-])=O UFBJCMHMOXMLKC-UHFFFAOYSA-N 0.000 description 1
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 1
- 239000005695 Ammonium acetate Substances 0.000 description 1
- 102000016938 Catalase Human genes 0.000 description 1
- 108010053835 Catalase Proteins 0.000 description 1
- 241000873310 Citrobacter sp. Species 0.000 description 1
- 229910016523 CuKa Inorganic materials 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 241000588747 Klebsiella pneumoniae Species 0.000 description 1
- 229920005830 Polyurethane Foam Polymers 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 229940043376 ammonium acetate Drugs 0.000 description 1
- 235000019257 ammonium acetate Nutrition 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 231100000693 bioaccumulation Toxicity 0.000 description 1
- LHQLJMJLROMYRN-UHFFFAOYSA-L cadmium acetate Chemical compound [Cd+2].CC([O-])=O.CC([O-])=O LHQLJMJLROMYRN-UHFFFAOYSA-L 0.000 description 1
- LLSDKQJKOVVTOJ-UHFFFAOYSA-L calcium chloride dihydrate Chemical compound O.O.[Cl-].[Cl-].[Ca+2] LLSDKQJKOVVTOJ-UHFFFAOYSA-L 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- ZPWVASYFFYYZEW-UHFFFAOYSA-L dipotassium hydrogen phosphate Chemical compound [K+].[K+].OP([O-])([O-])=O ZPWVASYFFYYZEW-UHFFFAOYSA-L 0.000 description 1
- 229910000396 dipotassium phosphate Inorganic materials 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000007863 gel particle Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000013029 homogenous suspension Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000006799 invasive growth in response to glucose limitation Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- CZMAIROVPAYCMU-UHFFFAOYSA-N lanthanum(3+) Chemical compound [La+3] CZMAIROVPAYCMU-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- DHRRIBDTHFBPNG-UHFFFAOYSA-L magnesium dichloride hexahydrate Chemical compound O.O.O.O.O.O.[Mg+2].[Cl-].[Cl-] DHRRIBDTHFBPNG-UHFFFAOYSA-L 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- MEFBJEMVZONFCJ-UHFFFAOYSA-N molybdate Chemical compound [O-][Mo]([O-])(=O)=O MEFBJEMVZONFCJ-UHFFFAOYSA-N 0.000 description 1
- 230000004899 motility Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000035479 physiological effects, processes and functions Effects 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000011496 polyurethane foam Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000005381 potential energy Methods 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000013207 serial dilution Methods 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- HRXKRNGNAMMEHJ-UHFFFAOYSA-K trisodium citrate Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O HRXKRNGNAMMEHJ-UHFFFAOYSA-K 0.000 description 1
- 235000019263 trisodium citrate Nutrition 0.000 description 1
- 229940038773 trisodium citrate Drugs 0.000 description 1
- 239000004061 uncoupling agent Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000004832 voltammetry Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/12—Activated sludge processes
- C02F3/1205—Particular type of activated sludge processes
- C02F3/1215—Combinations of activated sludge treatment with precipitation, flocculation, coagulation and separation of phosphates
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/52—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
- C02F1/5263—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using natural chemical compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/34—Biological treatment of water, waste water, or sewage characterised by the microorganisms used
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
- C12N1/205—Bacterial isolates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P3/00—Preparation of elements or inorganic compounds except carbon dioxide
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12R—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
- C12R2001/00—Microorganisms ; Processes using microorganisms
- C12R2001/01—Bacteria or Actinomycetales ; using bacteria or Actinomycetales
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S210/00—Liquid purification or separation
- Y10S210/902—Materials removed
- Y10S210/906—Phosphorus containing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S210/00—Liquid purification or separation
- Y10S210/902—Materials removed
- Y10S210/911—Cumulative poison
- Y10S210/912—Heavy metal
Definitions
- This invention relates to metal accumulation and is more particularly concerned with the removal of metals from water containing such metals, for example, for one or more of the following purposes:-
- the G2P is enzymically cleaved to glycerol (a potential energy source for the cells) and inorganic phosphate, an efflux of which intercepts the incoming metal and results in the precipitation of crystalline heavy metal phosphate. Whilst such process is efficient in removal of heavy metals from solution, it has the disadvantage that it uses expensive glycerol-2-phosphate.
- the present invention resides in the use of one or more polyphosphate-accumulating microorganisms to accumulate polyphosphate which is then enzymatically cleaved in the presence of water containing one or more metals to produce phosphate ions which react with the metal(s) in the water in order to precipitate metal phosphate.
- metal phosphate may be crystalline or it may be mixed with other precipitated species such as the hydroxide.
- Metals which are susceptible to the techniques of the present invention are those having a phosphate of low water solubility, for example, cadmium, lead, copper, manganese, cobalt, nickel, calcium, yttrium, strontium, uranium, lanthanum, lanthanides, plutonium, americium and neptunium.
- a phosphate of low water solubility for example, cadmium, lead, copper, manganese, cobalt, nickel, calcium, yttrium, strontium, uranium, lanthanum, lanthanides, plutonium, americium and neptunium.
- the present invention resides in a process for removing one or more metal ions from water, comprising the steps of cultivating a polyphosphate-accumulating microorganism in a culture medium under conditions where the microorganism can synthesise and utilise adenosine triphosphate (ATP); modifying ATP synthesis/utilisation whereby to cause the microorganism to utilize polyphosphate as an alternative energy source resulting in the production of phosphate ions; and reacting said phosphate ions with the metal ions so as to precipitate metal phosphate.
- ATP adenosine triphosphate
- the microorganism is preferably a polyphosphate-accumulating bacterium, and may, for example, be polyphosphate-accumulating Acinetobacter bacterium. It is known per se (see Y. Comeau et al, Wat. Res. vol.20, No.12, pp 1511-1521) (a) that certain microorganisms are capable of accumulating polyphosphate reserves under aerobic conditions and of utilising such polyphosphate under anaerobic conditions to produce phosphate; and (b) that this can be used to induce biological phosphorus removal in an activated sludge treatment by providing an anaerobic treatment zone upstream of the standard aerobic process.
- the present invention relies on the use of polyphosphate as the main source of phosphate for metal accumulation via enzymically mediated metal bioaccumulation or biomineralisation.
- a particular example of a known polyphosphate-accumulating Acinetobacter bacterium is Acinetobacter calcoaceticus ATCC 23055 (NCIMB 10694).
- Preferred bacteria are Acinetobacter sp. W6 and Acinetobacter sp. W9 which we have isolated from activated sludge as described hereinafter and have deposited under the provisions of the Budapest Treaty with The National Collection of Industrial and Marine Bacteria Limited (NCIMB) of 23 St. Machar Drive, Aberdeen AB2 1RY, Scotland, under the respective Accession Numbers NCIMB 40594 and NCIMB 40595 on 5 November 1993.
- NCIMB National Collection of Industrial and Marine Bacteria Limited
- the present invention does not require the polyphosphate-accumulating microorganism to be isolated from the environment in which it occurs.
- activated sludge containing polyphosphate-accumulating microorganisms can be employed per se in the present invention.
- a suitable type of activated sludge is one which is used in a plant for removing phosphorus ions from effluent liquor (eg by the so-called "Phostrip” or "Phoredox” process) before discharge into the environment.
- the techniques of the present invention rely on a supply of phosphorus. Such supply may be provided by at least partly by deliberate addition of an assimilable source of phosphorus.
- the present invention is applicable to the removal of metal(s) from water which already contains an assimilable source of phosphorus as an impurity but which is not in a form in which it can react directly with the metal(s) impurity also present in the water or in which the metal impurity is not in a form in which it can react with the phosphorus.
- the operating conditions in the aerobic and anaerobic phases of the process are the normal conditions which are used for aerobic and anaerobic treatments involving the use of microorganisms. However, it is preferred to use low nitrate concentrations in the anaerobic phase since reduction of nitrate to nitrite can substitute for oxygen and may then inhibit the required conversion of polyphosphate to phosphate.
- the temperature will be in the range of 0 to 36°C, most preferably from 15 to 30°C.
- the medium used in the aerobic cultivation of the microorganism is a suitable growth medium containing assimilable carbon, nitrogen, phosphorus and other necessary trace elements for optimum growth. Such medium may be a waste from another process. There is no need to use expensive sources of carbon and phosphorus, such as G2P.
- Representative strains of polyphosphate-accumulating Acinetobacter sp. are grown aerobically and immobilised on a solid support (eg open-pore polyurethane foam, glass beads, sand or gravel-type materials) in a bioreactor using an aqueous nutrient medium which is circulated through the bioreactor. Gaseous oxygen is introduced via a compressed air feed and bubble breaking device.
- the nutrient medium contains waste fermentation products and waste phosphate from phosphate-rich waste water as assimilable carbon, nitrogen and phosphorus sources.
- the aerobic treatment is effected at a temperature of about 20°C and a pH of 7.0 for 24 - 48 hours so as to accumulate polyphosphate.
- the conditions in the bioreactor are switched to anaerobic conditions where no nutrients or assimilable oxygen are supplied.
- the waste water containing the heavy metals to be removed is passed through the bioreactor so as to contact the immobilised bacteria containing the accumulated polyphosphate.
- the bacteria Under the anaerobic conditions, the bacteria are deficient in their supply of ATP and thus start to utilise the accumulated polyphosphate as an energy source.
- the polyphosphate is enzymically cleaved to produce phosphate which reacts with the heavy metals to precipitate heavy metal phosphate, thus removing heavy metals or at least reducing the heavy-metal concentration in the water.
- the bioreactor can then be switched back to operate aerobically so that the process can be performed cyclically with periodic shut-down to replace the micro-organism when it has become non-viable.
- the micro-organism may also produce the carbon storage polymer, polyhydroxybutyrate (PHB) with a suitable carbon supply, which can be utilised as a source of stored carbon for growth and to generate ATP to fuel further accumulation of polyphosphate during the succeeding aerobic cycle.
- PHB polyhydroxybutyrate
- MOPS was replaced in some experiments with Tris/HCI buffer at the same pH and concentration. In experiments with uranyl ions, sodium acetate was replaced with 10mM ammonium acetate.
- Activated sludge mixed liquor was obtained from Severn Trent sewage treatment works (located at Wimborne, England). An homogenous suspension of each liquor was made and serial dilutions (in sterile saline, 0.85% w/v) were plated onto nutrient agar (Difco Laboratories, Detroit, USA). After 2 weeks incubation at room temperature (20°C), colonies with distinctly different morphologies were chosen, removed from the 10 -4 to 10 -6 dilutions and were streaked to purity on nutrient agar.
- the isolated microorganism strains (W6 and W9) were tentatively identified using API 20E and 20NE identification strips (API System, bioMérieux SA, France) as being of the genus Acinetobacter.
- the strains W6 and W9 have been deposited under the provisions of the Budapest Treaty with The National Collection of Industrial and Marine Bacteria Limited (NCIMB) under the respective Accession Numbers NCIMB 40594 and NCIMB 40595 on 5 November 1993.
- Cadmium and lead were detected by ASV (anodic stripping voltametry) with a hanging drop mercury electrode using a Metrohm 693 VA polarographic and voltametric analyser.
- Lanthanum and uranyl were detected by colorimetric determination with arsenazo III in acidic solution (M.R. Tolley, D.Phil. Thesis Univ of Oxford, 1993). Phosphate was determined colorimetrically by its reaction with acidified molybdate (Pierpont 1957 Biochem J. 65 :67-76).
- Each 8-hour cycle was as follows: Time (minutes) 0-150 Incubation in anaerobic phase (medium 4; nitrogen gas bubbled through medium at slow rate to keep headspace anoxic) 150-161 Draw phase - medium 4 drawn off; nitrogen on 161-166 Fill phase - medium 3 (aerobic medium) filled; nitrogen off/air bubbled through medium at high rate 166-464 Incubation in aerobic phase; air on 464-476 Draw phase - medium 3 drawn off; air on 476-480 Fill phase - Medium 4 filled; air off/nitrogen on
- the three anaerobic periods daily were at the following times: 06.30-09.00; 14.30-17.00 and 22.30-01.00. Samples were taken for analysis at the end of the first and second anaerobic periods daily and, when appropriate, throughout the first aerobic and second anaerobic phases (09.00-17.00). The third anaerobic phase was not sampled.
- a variable-speed pump with a manual reverse function and manually operated valves allowed changing of medium between the aerobic and anaerobic phases aseptically.
- Column reactors were subjected to two anaerobic phases each of 2.5 hours daily (at roughly the same times each day - 9.30-12.00 and 16.00-18.30).
- Glass beads (2mm diameter) were used as a filter in the base of each column.
- the total volume in each phase was 250ml.
- one medium was drawn off and the other medium filled in less than 5 minutes per column.
- the settled effluent was compared with the influent medium.
- a sample of the medium was taken by first drawing off 10-15ml medium through a sampling tube to ensure that stagnant liquid in the sampling tube was washed out, then a further 5ml sample was taken and subjected to centrifugation and analysis of the supernatant; this was compared with the phosphate in the effluent supernatant.
- inorganic phosphate as K 2 HPO 4
- Fig 1a shows the rapid loss of lanthanum from solution due to the precipitation of lanthanum phosphate. However the precipitate is fine and remains in suspension without centrifugation.
- Fig 1b shows that the uranyl ion (UO 2 2+ ) does not readily produce a precipitate which can be removed from suspension by centrifugation.
- Raw activated sludge or so-called “mixed liquor” was obtained from a nutrient plant operating a "Phostrip” Process.
- the total suspended solids of the mixed liquor was 6.43g/l.
- 350ml of the mixed liquor was used to inoculate each of the two automated reactors. This was topped up with 50ml of medium 4 (without added metal), and the initial anaerobic phase incubation begun.
- a culture of Acinetobacter calcoaceticus NCIMB 10694 was harvested after 24h growth at an optical cell density (OD 600 ) of 0.370.
- the wet weight of the cell pellet obtained was 2.243g and this was resuspended in a total volume of 6ml. 1 ml of the suspension was added to tubes containing 10ml of each of the following solutions:
- Fig 3a shows that phosphate is released under anaerobic conditions and not under aerobic conditions: less phosphate is apparently released in tubes containing lanthanum.
- Fig 3b also shows loss of lanthanum in tubes 2 and 3 concomitant with phosphate release. Significant lanthanum removal was not observed in Tube 1 under aerobic conditions indicating that there is little passive biosorption of the metal.
- a culture of strain W9 was harvested after 24h growth at a cell density (OD 600 ) of 1.000.
- the wet weight of the cell pellet obtained was 5.329g and this was resuspended in a total volume of 6ml. 1.5ml of the suspension was added to tubes containing 20ml of each of the following solutions:
- Fig 4 shows phosphate release and lanthanum removal under anaerobic conditions with concomitant loss of lanthanum and an apparent reduction of phosphate release in the presence of lanthanum followed by a sudden loss of the released phosphate after 120 minutes.
- the reduction in the lanthanum concentration (0.4 - 0.5mM) observed after 210 minutes is consistent with the release of 0.4 - 0.5mM phosphate in the control tubes.
- a culture of strain W6 was harvested after 24h growth at a cell density (OD 600 ) of 0.790.
- the wet weight of the cell pellet obtained was 3.80g and this was resuspended in a total volume of 6ml. 1.5ml of the suspension was added to tubes containing 20ml of each of the following solutions:
- Fig 5 shows phosphate release and lanthanum removal under anaerobic conditions with the loss of lanthanum and a sudden loss of the released phosphate started after 60 minutes. It will be noted that the complete removal of the 0.7 - 0.8 mM lanthanum occurred when 0.7 - 0.8 mM phosphate was detected in the control tubes (in the absence of metal).
- a culture of strain W9 was grown and harvested as described previously and immobilised in agarose beads of mean diameter 1 mm.
- the beads were placed in pre-sterilised first and second columns with an approximate biomass loading of 5g wet weight cells (100g gelled material) per column, although due to diffusional limitations it is expected that not all the cells in a bead would contribute to the observed physiology of the immobilised culture; for example the diffusional limits for oxygen at a surface are usually taken to be 50 ⁇ m.
- the columns were subjected to anaerobic/aerobic cycling in the absence of metal for 8 days before metal was introduced: the first column received approximately 0.2mM lead acetate, and the second column received approximately 0.2mM cadmium acetate per anaerobic period over 7 consecutive days. Samples were analysed as described above.
- Table 3 below and Fig 6 show the phosphate released and the lead determined in the influent and effluent of the first column.
- Table 4 below and Fig 7 show the phosphate released and the cadmium determined in the influent and effluent of the second column.
- Table 3 Phosphate release and lead removal in the first column Day Time mM PO 4 released Polarography Influent mg Pb 2+ /l Effluent mg Pb 2+ /l mM Pb 2+ Removed 1 to 5 two anaerobic periods ⁇ day but no samples taken 6 am 0.066 0 pm 0.056 0 7 am 0.086 0 pm 0.119 0 8 am 0 0 pm 0.106 0 9 am nt 31.34 10.77 0.10 pm nt 31.34 13.63 0.09 10 am nt 49.89 16.83 0.16 pm nt 49.89 7.5 0.20 11 am nt 47.58 0.063 0.23 pm nt 47.58 0.06 0.23 12 am nt 54.93 7.
- a culture of strain W6 was grown and harvested as described above, immobilised in agar, and the gel shredded to give particles approximately 1 mm x 1 mm x 10mm.
- the particles were placed in pre-sterilised first and second column reactors with an approximate biomass loading of 5g wet weight cells (100g gelled material) per column.
- the columns were subjected to anaerobic/aerobic cycling in the absence of metal for 7 days before metal was introduced: initially both reactors received 0.5mM lanthanum nitrate, then the first reactor was continued on lanthanum while the second reactor received 0.2mM uranyl nitrate. Samples were analysed as described above.
- Table 5 below and Fig 8 show the phosphate released and the lanthanum determined in the influent and effluent of the first reactor.
- Table 6 and Fig 9 show the phosphate released and the lanthanum and uranyl determined in the influent and effluent of the second reactor.
- Figs 10 and 11 show that there was no appreciable solubilisation of the precipitated metals in the aerobic phase.
- Figure 12 shows that the spectrum obtained by X-ray diffraction pattern of the sample from the second reactor is consistent with that reported for H 2 (UO 2 ) 2 (PO 4 ) 2 8H 2 O (Ross (1955) Am. Mineral 40 ;917-919).
- the d values for the 10 strongest diffraction peaks are, respectively, within 0.03 ⁇ of those for H 2 (UO 2 ) 2 (PO 4 ) 2 .8H 2 O. This indicates that the sample contains crystalline material of H 2 (UO 2 ) 2 (PO 4 ) 2 .8H 2 O.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Water Supply & Treatment (AREA)
- Environmental & Geological Engineering (AREA)
- Hydrology & Water Resources (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Health & Medical Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Biodiversity & Conservation Biology (AREA)
- Virology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Medicinal Chemistry (AREA)
- Analytical Chemistry (AREA)
- Biomedical Technology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
- Glass Compositions (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Manufacture And Refinement Of Metals (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB9223932A GB9223932D0 (en) | 1992-11-14 | 1992-11-14 | Metal accumulation |
GB9223932 | 1992-11-14 | ||
PCT/GB1993/002330 WO1994011315A1 (en) | 1992-11-14 | 1993-11-12 | Metal accumulation |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0673350A1 EP0673350A1 (en) | 1995-09-27 |
EP0673350B1 true EP0673350B1 (en) | 1997-12-29 |
Family
ID=10725117
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19930924753 Expired - Lifetime EP0673350B1 (en) | 1992-11-14 | 1993-11-12 | Metal accumulation |
Country Status (11)
Country | Link |
---|---|
US (1) | US5520811A (xx) |
EP (1) | EP0673350B1 (xx) |
JP (1) | JPH08503410A (xx) |
AU (1) | AU682671B2 (xx) |
DE (1) | DE69316029T2 (xx) |
DK (1) | DK0673350T3 (xx) |
ES (1) | ES2111777T3 (xx) |
GB (1) | GB9223932D0 (xx) |
RU (1) | RU2135421C1 (xx) |
WO (1) | WO1994011315A1 (xx) |
ZA (1) | ZA938469B (xx) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2813585A1 (en) | 2013-06-14 | 2014-12-17 | B.R.A.I.N. Biotechnology Research And Information Network AG | Process of isolating rare earth elements |
EP4053148A1 (en) | 2021-03-01 | 2022-09-07 | BRAIN Biotech AG | Novel pseudomonas strain for metal recovery |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9306403D0 (en) * | 1993-03-26 | 1993-05-19 | Univ Birmingham | Metal removal from aqueous solution |
US20040072937A1 (en) * | 2001-02-10 | 2004-04-15 | Tomalia Donald A. | Nanocomposites of dendritic polymers |
US6338800B1 (en) | 2000-02-22 | 2002-01-15 | Natural Chemistry, Inc. | Methods and compositions using lanthanum for removing phosphates from water |
US8349764B2 (en) | 2007-10-31 | 2013-01-08 | Molycorp Minerals, Llc | Composition for treating a fluid |
US20090107925A1 (en) * | 2007-10-31 | 2009-04-30 | Chevron U.S.A. Inc. | Apparatus and process for treating an aqueous solution containing biological contaminants |
US10973656B2 (en) | 2009-09-18 | 2021-04-13 | Spinal Surgical Strategies, Inc. | Bone graft delivery system and method for using same |
CL2010000814A1 (es) | 2010-07-30 | 2010-12-31 | Univ De Chile 70% Biotecnologias Del Agua Ltda 30% | Biosorbente compuesto por agregados de bacillus sp. vchb-10 (nrrl- b-30881) tratados con polietilenimina y glutaraldehido, util para remocion de metales pesados en formas cationicas y anionicas desde soluciones acuosas, proceso para prepararlo, su uso y proceso para remover metales desde efluentes acuosos. |
WO2012090554A1 (ja) | 2010-12-28 | 2012-07-05 | 合同会社パラ微生物研究所 | 微生物の新規な培養方法、新規な元素構成を有する微生物細胞を製造する方法、及び製造された微生物 |
US9233863B2 (en) | 2011-04-13 | 2016-01-12 | Molycorp Minerals, Llc | Rare earth removal of hydrated and hydroxyl species |
AU2015226889B2 (en) | 2014-03-07 | 2019-09-19 | Secure Natural Resources Llc | Cerium (IV) oxide with exceptional arsenic removal properties |
CN109912044A (zh) * | 2019-03-19 | 2019-06-21 | 中国地质大学(北京) | 一种废水处理药剂及其应用方法 |
CN110342649A (zh) * | 2019-07-23 | 2019-10-18 | 中国地质大学(北京) | 一种原位应急废水处理材料及其应用方法 |
CN112755959B (zh) * | 2020-12-21 | 2022-08-19 | 农业农村部环境保护科研监测所 | 一种改性生物炭材料及其制备方法和应用 |
CN113621653A (zh) * | 2021-08-09 | 2021-11-09 | 江西师范大学 | 一种回收水体中铜离子的方法 |
CN115845791B (zh) * | 2023-02-20 | 2023-05-09 | 农业农村部环境保护科研监测所 | 一种Ca/La基钙钛矿吸附材料的制备方法及用途 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4029575A (en) * | 1972-06-09 | 1977-06-14 | Ewing Engineering Company | Phosphorus removal from waste water |
US4043910A (en) * | 1974-09-10 | 1977-08-23 | Allied Colloids Limited | Removal of phosphorous from waste water |
US3980557A (en) * | 1974-12-18 | 1976-09-14 | University Patents, Inc. | Phosphorus removal from wastewater |
US4780208A (en) * | 1986-08-29 | 1988-10-25 | Botho Bohnke | Process for purification of effluent |
US5252214A (en) * | 1987-02-27 | 1993-10-12 | Gunter Lorenz | Biological dephosphatization and (de)nitrification |
DE3729127A1 (de) * | 1987-09-01 | 1989-03-09 | Taetzner Wolfgang | Verfahren und vorrichtung zur biologischen reinigung von abwaessern von ihren phosphat-verunreinigungen |
US5397473A (en) * | 1993-08-27 | 1995-03-14 | Cornell Research Foundation, Inc. | Biological treatment method for water |
-
1992
- 1992-11-14 GB GB9223932A patent/GB9223932D0/en active Pending
-
1993
- 1993-11-12 ZA ZA938469A patent/ZA938469B/xx unknown
- 1993-11-12 AU AU54300/94A patent/AU682671B2/en not_active Ceased
- 1993-11-12 EP EP19930924753 patent/EP0673350B1/en not_active Expired - Lifetime
- 1993-11-12 WO PCT/GB1993/002330 patent/WO1994011315A1/en active IP Right Grant
- 1993-11-12 RU RU95112454A patent/RU2135421C1/ru active
- 1993-11-12 US US08/436,205 patent/US5520811A/en not_active Expired - Fee Related
- 1993-11-12 ES ES93924753T patent/ES2111777T3/es not_active Expired - Lifetime
- 1993-11-12 DK DK93924753T patent/DK0673350T3/da active
- 1993-11-12 JP JP51186194A patent/JPH08503410A/ja active Pending
- 1993-11-12 DE DE69316029T patent/DE69316029T2/de not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2813585A1 (en) | 2013-06-14 | 2014-12-17 | B.R.A.I.N. Biotechnology Research And Information Network AG | Process of isolating rare earth elements |
EP4053148A1 (en) | 2021-03-01 | 2022-09-07 | BRAIN Biotech AG | Novel pseudomonas strain for metal recovery |
WO2022184525A1 (en) | 2021-03-01 | 2022-09-09 | BRAIN Biotech AG | Novel pseudomonas strain for metal recovery |
Also Published As
Publication number | Publication date |
---|---|
AU682671B2 (en) | 1997-10-16 |
DE69316029T2 (de) | 1998-06-10 |
DE69316029D1 (de) | 1998-02-05 |
ZA938469B (en) | 1994-06-20 |
ES2111777T3 (es) | 1998-03-16 |
US5520811A (en) | 1996-05-28 |
WO1994011315A1 (en) | 1994-05-26 |
AU5430094A (en) | 1994-06-08 |
JPH08503410A (ja) | 1996-04-16 |
GB9223932D0 (en) | 1993-01-06 |
EP0673350A1 (en) | 1995-09-27 |
RU2135421C1 (ru) | 1999-08-27 |
DK0673350T3 (da) | 1998-01-19 |
RU95112454A (ru) | 1997-03-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0673350B1 (en) | Metal accumulation | |
Alphenaar et al. | The effect of liquid upward velocity and hydraulic retention time on granulation in UASB reactors treating wastewater with a high sulphate content | |
Van Loosdrecht et al. | Metabolism of micro-organisms responsible for enhanced biological phosphorus removal from wastewater, Use of dynamic enrichment cultures | |
Zhou et al. | Removal characteristics of organics and nitrogen in a novel four-stage biofilm integrated system for enhanced treatment of coking wastewater under different HRTs | |
Visser et al. | Effects of pH on methanogenesis and sulphate reduction in thermophilic (55 C) UASB reactors | |
Greene et al. | Microbial formation of manganese oxides | |
Baetens et al. | Temperature effects in bio-P removal | |
US4440644A (en) | Method for the biological removal of free and complex cyanides and thiocyanates from water | |
Xiao et al. | Removal of ammonium-N from ammonium-rich sewage using an immobilized Bacillus subtilis AYC bioreactor system | |
Yu et al. | Growth of an aerobic bacterium with trichloroacetic acid as the sole source of energy and carbon | |
US5366891A (en) | Biochemical solubilization of toxic salts from residual geothermal brines and waste waters | |
US4461834A (en) | Strain of Pseudomonas paucimobilis | |
US6315904B1 (en) | Process for treating sulphate-containing waste water | |
Baillet et al. | Cadmium tolerance and uptake by a Thiobacillus ferrooxidans biomass | |
US6077429A (en) | Bacterial removal of perchlorate and nitrate | |
US5474934A (en) | Biodegradation of ethers | |
GB1596344A (en) | Process for biological purification of liquid wastes | |
Ganaye et al. | Biodegradation of volatile fatty acids by three species of nitrate-reducing bacteria | |
Polo et al. | Effect of hydraulic retention time and attachment media on sulfide production by sulfate reducing bacteria | |
IE61765B1 (en) | Biological disposal of oxalates | |
Seppänen | Biological Treatment of Groundwater in Basins with Floating Filters–II. The Role of Microorganisms in Floating Filters | |
Trouve et al. | Autotrophic denitrification by Thiobacillus denitrificans with thiosulphate as sole energy source. Pilot scale experiments at low temperature | |
Berzins et al. | Characteristics of a ceramic carrier after wastewater treatment process in the model column cascade with ethanol addition | |
AU3965189A (en) | Process for decomposition of metal-cyano complexes using microbial enzymes | |
Chacin et al. | Foam formation, anaerobiosis and Microthrix parvicella |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19950428 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE DE DK ES FR GB IT NL PT SE |
|
17Q | First examination report despatched |
Effective date: 19960610 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE DK ES FR GB IT NL PT SE |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
REF | Corresponds to: |
Ref document number: 69316029 Country of ref document: DE Date of ref document: 19980205 |
|
ET | Fr: translation filed | ||
ITF | It: translation for a ep patent filed | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2111777 Country of ref document: ES Kind code of ref document: T3 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 19980105 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 19991012 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PT Payment date: 19991021 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20001009 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20001016 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20001017 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20001020 Year of fee payment: 8 Ref country code: DE Payment date: 20001020 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20001107 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20001108 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20001112 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010531 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: MM4A Free format text: LAPSE DUE TO NON-PAYMENT OF FEES Effective date: 20010531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20011112 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20011113 Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20011113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20011130 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
BERE | Be: lapsed |
Owner name: BRITISH NUCLEAR FUELS P.L.C. Effective date: 20011130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020601 |
|
EUG | Se: european patent has lapsed |
Ref document number: 93924753.2 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020702 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020730 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20020601 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20021213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20051112 |