EP0662254B1 - Ajustable-aiming antenna mount, particularly for satellite telecommunication antenna - Google Patents

Ajustable-aiming antenna mount, particularly for satellite telecommunication antenna Download PDF

Info

Publication number
EP0662254B1
EP0662254B1 EP93920932A EP93920932A EP0662254B1 EP 0662254 B1 EP0662254 B1 EP 0662254B1 EP 93920932 A EP93920932 A EP 93920932A EP 93920932 A EP93920932 A EP 93920932A EP 0662254 B1 EP0662254 B1 EP 0662254B1
Authority
EP
European Patent Office
Prior art keywords
dihedron
triangle
antenna
mount
adjusting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93920932A
Other languages
German (de)
French (fr)
Other versions
EP0662254A1 (en
Inventor
Clifford David Hughes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agence Spatiale Europeenne
Original Assignee
Agence Spatiale Europeenne
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agence Spatiale Europeenne filed Critical Agence Spatiale Europeenne
Publication of EP0662254A1 publication Critical patent/EP0662254A1/en
Application granted granted Critical
Publication of EP0662254B1 publication Critical patent/EP0662254B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/125Means for positioning

Definitions

  • the invention relates to an antenna mount, in particular for a satellite telecommunications antenna.
  • Satellite antennas just like, more generally, antennas used in the microwave domain, require very precise pointing in a given direction, which can be fixed or mobile.
  • This direction is for example that in which a communication satellite is located, most often a satellite located in a quasi-geostationary or quasi-geosynchronous orbit (this case, nor even that of an antenna for telecommunications by satellite, not being in no way limiting the invention).
  • the antenna mount that is to say the mechanism which makes it possible to precisely support and point the antenna, can be of various types.
  • mount most commonly used for satellite earth stations is the type of mount called "site-azimuth", which is in the form of a basic rigid structure on which is mounted a movable structure in rotation around a vertical axis which, itself, supports a mobile rotating structure around a horizontal axis and integral with the antenna.
  • EP-A-0 227 930 discloses an antenna mount with adjustable pointing, in particular in FIG. 4. This consists of two dihedrons, at variable angles. However, these two dihedral do not have common plans.
  • One of the objects of the invention is to provide an adjustable antenna mount, in order to allow precise pointing and tracking, in particular of a satellite, which is advantageously foldable to allow easy transport and rapid disassembly / reassembly. , and which is for all that mechanically simple, robust and inexpensive to produce.
  • the frame of the invention is characterized in that it comprises: a first dihedral, one of the planes of which is carried by a support base; means for adjusting the angle of this first dihedral; a second dihedral, one of the planes of which is common to the first dihedron and the other plane of which carries the antenna, the axis of the first dihedral and the axis of the second dihedral being neither parallel nor confused; and means for adjusting the angle of this second dihedral.
  • such a frame may include: a first structure, defining a first triangle, integral with said support base; a second structure, defining a second triangle, the first and the second triangle having a common side provided with a first articulated connection, so as to constitute the first dihedron, the means for adjusting the angle of the first dihedron being interposed between the vertex of the first triangle opposite the articulation side and the vertex of the second triangle opposite to this same side; and a third structure, defining a third triangle, the second and the third triangle having a common side provided with a second articulated connection, so as to constitute the second dihedron, the means for adjusting the angle of the second dihedron being interposed between the top of the second triangle opposite to the articulation side and the top of the third triangle opposite to this same side.
  • the means for adjusting the first and second dihedral are separable from said structures, so as to allow the frame to be folded flat by closing the two dihedrons.
  • the means for adjusting the angles of the first and second dihedral are controlled by calculating means, capable of transforming setpoint values expressed in elevation and azimuth angles into signals for direct control of the position of these adjustment means.
  • Figure 1 is a schematic explanatory view of the structure of the frame of the invention.
  • Figure 2 shows how the mount of the invention can be used for an antenna wall mount.
  • FIG. 3 shows how the structure of the invention can be used for attachment to the antenna ground, in particular for the adaptation of a conventional “site-azimuth” antenna.
  • FIG. 4 illustrates an embodiment adaptable to a fixed pointing antenna so as to be able to allow slight variations in the pointing direction thereof and thus ensure permanent tracking of the satellite.
  • FIG. 5 schematically illustrates the device for calculating and controlling the position of the actuators.
  • Figure 6 is a perspective view showing how it is possible to mechanically produce the frame of the invention in foldable and removable form.
  • Figure 7 shows the detail of one of the connection elements of the frame of figure 6.
  • FIGS. 8 and 9 are side views of the element in FIG. 7.
  • FIG. 10 shows how the mount of the invention can be used as the main mount for a large antenna.
  • FIG. 1 The general structure of the frame of the invention is illustrated in Figure 1: it includes a first triangular structure 1 (triangle ABC) on which is articulated a second structure 2, also triangular (triangle BCD), which itself carries with articulation of a third triangular structure 3 (BDE triangle). Structures 1 and 2 are articulated at 4 along the BC side, and structures 2 and 3 are articulated at 5 along the BD side, i.e. along a different side on the articulation side structures 1 and 2.
  • triangular structure 1 triangle ABC
  • BCD triangular
  • BDE triangle triangular structure 3
  • Structures 1 and 2 are articulated at 4 along the BC side
  • structures 2 and 3 are articulated at 5 along the BD side, i.e. along a different side on the articulation side structures 1 and 2.
  • the triangles ABC, BCD and BDE are all equilateral, but this characteristic is in no way essential.
  • the structures 1 and 2 thus define a first dihedral ABC, BCD, of variable angle ⁇ and adjustable by an actuator 6, manual or motorized, for example a linear electric actuator interposed between the vertices A and D.
  • structures 2 and 3 define a second dihedron BCD, BDE of variable ⁇ angle and adjustable by a second linear actuator 7 interposed between the vertices E and C.
  • AD and EC thus constitute struts of variable length and length .
  • the first structure 1 is fixed and the third structure 3 carries support means for the antenna, for example a ring 8 in the shape of a circle inscribed in the triangle BDE and which will support the dish of the antenna (which may be of dimension greater or less than this support ring 8).
  • a ring 8 in the shape of a circle inscribed in the triangle BDE and which will support the dish of the antenna (which may be of dimension greater or less than this support ring 8).
  • each of the half-planes of each of the dihedrons is however not essential, the triangles ABC, BCD and BDE can simply be virtual triangles defined on structures whose physical contour is not necessarily that of a triangle.
  • this determination involves only simple calculations, easy to implement by a microprocessor incorporated in the frame control system or a microcomputer performing, among other things, this task, which will not be burdensome very moderately the overall cost of the frame with its control system.
  • the first structure 1 can be simply placed on the ground, as illustrated diagrammatically in FIG. 1.
  • FIG. 2 It can also, as illustrated in FIG. 2, be fixed to a wall 10, a configuration which is quite often found in antennae for satellites and which thus makes it possible to have a continuously adjustable mount supporting the antenna, here constituted of a simple dish 9.
  • the mount of the invention rests on the ground by the first structure 1, but the third structure 3 does not directly carry the antenna as in the case of FIGS. 1 and 2, but a mount d pre-existing antenna 11 of the site-azimuth type, consisting of a vertical shaft 12 carrying an assembly 13 movable around a vertical axis 14 on which the support 15 of the antenna is articulated around a horizontal axis 16.
  • a mount d pre-existing antenna 11 of the site-azimuth type consisting of a vertical shaft 12 carrying an assembly 13 movable around a vertical axis 14 on which the support 15 of the antenna is articulated around a horizontal axis 16.
  • Figure 4 illustrates a possible form of construction, mechanically very simple, suitable for this type of situation.
  • the pre-existing antenna is mounted on a barrel 12 provided with a support tripod 17.
  • the additional mount produced according to the teachings of the invention, consists of tubular profiles with square section, of steel or aluminum, which can be common profiles assembled by traditional methods (welded or mechanically welded assembly).
  • the joints used can be of an extremely simple type, for example of the same type as those used for door or window hinges.
  • the triangular construction of the frame of the invention takes up all the loads at intersections, which ensures excellent robustness and allows the use of relatively light materials for its production.
  • the joints essentially only undergo the gravity constraints and the additional stresses of the wind, providing pointing tolerances which compare quite favorably with those of conventional solutions.
  • the actuators 6 and 7 may consist of an electric actuator system with a body 18 and a movable rod 19 provided respectively with fasteners 20 and 21 which will be fixed to homologous fasteners 22 and 23 of the triangular structures.
  • the motor 24 of each of the two actuators is electrically connected to a control system, the two actuators being physically and electrically independent.
  • FIG. 5 schematically shows the control circuit, which comprises an electronic and electrical block 26 for calculating the coordinates and for controlling the respective motors 24 of the actuators 6 and 7; this box 26 receives its power supply by a line 27 and by lines 28, the conventional site instructions S and azimuth A (in digital or analog form), which are processed within the unit 26 by transformation of coordinates to determine the length of the struts controlled by cylinders 6 and 7 to obtain the desired angles of elevation and azimuth.
  • the control circuit which comprises an electronic and electrical block 26 for calculating the coordinates and for controlling the respective motors 24 of the actuators 6 and 7; this box 26 receives its power supply by a line 27 and by lines 28, the conventional site instructions S and azimuth A (in digital or analog form), which are processed within the unit 26 by transformation of coordinates to determine the length of the struts controlled by cylinders 6 and 7 to obtain the desired angles of elevation and azimuth.
  • Figure 6 shows a form of implementation particularly suitable for the production of a removable and portable frame.
  • the frame is produced essentially from profiles 29 of square section constituting the three sides of each of the three triangles (these profiles are therefore nine in number), profiles which are connected together by connecting pieces 30, five in number .
  • connecting pieces 30 which define the vertices of the triangles ABC, BCD and BDE, are not identical due to the particular geometry of each of the vertices. However, they are all made from the same essential elements, illustrated by way of example in FIGS. 7 to 9 for the connecting piece 30 located furthest back in the perspective view (and therefore corresponding to the apex B), which is the most complex: the connecting parts comprise at least one fixing plate 31 (two plates in the case of the part illustrated in FIGS. 7 to 9) provided with holes 32 allowing fixing to the ground or to an antenna support, as appropriate (lower plates or upper plates).
  • Segments 33 defining between them the various angles of the triangles, end at 34 in the form of male parts coming to fit inside the profiles constituting the sides of the triangles, the connection with the latter being effected for example by means of '' a screw or pin system.
  • the part 30 also carries, in the case of the four connecting parts other than that shown in FIGS. 7 to 9, a vertical support 35 allowing the fixing of the jacks in the holes 22 and 23 made in these parts 35.
  • the connection between the respective fasteners 22 and 23 is preferably made by easily removable means (nested or screwed mounting), in order to be able to disassemble the actuators quickly and fold the assembly flat, which is very interesting in the case of portable stations, when transportability and speed of implementation are essential characteristics.
  • the connecting pieces 30 also carry the hinges 36 making it possible to articulate between the three triangles of the frame; these hinges and their arrangement are particularly clearly visible in FIGS. 8 and 9.
  • FIG. 10 shows an embodiment adapted to a case, quite different from the previous one, where the mount of the invention serves as a primary, fixed mount for a large diameter antenna and purely and simply replaces the traditional mount site- azimuth.
  • the antenna support triangle 3 is connected to the antenna 37 at three equidistant points 38, integral with the annular element 39 of the antenna support frame located on the back of the reflector.
  • the lower triangle 1, for its part, is placed on a fixed base 40, for example a concrete base, or at the top of a building.
  • the actuators 6 and 7 perform the same functions as in the embodiments explained above, but with, in the present case very much greater opening angles ⁇ and ⁇ , insofar as it is no longer a question of compensating for a slight failure to score, but to carry out the pointing itself.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Support Of Aerials (AREA)
  • Radio Relay Systems (AREA)
  • Details Of Aerials (AREA)

Abstract

PCT No. PCT/FR93/00937 Sec. 371 Date Mar. 7, 1996 Sec. 102(e) Date Mar. 7, 1996 PCT Filed Sep. 24, 1993 PCT Pub. No. WO94/08360 PCT Pub. Date Apr. 14, 1994The disclosed mount comprises a first dihedral (ABC, BCD) of which one of the planes (ABC) is borne on a support base; means (6) for adjusting the angle ( alpha ) of said first dihedral; a second dihedral (BCD, BDE) of which one of the planes (BCD) is common to the first dihedral and the other plane (BDE) carries means (8) for supporting the antenna, the axis (BC) of the first dihedral and the axis (BD) of the second dihedral being neither parallel nor merged; and means (7) for adjusting the angle ( beta ) of said second dihedral.

Description

L'invention concerne une monture d'antenne, notamment pour une antenne de télécommunications par satellite.The invention relates to an antenna mount, in particular for a satellite telecommunications antenna.

Les antennes (terrestres) de communications par satellite, tout comme, de façon plus générale, les antennes utilisées dans le domaine des hyperfréquences, nécessitent un pointage très précis dans une direction donnée, qui peut être fixe ou mobile. Cette direction est par exemple celle dans laquelle se trouve un satellite de communication, le plus souvent un satellite situé sur une orbite quasi-géostationnaire ou quasi-géosynchrone (ce cas, ni même celui d'une antenne pour télécommunications par satellite, n'étant en aucune façon limitatif de l'invention).Satellite antennas (terrestrial), just like, more generally, antennas used in the microwave domain, require very precise pointing in a given direction, which can be fixed or mobile. This direction is for example that in which a communication satellite is located, most often a satellite located in a quasi-geostationary or quasi-geosynchronous orbit (this case, nor even that of an antenna for telecommunications by satellite, not being in no way limiting the invention).

La monture de l'antenne, c'est-à-dire le mécanisme qui permet de supporter et de pointer avec précision l'antenne, peut être de divers types.The antenna mount, that is to say the mechanism which makes it possible to precisely support and point the antenna, can be of various types.

Le type de monture le plus couramment utilisé pour les stations terrestres de communications par satellite est le type de monture dit « site-azimut », qui se présente sous la forme d'une structure rigide de base sur laquelle est montée une structure mobile en rotation autour d'un axe vertical qui, elle-même, supporte une structure tournante mobile autour d'un axe horizontal et solidaire de l'antenne.The type of mount most commonly used for satellite earth stations is the type of mount called "site-azimuth", which is in the form of a basic rigid structure on which is mounted a movable structure in rotation around a vertical axis which, itself, supports a mobile rotating structure around a horizontal axis and integral with the antenna.

La plupart des montures utilisées sont lourdes et de structure complexe. De ce fait, elles ne conviennent pas à une production en grande série, ou pour des stations terrestres mobiles, portatives ou démontables, où le faible poids et la facilité de montage sont des éléments essentiels.Most of the frames used are heavy and of complex structure. Therefore, they are not suitable for mass production, or for mobile, portable or dismountable land stations, where low weight and ease of assembly are essential elements.

À l'opposé, les montures légères sont difficiles à régler avec précision, que ce réglage soit opéré à la main ou motorisé. Il est en outre généralement nécessaire de prévoir un support rigide tel qu'une plaque ou une dalle support.On the other hand, light frames are difficult to adjust with precision, whether this adjustment is carried out by hand or motorized. It is also generally necessary to provide a rigid support such as a plate or a support slab.

Un autre problème que l'on rencontre avec de nombreuses antennes existantes tient au fait que celles-ci avaient été initialement conçues pour pointer sur des satellites quasi-géostationnaires, donc selon un pointage fixe. Or, au fil du temps, en raison de l'épuisement du combustible des moteurs de correction de position du satellite, la plupart des satellites qui, auparavant, étaient effectivement géostationnaires présentent maintenant une inclinaison orbitale progressivement croissante (l'orbite géostationnaire devenant alors seulement géosynchrone), ce qui impose pour les stations terrestres de pouvoir effectuer un pointage mobile, au moins dans une plage limitée, afin de permettre la poursuite permanente du satellite.Another problem encountered with many existing antennas is that they were originally designed to point to quasi-geostationary satellites, therefore according to a fixed pointing. However, over time, due to the depletion of fuel from the satellite position correction engines, most of the satellites which previously were actually geostationary now exhibit a progressively increasing orbital inclination (the geostationary orbit then becoming only geosynchronous), which requires that earth stations be able to perform mobile pointing, at least within a limited range, in order to allow permanent tracking of the satellite.

La demande de brevet européen EP-A-0 227 930 (SIEMENS) divulgue une monture d'antenne à pointage réglable, notamment par la figure 4. Celle-ci est constituée de deux dièdres, à angles variables. Cependant ces deux dièdres ne possèdent pas de plans communs.European patent application EP-A-0 227 930 (SIEMENS) discloses an antenna mount with adjustable pointing, in particular in FIG. 4. This consists of two dihedrons, at variable angles. However, these two dihedral do not have common plans.

Les montures d'antenne proposées jusqu'à présent ne permettent pas de concilier de façon satisfaisante ces divers impératifs.The antenna mounts proposed so far do not allow these various imperatives to be satisfactorily reconciled.

L'un des buts de l'invention est de proposer une monture d'antenne réglable, afin de permettre un pointage précis et une poursuite, notamment d'un satellite, qui soit avantageusement repliable pour permettre un transport aisé et un démontage/remontage rapides, et qui soit pour autant de structure mécaniquement simple, robuste et peu coûteuse à réaliser.One of the objects of the invention is to provide an adjustable antenna mount, in order to allow precise pointing and tracking, in particular of a satellite, which is advantageously foldable to allow easy transport and rapid disassembly / reassembly. , and which is for all that mechanically simple, robust and inexpensive to produce.

À cet effet, la monture de l'invention est caractérisée en ce qu'elle comporte : un premier dièdre, dont l'un des plans est porté par une base support ; des moyens de réglage de l'angle de ce premier dièdre ; un second dièdre, dont l'un des plans est commun au premier dièdre et dont l'autre plan porte l'antenne, l'axe du premier dièdre et l'axe du second dièdre n'étant ni parallèles ni confondus ; et des moyens de réglage de l'angle de ce second dièdre.To this end, the frame of the invention is characterized in that it comprises: a first dihedral, one of the planes of which is carried by a support base; means for adjusting the angle of this first dihedral; a second dihedral, one of the planes of which is common to the first dihedron and the other plane of which carries the antenna, the axis of the first dihedral and the axis of the second dihedral being neither parallel nor confused; and means for adjusting the angle of this second dihedral.

Plus précisément une telle monture peut comporter : une première structure, définissant un premier triangle, solidaire de ladite base support ; une deuxième structure, définissant un deuxième triangle, le premier et le deuxième triangle possédant un côté commun pourvu d'une première liaison articulée, de manière à constituer le premier dièdre, les moyens de réglage de l'angle du premier dièdre étant interposés entre le sommet du premier triangle opposé au côté d'articulation et le sommet du deuxième triangle opposé à ce même côté ; et une troisième structure, définissant un troisième triangle, le deuxième et le troisième triangle possédant un côté commun pourvu d'une seconde liaison articulée, de manière à constituer le second dièdre, les moyens de réglage de l'angle du second dièdre étant interposés entre le sommet du deuxième triangle opposé au côté d'articulation et le sommet du troisième triangle opposé à ce même côté.More precisely, such a frame may include: a first structure, defining a first triangle, integral with said support base; a second structure, defining a second triangle, the first and the second triangle having a common side provided with a first articulated connection, so as to constitute the first dihedron, the means for adjusting the angle of the first dihedron being interposed between the vertex of the first triangle opposite the articulation side and the vertex of the second triangle opposite to this same side; and a third structure, defining a third triangle, the second and the third triangle having a common side provided with a second articulated connection, so as to constitute the second dihedron, the means for adjusting the angle of the second dihedron being interposed between the top of the second triangle opposite to the articulation side and the top of the third triangle opposite to this same side.

De préférence, les moyens de réglage du premier et du second dièdre sont séparables desdites structures, de manière à permettre un repliement à plat de la monture par fermeture des deux dièdres.Preferably, the means for adjusting the first and second dihedral are separable from said structures, so as to allow the frame to be folded flat by closing the two dihedrons.

De préférence également, les moyens de réglage des angles du premier et du second dièdre sont commandés par des moyens calculateurs, propres à transformer des valeurs de consigne exprimées en angles de site et d'azimut en des signaux de commande directe de la position de ces moyens de réglage.Preferably also, the means for adjusting the angles of the first and second dihedral are controlled by calculating means, capable of transforming setpoint values expressed in elevation and azimuth angles into signals for direct control of the position of these adjustment means.

D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée ci-dessous, faite en référence aux dessins annexés.Other characteristics and advantages of the invention will appear on reading the detailed description below, made with reference to the accompanying drawings.

La figure 1 est une vue schématique explicative de la structure de la monture de l'invention.Figure 1 is a schematic explanatory view of the structure of the frame of the invention.

La figure 2 montre la manière dont la monture de l'invention peut être utilisée pour une fixation murale d'antenne.Figure 2 shows how the mount of the invention can be used for an antenna wall mount.

La figure 3 montre la manière dont la structure de l'invention peut être utilisée pour une fixation au sol d'antenne, notamment pour l'adaptation d'une antenne « site-azimut » classique.FIG. 3 shows how the structure of the invention can be used for attachment to the antenna ground, in particular for the adaptation of a conventional “site-azimuth” antenna.

La figure 4 illustre un mode de réalisation adaptable à une antenne à pointage fixe afin de pouvoir autoriser des variations légères de la direction de pointage de celle-ci et assurer ainsi une poursuite permanente du satellite.FIG. 4 illustrates an embodiment adaptable to a fixed pointing antenna so as to be able to allow slight variations in the pointing direction thereof and thus ensure permanent tracking of the satellite.

La figure 5 illustre de façon schématique le dispositif de calcul et de commande de la position des actionneurs.FIG. 5 schematically illustrates the device for calculating and controlling the position of the actuators.

La figure 6 est une vue perspective montrant la manière dont il est possible de réaliser mécaniquement la monture de l'invention sous forme repliable et démontable.Figure 6 is a perspective view showing how it is possible to mechanically produce the frame of the invention in foldable and removable form.

La figure 7 montre le détail de l'un des éléments de raccordement de la monture de la figure 6.Figure 7 shows the detail of one of the connection elements of the frame of figure 6.

Les figures 8 et 9 sont des vues latérales de l'élément de la figure 7.FIGS. 8 and 9 are side views of the element in FIG. 7.

La figure 10 montre la manière dont la monture de l'invention peut être utilisée comme monture principale d'une antenne de grande dimension.FIG. 10 shows how the mount of the invention can be used as the main mount for a large antenna.

La structure générale de la monture de l'invention est illustrée figure 1 : celle-ci comporte une première structure triangulaire 1 (triangle ABC) sur laquelle est articulée une seconde structure 2, également triangulaire (triangle BCD), qui porte elle-même avec articulation une troisième structure triangulaire 3 (triangle BDE). Les structures 1 et 2 sont articulées en 4 le long du côté BC, et les structures 2 et 3 sont articulées en 5 le long du côté BD, c'est-à-dire le long d'un côté différent du côté d'articulation des structures 1 et 2.The general structure of the frame of the invention is illustrated in Figure 1: it includes a first triangular structure 1 (triangle ABC) on which is articulated a second structure 2, also triangular (triangle BCD), which itself carries with articulation of a third triangular structure 3 (BDE triangle). Structures 1 and 2 are articulated at 4 along the BC side, and structures 2 and 3 are articulated at 5 along the BD side, i.e. along a different side on the articulation side structures 1 and 2.

De préférence, pour raison de simplicité, les triangles ABC, BCD et BDE sont tous équilatéraux, mais cette caractéristique n'est en aucune façon indispensable.Preferably, for simplicity, the triangles ABC, BCD and BDE are all equilateral, but this characteristic is in no way essential.

Les structures 1 et 2 définissent ainsi un premier dièdre ABC, BCD, d'angle α variable et ajustable par un actionneur 6, manuel ou motorisé, par exemple un actionneur électrique linéaire intercalé entre les sommets A et D.The structures 1 and 2 thus define a first dihedral ABC, BCD, of variable angle α and adjustable by an actuator 6, manual or motorized, for example a linear electric actuator interposed between the vertices A and D.

De façon semblable, les structures 2 et 3 définissent un second dièdre BCD, BDE d'angle β variable et ajustable par un second actionneur linéaire 7 intercalé entre les sommets E et C. AD et EC constituent ainsi des jambes de force et de longueur variables.Similarly, structures 2 and 3 define a second dihedron BCD, BDE of variable β angle and adjustable by a second linear actuator 7 interposed between the vertices E and C. AD and EC thus constitute struts of variable length and length .

Pour permettre un réglage dans toutes les directions, il est indispensable que l'arête du premier dièdre (matérialisée par le segment BC) et celle du second dièdre (matérialisée par le segment BD) ne soient ni parallèles ni confondues car sinon on perdrait l'un des deux degrés de liberté de la monture ; il n'est cependant pas nécessaire qu'elles soient concourantes.To allow adjustment in all directions, it is essential that the edge of the first dihedral (materialized by the segment BC) and that of the second dihedral (materialized by the segment BD) are neither parallel nor confused because otherwise we would lose the one of the two degrees of freedom of the frame; however, they do not need to be concurrent.

La première structure 1 est fixe et la troisième structure 3 porte des moyens supports de l'antenne, par exemple un anneau 8 en forme de cercle inscrit dans le triangle BDE et qui viendra supporter le paraboloïde de l'antenne (qui pourra être de dimension supérieure ou inférieure à cet anneau support 8). On notera que, lorsque l'antenne est un paraboloïde ou une section de paraboloïde, il sera relativement simple de la fixer à une structure triangulaire telle que la structure 3, et c'est pour cette raison que l'on préfère des structures triangulaires pour définir les dièdres (une autre raison étant la possibilité de repliement des triangles les uns sur les autres comme on l'expliquera plus en détail à propos de la figure 4). Le choix d'une structure triangulaire pour définir chacun des demi-plans de chacun des dièdres n'est cependant pas indispensable, les triangles ABC, BCD et BDE pouvant être simplement des triangles virtuels définis sur des structures dont le contour physique n'est pas nécessairement celui d'un triangle.The first structure 1 is fixed and the third structure 3 carries support means for the antenna, for example a ring 8 in the shape of a circle inscribed in the triangle BDE and which will support the dish of the antenna (which may be of dimension greater or less than this support ring 8). It will be noted that, when the antenna is a paraboloid or a section of paraboloid, it will be relatively simple to fix it to a triangular structure such as structure 3, and it is for this reason that triangular structures are preferred for define the dihedral (another reason being the possibility of folding the triangles one on top of the other as will be explained in more detail with reference to FIG. 4). The choice of a triangular structure to define each of the half-planes of each of the dihedrons is however not essential, the triangles ABC, BCD and BDE can simply be virtual triangles defined on structures whose physical contour is not necessarily that of a triangle.

On comprend aisément, par cette description, qu'en faisant varier les longueurs des segments AD et CE au moyen des actionneurs 6 et 7 on modifiera les valeurs de α et β et donc la direction de pointage de l'antenne, ce qui permet de pointer cette dernière sur une très large plage d'angles de site et d'azimut, qui dépasse largement les besoins de la simple poursuite de satellites en orbite quasi-géosynchrones.It is easy to understand from this description that by varying the lengths of the segments AD and CE by means of the actuators 6 and 7, the values of α and β and therefore the pointing direction of the antenna will be modified, which makes it possible to point the latter on a very wide range of site and azimuth angles, which greatly exceeds the needs of the simple tracking of satellites in quasi-geosynchronous orbit.

Les directions des segments AD et EC n'étant pas orthogonales, pour obtenir un angle de site et d'azimut donnés, le réglage des actionneurs 6 et 7 doit être déterminé par un calcul préalable, que l'on va indiquer ci-dessous.The directions of the segments AD and EC not being orthogonal, in order to obtain a given elevation and azimuth angle, the adjustment of the actuators 6 and 7 must be determined by a preliminary calculation, which will be indicated below.

Si A est l'angle d'azimut, S l'angle de site, α l'angle du dièdre ABC, BCD et β l'angle du dièdre BCD, BDE, il convient de résoudre les équations A = f(α,β) et S = f(α,β), ce qui peut être fait par un calculateur à microprocesseur mettant en oeuvre un programme relativement simple de pointage et de poursuite.If A is the azimuth angle, S the site angle, α the dihedral angle ABC, BCD and β the dihedral angle BCD, BDE, it is necessary to solve the equations A = f (α, β ) and S = f (α, β), which can be done by a microprocessor calculator implementing a relatively simple pointing and tracking program.

Si l'on considère les divers repères cartésiens mobiles, on démontre que, X, Y et Z étant les composantes du vecteur normal au triangle BDE (c'est-à-dire le vecteur définissant la direction de pointage), on a, dans le cas de triangles équilatéraux : X = - cos β sin α + sin β sin 30° cos α,

Figure imgb0001
Y = - sin β cos 30° ,
Figure imgb0002
et Z = co β cos α + sin β sin 30° sin α.
Figure imgb0003
If we consider the various mobile Cartesian landmarks, we demonstrate that, X, Y and Z being the components of the vector normal to the triangle BDE (i.e. the vector defining the pointing direction), we have, in the case of equilateral triangles: X = - cos β sin α + sin β sin 30 ° cos α,
Figure imgb0001
Y = - sin β cos 30 °,
Figure imgb0002
and Z = co β cos α + sin β sin 30 ° sin α.
Figure imgb0003

L'angle d'azimut A et l'angle de site S peuvent être déduits de ces valeurs X, Y et Z par les relations suivantes : A = arctg (X/Y)

Figure imgb0004
et S = arctg [Z/(X 2 +Y 2 ) 1/2 ].
Figure imgb0005
The azimuth angle A and the site angle S can be deduced from these X, Y and Z values by the following relationships: A = arctg (X / Y)
Figure imgb0004
and S = arctg [Z / (X 2 + Y 2 ) 1/2 ].
Figure imgb0005

Comme on peut le voir, cette détermination n'implique que des calculs simples, aisés à mettre en oeuvre par un microprocesseur incorporé au système de commande de la monture ou à un micro-ordinateur assurant, entre autres, cette tâche, ce qui ne grèvera que très modérément le coût d'ensemble de la monture avec son système de commande.As we can see, this determination involves only simple calculations, easy to implement by a microprocessor incorporated in the frame control system or a microcomputer performing, among other things, this task, which will not be burdensome very moderately the overall cost of the frame with its control system.

Du point de vue de la configuration d'utilisation, la première structure 1 peut être simplement posée au sol, comme illustré schématiquement figure 1.From the point of view of the configuration of use, the first structure 1 can be simply placed on the ground, as illustrated diagrammatically in FIG. 1.

Elle peut également, comme illustré figure 2, être fixée à un mur 10, configuration qui se retrouve assez souvent dans les antennes pour satellites et qui permet de disposer ainsi d'une monture ajustable de façon continue supportant l'antenne, constituée ici d'un simple paraboloïde 9.It can also, as illustrated in FIG. 2, be fixed to a wall 10, a configuration which is quite often found in antennae for satellites and which thus makes it possible to have a continuously adjustable mount supporting the antenna, here constituted of a simple dish 9.

Dans l'exemple de la figure 3, la monture de l'invention repose au sol par la première structure 1, mais la troisième structure 3 porte non pas directement l'antenne comme dans le cas des figures 1 et 2, mais une monture d'antenne préexistante 11 de type site-azimut, constituée d'un fût vertical 12 portant un équipage 13 mobile autour d'un axe vertical 14 sur lequel est articulé le support 15 de l'antenne autour d'un axe horizontal 16. Cette configuration permet de continuer à utiliser une monture d'antenne à pointage fixe même lorsque, au cours du temps, les satellites en fin de vie présentent des variations importantes de leur direction de pointage, variations qui peuvent atteindre typiquement 5° et qui requièrent un système motorisé de poursuite permanente pour compenser ces variations.In the example of FIG. 3, the mount of the invention rests on the ground by the first structure 1, but the third structure 3 does not directly carry the antenna as in the case of FIGS. 1 and 2, but a mount d pre-existing antenna 11 of the site-azimuth type, consisting of a vertical shaft 12 carrying an assembly 13 movable around a vertical axis 14 on which the support 15 of the antenna is articulated around a horizontal axis 16. This configuration allows you to continue using a fixed-pointing antenna mount even when, over time, the end-of-life satellites show variations significant of their pointing direction, variations which can typically reach 5 ° and which require a motorized permanent tracking system to compensate for these variations.

La figure 4 illustre une forme de construction possible, mécaniquement très simple, adaptée à ce type de situation. L'antenne préexistante est montée sur un fût 12 pourvu d'un trépied support 17. La monture additionnelle, réalisée selon les enseignements de l'invention, est constituée de profilés tubulaires à section carrée, en acier ou en aluminium, qui peuvent être des profilés courants assemblés par des méthodes traditionnelles (assemblage soudé ou mécano-soudé). Les articulations utilisées peuvent être d'un type extrêmement simple, par exemple du même type que celles utilisées pour des charnières de portes ou de fenêtres.Figure 4 illustrates a possible form of construction, mechanically very simple, suitable for this type of situation. The pre-existing antenna is mounted on a barrel 12 provided with a support tripod 17. The additional mount, produced according to the teachings of the invention, consists of tubular profiles with square section, of steel or aluminum, which can be common profiles assembled by traditional methods (welded or mechanically welded assembly). The joints used can be of an extremely simple type, for example of the same type as those used for door or window hinges.

Du point de vue de la statique, on notera que la construction triangulaire de la monture de l'invention reprend toutes les charges aux intersections, ce qui assure une excellente robustesse et permet d'utiliser des matériaux relativement légers pour sa réalisation. En ce qui concerne les articulations, elles ne subissent essentiellement que les contraintes de gravité et les sollicitations additionnelles du vent, procurant des tolérances de pointage qui se comparent tout à fait favorablement à celles des solutions classiques.From a static point of view, it will be noted that the triangular construction of the frame of the invention takes up all the loads at intersections, which ensures excellent robustness and allows the use of relatively light materials for its production. As regards the joints, they essentially only undergo the gravity constraints and the additional stresses of the wind, providing pointing tolerances which compare quite favorably with those of conventional solutions.

Les actionneurs 6 et 7 peuvent être constitués d'un système à vérin électrique avec un corps 18 et une tige mobile 19 pourvus respectivement d'attaches 20 et 21 qui seront fixées à des attaches homologues 22 et 23 des structures triangulaires. Le moteur 24 de chacun des deux actionneurs est relié électriquement à un système de commande, les deux actionneurs étant physiquement et électriquement indépendants. Éventuellement, pour permettre un premier pointage préalable grossier ou compenser un dévers, il peut être utile de placer une jambe d'appui supplémentaire, fixe ou réglable, telle que 25 sous l'un des sommets A, B ou C du triangle de la première structure.The actuators 6 and 7 may consist of an electric actuator system with a body 18 and a movable rod 19 provided respectively with fasteners 20 and 21 which will be fixed to homologous fasteners 22 and 23 of the triangular structures. The motor 24 of each of the two actuators is electrically connected to a control system, the two actuators being physically and electrically independent. Optionally, to allow a rough coarse preliminary pointing or to compensate for a slope, it may be useful to place an additional support leg, fixed or adjustable, such as 25 under one of the vertices A, B or C of the triangle of the first structure.

La figure 5 montre, de façon schématique, le circuit de commande, qui comporte un bloc électronique et électrique 26 de calcul des coordonnées et de pilotage des moteurs 24 respectifs des actionneurs 6 et 7 ; ce boîtier 26 reçoit par une ligne 27 son alimentation en énergie et par des lignes 28, les consignes conventionnelles de site S et d'azimut A (sous forme numérique ou analogique), qui sont traitées au sein de l'unité 26 par transformation de coordonnées afin de déterminer la longueur des jambes de force contrôlées par les vérins 6 et 7 permettant d'obtenir les angles souhaités de site et d'azimut.FIG. 5 schematically shows the control circuit, which comprises an electronic and electrical block 26 for calculating the coordinates and for controlling the respective motors 24 of the actuators 6 and 7; this box 26 receives its power supply by a line 27 and by lines 28, the conventional site instructions S and azimuth A (in digital or analog form), which are processed within the unit 26 by transformation of coordinates to determine the length of the struts controlled by cylinders 6 and 7 to obtain the desired angles of elevation and azimuth.

La figure 6 montre une forme de mise en oeuvre particulièrement adaptée à la réalisation d'une monture démontable et portative. La monture est réalisée essentiellement à partir de profilés 29 de section carrée constituant les trois côtés de chacun des trois triangles (ces profilés sont donc au nombre de neuf), profilés qui sont reliés entre eux par des pièces de liaison 30, au nombre de cinq.Figure 6 shows a form of implementation particularly suitable for the production of a removable and portable frame. The frame is produced essentially from profiles 29 of square section constituting the three sides of each of the three triangles (these profiles are therefore nine in number), profiles which are connected together by connecting pieces 30, five in number .

Ces pièces de liaison 30, qui définissent les sommets des triangles ABC, BCD et BDE, ne sont pas identiques en raison de la géométrie particulière de chacun des sommets. Elles sont cependant toutes réalisées à partir des mêmes éléments essentiels, illustrés à titre d'exemple sur les figures 7 à 9 pour la pièce de liaison 30 située la plus en arrière sur la vue perspective (et correspondant donc au sommet B), qui est la plus complexe : les pièces de liaison comportent au moins une plaque de fixation 31 (deux plaques dans le cas de la pièce illustrée sur les figures 7 à 9) pourvue de trous 32 permettant la fixation au sol ou à un support d'antenne, selon le cas (plaques inférieures ou plaques supérieures). Des segments 33, définissant entre eux les divers angles des triangles, se terminent en 34 sous forme de pièces mâles venant s'adapter à l'intérieur des profilés constituant les côtés des triangles, la solidarisation avec ces derniers étant effectuée par exemple au moyen d'un système à vis ou à goupilles.These connecting pieces 30, which define the vertices of the triangles ABC, BCD and BDE, are not identical due to the particular geometry of each of the vertices. However, they are all made from the same essential elements, illustrated by way of example in FIGS. 7 to 9 for the connecting piece 30 located furthest back in the perspective view (and therefore corresponding to the apex B), which is the most complex: the connecting parts comprise at least one fixing plate 31 (two plates in the case of the part illustrated in FIGS. 7 to 9) provided with holes 32 allowing fixing to the ground or to an antenna support, as appropriate (lower plates or upper plates). Segments 33, defining between them the various angles of the triangles, end at 34 in the form of male parts coming to fit inside the profiles constituting the sides of the triangles, the connection with the latter being effected for example by means of '' a screw or pin system.

La pièce 30 porte également, dans le cas des quatre pièces de liaison autres que celle représentée sur les figures 7 à 9, un support vertical 35 permettant la fixation des vérins dans les trous 22 et 23 pratiqués dans ces pièces 35. La liaison entre les attaches respectives 22 et 23 est de préférence réalisée par des moyens aisément démontables (montage emboîté ou vissé), afin de pouvoir démonter rapidement les actionneurs et replier l'ensemble à plat, ce qui est très intéressant dans le cas des stations portatives, lorsque la transportabilité et la rapidité de mise en oeuvre sont des caractéristiques essentielles.The part 30 also carries, in the case of the four connecting parts other than that shown in FIGS. 7 to 9, a vertical support 35 allowing the fixing of the jacks in the holes 22 and 23 made in these parts 35. The connection between the respective fasteners 22 and 23 is preferably made by easily removable means (nested or screwed mounting), in order to be able to disassemble the actuators quickly and fold the assembly flat, which is very interesting in the case of portable stations, when transportability and speed of implementation are essential characteristics.

Les pièces de liaison 30 portent également les charnières 36 permettant d'articuler entre les trois triangles de la monture ; ces charnières et leur disposition sont particulièrement bien visibles figures 8 et 9.The connecting pieces 30 also carry the hinges 36 making it possible to articulate between the three triangles of the frame; these hinges and their arrangement are particularly clearly visible in FIGS. 8 and 9.

La figure 10 montre un mode de réalisation adapté à un cas, tout à fait différent du précédent, où la monture de l'invention sert de monture primaire, fixe, pour une antenne de grand diamètre et remplace purement et simplement la monture traditionnelle site-azimut. À cet effet, le triangle support d'antenne 3 est relié à l'antenne 37 en trois points 38 équidistants, solidaires de l'élément annulaire 39 du châssis support d'antenne situé au dos du réflecteur. Le triangle inférieur 1, quant à lui, est placé sur une base fixe 40, par exemple un socle bétonné, ou au sommet d'un bâtiment. Les actionneurs 6 et 7 assurent les mêmes fonctions que dans les modes de réalisation expliqués précédemment, mais avec, dans le cas présent des angles d'ouverture α et β très supérieurs, dans la mesure où il ne s'agit plus de compenser un léger défaut de pointage, mais de réaliser le pointage proprement dit.FIG. 10 shows an embodiment adapted to a case, quite different from the previous one, where the mount of the invention serves as a primary, fixed mount for a large diameter antenna and purely and simply replaces the traditional mount site- azimuth. To this end, the antenna support triangle 3 is connected to the antenna 37 at three equidistant points 38, integral with the annular element 39 of the antenna support frame located on the back of the reflector. The lower triangle 1, for its part, is placed on a fixed base 40, for example a concrete base, or at the top of a building. The actuators 6 and 7 perform the same functions as in the embodiments explained above, but with, in the present case very much greater opening angles α and β, insofar as it is no longer a question of compensating for a slight failure to score, but to carry out the pointing itself.

Claims (4)

  1. An adjustable-aiming antenna mount, in particular for a telecommunications antenna aiming at a satellite, comprising
    - a first dihedron (ABC, BCD) one of whose planes (ABC) is carried by a supporting base (10),
    - means (6) for adjusting the angle (α) of this first dihedron, characterized in that it comprises, moreover, a second dihedron (BCD, BDE), one of whose planes (BCD) is common with the first dihedron and whose other plane ((BDE) carries means (8) for supporting the antenna (9), the axis (BC) of the first dihedron and the axis (BD) of the second dihedron being neither parallel nor coincident, and
    - means (7) for adjusting the angle (β) of this second dihedron.
  2. The mount of claim 1, comprising,
    - a first structure (1) defining a first triangle (ABC), joined to the said supporting base,
    - a second structure (2) defining a second triangle (BCD), the first and the second triangle having a common side (BC) provided with a first articulated link (4) so as to constitute the first dihedron, the means (6) for adjusting the angle of the first dihedron being interposed between the apex (A) of the first triangle opposed to the articulation side and the apex (D) of the second triangle opposed to this same side, and
    - a third structure (3) defining a third triangle (BDE), the second and the third triangle having a common side (BD) provided with a second articulated link (5) so as to constitute the second dihedron, the means (7) for adjusting the angle of the second dihedron being interposed between the apex (D) of the second triangle opposed to the articulation side, and the apex (E) of the third triangle opposed to this same side.
  3. The mount of claim 2 in which the means for adjusting the first and the second dihedron are separable from the said structures, so as to allow the mount to be folded flat by closing the two dihedrons.
  4. The mount of claim 1, in which the means (6, 7) for adjusting the angles of the first and of the second dihedron are controlled by computer means (26) capable of transforming the set-point values expressed as the angles of elevation (S) and of the azimuth (A) into signals for directly controlling the position of these adjustment means.
EP93920932A 1992-09-25 1993-09-24 Ajustable-aiming antenna mount, particularly for satellite telecommunication antenna Expired - Lifetime EP0662254B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9211445 1992-09-25
FR9211445A FR2696281B1 (en) 1992-09-25 1992-09-25 Antenna mount with adjustable pointing, in particular for satellite telecommunications antenna.
PCT/FR1993/000937 WO1994008360A1 (en) 1992-09-25 1993-09-24 Ajustable-aiming antenna mount, particularly for satellite telecommunication antenna

Publications (2)

Publication Number Publication Date
EP0662254A1 EP0662254A1 (en) 1995-07-12
EP0662254B1 true EP0662254B1 (en) 1996-12-04

Family

ID=9433887

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93920932A Expired - Lifetime EP0662254B1 (en) 1992-09-25 1993-09-24 Ajustable-aiming antenna mount, particularly for satellite telecommunication antenna

Country Status (10)

Country Link
US (1) US5852423A (en)
EP (1) EP0662254B1 (en)
JP (1) JP2853815B2 (en)
AT (1) ATE146014T1 (en)
CA (1) CA2145540A1 (en)
DE (1) DE69306408T2 (en)
DK (1) DK0662254T3 (en)
ES (1) ES2097541T3 (en)
FR (1) FR2696281B1 (en)
WO (1) WO1994008360A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA00011380A (en) 1998-05-20 2005-06-20 L 3 Comm Essco Inc Multibeam satellite communication antenna.
US6404400B1 (en) 2001-01-30 2002-06-11 Andrew Corporation Antenna mount assembly
CA2453858A1 (en) * 2001-07-17 2003-01-30 Sieb & Meyer Ag A mirror-adjusting device, in particular for laser processing machines
WO2004090760A1 (en) * 2003-04-07 2004-10-21 Silverbrook Research Pty Ltd Competition entry
WO2010125763A1 (en) 2009-04-28 2010-11-04 パナソニック株式会社 Receiver
US9118106B2 (en) * 2012-03-07 2015-08-25 Verizon Patent And Licensing Inc. Variable orientation antenna platform
US9376221B1 (en) * 2012-10-31 2016-06-28 The Boeing Company Methods and apparatus to point a payload at a target
RU195909U1 (en) * 2019-11-21 2020-02-11 Алексей Георгиевич Петропавловский ROTARY ANTENNA ORIENTATION

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3707721A (en) * 1954-10-05 1972-12-26 Sperry Rand Corp Servo control system
FR2252663B1 (en) * 1973-11-22 1978-12-01 Gueguen Michel
GB1602194A (en) * 1978-05-31 1981-11-11 Marconi Co Ltd Tracking structures for antennas
FR2578058B1 (en) * 1985-02-25 1992-10-30 Dx Antenna METHOD AND DEVICE FOR TRACKING A COMMUNICATION SATELLITE
ATE55513T1 (en) * 1985-11-15 1990-08-15 Siemens Ag SUPPORT FRAME FOR A SATELLITE RADIOPARABOLOL REFLECTOR ANTENNA.
DE3643963A1 (en) * 1986-12-22 1987-12-17 Krupp Gmbh Load-bearing framework of a reflector

Also Published As

Publication number Publication date
EP0662254A1 (en) 1995-07-12
FR2696281A1 (en) 1994-04-01
JP2853815B2 (en) 1999-02-03
JPH08503108A (en) 1996-04-02
ATE146014T1 (en) 1996-12-15
DE69306408T2 (en) 1997-03-27
US5852423A (en) 1998-12-22
DE69306408D1 (en) 1997-01-16
DK0662254T3 (en) 1996-12-23
FR2696281B1 (en) 1994-11-04
WO1994008360A1 (en) 1994-04-14
CA2145540A1 (en) 1994-04-14
ES2097541T3 (en) 1997-04-01

Similar Documents

Publication Publication Date Title
EP2468629B1 (en) Large extendable rigid structures
EP0662254B1 (en) Ajustable-aiming antenna mount, particularly for satellite telecommunication antenna
EP2468630B1 (en) Extendable structure forming an antenna provided with a solar generator for a satellite
EP0082068B1 (en) Supporting structure for a solar collector
CA2426108A1 (en) Antenna mast and device for adjusting an antenna orientation
FR2517626A1 (en) ORBITAL SPACE ENGINE, IN PARTICULAR SATELLITE, WITH MULTIPLE MISSIONS
FR2529166A1 (en) METHOD OF MAINTAINING A SATELLITE POSITION BY NAVIGATION USING SOLAR SAILS AND A SPACE VEHICLE USING THE METHOD
FR2819784A1 (en) CARRIER STRUCTURE FOR A SATELLITE SAIL
WO2012107671A2 (en) Tracking support for solar panel
FR3068954A1 (en) NAVIGATION SATELLITE, FOR MID-TERRESTRIAL ORBIT
EP3055212B1 (en) Radiator with reduced solar irradiation for satellite and satellite provided with such a radiator
FR2784352A1 (en) Satellite thermal radiator heat dissipation structure has circuit component mountings and deployable thermal dissipater allowing second module full function
EP0678220B1 (en) Multisatellite television antenna mount
FR2646023A1 (en) Antenna pointing device, satellite equipped with such a device and antenna pointing process using such a device
EP0364974B1 (en) Antenna support adjustable in azimuth and elevation
EP4025502B1 (en) Method for producing a satellite from a generic configuration of antenna elements
EP0035930A1 (en) Mounting for an antenna for the reception of signals from a geostationary satellite, and antenna comprising such a mounting
FR2581615A1 (en) SATELLITE TELECOMMUNICATIONS GEOSTATIONNAIRE
EP2289124A2 (en) Antenna system assembly with built-in self-supporting antenna, and corresponding antenna system
EP0838876B1 (en) Apparatus for satellite reception including a planar antenna
FR2774515A1 (en) Aerial mounting bracket for use on pylon or building with inclined surface
FR3079090A1 (en) SUPPORT FOR SOLAR PANEL
WO2006075086A1 (en) Device for communicating with an unstable geostationary satellite
Merkle et al. The VLT adaptive optics programme.
FR2489248A1 (en) REMOTE DEVICE FOR SOLAR SATELLITE PANEL

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19950224

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES GB IT LI NL SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19960305

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES GB IT LI NL SE

REF Corresponds to:

Ref document number: 146014

Country of ref document: AT

Date of ref document: 19961215

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: IPTO S.A.

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19961205

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REF Corresponds to:

Ref document number: 69306408

Country of ref document: DE

Date of ref document: 19970116

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2097541

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19990812

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19990816

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19990907

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19990930

Year of fee payment: 7

Ref country code: DK

Payment date: 19990930

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20000911

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000918

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000920

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000924

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20000925

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20000929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000930

BERE Be: lapsed

Owner name: AGENCE SPATIALE EUROPEENNE

Effective date: 20000930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010401

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed

Ref document number: 93920932.6

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20010401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010924

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010925

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010924

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20021011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050924