EP0656671A1 - Antenne orientable avec conservation des axes de polarisation - Google Patents

Antenne orientable avec conservation des axes de polarisation Download PDF

Info

Publication number
EP0656671A1
EP0656671A1 EP94402741A EP94402741A EP0656671A1 EP 0656671 A1 EP0656671 A1 EP 0656671A1 EP 94402741 A EP94402741 A EP 94402741A EP 94402741 A EP94402741 A EP 94402741A EP 0656671 A1 EP0656671 A1 EP 0656671A1
Authority
EP
European Patent Office
Prior art keywords
reflector
source
antenna
radiation
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP94402741A
Other languages
German (de)
English (en)
Other versions
EP0656671B1 (fr
Inventor
Véronique Courtonne
Dominique Morin
Jean-Claude Lacombe
Jean-Pierre Carbonell
Didier Rene
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Espace Industries SA
Original Assignee
Alcatel Espace Industries SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel Espace Industries SA filed Critical Alcatel Espace Industries SA
Publication of EP0656671A1 publication Critical patent/EP0656671A1/fr
Application granted granted Critical
Publication of EP0656671B1 publication Critical patent/EP0656671B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/12Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems
    • H01Q3/16Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems for varying relative position of primary active element and a reflecting device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/18Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
    • H01Q19/19Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface
    • H01Q19/191Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface wherein the primary active element uses one or more deflecting surfaces, e.g. beam waveguide feeds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/18Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
    • H01Q19/19Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface
    • H01Q19/192Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface with dual offset reflectors

Definitions

  • the field of the invention is that of antennas for the emission and / or reception of electromagnetic radiation, and more particularly directive and orientable antennas, capable of emitting and / or receiving radiation in a determined and variable direction.
  • Such an antenna may consist of a radiation source and one or more reflector (s), the shape of the reflector (s) and the arrangement of the DU system / reflectors relative to the source determining the directivity of the antenna thus formed as well as the shape of the beam emitted or received.
  • An offset system is a system comprising a main reflector, the cut of which is eccentric relative to the axis of the surface considered. In the case of a single reflector, the primary source located on this axis is inclined to target the center of the reflector.
  • the invention relates more particularly to antennas capable of transmitting and / or receiving according to two orthogonal linear polarizations, and the success of their mission of which depends on this capacity. This is the case for some telecommunications antennas, for example, which use polarization diversity to allow reuse of the spectrum in a given frequency band. Another example concerns antennas for satellite broadcasting in DBS (Direct Broadcast by Satellite) or DTH (Direct to the Home) systems. Independent measurements according to orthogonal polarizations are also carried out by certain equipment radar, to determine the radar signature of a complex target, for example, or for weather or earth observation radars.
  • DBS Direct Broadcast by Satellite
  • DTH Direct to the Home
  • the present invention for its part, will be particularly advantageous when deployed in space, on board a satellite, an orbital station, a probe, or any other space platform.
  • a geostationary telecommunications satellite in most cases, must be able to communicate with a relatively limited number of fixed ground stations.
  • the orientations of the axes of orthogonal polarizations used in such a system can be arbitrary provided that some initial adjustments are made to the equipment on the ground before the transmission of the useful information.
  • the constraint to accept is that in this case, no temporal variation of the geometric parameters of the link can be tolerated, without causing the need for a new sequence of settings. In the known art, this poses almost no drawback, since the geometric parameters of connection with a geostationary satellite are in principle invariable.
  • a linear polarization can be chosen parallel to the trajectory of the satellite, known a priori from ephemerides, and with the other polarization chosen perpendicular to this trajectory and to the nadir.
  • Each fixed station on the ground can know in advance the orientations of the polarization axes used by the satellite, and the antenna on the ground can be adjusted accordingly.
  • the reuse of frequencies by diversity of polarizations can also provide advantages for direct broadcasting by satellite.
  • a ground user will not be obliged to reorient his antenna to target a second satellite in order to receive a second "bouquet" of emissions, if a first satellite can provide the programs of this second bouquet, with those of the first bouquet, from the only orbital position of the first satellite, in cross polarizations.
  • the invention seeks to remedy the drawbacks of the prior art for telecommunications satellites (transmit and / or receive antenna) and direct broadcast satellites (transmit antenna only).
  • the polarization of the wave received by the equipment can be used to better probe the target.
  • backscattering and depolarization of a polarized wave emitted by the satellite can reveal the nature of atmospheric precipitation, since depolarization depends on the size, concentration, and phase state (ice, liquid in droplets). , vapor) of the probed compounds.
  • radar backscatter from the sea surface can reveal the state of sea agitation through polarization measurements.
  • the sensitivity to polarization is variable depending on the mission.
  • the polarization of the initial wave can be arbitrary without influencing the result obtained, precisely because the targets themselves are not fixed but on the contrary of arbitrary orientation.
  • the situation is different in the case where one would like to observe a fixed target, illuminated by a polarized wave at separate times in time.
  • Such successive measurements can be used to observe the evolution of the target over time, or to improve the signal-to-noise ratio and the resolution of the fixed image by correlation of the successive images (subtraction of the background).
  • a typical case is the observation of the same geographical area or the same object on the ground, during the successive passages of a traveling satellite.
  • the successive orbits of such a satellite are not generally closed when viewed from the earth's surface, but rather describe a spiral whose step advances in longitude. These are for example heliosynchronous orbits.
  • the new problem addressed by the invention is the following: we would like an antenna whose elements can be oriented at will to allow the arbitrary orientation of the beam of radiation emitted or received, while allowing conservation axes of orthogonal linear polarizations, whatever the orientation of the beam.
  • the antenna according to the invention must allow the conservation of the axes of orthogonal linear polarizations even in the case of a rotation of the beam around its main direction of propagation.
  • the invention relates to an antenna according to claim 1; comprising at least one reflector and at least one source of electromagnetic radiation which define a direction of propagation capable of connecting them, said source comprising at least one radiating element and means of excitation of this element, these means being able to excite said at at least one radiating element according to two characteristic linear and orthogonal polarizations between them; at least one reflector being focusing and of any shape and any cut; said antenna further comprising mechanical means which connect the source (s) and the reflector (s) and which ensure their positioning; said antenna being capable of emitting or receiving electromagnetic radiation in a preferred direction whose orientation is determined by the arrangement of said reflector and of the source; said mechanical positioning means allowing the movement of at least one reflector relative to said preferred direction of radiation, characterized in that said mechanical positioning means make it possible to maintain said source in a position such that said axes of polarization can be kept during of a movement of at least one reflector relative to said preferred direction of radiation.
  • the source can be a simple horn, a microstrip radiator ("patch" in English), a slot, ... or the source can be a complex or extended source, for example a network of patches or slots, possibly in association with cavities.
  • the complex source can be a plurality of separate sources, with a selective reflector in polarization or with a plurality of frequency selective reflectors.
  • the source can be a direct source or a periscopic source. In short, the invention can be carried out using any source known to those skilled in the art for such applications.
  • said movement of at least one reflector comprises a rotation of said reflector around said preferred direction of radiation.
  • said movement comprises an angular displacement (depointing) of said preferred direction around a point which represents the position of the source.
  • said movement comprises a rotation of said reflector around said direction of propagation of radiation which connects said source and said reflector.
  • said direction of propagation between the source and the reflector coincides with said preferred direction of radiation.
  • said at least one reflector is a single reflector having parabolic generators, this reflector being illuminated by a source arranged substantially in its focus, and said reflector can be rotated around said direction of radiation while the source is kept stationary.
  • the geometry of the assembly is centered.
  • said single parabolic reflector is illuminated by a source arranged in an "offset" geometry, and said reflector can be rotated around said direction of radiation while the source is held stationary.
  • the antenna comprises at least two reflectors arranged in a geometry called "Gregory", offset or centered.
  • the two reflectors are arranged with their concave surfaces facing each other and each of them being illuminated either in offset or in center.
  • the antenna comprises at least two reflectors arranged in a Cassegrain geometry, including a main reflector which reflects said beam, and an auxiliary reflector which is illuminated by said source, and at least the main reflector can be rotated around said preferred direction of radiation while the source is kept stationary. Alternatively, all of the reflectors can be rotated around said preferred direction of radiation while the source is held stationary.
  • the antenna further comprises mechanical means for deflecting all of the constituents, without modification of their relative arrangement, in addition to the mechanical means previously described.
  • said focusing reflectors are of an arbitrary shape; however, the invention will be particularly advantageous if at least one reflector does not have axial symmetry (of rotation about an axis).
  • the reflector can be simple or complex.
  • a complex reflector can for example be a bigrille reflector consisting of two reflectors arranged one in front of the other in a direction of propagation of the beam, the first reflector having to be reflective for a first linear polarization, and transparent for a second orthogonal linear polarization , which will be reflected by the second reflector located behind said first reflector.
  • a bigrille reflector is well known to those skilled in the art.
  • said mechanical means allow the rotation of the source, of any shape, while keeping the reflector (s) fixed.
  • Figure 1 schematically shows a satellite Q in Earth orbit.
  • the satellite has a steerable antenna; according to the position of the reflector 11, the beam can be directed in different directions, to illuminate different places on the earth E.
  • the beam F directed according to the nadir illuminate the "spot" 1
  • the beams respectively F ', F' 'illuminate the spots 1', 1 '' spot is the English word used by those skilled in the art to designate the path on the ground of a narrow beam directed towards the earth E).
  • the beam can be oriented either mechanically by positioning a main reflector 11 as shown schematically in this figure, or electronically in the case of a network antenna by playing on the phases applied to the elementary sources of the network.
  • the description of the antenna of the invention will be made in transmission but it is understood that the invention also relates to a reception antenna having the same characteristics, as well as a transmission / reception antenna such as a radar or telecommunications antenna.
  • the amplification electronics associated with the antenna must be adapted: either to the power amplification for an antenna at transmission, or to the low noise amplification at reception, or both for a transmit / receive antenna.
  • the spot 1 has the shape of an ellipse having axes a, b; the ellipse being elongated along the axis a.
  • the axes x, y of polarization coincide with the axes a, b of the elliptical spot 1.
  • the elliptical spots 1 ', 1' ' are illuminated for example by the beams F', F '' of FIG. 1, obtained by orientation of the orientable antenna 11.
  • the relative orientation between the spots (1, 1 ', 1 '') can be obtained by a combination of antenna deflection which provides a translation of the spot, and a rotation of the antenna around the main axis of the emitted beam, to obtain a rotation of the axes of the ellipse .
  • a rotation of the antenna around the main axis of the beam is obtained by mechanical means which physically rotate the antenna around this main axis.
  • this antenna is supplied by one or more sources along two axes of linear orthogonal polarization
  • the axes of polarization undergo the same rotation as the axes of the spot on the ground.
  • the rotation of the axes of polarization cannot be tolerated, because it would inevitably cause interference between the signals conveyed by channels which are distinct and separated only by their polarization.
  • the antenna of the invention makes it possible to solve this problem and to obtain the result illustrated in FIG. 2.
  • the spots 1 ', 1'' can be illuminated by a translation and a rotation of the elliptical spot 1, but that the axes of polarization (x, y) are preserved whatever the orientation of the axes (a ', b'; a '', b '') of the elliptical spot (1 ', 1''respectively).
  • the elliptical spots are oriented to better cover the geographic areas indicated on a geopolitical map of Europe.
  • FIG. 3 shows schematically and in side section a parabolic antenna of the prior art.
  • the essential elements of this antenna are the focusing reflector 11 having the shape of a paraboloid of revolution around the axis of symmetry z, and the source 10 placed at the focus of the reflector 11.
  • the source of this example is a horn 10 supplied by a waveguide 12.
  • Mechanical means 13 are provided to maintain the source 10 at the focus of the reflector 11, in a fixed and optimal geometric arrangement.
  • the electromagnetic radiation emitted by the source 10 at the focus is reflected by the reflector 11 according to parallel rays which form a beam F of radiation along the main axis z.
  • FIGS. 4A, 4B, 4C are shown different views of an asymmetrical parabolic reflector, capable of making an elongated spot on the ground.
  • the shape of the reflector 11 when viewed in plan in FIG. 4B is almost rectangular.
  • the sections AA ', BB' shown respectively in FIGS. 4A, 4C, are arcs of paraboloids of different lengths. The arcs can have the same focal length, despite their different lengths, and the reflector 11 will have a single focus. The beam resulting from a source at the focus will have a rectangular section.
  • FIG. 5 shows in axial section a conventional Cassegrain geometry, which comprises a source 10 which illuminates an auxiliary reflector 21 through a hole 20 in a main parabolic reflector 11.
  • the conventional geometry is axisymmetric around the z axis which corresponds to the direction of propagation of the beam F.
  • the source 10 is either arranged on the z axis, or (in a variant not shown) imaged on the axis using a third periscope reflector (not shown).
  • the auxiliary reflector 21 in the form of a hyperboloid, the first focus C of which coincides with the focal point of the main parabolic reflector 11, while the phase center of the source 10 is imaged at the second focus C 'of the hyperboloid.
  • a ray emitted by the source 10 of the point C 'at an angle of ⁇ with respect to the axis z will be reflected from the surface of the auxiliary reflector 21 towards the main reflector 11 in a direction which will have for its origin the focal point C of the main parabolic reflector 11.
  • the rays arriving from the focal point C are reflected by the main parabolic reflector by a reflection angle ⁇ 'to form a beam F whose all the rays are parallel to the axis z.
  • the vector N represents the normal to the surface of the auxiliary reflector 21. and the vector N 'represents the normal to the surface of the main reflector 11.
  • Figure 6 shows schematically and in three dimensions in perspective the parabolic reflector (11) of Figures 4A, 4B, 4C, with a coordinate system which makes it possible to describe the movements of the antenna according to the invention.
  • the top of the reflector 11 is located at the origin 0, and the axis z represents the direction of propagation of the reflected waves (not shown).
  • the parabolic reflector 11 has an approximate rectangular shape when viewed in projection on a flat surface perpendicular to the z axis, for example the plane (x, y).
  • D is its width in the direction x, and D 'is its height in the direction y.
  • a section AA 'in the plane (x, z) describes a parabola
  • a section B'B in the plane (y, z) describes a parabola, in accordance with FIGS. 4A 4B and 4C.
  • the system has three degrees of freedom of movement: rotation by an angle ⁇ around the axis principal z; and a depointing which can be described by two angles ( ⁇ , ⁇ ) in two orthogonal planes whose intersection is the main axis z.
  • the depointing can be represented by the unit vector which is oriented along the angles of directions ( ⁇ , ⁇ , ⁇ ,) to arrive at a point P outside the z axis.
  • the angle ⁇ can be expressed as a function of the two independent variables ( ⁇ , ⁇ ).
  • the angle ⁇ represents the projection of the vector on the plane (x, z) and the point M 'the projection of the point P on this same plane (x, z).
  • the angle ⁇ represents the projection of the vector on the plane (x, y), and the point M the projection of the point P on this same plane (x, y).
  • the angle ⁇ represents the projection of the vector on the plane (y, z).
  • the projection of point P on this plane is not shown for reasons of clarity of the drawing.
  • a rotation of the reflector can be represented either by the angle ⁇ around the main axis z, or by the angle ⁇ 'around the unit vector ; these angles are not independent of each other.
  • Figure 7 shows schematically and in section a Gregory geometry with offset illumination.
  • the main parabolic reflector 11 is illuminated by the source 10 via an elliptical auxiliary reflector 13 disposed outside the main axis z of the beam F of the parallel rays.
  • the source 10 placed at the first focal point of the ellipse emits towards the auxiliary reflector 13 along the axis z '' and the waves are reflected towards the main reflector 11 and focused at a point C '' (focal point of the parabola and second focal point of the ellipse), from which they diverge to illuminate the whole of the main reflector 11.
  • This system therefore has two axes (z, z '') around which we can either rotate ⁇ around the z axis, or a rotation ⁇ '' around the z axis '', respectively.
  • Figure 8 shows schematically and in plan an example of an embodiment according to the invention of an antenna Cassegrain orientable with polarization conservation.
  • the main parabolic reflector 11 is illuminated by the source 10 via the auxiliary hyperbolic reflector 21, one of the focal points of which is placed at the focal point of the main parabolic reflector 11.
  • the two reflectors (11, 21) are maintained mechanically in relative position by means of supports S1.
  • the assembly comprising the source (10), the reflectors (11, 21) and the mechanical positioning means (deflection, rotation) is fixed by means of the supports S3 to the platform Q, a satellite for example.
  • the positioning means comprise three stepping motors (R ⁇ , R ⁇ , R ⁇ ) capable of effecting angular displacements ( ⁇ , ⁇ , ⁇ ) explained in FIG. 6. These means are mounted on a small platform Q 'which rests on supports S3.
  • the deflection means (R ⁇ , R ⁇ ) are fixed on the small platform Q 'and drive the support S2 which supports the axial rotation motor R ⁇ .
  • This axial rotation motor R ⁇ is mechanically fixed to the main reflector 11 to perform a rotation ( ⁇ ) of the latter around the main axis z. Unlike the antennas known in the prior art, the rotation of the main reflector 11 does not cause the rotation of the source 10, which is not fixed to the reflector 11.
  • the source 10 is supplied with two orthogonal polarizations which also remain fixed relative to the source 10 during a rotation ⁇ of the main reflector.
  • FIG. 9 the same embodiment in FIG. 8 is shown in three dimensions and in perspective seen from above.
  • the elements already described in Figure 8 have the same references.
  • This characteristic already present in the centered Cassegrain geometry, is used according to the invention to isolate the source 10 of rotations ⁇ of the main reflector and of the auxiliary reflector linked to the main 11 around the z axis.
  • the orthogonal sections (A, A '; B, B') of the main reflector 11 are parabolas as in FIGS. 4A, 4B, 4C and 6.
  • the projections of points A, A '; B, B 'on the x plane, y are the points a, a'; b, b 'respectively, and gives the lateral dimensions of the main reflector 11 and of the auxiliary reflector 21 fixed to the main reflector 11 by the support rods S1.
  • these lateral dimensions (aa ', bb') are unequal, and the section of the beam F (not shown) can have an arbitrary shape determined by the shape of the perimeter of the main reflector 11, elliptical in this example.
  • the source 10 of this example is a horn, but can be produced according to any other technology known to those skilled in the art.
  • the source 10 can be a network of elementary sources produced in microstrip technology.
  • FIG. 10 schematically shows in axial section another embodiment according to the invention which represents a variant of the antenna shown in FIGS. 8 and 9.
  • auxiliary periscopic reflector 14 which receives the radiation from the source 10 offset on the z 'axis parallel to the x axis and perpendicular to the main z axis .
  • This auxiliary reflector 14 is arranged in such a way that it reflects the radiation from the source 10 along the z axis to illuminate the hyperbolic auxiliary reflector 21. Everything then takes place according to the description which has been made of FIGS. 8 and 9.
  • the source 10 remains stationary relative to the platforms Q and Q ', even during a rotation ⁇ of the main and auxiliary reflector 11 by the motor R ⁇ .
  • the position of the auxiliary reflector 14 is adjusted to hold the reflection of the radiation from the source 10 along the main axis z to illuminate the auxiliary reflector 21.
  • FIG. 11 shows schematically and in partial section another example of an embodiment according to the invention of an adjustable offset Cassegrain antenna with polarization conservation.
  • the main parabolic reflector 11 is illuminated by the source 10 via an auxiliary reflector 15.
  • the main reflector is offset offset by the auxiliary reflector at an angle of ⁇ relative to the normal N 'of the main reflector 11 at its summit; the beam F (not shown) is reflected at the same angle ⁇ of the normal N 'along the main axis z.
  • the beam deflection is obtained in this example by positioning the main reflector by the means R ⁇ , R ⁇ .
  • Different mechanical means of static support are shown (S5, S6, S7), as well as a removable support S4 which supports the platform Q '' along the main axis z, while allowing its movement in a plane perpendicular to z.
  • Different means of thermal insulation I1, I2 are also shown in this figure.
  • the main axis z is distant from the illumination axis z 'of the auxiliary reflector 15, and the two axes are parallel.
  • a mobile platform Q '' on which the main reflector 11 and the means of the support (S5, S6, S7) and of deflection (R ⁇ , R ⁇ ) of the latter are mounted, can be moved by the means R ⁇ by an angle ⁇ around the z axis of primary illumination. Since the source 10 remains fixed relative to the platform Q (a satellite for example) during a rotation ⁇ around the axis z ', the axes of polarization remain invariant with respect to the platform Q.
  • the support means S8 of the auxiliary reflector 15 connects the latter to the mobile platform Q '', which means that a rotation of the latter does not cause any modification the relative geometry of the two main 11 and auxiliary 15 reflectors.
  • the depointing means are mechanical and act on the main reflector, but the invention can also make use of electronic depointing (by phase shifts of the elementary sources in the network) or else, to a depointing effected by mechanical means which act on an auxiliary or auxiliary periscope reflector.
  • the rotation of the spot formed on the ground can be obtained either by a rotation ⁇ around the main axis (z), or by a rotation ⁇ of the reflector system (s) around the axis of primary illumination z ', or by a rotation ⁇ ' around a depointed main axis .
  • a decoupling of the deflection means and of rotation means around one of the axes (z, z ', ) propagation of electromagnetic radiation allows the orientation of the beam with conservation of the polarization.

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

L'antenne de l'invention est orientable, directive, et capable de fonctionner soit en émission, soit en réception, soit les deux. L'antenne comprend au moins un réflecteur, au moins une source de rayonnement électromagnétique comprenant des moyens d'excitation de cette source selon deux polarisations linéaires orthogonales, et des moyens mécaniques de positionnement et de maintien de la source et du réflecteur. Selon l'invention, l'orientation de l'antenne est décomposée en un dépointage et une rotation autour d'une direction privilégiée de propagation du rayonnement, et les moyens mécaniques permettent d'effectuer cette rotation tout en maintenant la source fixe, conservant ainsi l'orientation des axes de polarisation linéaires orthogonales. Dans une réalisation préférée, l'antenne de l'invention comprend un réflecteur parabolique principal et un réflecteur auxiliaire hyperbolique disposés dans une géométrie Cassegrain, et les moyens mécaniques permettent d'effectuer une rotation des deux réflecteurs autour de la direction privilégiée du rayonnement, tout en maintenant la source fixe, conservant ainsi les axes de polarisations linéaires orthogonales du faisceau. Applications en radar, télédiffusion directe par satellite, et en télécommunications par voie hertzienne avec réutilisation de fréquences par diversité de polarisation, particulièrement avantageuse pour des applications spatiales ou aéroportées. <IMAGE>

Description

  • Le domaine de l'invention est celui des antennes pour l'émission et/ou la réception du rayonnement électromagnétique, et plus particulièrement des antennes directives et orientables, aptes à émettre et/ou à recevoir du rayonnement selon une direction déterminée et variable. Une telle antenne peut être constituée par une source de rayonnement et un ou plusieurs réflecteur(s), la forme de de(s) réflecteur(s) et la disposition du système DU/des réflecteurs relativement à la source déterminant la directivité de l'antenne ainsi constituée ainsi que la forme du faisceau émis ou reçu.
  • De nombreux exemples d'antennes directives connus de l'homme de l'art peuvent être concernés par la présente invention, telles les antennes dites paraboliques, les antennes Cassegrain, les antennes Gregory et cetera, avec leurs variantes ayant une illumination soit axiale, soit "offset". Un système offset est un système comportant un réflecteur principal dont la découpe est excentrée par rapport à l'axe de la surface considérée. Dans le cas mono réflecteur, la source primaire située sur cet axe est inclinée pour viser le centre du réflecteur.
  • L'invention concerne plus particulièrement des antennes aptes à émettre et/ou à recevoir selon deux polarisations linéaires orthogonales, et dont le succès de leur mission dépend de cette capacité. Tel est le cas pour certaines antennes de télécommunications, par exemple, qui utilisent la diversité de polarisation pour permettre la réutilisation du spectre dans une bande de fréquences donnée. Un autre exemple concerne des antennes pour la télédiffusion par satellite dans des systèmes DBS (Direct Broadcast by Satellite) ou encore DTH (Direct to the Home). Des mesures indépendantes selon des polarisations orthogonales sont aussi effectuées par certains équipements radar, pour déterminer la signature radar d'une cible complexe, par exemple, ou pour des radars météorologiques ou d'observation de la terre.
  • Dans l'art connu, de telles réalisations ont été, dans leur plus grande majorité, des systèmes terrestres fixes voire embarqués sur des plateformes mobiles terrestres ou aéroportés.
  • La présente invention, quant à elle, sera particulièrement avantageuse quand déployée dans l'espace, à bord d'un satellite, d'une station orbitale, d'une sonde, ou de tout autre plateforme spatiale.
  • En effet, un nouveau problème peut apparaître quand on veut extrapoler à partir des systèmes terrestres de l'art connu, pour concevoir un système spatial utilisant la diversité de polarisation, à savoir : les axes implicites de référence dont nous jouissons sur la surface terrestre, la verticale et l'horizontale, n'existent pas dans l'espace. En conséquence, la conservation de ces axes comme références est remise en question.
  • Ce problème n'est pas insurmontable, et l'on peut même très facilement le résoudre en acceptant différentes contraintes sur le système.
  • Par exemple, un satellite géostationnaire de télécommunications, le plus souvent, doit pouvoir communiquer avec un nombre relativement limité de stations fixes au sol. Les orientations des axes de polarisations orthogonales utilisées dans un tel système peuvent être arbitraires à condition d'opérer quelques réglages initiaux sur l'équipement au sol avant la transmission des informations utiles. La contrainte à accepter est que dans ce cas, aucune variation temporelle des paramètres géométriques de la liaison ne peut être tolérée, sans entraîner le besoin d'une nouvelle séquence de réglages. Dans l'art connu, ceci ne pose aucun inconvénient ou presque, car les paramètres géométriques de liaison avec un satellite géostationnaire sont en principe invariables.
  • La situation est différente pour un satellite en orbite basse, en orbite polaire, ou en orbite inclinée (orbites Walker, Molnya, et cetera) ; ces orbites pouvant être elliptiques ou circulaires. Les satellites placés sur de telles orbites défilent dans le ciel quand vu par un observateur à partir d'un point fixe sur le globe terrestre. En conséquence, une liaison entre un tel satellite dit "défilant" et une station fixe au sol sera selon une direction qui subit une variation en permanence due au mouvement du satellite.
  • Encore, pour ces satellites défilant, il n'y a pas forcément de problème insurmontable à utiliser des polarisations linéaires orthogonales à condition d'accepter certaines contraintes dans la conception du système. Par exemple, une polarisation linéaire peut être choisie parallèle à la trajectoire du satellite, connue a priori à partir d'éphémérides, et avec l'autre polarisation choisie perpendiculaire à cette trajectoire et au nadir. Chaque station fixe au sol peut connaître à l'avance les orientations des axes de polarisation utilisées par le satellite, et l'antenne au sol peut être réglée en conséquence.
  • L'importance et la fréquence de tels réglages dépendront de la liberté que l'on veut accorder aux paramètres géométriques de la liaison établie entre le satellite défilant et la station au sol. Dans la mesure où la liaison n'est exploitée que lorsque ces paramètres sont identiques ou presque (variations faibles des valeurs pouvant être tolérées dans une fourchette dont la largeur est déterminée par le bilan de liaison en polarisations croisées), il n'y a pas de problème d'interférences à prévoir entre deux canaux de transmission exploités à la même fréquence en polarisations orthogonales (diversité de polarisation).
  • Mais cette contrainte est un problème dans les systèmes connus de l'art antérieur, dans la mesure où la possibilité d'orienter l'antenne embarquée se trouve limitée par les spécifications de performances radioélectriques émises par des administrations nationales et internationales (FCC, CCITT, ITU, et cetera) pour les transmissions par voie hertzienne. Dans les systèmes connus, l'orientation de l'antenne peut faire varier les performances en dehors de la fourchette étroite permise par ces normes et ces spécifications.
  • La réutilisation de fréquences par diversité de polarisations peut aussi procurer des avantages pour la télédiffusion directe par satellite. Un utilisateur au sol ne sera pas obligé de réorienter son antenne pour viser un deuxième satellite en vue de capter un deuxième "bouquet" d'émissions, si un premier satellite peut fournir les programmes de ce deuxième bouquet, avec ceux du premier bouquet, depuis l'unique position orbitale du premier satellite, en polarisations croisées.
  • L'invention cherche à remédier aux inconvénients de l'art antérieur pour les satellites de télécommunications (antenne émission et/ou réception) et les satellites de télédiffusion directe (antenne émission uniquement).
  • Dans les systèmes de radar météorologique embarqué et d'observation de la terre, la polarisation de l'onde reçue par l'équipement peut être utilisée pour mieux sonder la cible. Par exemple, la rétrodiffusion et la dépolarisation d'une onde polarisée émise par le satellite peuvent révéler la nature des précipitations atmosphériques, car la dépolarisation dépend de la taille, de la concentration, et de l'état de phase (glace, liquide en gouttelettes, vapeur) des composés sondés. Dans un autre exemple, la rétrodiffusion radar à partir de la surface de la mer peut révéler l'état d'agitation de la mer par le biais de mesures en polarisation.
  • La sensibilité à la polarisation est variable suivant la mission. Pour ces deux derniers exemples, la polarisation de l'onde initiale peut être arbitraire sans influer sur le résultat obtenu, justement parce que les cibles elles-mêmes ne sont pas fixes mais au contraire d'orientation arbitraire.
  • La situation est différente dans le cas où l'on voudrait observer une cible fixe, illuminée par une onde polarisée à des moments séparés dans le temps. De telles mesures successives peuvent servir à observer l'évolution de la cible dans le temps, ou bien pour améliorer le rapport de signal sur bruit et la résolution de l'image fixe par corrélation des images successives (soustraction du fond). Un cas typique en est l'observation d'une même aire géographique ou d'un même objet au sol, lors des passages successifs d'un satellite défilant. Les orbites successives d'un tel satellite ne sont pas closes en général quand vues de la surface terrestre, mais décrivent plutôt une spirale dont le pas avance en longitude. Ce sont par exemple des orbites héliosynchrones.
  • Un problème avec un tel système de l'art antérieur est que les vecteurs de polarisations orthogonales alors qu'ils peuvent être arbitraires pour des observations isolées, doivent être conservés pour effectuer la corrélation de mesures successives. Or, ces vecteurs ont tendance à évoluer pour au moins deux raisons. D'une part, la précession de l'orbite introduit des facteurs géométriques variables mais prévisibles ; d'autre part la visée au sol d'un même endroit à partir d'orbites successives engendre d'autres variations de paramètres géométriques, qui doivent être prises en compte dans les corrélations à effectuer.
  • Exprimé de façon la plus générale, le nouveau problème adressé par l'invention est le suivant : on voudrait une antenne dont les éléments peuvent être orientés à volonté pour permettre l'orientation arbitraire du faisceau de rayonnement émis ou reçu, tout en permettant la conservation des axes de polarisations linéaires orthogonales, quelle que soit l'orientation du faisceau. De plus, l'antenne selon l'invention doit permettre la conservation des axes de polarisations linéaires orthogonales même dans le cas d'une rotation du faisceau autour de sa direction principale de propagation.
  • Pour résoudre ce problème, l'invention concerne une antenne selon la revendication 1 ; comprenant au moins un réflecteur et au moins une source de rayonnement électromagnétique qui définissent une direction de propagation apte à les relier, ladite source comprenant au moins un élément rayonnant et des moyens d'excitation de cet élément, ces moyens étant aptes à exciter ledit au moins un élément rayonnant selon deux polarisations caractéristiques linéaires et orthogonales entre elles ; au moins un réflecteur étant focalisant et d'une forme quelconque et d'une découpe quelconque ; ladite antenne comprenant en outre des moyens mécaniques qui relient la (les) sources et le(s) réflecteurs et qui assurent leur positionnement ; ladite antenne étant apte à émettre ou à recevoir un rayonnement électromagnétique selon une direction privilégiée dont l'orientation est déterminée par la disposition dudit réflecteur et de la source ; lesdits moyens mécaniques de positionnement permettant le mouvement d'au moins un réflecteur par rapport à ladite direction privilégiée du rayonnement, caractérisé en ce que lesdits moyens mécaniques de positionnement permettent de maintenir ladite source en une position telle que lesdits axes de polarisation peuvent être conservées lors d'un mouvement d'au moins un réflecteur par rapport à ladite direction privilégiée du rayonnement.
  • La nature de la source sera déterminée par le concepteur selon la mission à accomplir. Par exemple, la source peut être un simple cornet, un radiateur microruban ("patch" en anglais), une fente,... ou encore la source peut être une source complexe ou étendue, par exemple un réseau de patches ou de fentes, éventuellement en association avec des cavités. La source complexe peut être une pluralité de sources séparées, avec un réflecteur sélectif en polarisation ou avec une pluralité de réflecteurs sélectifs en fréquence. La source peut être une source directe ou une source périscopique. Bref, l'invention peut être réalisée utilisant toute source connue de l'homme de l'art pour de telles applications.
  • Selon une caractéristique de l'invention, ledit mouvement d'au moins un réflecteur comprend une rotation dudit réflecteur autour de ladite direction privilégiée de rayonnement. Selon une autre caractéristique, ledit mouvement comprend un déplacement angulaire (dépointage) de ladite direction privilégiée autour d'un point qui représente la position de la source. Selon une variante, ledit mouvement comprend une rotation dudit réflecteur autour de ladite direction de propagation de rayonnement qui relie ladite source et ledit réflecteur.
  • Selon une caractéristique particulière, ladite direction de propagation entre la source et le réflecteur coïncide avec ladite direction privilégiée de rayonnement.
  • Selon une réalisation particulière de l'invention, ledit au moins un réflecteur est un réflecteur unique ayant des génératrices paraboliques, ce réflecteur étant illuminé par une source disposée sensiblement en son foyer, et ledit réflecteur peut être tourné autour de ladite direction de rayonnement tandis que la source est maintenue fixe. La géométrie de l'ensemble est centrée.
  • Selon une variante, ledit réflecteur parabolique unique, est illuminé par une source disposée dans une géométrie "offset", et ledit réflecteur peut être tourné autour de ladite direction de rayonnement tandis que la source est maintenue fixe.
  • Selon une autre réalisation particulière, l'antenne comprend au moins deux réflecteurs disposés selon une géométrie dite "Gregory", offset ou centrée. Les deux réflecteurs sont disposés avec leurs surfaces concaves se faisant face et chacun d'eux étant illuminés soit en offset, soit en centrée.
  • Selon une autre réalisation particulièrement avantageuse, l'antenne comprend au moins deux réflecteurs disposés dans une géométrie Cassegrain, dont un réflecteur principal qui réfléchit ledit faisceau, et un réflecteur auxiliaire qui est illuminé par ladite source, et au moins le réflecteur principal peut être tourné autour de ladite direction privilégiée de rayonnement tandis que la source est maintenue fixe. Selon une variante, l'ensemble des réflecteurs peut être tourné autour de ladite direction privilégiée de rayonnement tandis que la source est maintenue fixe. Selon une caractéristique additionnelle, l'antenne comprend en outre des moyens mécaniques de dépointage de l'ensemble des constituants, sans modification de leur disposition relative, en plus des moyens mécaniques précédemment décrits.
  • Dans toute les réalisations lesdits réflecteurs focalisant sont d'une forme arbitraire ; toutefois, l'invention sera particulièrement avantageuse si au moins un réflecteur ne comporte pas de symétrie axiale (de rotation autour d'un axe).
  • Le réflecteur peut être simple ou complexe.
  • Un réflecteur complexe peut être par exemple un réflecteur bigrille constitué de deux réflecteurs disposés l'un devant l'autre selon une direction de propagation du faisceau, le premier réflecteur devant être réfléchissant pour une première polarisation linéaire, et transparent pour une deuxième polarisation linéaire orthogonale, qui sera réfléchie par le deuxième réflecteur situé derrière ledit premier réflecteur. Un tel réflecteur bigrille est bien connu de l'homme de l'art. Dans une variante de l'invention utilisant un réflecteur bigrille, lesdits moyens mécaniques permettent la rotation de la source, de forme quelconque, tout en maintenant le(s) réflecteur(s) fixe(s).
  • D'autres caractéristiques et avantages de l'invention apparaîtront lors de la description détaillée qui suit, avec ses dessins annexés, dont :
    • la figure 1 montre schématiquement un satellite avec un faisceau orientable sur orbite terrestre ;
    • la figure 2 montre schématiquement les tracés au sol d'un faisceau orientable d'une antenne orientable selon l'invention avec conservation de la polarisation ;
    • la figure 3 montre schématiquement et en coupe latérale une antenne parabolique selon l'art antérieur ;
    • les figures 4A, 4B, 4C montrent respectivement en coupe AA', en plan, et en coupe BB', un réflecteur parabolique asymétrique selon une variante de l'invention ;
    • la figure 5 montre schématiquement et en coupe la géométrie Cassegrain centrée ;
    • la figure 6 montre schématiquement en trois dimensions et en perspective, le réflecteur parabolique des figures 4A, 4B, 4C avec un système de coordonnées qui permet de décrire les mouvements de l'antenne selon l'invention ;
    • la figure 7 montre schématiquement et en coupe une géométrie Gregory à l'illumination en offset ;
    • la figure 8 montre schématiquement et vue de côté, un exemple d'une réalisation d'une antenne Cassegrain selon l'invention ;
    • la figure 9 montre schématiquement en trois dimensions et en vue plongeante, l'exemple de réalisation de la figure 8 ;
    • la figure 10 montre un autre exemple en coupe axiale d'une réalisation d'antenne selon l'invention, dans une géométrie Cassegrain centrée avec adjonction d'un réflecteur périscopique auxiliaire et la source déportée ;
    • la figure 11 montre schématiquement et en coupe partielle, un autre exemple d'une réalisation d'antenne selon l'invention, dans une géométrie Cassegrain offset.
  • Les dessins représentent des exemples non limitatifs de réalisations selon l'invention. Les mêmes repères désignent les mêmes éléments sur les différentes figures. L'échelle n'est pas toujours respectée pour des raisons de clarté.
  • La figure 1 montre schématiquement un satellite Q sur orbite terrestre.
  • Le satellite comporte une antenne orientable ; selon la position du réflecteur 11, le faisceau peut être dirigé selon différentes directions, pour illuminer différents endroits sur la terre E. Dans l'exemple de la figure 1, nous voyons le faisceau F dirigé selon le nadir illuminer le "spot" 1, alors que les faisceaux respectivement F', F'' illuminent les spots 1', 1'' (spot est le mot anglais utilisé par l'homme de l'art pour désigner le tracé au sol d'un faisceau étroit dirigé vers la terre E).
  • Le faisceau peut être orienté soit mécaniquement par positionnement d'un réflecteur principal 11 comme montré schématiquement sur cette figure, soit électroniquement dans le cas d'une antenne réseau en jouant sur les phases appliquées sur les sources élémentaires du réseau.
  • Dans toute la description qui suit, nous exposons le fonctionnement d'une antenne en émission uniquement. Cependant, l'homme de l'art connaît la réciprocité de la théorie des antennes passives selon laquelle une antenne agit de la même manière en émission et en réception moyennant une inversion du signe du temps (t) dans les équations qui décrivent la propagation électromagnétique (équations de Maxwell).
  • La description de l'antenne de l'invention sera faite en émission mais il est entendu que l'invention concerne également une antenne de réception ayant les mêmes caractéristiques, ainsi qu'une antenne émission/réception telle une antenne radar ou de télécommunications. Parmi ces différentes variantes, l'électronique d'amplification associée à l'antenne doit être adaptée : soit à l'amplification de puissance pour une antenne à l'émission, soit à l'amplification faible bruit à la réception, soit les deux pour une antenne émission/réception.
  • Sur la figure 2, nous voyons les tracés au sol d'une antenne orientable selon l'invention avec conservation des vecteurs de polarisation linéaire selon les axes x, y. Dans cet exemple, le spot 1 a la forme d'une ellipse ayant des axes a, b ; l'ellipse étant allongée selon l'axe a. Les axes x, y de polarisation coïncident avec les axes a, b du spot elliptique 1.
  • Les spots elliptiques 1', 1'' sont illuminés par exemple par les faisceaux F', F'' de la figure 1, obtenus par orientation de l'antenne orientable 11. L'orientation relative entre les spots (1, 1', 1'') peut être obtenue par une combinaison de dépointage de l'antenne qui procure une translation du spot, et une rotation de l'antenne autour de l'axe principal du faisceau émis, pour obtenir une rotation des axes de l'ellipse.
  • Dans une antenne orientable de l'art connu, une rotation de l'antenne autour de l'axe principal du faisceau est obtenue par des moyens mécaniques qui tournent l'antenne physiquement autour de cet axe principal. Dans le cas où cette antenne est alimentée par une ou plusieurs sources selon deux axes de polarisation linéaire orthogonaux, les axes de polarisation subissent la même rotation que les axes du spot au sol. Pour les applications envisagées de l'invention, la rotation des axes de polarisation ne peut être tolérée, car elle engendrerait inévitablement une interférence entre les signaux véhiculés par des canaux qui ne sont distincts et séparés que par leur polarisation.
  • L'antenne de l'invention permet de résoudre ce problème et d'obtenir le résultat illustré sur la figure 2. Nous constatons que les spots 1', 1'' peuvent être illuminés par une translation et une rotation du spot elliptique 1, mais que les axes de polarisation (x, y) sont conservés quelle que soit l'orientation des axes (a', b' ; a'', b'') du spot elliptique (1', 1'' respectivement). Dans cet exemple, les spots elliptiques sont orientés pour mieux couvrir les aires géographiques indiquées sur une carte géopolitique de l'Europe.
  • Pour mieux comprendre comment l'invention permet de résoudre le problème posé, la figure 3 montre schématiquement et en coupe latérale une antenne parabolique de l'art antérieur. Les éléments essentiels de cette antenne sont le réflecteur focalisant 11 ayant la forme d'un paraboloïde de révolution autour de l'axe de symétrie z, et la source 10 placée au foyer du réflecteur 11.
  • La source de cet exemple est un cornet 10 alimenté par un guide d'onde 12. Des moyens mécaniques 13 sont prévus pour maintenir la source 10 au foyer du réflecteur 11, dans une disposition géométrique fixe et optimale. La radiation électromagnétique émise par la source 10 au foyer est réfléchie par le réflecteur 11 selon des rayons parallèles qui forment un faisceau F de rayonnement selon l'axe principal z.
  • Dans le cas d'un réflecteur principal 10 ayant une symétrie de révolution, il n'y a pas lieu d'effectuer une rotation de l'antenne autour de l'axe principal z car le spot au nadir sera circulaire.
  • Sur les figures 4A, 4B, 4C sont montrées différentes vues d'un réflecteur parabolique asymétrique , apte à faire un spot allongé sur le sol. La forme du réflecteur 11 quand vue en plan en figure 4B est quasi rectangulaire. Les coupes AA', BB' montrées respectivement en figures 4A, 4C, sont des arcs de paraboloïdes de longueurs différentes. Les arcs peuvent avoir la même longueur focale, malgré leurs longueurs différentes, et le réflecteur 11 aura un foyer unique. Le faisceau résultant d'une source au foyer aura une section rectangulaire.
  • La figure 5 montre en coupe axiale une géométrie Cassegrain classique, qui comprend une source 10 qui illumine un réflecteur auxiliaire 21 à travers un trou 20 dans un réflecteur principal parabolique 11. La géométrie classique est axisymétrique autour de l'axe z qui correspond à la direction de propagation du faisceau F. La source 10 est soit disposée sur l'axe z, soit (dans une variante non montrée) imagée sur l'axe à l'aide d'un troisième réflecteur périscopique (non montré).
  • Le réflecteur auxiliaire 21 à la forme d'un hyperboloïde, dont le premier foyer C coïncide avec le point focal du réflecteur principal parabolique 11, tandis que le centre de phase de la source 10 est imagé au deuxième foyer C' de l'hyperboloïde.
  • De cette manière, un rayon émis par la source 10 du point C' à un angle de ϑ par rapport à l'axe z sera réfléchi de la surface du réflecteur auxiliaire 21 vers le réflecteur principal 11 selon une direction qui aura pour son origine le point focal C du réflecteur principal parabolique 11. Les rayons arrivant du point focal C sont réfléchis par le réflecteur principal parabolique par un angle de réflexion ϑ' pour former un faisceau F dont tous les rayons sont parallèles à l'axe z.
  • Le vecteur N représente la normale à la surface du réflecteur auxiliaire 21. et le vecteur N' représente la normale à la surface du réflecteur principal 11.
  • La figure 6 montre schématiquement et en trois dimensions en perspective le réflecteur parabolique (11) des figures 4A, 4B, 4C, avec un système de coordonnées qui permet de décrire les mouvements de l'antenne selon l'invention. Le sommet du réflecteur 11 est situé à l'origine 0, et l'axe z représente la direction de propagation des ondes réfléchies (non-montrées).
  • Le réflecteur parabolique 11 a une forme rectangulaire approximative quand vu en projection sur une surface plane perpendiculaire à l'axe z, par exemple le plan (x, y).
  • D est sa largeur selon la direction x, et D' est sa hauteur selon la direction y. Une coupe AA' dans le plan (x, z) décrit une parabole, et une coupe B'B dans le plan (y, z) décrit une parabole, conformément aux figures 4A 4B et 4C.
  • Le système possède trois degrés de liberté de mouvement : une rotation par un angle φ autour de l'axe principal z ; et un dépointage qui peut être décrit par deux angles (α, β) dans deux plans orthogonaux dont l'intersection est l'axe principal z. Le dépointage peut être représenté par le vecteur unitaire
    Figure imgb0001
    qui est orienté selon les angles de directions (α, β, γ, ) pour aboutir à un point P en dehors de l'axe z. L'angle γ peut être exprimé comme une fonction des deux variables indépendantes (α, β).
  • L'angle α représente la projection du vecteur
    Figure imgb0002
    sur le plan (x, z) et le point M' la projection du point P sur ce même plan (x, z).
  • L'angle γ représente la projection du vecteur
    Figure imgb0003
    sur le plan (x, y), et le point M la projection du point P sur ce même plan (x, y). l'angle β représente la projection du vecteur
    Figure imgb0004
    sur le plan (y, z). La projection du point P sur ce plan n'est pas montrée pour des raisons de clarté du dessin.
  • Une rotation du réflecteur peut être représentée soit par l'angle φ autour de l'axe principal z, soit par l'angle φ' autour du vecteur unitaire
    Figure imgb0005
    ; ces angles ne sont pas indépendants l'un de l'autre.
  • La figure 7 montre schématiquement et en coupe une géométrie Gregory à l'illumination en offset. Le réflecteur principal parabolique 11 est illuminé par la source 10 via un réflecteur auxiliaire elliptique 13 disposé en dehors de l'axe principal z du faisceau F des rayons parallèles. La source 10 placée au premier foyer de l'ellipse émet vers le réflecteur auxiliaire 13 selon l'axe z'' et les ondes sont réfléchies vers le réflecteur principal 11 et focalisées en un point C'' (foyer de la parabole et deuxième foyer de l'ellipse), d'où elles divergent pour illuminer la totalité du réflecteur principal 11. Ce système possède donc deux axes (z, z'') autour desquels on peut effectuer soit une rotation φ autour de l'axe z, soit une rotation φ'' autour de l'axe z'', respectivement.
  • La figure 8 montre schématiquement et en plan un exemple d'une réalisation selon l'invention d'une antenne Cassegrain orientable avec conservation de polarisation. Comme dans la figure 5, le réflecteur parabolique principal 11 est illuminé par la source 10 via le réflecteur hyperbolique auxiliaire 21, dont l'un des foyers est disposé au foyer du réflecteur parabolique principal 11. Les deux réflecteurs (11, 21) sont maintenus mécaniquement en position relative moyennant des supports S₁.
  • L'ensemble comprenant la source (10), les réflecteurs (11, 21) et les moyens mécaniques de positionnement (dépointage, rotation) est fixé moyennant les supports S₃ à la plateforme Q, un satellite par exemple.
  • Les moyens de positionnement comprennent trois moteurs pas à pas (Rφ, Rα, Rβ) capable d'effectuer des déplacements angulaires (φ, α, β) explicités sur la figure 6. Ces moyens sont montés sur une petite plateforme Q' qui repose sur les supports S₃.
  • Les moyens de dépointage (Rα, Rβ) sont fixés sur la petite plateforme Q' et entraînent le support S₂ qui soutient le moteur de rotation axiale Rφ. Ce moteur de rotation axiale Rφ est fixé mécaniquement au réflecteur principal 11 pour effectuer une rotation (φ) de ce dernier autour de l'axe principal z. A la différence des antennes connues de l'art antérieur la rotation du réflecteur principal 11 n'entraîne pas la rotation de la source 10, qui n'est pas fixée au réflecteur 11.
  • La source 10 est alimentée en deux polarisations orthogonales qui elles aussi restent fixes par rapport à la source 10 lors d'une rotation φ du réflecteur principal.
  • Sur la figure 9, la même réalisation de la figure 8 est montrée en trois dimensions et en perspective vue de dessus. Les éléments déjà décrits sur la figure 8 portent les mêmes références. Nous voyons le trou 20 dans le réflecteur principal 11 pour permettre le passage de la source 10, sans contact mécanique avec ce dernier. Cette caractéristique, déjà présente dans la géométrie Cassegrain centrée est mise à profit selon l'invention pour isoler la source 10 des rotations φ du réflecteur principal et du réflecteur auxiliaire lié au principal 11 autour de l'axe z.
  • Les coupes (A, A' ; B, B') orthogonales du réflecteur principal 11 sont des paraboles comme dans les figures 4A, 4B, 4C et 6.
  • Les projections des points A, A' ; B, B' sur le plan x, y sont les points a, a' ; b, b' respectivement, et donne les dimensions latérales du réflecteur principal 11 et du réflecteur auxiliaire 21 fixe au réflecteur principal 11 par les tiges de support S₁. Dans le cas le plus général, et comme montré sur la figure 6, ces dimensions latérales (aa', bb') sont inégales, et la section du faisceau F (non montrée) peut avoir une forme arbitraire déterminée par la forme du périmètre du réflecteur principal 11, elliptique dans cet exemple.
  • Sur cette figure 9, la source 10 de cet exemple est un cornet, mais peut être réalisé selon toute autre technologie connue de l'homme de l'art. Par exemple la source 10 peut être un réseau de sources élémentaires réalisées en technologie microruban.
  • La figure 10 montre schématiquement et en coupe axiale une autre réalisation selon l'invention qui représente une variante de l'antenne montrée sur les figures 8 et 9.
  • Il s'agit d'une antenne de géométrie Cassegrain centrée avec adjonction d'un réflecteur auxiliaire périscopique 14 qui reçoit le rayonnement de la source 10 déportée sur l'axe z' parallèle à l'axe x et perpendiculaire à l'axe principal z. Ce réflecteur auxiliaire 14 est disposé de telle manière qu'il réfléchi le rayonnement de la source 10 selon l'axe z pour illuminer le réflecteur auxiliaire hyperbolique 21. Tout se passe alors selon la description qui a été faite des figures 8 et 9.
  • La source 10 reste fixe par rapport aux plateformes Q et Q', même lors d'une rotation φ du réflecteur principal et de auxiliaire 11 par le moteur Rφ. Lors d'un dépointage α dans le plan x, z, la position du réflecteur auxiliaire 14 est ajustée pour tenir la réflexion du rayonnement de la source 10 selon l'axe principal z pour illuminer le réflecteur auxiliaire 21.
  • La figure 11 montre schématiquement et en coupe partielle un autre exemple d'une réalisation selon l'invention d'une antenne Cassegrain offset orientable avec conservation de polarisation. Comme dans les figures précédentes, le réflecteur parabolique principal 11 est illuminé par la source 10 via un réflecteur auxiliaire 15. Le réflecteur principal est illuminé en offset par le réflecteur auxiliaire à un angle de δ par rapport à la normale N' du réflecteur principal 11 à son sommet ; le faisceau F (non montré) est réfléchi au même angle δ de la normale N' selon l'axe principal z.
  • Le dépointage du faisceau est obtenu dans cet exemple par positionnement du réflecteur principal par les moyens Rα, Rβ. Différents moyens mécaniques de support statique sont montrés (S₅, S₆, S₇), ainsi qu'un support amovible S₄ qui soutient la plateforme Q'' selon l'axe principal z, tout en permettant son déplacement dans un plan perpendiculaire à z. Différents moyens d'isolation thermique (I₁, I₂) sont aussi portés sur cette figure.
  • Dans l'exemple de la figure 11, l'axe principal z est éloigné de l'axe d'illumination z' du réflecteur auxiliaire 15, et les deux axes sont parallèles. Une plateforme mobile Q'' sur laquelle sont montés le réflecteur principal 11 et les moyens du support (S₅, S₆, S₇) et de dépointage (Rα, Rβ) de ce dernier, peut être déplacée par les moyens Rφ d'un angle φ autour de l'axe z d'illumination primaire. Puisque la source 10 reste fixe par rapport à la plateforme Q (un satellite par exemple) lors d'une rotation φ autour de l'axe z', les axes de polarisation restent invariantes par rapport à la plateforme Q.
  • Les moyens de support S₈ du réflecteur auxiliaire 15 relie ce dernier à la plateforme mobile Q'', ce qui fait qu'une rotation de ce dernier n'entraîne pas de modification de la géométrie relative des deux réflecteurs principal 11 et auxiliaire 15.
  • Ces quelques exemples de réalisations selon l'invention servent à illustrer ses principes et quelques unes de ces variantes à partir desquels l'homme de l'art saura décliner l'invention selon les besoins spécifiques d'une mission donnée. Dans ces exemples, les moyens de dépointage sont mécaniques et agissent sur le réflecteur principal mais l'invention peut aussi faire appel à un dépointage électronique (par déphasages des sources élémentaires en réseau) ou encore, à un dépointage effectué par des moyens mécaniques qui agissent sur un réflecteur auxiliaire ou auxiliaire périscopique.
  • La rotation du spot formé au sol, sans rotation des polarisations, peut être obtenue soit par une rotation φ autour de l'axe principal (z), soit par une rotation φ du système de réflecteur(s) autour de l'axe d'illumination primaire z', soit par une rotation φ' autour d'un axe principal dépointé
    Figure imgb0006
    . Dans tous les cas, un découplage des moyens de dépointage et de moyens de rotation autour de l'un des axes (z, z',
    Figure imgb0007
    ) de propagation de rayonnement électromagnétique permet l'orientation du faisceau avec conservation de la polarisation. Il est évident, inversement, que ce même découplage permet à l'antenne selon l'invention, moyennant des adaptations de mécanismes, d'effectuer une rotation des axes de polarisation, tout en maintenant l'orientation du faisceau fixe, bien que cette capacité ne soit pas nécessaire pour les applications envisagées pour les exemples donnés.

Claims (18)

  1. Antenne comprenant au moins un réflecteur (11) et au moins une source (10) de rayonnement électromagnétique qui définissent une direction de propagation apte à les relier, ladite source (10) comprenant au moins un élément rayonnant et des moyens d'excitation de cet élément, ces moyens étant aptes à exciter ledit au moins un élément rayonnant selon deux polarisations caractéristiques linéaires et orthogonales entre elles ; au moins un réflecteur étant focalisant et d'une forme quelconque et d'une découpe quelconque ; ladite antenne comprenant en outre des moyens mécaniques (S₁, S₂,...) qui relient la (les) source(s) (10) et le(s) réflecteur(s) (11) et qui assurent leur positionnement ; ladite antenne étant apte à émettre ou à recevoir un rayonnement électromagnétique selon une direction privilégiée dont l'orientation est déterminée par la disposition dudit réflecteur (11) et de la source (10); lesdits moyens mécaniques de positionnement (S₁, S₂, Rφ...) permettant le mouvement d'au moins un réflecteur (11) par rapport à ladite direction privilégiée du rayonnement, caractérisé en ce que lesdits moyens mécaniques de positionnement (S₁, S₂, Rφ...) permettent de maintenir ladite source (10) en une position telle que lesdits axes de polarisation peuvent être conservées lors d'un mouvement d'au moins un réflecteur (11) par rapport à ladite direction privilégiée du rayonnement.
  2. Antenne comprenant au moins un réflecteur (11) et au moins une source (10) de rayonnement électromagnétique, chaque source étant capable d'émettre et/ou de recevoir du rayonnement selon une direction dite primaire qui relie la source (10) à au moins un réflecteur ; la source (10) comprenant au moins un élément rayonnant et des moyens d'excitation de cet élément, ladite antenne étant apte à émettre ou à recevoir un faisceau F de rayonnement électromagnétique d'une section arbitraire et selon une direction privilégiée z de rayonnement, cette direction privilégiée étant déterminée par la disposition et l'orientation dudit réflecteur (11) et de la source (10), ledit réflecteur 11 étant d'une forme quelconque, et ledit faisceau F de rayonnement ayant des axes de polarisation qui lui sont conférées par l'excitation appliquée à ladite source (10), ledit faisceau F étant orientable par un mouvement de l'antenne ou de ses composants, ladite antenne comprenant en outre des moyens mécaniques (S₁, S₂,...) qui déterminent la disposition relative du réflecteur (11) et de la source (10),
       caractérisé en ce que lesdits moyens mécaniques (S1, S2, Rφ) permettent audit réflecteur (11) d'effectuer une rotation (φ, φ, φ') autour d'un axe de propagation (z, z',
    Figure imgb0008
    ) dudit rayonnement électromagnétique, tout en maintenant ladite source (10) en une position telle que les axes de polarisation restent invariables lors de ladite rotation (φ, φ, φ').
  3. Antenne selon la revendication 1 ou 2, caractérisée en ce que ladite rotation est une rotation φ autour de l'axe principal z qui représente la direction privilégiée de rayonnement du faisceau F, effectuée par des moyens mécaniques de rotation Rφ qui agissent sur la disposition d'au moins un réflecteur (11), tout en laissant la position de la source (10) inchangée, maintenant ainsi les axes de polarisation invariables.
  4. Antenne selon la revendication 1 ou 2, caractérisée en ce que ladite rotation est une rotation φ autour d'un axe dit auxiliaire (z') qui relie la source (10) et un premier réflecteur (15) dit auxiliaire, effectué par des moyens mécaniques de rotation Rφ qui agissent sur la disposition d'au moins un réflecteur (11), tout en laissant la position de la source (10) inchangée.
  5. Antenne selon l'une quelconque des revendications 1 à 4, caractérisée en ce que ledit axe auxiliaire z' est le même que ladite direction privilégiée z, et l'antenne possède une géométrie coaxiale.
  6. Antenne selon l'une quelconque des revendications 1 à 5, ayant une géométrie Cassegrain centrée ou offset.
  7. Antenne selon l'une des revendications 1, 2, 3 ou 5, ayant un réflecteur principal parabolique (11), illuminé par une source (10) disposée en son foyer, caractérisé en ce que ledit réflecteur (11) peut être tourné autour de ladite direction privilégiée z de rayonnement tandis que la source (10) est maintenue fixe.
  8. Antenne selon l'une quelconque des revendications 1 à 5, caractérisée en ce qu'elle est réalisée selon une géométrie Gregory offset ou centrée.
  9. Antenne selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle comprend en outre des moyens de dépointage (Rα, Rβ) qui permettent de changer la direction de ladite direction privilégiée z tout en maintenant les axes de polarisation invariables dans le spot.
  10. Antenne selon l'une des revendications précédentes, caractérisée en ce qu'elle fonctionne en émission.
  11. Antenne selon l'une des revendications précédentes, caractérisée en ce qu'elle fonctionne en réception.
  12. Antenne selon l'une des revendications précédentes, caractérisée en ce qu'elle fonctionne en émission et en réception.
  13. Antenne selon l'une des revendications précédentes, caractérisée en ce qu'elle comprend en outre une source primaire (10) complexe.
  14. Antenne selon la revendication 13, caractérisée en ce ladite source primaire complexe comprend une pluralité de sources séparées, et en ce ladite antenne comprend en outre au moins un réflecteur sélectif en polarisation.
  15. Antenne selon la revendication 13, caractérisée en ce que ladite source primaire complexe comprend une pluralité de sources séparées, et en ce ladite antenne comprend en outre une pluralité de réflecteurs sélectifs en fréquence.
  16. Antenne selon la revendication 13, caractérisée en ce que ladite source primaire complexe comprend au moins une source périscopique.
  17. Antenne comprenant au moins un réflecteur (11) et au moins une source (10) de rayonnement électromagnétique qui définissent une direction de propagation apte à les relier, ladite source (10) comprenant au moins un élément rayonnant et des moyens d'excitation de cet élément, au moins un réflecteur étant un réflecteur bigrille d'une forme quelconque et d'une découpe quelconque, et ledit faisceau F de rayonnement ayant des axes de polarisation orthogonaux qui lui sont conférées par l'orientation des grilles dudit réflecteur (11) ; ladite antenne comprenant en outre des moyens mécaniques (S₁, S₂,...) qui relient la (les) source(s) (10) et le(s) réflecteur(s) (11) et qui assurent leur positionnement ; ladite antenne étant apte à émettre ou à recevoir un rayonnement électromagnétique selon une direction privilégiée dont l'orientation est déterminée par la disposition dudit au moins un réflecteur (11) et de ladite source (10); lesdits moyens mécaniques de positionnement (S₁, S₂, Rφ...) permettant le mouvement d'au moins un réflecteur (11) par rapport à ladite direction privilégiée du rayonnement, caractérisé en ce que lesdits moyens mécaniques de positionnement (S₁, S₂, Rφ...) permettent d'éffectuer une rotation (φ, φ, φ') de ladite source (10), tout en maintenant ledit au moins un réflecteur (11) bigrille en une position telle que lesdits axes de polarisation peuvent être conservées par rapport à ladite direction privilégiée du rayonnement.
  18. Antenne comprenant au moins un réflecteur (11) et au moins une source (10) de rayonnement électromagnétique, chaque source étant capable d'émettre et/ou de recevoir du rayonnement selon une direction dite primaire qui relie la source (10) à au moins un réflecteur (11) ; la source (10) comprenant au moins un élément rayonnant et des moyens d'excitation de cet élément, ladite antenne étant apte à émettre ou à recevoir un faisceau F de rayonnement électromagnétique d'une section arbitraire et selon une direction privilégiée z de rayonnement, cette direction privilégiée étant déterminée par la disposition et l'orientation dudit réflecteur (11) et de la source (10), ledit réflecteur (11) étant un réflecteur bigrille d'une forme quelconque, et ledit faisceau F de rayonnement ayant des axes de polarisation orthogonaux qui lui sont conférées par l'orientation des grilles dudit réflecteur (11), ledit faisceau F étant orientable par un mouvement de l'antenne ou de ses composants, ladite antenne comprenant en outre des moyens mécaniques (S₁, S₂,...) qui déterminent la disposition relative du réflecteur (11) et de la source (10),
       caractérisée en ce que lesdits moyens mécaniques (S1, S2, Rφ) permettent a ladite source (10) d'effectuer une rotation (φ, φ, φ') autour d'un axe de propagation (z, z',
    Figure imgb0009
    ) dudit rayonnement électromagnétique, tout en maintenant ledit réflecteur bigrille (11) dans sa position de façon que les axes de polarisation du faisceau F restent invariables lors de ladite rotation (φ, φ, φ') de la source.
EP94402741A 1993-12-02 1994-11-30 Antenne orientable avec conservation des axes de polarisation Expired - Lifetime EP0656671B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9314452A FR2713404B1 (fr) 1993-12-02 1993-12-02 Antenne orientale avec conservation des axes de polarisation.
FR9314452 1993-12-02

Publications (2)

Publication Number Publication Date
EP0656671A1 true EP0656671A1 (fr) 1995-06-07
EP0656671B1 EP0656671B1 (fr) 1996-08-14

Family

ID=9453477

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94402741A Expired - Lifetime EP0656671B1 (fr) 1993-12-02 1994-11-30 Antenne orientable avec conservation des axes de polarisation

Country Status (5)

Country Link
US (1) US5796370A (fr)
EP (1) EP0656671B1 (fr)
AU (1) AU7891094A (fr)
DE (1) DE69400372T2 (fr)
FR (1) FR2713404B1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1213788A2 (fr) * 2000-11-29 2002-06-12 TRW Inc. Antenne Cassegrain offset à alimentation latérale et à réflecteur primaire à assemblage de cardan
US7683845B2 (en) 2004-10-02 2010-03-23 Qinetiq Limited Antenna system compensating a change in radiation characteristics
CN106410411A (zh) * 2016-11-14 2017-02-15 中国电信股份有限公司深圳分公司 一种用于天线控制系统的转台装置

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3313636B2 (ja) * 1997-12-22 2002-08-12 日本電気株式会社 低軌道衛星通信用アンテナ装置
JP2002516502A (ja) 1998-05-20 2002-06-04 エル−スリー・コミュニケーションズ・エスコ・インコーポレーテッド マルチビーム衛星通信アンテナ
US6043788A (en) * 1998-07-31 2000-03-28 Seavey; John M. Low earth orbit earth station antenna
US6397039B1 (en) * 1998-09-14 2002-05-28 Space Systems/Loral, Inc. Satellite communication system using multiple ground station RF power control in a single downlink beam
US6496682B2 (en) 1998-09-14 2002-12-17 Space Systems/Loral, Inc. Satellite communication system employing unique spot beam antenna design
US6266024B1 (en) * 1998-12-23 2001-07-24 Hughes Electronics Corporation Rotatable and scannable reconfigurable shaped reflector with a movable feed system
US6331839B1 (en) 1999-03-17 2001-12-18 Burt Baskette Grenell Satellite antenna enhancer and method and system for using an existing satellite dish for aiming replacement dish
US6215453B1 (en) 1999-03-17 2001-04-10 Burt Baskette Grenell Satellite antenna enhancer and method and system for using an existing satellite dish for aiming replacement dish
GB9914162D0 (en) * 1999-06-18 1999-08-18 Secr Defence Brit Steerable transponders
GB2368467B (en) * 2000-10-25 2002-09-11 Stanford Components Ltd Satellite signal receiving unit
US6563473B2 (en) * 2001-02-22 2003-05-13 Ems Technologies Canada, Ltd. Low sidelobe contiguous-parabolic reflector array
ATE305661T1 (de) * 2001-07-20 2005-10-15 Eutelsat Sa Sende-empfangssatellitenantenne mit hoher leistung und niedrigem kostenaufwand
US6628238B2 (en) * 2001-11-19 2003-09-30 Parthasarathy Ramanujam Sub-reflector for dual-reflector antenna system
US7030831B2 (en) * 2002-11-14 2006-04-18 Wifi-Plus, Inc. Multi-polarized feeds for dish antennas
JP4150778B2 (ja) * 2003-01-28 2008-09-17 オプテックス株式会社 3軸調整型の物体検知装置
US6972480B2 (en) 2003-06-16 2005-12-06 Shellcase Ltd. Methods and apparatus for packaging integrated circuit devices
WO2005018049A1 (fr) * 2003-08-13 2005-02-24 Mitsubishi Denki Kabushiki Kaisha Antenne a reflecteur
US7109937B2 (en) * 2004-11-29 2006-09-19 Elta Systems Ltd. Phased array planar antenna and a method thereof
US7755557B2 (en) * 2007-10-31 2010-07-13 Raven Antenna Systems Inc. Cross-polar compensating feed horn and method of manufacture
DE102008011350A1 (de) * 2008-02-27 2009-09-03 Loeffler Technology Gmbh Vorrichtung und Verfahren zur Echtzeiterfassung von elektromagnetischer THz-Strahlung
US9190716B2 (en) * 2008-09-05 2015-11-17 Astrium Limited Reflector
EP2161784A1 (fr) * 2008-09-05 2010-03-10 Astrium Limited Réflecteur d'antenne
US9774095B1 (en) * 2011-09-22 2017-09-26 Space Systems/Loral, Llc Antenna system with multiple independently steerable shaped beams
EP2911245B1 (fr) * 2012-10-16 2020-10-28 Mitsubishi Electric Corporation Dispositif d'antenne à réflecteur
ES2900731T3 (es) * 2014-09-10 2022-03-18 Macdonald Dettwiler And Associates Corp Antena direccionable de exploración ancha
US10938103B2 (en) 2018-05-22 2021-03-02 Eagle Technology, Llc Antenna with single motor positioning and related methods
CN109301498A (zh) * 2018-09-13 2019-02-01 芜湖博高光电科技股份有限公司 一种新型3mm波段天线塑料镀膜副反射面支架
CN110334480B (zh) * 2019-07-26 2022-11-22 中国电子科技集团公司第五十四研究所 用于降低噪声温度的双偏置天线副面扩展曲面设计方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3562753A (en) * 1968-02-23 1971-02-09 Hitachi Ltd Casseyrain antenna system with rotatable main reflector for scanning
DE2321613A1 (de) * 1973-04-28 1974-11-14 Rohde & Schwarz Umschaltvorrichtung fuer das erregersystem einer reflektorantenne
US3914768A (en) * 1974-01-31 1975-10-21 Bell Telephone Labor Inc Multiple-beam Cassegrainian antenna
EP0139482A2 (fr) * 1983-09-22 1985-05-02 British Aerospace Public Limited Company Antenne double réflecteur à balayage
US4535338A (en) * 1982-05-10 1985-08-13 At&T Bell Laboratories Multibeam antenna arrangement
US4668955A (en) * 1983-11-14 1987-05-26 Ford Aerospace & Communications Corporation Plural reflector antenna with relatively moveable reflectors
US4786912A (en) * 1986-07-07 1988-11-22 Unisys Corporation Antenna stabilization and enhancement by rotation of antenna feed

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US842351A (en) * 1906-02-19 1907-01-29 Walter Stock Christmas-music apparatus.
US3276022A (en) * 1964-05-13 1966-09-27 Aeronca Mfg Corp Dual frequency gregorian-newtonian antenna system with newtonian feed located at common focus of parabolic main dish and ellipsoidal sub-dish
US3407404A (en) * 1964-10-05 1968-10-22 Bell Telephone Labor Inc Directive microwave antenna capable of rotating about two intersecting axes
US3696432A (en) * 1971-01-15 1972-10-03 Motorola Inc Combined scan and track antennas
US3795003A (en) * 1973-02-26 1974-02-26 Us Army Schwarzschild radar antenna with a unidirectional turnstile scanner
FR2429505A1 (fr) * 1978-06-20 1980-01-18 Thomson Csf Systeme d'alimentation periscopique pour antenne bi-gamme
FR2498820A1 (fr) * 1981-01-23 1982-07-30 Thomson Csf Source hyperfrequence bi-bande et antenne comportant une telle source
US4755826A (en) * 1983-01-10 1988-07-05 The United States Of America As Represented By The Secretary Of The Navy Bicollimated offset Gregorian dual reflector antenna system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3562753A (en) * 1968-02-23 1971-02-09 Hitachi Ltd Casseyrain antenna system with rotatable main reflector for scanning
DE2321613A1 (de) * 1973-04-28 1974-11-14 Rohde & Schwarz Umschaltvorrichtung fuer das erregersystem einer reflektorantenne
US3914768A (en) * 1974-01-31 1975-10-21 Bell Telephone Labor Inc Multiple-beam Cassegrainian antenna
US4535338A (en) * 1982-05-10 1985-08-13 At&T Bell Laboratories Multibeam antenna arrangement
EP0139482A2 (fr) * 1983-09-22 1985-05-02 British Aerospace Public Limited Company Antenne double réflecteur à balayage
US4668955A (en) * 1983-11-14 1987-05-26 Ford Aerospace & Communications Corporation Plural reflector antenna with relatively moveable reflectors
US4786912A (en) * 1986-07-07 1988-11-22 Unisys Corporation Antenna stabilization and enhancement by rotation of antenna feed

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1213788A2 (fr) * 2000-11-29 2002-06-12 TRW Inc. Antenne Cassegrain offset à alimentation latérale et à réflecteur primaire à assemblage de cardan
EP1213788A3 (fr) * 2000-11-29 2003-07-16 TRW Inc. Antenne Cassegrain offset à alimentation latérale et à réflecteur primaire à assemblage de cardan
US7683845B2 (en) 2004-10-02 2010-03-23 Qinetiq Limited Antenna system compensating a change in radiation characteristics
CN106410411A (zh) * 2016-11-14 2017-02-15 中国电信股份有限公司深圳分公司 一种用于天线控制系统的转台装置

Also Published As

Publication number Publication date
FR2713404B1 (fr) 1996-01-05
DE69400372D1 (de) 1996-09-19
FR2713404A1 (fr) 1995-06-09
US5796370A (en) 1998-08-18
EP0656671B1 (fr) 1996-08-14
DE69400372T2 (de) 1996-12-12
AU7891094A (en) 1995-06-08

Similar Documents

Publication Publication Date Title
EP0656671B1 (fr) Antenne orientable avec conservation des axes de polarisation
EP1568104B1 (fr) Antenne multi-faisceaux a materiau bip
EP0640844B1 (fr) Antenne bi-faisceaux à balayage électronique
EP0707357B1 (fr) Système à antennes source multiples intégrées au convertisseur de fréquence à faible bruit
WO2007007011A2 (fr) Antenne reseau a reflecteur(s) conforme(s), a forte reconfigurabilite en orbite
EP1798809B1 (fr) Dispositif d&#39;émission et/ou de réception d&#39;ondes électromagnétiques pour aérodynes
EP0548876B1 (fr) Antenne active &#34;offset&#34; à double réflecteurs
EP1198864B1 (fr) Systeme comportant un satellite a antenne radiofrequence
EP1554777A1 (fr) Antenne a materiau bip multi-faisceaux
EP0949710A1 (fr) Lentille sphérique focalisante multicouches
EP0512487A1 (fr) Antenne à lobe formé et grand gain
EP0638956B1 (fr) Antenne active à balayage électronique en azimut et en élévation, en particulier pour l&#39;imagerie hyperfréquence par satellite
EP0032081B1 (fr) Antenne à faisceau orientable pour satellite de télécommunications
EP3675278B1 (fr) Antenne multifaisceaux à pointage réglable
EP0844686B1 (fr) Système de relais d&#39;émission
FR3054732A1 (fr) Antenne multifaisceaux pointable, satellite de telecommunication et constellation de satellites associes
EP0534862B1 (fr) Antenne à balayage électronique
CA2706761A1 (fr) Antenne a reflecteur a flexibilite de couverture et de frequence et satellite comportant une telle antenne
FR2596208A1 (fr) Antenne bifrequence a faisceaux orientables independants
EP1339177B1 (fr) Système antennaire pour liaisons entre véhicule mobile et objets aériens, procédé correspondant et utilisation du système
FR2530872A1 (fr) Antenne reseau a dephaseur pour radars a couverture spherique
FR3130393A1 (fr) Agencement d&#39;antennes TTC pour satellite plat
FR2795575A1 (fr) Systeme comportant un satellite a antenne radiofrequence
FR2782193A1 (fr) Antenne de reception a reflecteur excentre a balayage par la tete de reception,notamment pour la reception de plusieurs satellites de television et son procede de mise en oeuvre
FR2854734A1 (fr) Systeme d&#39;emission et ou de reception d&#39;ondes electromagnetiques equipe d&#39;une antenne multi-faisceaux a materiau bip

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19941230

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 19950609

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REF Corresponds to:

Ref document number: 69400372

Country of ref document: DE

Date of ref document: 19960919

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19961007

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20001013

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20001101

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20001102

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011130

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020702

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20011130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020730

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051130