EP0656523B1 - Device for meridional sensing spherical surface - Google Patents
Device for meridional sensing spherical surface Download PDFInfo
- Publication number
- EP0656523B1 EP0656523B1 EP94118547A EP94118547A EP0656523B1 EP 0656523 B1 EP0656523 B1 EP 0656523B1 EP 94118547 A EP94118547 A EP 94118547A EP 94118547 A EP94118547 A EP 94118547A EP 0656523 B1 EP0656523 B1 EP 0656523B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- sphere
- cylinder
- rollers
- fact
- ball
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B5/00—Measuring arrangements characterised by the use of mechanical techniques
- G01B5/28—Measuring arrangements characterised by the use of mechanical techniques for measuring roughness or irregularity of surfaces
Definitions
- the invention relates to a device for the most complete scanning possible of spherical surfaces through meridional Rotary movement of the ball with a fixed arrangement of a probe, sensor or the like.
- Corresponding tasks exist, for example, in the field of test technology to control the Quality of steel balls e.g. for cracks, geometry or surface defects as well as at the Laser hardening of the near-surface edge zone of special balls or when embossing (baking) of information carriers in spherical surfaces.
- a device in which the ball to be scanned is guided by a control roller and a support roller, and is continuously driven by a friction roller, the axis of rotation of the ball with respect to an imaginary marking on the ball surface being influenced by the Control roller changes slightly from revolution to revolution (meridional rotation of the ball), so that finally the entire surface of the ball at a fixed point on the z.
- a sensor is arranged, is moved past.
- the specifically adapted geometry of the control roller is of crucial importance. This consists of two opposing, rigidly connected cones, the cone angle of which changes sinusoidally and fluctuates symmetrically by the value of 45 degrees, one revolution of the cone shell corresponding to one sine period.
- the ball is clamped between the friction roller, support roller and control roller under consideration of defined angular relationships and forced to rotate via frictional contact.
- This control roller represents a complicated precision part with extreme demands on the manufacturing accuracy. Its production is very complex and cost-intensive. In addition, this control roller is a pronounced wear part, since sliding friction (sliding friction) also occurs at the same time as rolling friction, which leads to premature wear even with the use of hard metal and thus errors in scanning and very quickly to complete failure (maximum running time 200 hours).
- the geometrical boundary conditions for ball mounting and guiding result in an unfavorable accessibility to the ball surface, so that there are restrictions with regard to the number of sensors. They also have to be swung to the side with each ball change, which makes it difficult to process larger quantities of balls per unit of time.
- U.S. Patent 5,223,793 provides a general overview of a number of principal Possibilities for generating the desired meridional movement are listed as well as some methematic-physical connections between initiation of movement and lane formation derived from the spherical surface. It is shown that if the ideal conditions are not met (see u.) more or less large surface areas of the ball are not scanned.
- the object of the invention is the meridional ball movement by means of a the above. disadvantage avoiding device by a new design of the coupling of the meridional movement to reach.
- the track width and thus the scanning density can be made variable by appropriate lever design, for example by means of a variable lever length by means of an adjustable articulation point.
- This enables the device according to the invention to be easily adapted to changing tasks.
- a variation of the scanning track is not possible with the control roller according to the CS-PS. Due to the separation of functions between the ball holder and the control mechanism, miniaturization of the mechanism is also possible, whereby balls with a diameter of far less than 3 mm can be examined. This is supported by the fact that a larger surface area of the ball remains free from component overlaps and the accessibility is thus also significantly improved for relatively large sensors (1: 1.5).
- the axes of these control cylinder rollers are mounted in forks G which can be moved about the control axes a1, a2.
- a symmetrical pendulum movement with the amplitude angle Beta (0 ° ⁇ Beta ⁇ Beta max , with Beta max approx. 10 ° ... 20 °) takes place around one or both of these axes a1, a2 as a steering movement, exactly in synchronization with the ball rotation. If both roles are steered, the steering movement takes place in opposite phase to each other, i.e. with a phase shift of 180 degrees.
- the steering movement is coupled to the controlled rollers R, for example by lever H with the pendulum angle gamma on the extended axles of these rollers, the levers being, for example, by eccentric E1, E2, realized by eccentrically mounted ball bearings with a fixed outer ring, or cams on the axle of the drive cylinder Z are set in motion.
- the eccentrics or cams are scanned, for example, by means of set screws S, and the levers can be returned by springs with a base on a fixed base plate or by a tension spring which is arranged between the levers H or between the extended axes of the controlled rollers.
- the track width s is the maximum distance between two adjacent tracks or taxiways at equatorial height. This track width is determined by the pendulum angle beta.
- an eddy current sensor for crack detection and an optical sensor for recording the optical surface quality based on the reflex principle perform a contact-free scanning of the surface, the track width s of the meridional movement being smaller than the smaller one the detection widths (visible width) of the sensors is set.
- Fig. 3 an embodiment variant of the invention is shown as e.g. in automated Manufacturing or testing systems can be used.
- the ones for the ball holder required stops by balls upstream or downstream in the technological process the same size as the ball to be scanned.
- the balls are changed by cyclical Continue pushing new balls using z. B. piston from a feed channel in the Measuring position along a parallel to the drive cylinder axis. That way, the already measured ball used as a stop for the ball to be measured subsequently, the on it The following serves as a second stop, so that automation of the ball change becomes possible.
- the balls become suitable when moving along the cylinder axis Scenes or limits performed, so that the movement sequence described forcibly comes about.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Rolling Contact Bearings (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Transmission Devices (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Friction Gearing (AREA)
Description
Die Erfindung betrifft eine Vorrichtung zur möglichst lückenlosen Abtastung von Kugeloberflächen durch meridionale Drehbewegung der Kugel bei ortsfester Anordnung eines Tastkopfes, Sensors oder dergleichen. Entsprechende Aufgaben bestehen beispielsweise auf dem Gebiet der Prüftechnik zur Kontrolle der Qualität von Stahlkugeln z.B. auf Risse, Geometrie- oder Oberflächenfehler sowie u.a. beim Laserhärten der oberflächennahen Randzone von Spezialkugeln oder etwa beim Einprägen (Einbrennen) von Informationsträgern in Kugeloberflächen.The invention relates to a device for the most complete scanning possible of spherical surfaces through meridional Rotary movement of the ball with a fixed arrangement of a probe, sensor or the like. Corresponding tasks exist, for example, in the field of test technology to control the Quality of steel balls e.g. for cracks, geometry or surface defects as well as at the Laser hardening of the near-surface edge zone of special balls or when embossing (baking) of information carriers in spherical surfaces.
Aus der CS-PS 123 081 ist eine Vorrichtung bekannt, bei der die abzutastende Kugel von einer
Steuerrolle und einer Stützrolle geführt, und von einer Reibrolle fortwährend angetrieben wird,
wobei sich die Rotationsachse der Kugel bezüglich einer gedachten Markierung auf der Kugeloberfläche
durch den Einfluß der Steuerrolle von Umdrehung zu Umdrehung geringfügig ändert
(meridionale Drehbewegung der Kugel), so daß schließlich die gesamte Oberfläche der Kugel an
einem ortsfesten Punkt an dem z. B. ein Sensor angeordnet ist, vorbeibewegt wird. Dabei ist die
spezifisch angepaßte Geometrie der Steuerrolle von entscheidender Bedeutung. Diese besteht aus
zwei sich gegenüberliegenden, starr miteinander verbundenen Kegeln, deren Kegelwinkel sich
sinusförmig ändert und dabei um den Wert von 45 Grad symmetrisch schwankt, wobei ein Umlauf
des Kegelmantels einer Sinusperiode entspricht. Die Kugel wird hierbei zwischen Reibrolle,
Stützrolle und Steuerrolle unter Beachtung definierter Winkelverhältnisse federnd eingeklemmt und
über Reibkontakt zur Rotation gezwungen.
Diese Steuerrolle stellt ein kompliziertes Präzisionsteil mit extremen Anforderungen an die
Fertigungsgenauigkeit dar. Ihre Fertigung ist sehr aufwendig und kostenintensiv. Darüber hinaus ist
diese Steuerrolle ein ausgesprochenes Verschleißteil, da gleichzeitig zur Rollreibung auch Gleitreibung
(Bohrreibung) auftritt, was selbst bei Verwendung von Hartmetall zu frühzeitigem Verschleiß
und damit Fehlern bei der Abtastung und recht schnell zum völligen Ausfall führt (Laufzeit
maximal 200 Stunden).
Die geometrischen Randbedingungen zur Kugelhalterung und -führung ergeben eine ungünstige
Zugänglichkeit zur Kugeloberfläche, so daß Einschränkungen bezüglich der Anzahl von Sensoren
bestehen. Diese müssen außerdem bei jedem Kugelwechsel zur Seite geschwenkt werden, was den
technologischen Durchlauf größerer Kugelmengen pro Zeiteinheit erschwert. From CS-PS 123 081 a device is known in which the ball to be scanned is guided by a control roller and a support roller, and is continuously driven by a friction roller, the axis of rotation of the ball with respect to an imaginary marking on the ball surface being influenced by the Control roller changes slightly from revolution to revolution (meridional rotation of the ball), so that finally the entire surface of the ball at a fixed point on the z. B. a sensor is arranged, is moved past. The specifically adapted geometry of the control roller is of crucial importance. This consists of two opposing, rigidly connected cones, the cone angle of which changes sinusoidally and fluctuates symmetrically by the value of 45 degrees, one revolution of the cone shell corresponding to one sine period. The ball is clamped between the friction roller, support roller and control roller under consideration of defined angular relationships and forced to rotate via frictional contact.
This control roller represents a complicated precision part with extreme demands on the manufacturing accuracy. Its production is very complex and cost-intensive. In addition, this control roller is a pronounced wear part, since sliding friction (sliding friction) also occurs at the same time as rolling friction, which leads to premature wear even with the use of hard metal and thus errors in scanning and very quickly to complete failure (maximum running time 200 hours).
The geometrical boundary conditions for ball mounting and guiding result in an unfavorable accessibility to the ball surface, so that there are restrictions with regard to the number of sensors. They also have to be swung to the side with each ball change, which makes it difficult to process larger quantities of balls per unit of time.
In der US-PS 5 223 793 werden ein allgemeiner Überblick über eine Reihe von prinzipiellen Möglichkeiten zur Erzeugung der gewünschten Meridionalbewegung aufgelistet sowie einige methematisch-physikalische Zusammenhänge zwischen Bewegungseinleitung und Spurbildung auf der Kugeloberfläche abgeleitet. So wird gezeigt, daß bei Nichteinhaltung der Idealbedingungen (s. u.) mehr oder weniger große Oberflächenbereiche der Kugel nicht abgetastet werden.U.S. Patent 5,223,793 provides a general overview of a number of principal Possibilities for generating the desired meridional movement are listed as well as some methematic-physical connections between initiation of movement and lane formation derived from the spherical surface. It is shown that if the ideal conditions are not met (see u.) more or less large surface areas of the ball are not scanned.
Allen in der US-PS vorgestellten Varianten ist gemeinsam, daß sämtliche an der Bewegungserzeugung beteiligten Kegel- oder Zylinderrollen raumfeste Achsrichtungen besitzen und die gewünschte Meridionalbewegung der Kugel durch Variation der Rotationsgeschwindigkeit dieser Rollen über eine elektronische Steuerung erfolgt. Dabei ist der Steuerungsaufwand an Elektronik und Software sehr hoch. Die Vielzahl von Bewegungen rotatorischer und translatorischer Art, die mit hoher Präzision aufeinander abgestimmt erfolgen müssen, bergen die Gefahr, daß sich Ungenauigkeiten in der Steuerung (bzw. in der Mechanik) zu größeren Fehlern aufsummieren, die schließlich die Zuverlässigkeit einer solchen Anordnung für den Großserien- bzw. robusten Fertigungseinsatz in Frage stellen. Außerdem ist eine Vielzahl von Präzisionsbaugruppen (Lagerstellen, Lineareinheiten) erforderlich, die einen hohen Herstellungsaufwand verursachen.All variants presented in the US PS have in common that they all involve the generation of motion tapered or cylindrical rollers involved have fixed axis directions and the desired meridional movement of the ball by varying the rotational speed of the ball Rolling takes place via an electronic control. The control effort for electronics and software very high. The multitude of rotatory and translational movements that must be coordinated with high precision, there is a risk that there will be inaccuracies in the control (or in the mechanics) add up to larger errors that finally the reliability of such an arrangement for the large-scale or robust Question production use. In addition, a large number of precision assemblies (bearings, Linear units) required, which cause a high manufacturing cost.
Aufgabe der Erfindung ist es, die meridionale Kugelbewegung mittels einer die o.g. Nachteile vermeidenden Vorrichtung durch eine neue Gestaltung der Einkopplung der Meridionalbewegung zu erreichen.The object of the invention is the meridional ball movement by means of a the above. disadvantage avoiding device by a new design of the coupling of the meridional movement to reach.
Mit der Erfindung wird diese Aufgabe durch die in den Patentansprüchen dargelegte Vorrichtung gelöst.With the invention, this object is achieved by the device set out in the claims solved.
Die erfindungsgemäße Vorrichtung kommt aufgrund der neuen Kugelsteuerung ohne hochgenaue,
kompliziert gestaltete Präzisionsteile aus. Es ist lediglich erforderlich, den Antriebszylinder mit
dem gleichen Durchmesser wie die Kugel herzustellen (zulässige Abweichung ca. 0,1 %). Dies
stellt keine Schwierigkeit dar und ermöglicht enorme Kostenvorteile.
Da die erfindungsgemäße Kugelsteuerung auf der Anwendung reiner Rollreibung zwischen
Kugeloberfläche und Antriebszylinder sowie den Steuer-Zylinderrollen basiert, wird ein Verschleiß
weitgehend vermieden. Ein weiterer Vorteil des neuen Verfahrens liegt in der Möglichkeit, einen
Kugelwechsel relativ einfach zu automatisieren. Dabei ist es besonders günstig, daß die Sensoren
an Ort und Stelle (Meßposition) verbleiben können. Die geometrisch günstige Gestaltung erlaubt
dabei sogar die gleichzeitige Anordnung mehrerer Sensoren bzw. Tastköpfe zur Ermittlung
verschiedener Oberflächenkennwerte der zu untersuchenden Kugel.
Die Spurbreite und damit die Abtastdichte läßt sich durch entsprechende Hebelgestaltung z.B.
mittels veränderlicher Hebellänge durch einstellbaren Anlenkungspunkt variabel ausführen. Dies
ermöglicht die einfache Anpassung der erfindungsgemäßen Vorrichtung an veränderliche Aufgabenstellungen.
Mit der Steuerrolle nach der CS-PS ist eine Variation der Abtastspur nicht möglich.
Aufgrund der Funktionstrennung von Kugelhalterung und Steuermechanik ist insbesondere auch
eine Miniaturisierung der Mechanik möglich, wobei Kugeln mit weit unter 3 mm Durchmesser
untersucht werden können. Dies wird dadurch unterstützt, daß ein größerer Oberflächenbereich der
Kugel von Bauelementeüberdeckungen freibleibt und sich damit die Zugänglichkeit auch für relativ
große Sensoren wesentlich verbessert (1:1,5).Due to the new ball control, the device according to the invention manages without high-precision, complicatedly designed precision parts. It is only necessary to manufacture the drive cylinder with the same diameter as the ball (permissible deviation approx. 0.1%). This is not a problem and enables enormous cost advantages.
Since the ball control according to the invention is based on the use of pure rolling friction between the ball surface and the drive cylinder and the control cylindrical rollers, wear is largely avoided. Another advantage of the new process is the ability to automate ball replacement relatively easily. It is particularly advantageous that the sensors can remain in place (measuring position). The geometrically favorable design even allows the simultaneous arrangement of several sensors or probes to determine various surface characteristics of the ball to be examined.
The track width and thus the scanning density can be made variable by appropriate lever design, for example by means of a variable lever length by means of an adjustable articulation point. This enables the device according to the invention to be easily adapted to changing tasks. A variation of the scanning track is not possible with the control roller according to the CS-PS.
Due to the separation of functions between the ball holder and the control mechanism, miniaturization of the mechanism is also possible, whereby balls with a diameter of far less than 3 mm can be examined. This is supported by the fact that a larger surface area of the ball remains free from component overlaps and the accessibility is thus also significantly improved for relatively large sensors (1: 1.5).
Die Erfindung wird nachfolgend an einem Ausführungsbeispiel näher erläutert. In der dazugehörigen
Zeichnung zeigen
Auf einem um seine Symmetrieachse rotierenden Antriebszylinder Z mit dem Durchmesser D
befindet sich im Reibkontakt die zu drehende Kugel K, welche in Längsrichtung des Antriebszylinders
durch zwei Anschläge A in Form von z. B. Zylinderstiften oder Kugeln mit gehaltert wird.
Auf die Oberfläche der Kugel drücken (mittels elastischer Kraft) symmetrisch zur Verbindungslinie
Kugelmitte - Antriebszylinderachse zwei Steuerzylinderrollen R unter dem Winkel Alpha, wodurch
ein seitliches Ausweichen der Kugel in einer Ebene senkrecht zur Antriebszylinderachse verhindert
wird. Die Andruckkraft wird z. B. durch Federn F, Gewichte oder Flüssigkeits- bzw. Gasdruck
erzeugt. Die Achsen dieser, im Beispiel durch Kugellager dargestellten Steuerzylinderrollen, sind
in Gabeln G gelagert, welche sich um die Steuerachsen a1, a2 bewegen lassen. Um eine oder beide
dieser Achsen a1, a2 erfolgt als Lenkbewegung eine symmetrische Pendelbewegung mit dem
Amplitudenwinkel Beta (0° < Beta < Betamax, mit Betamax ca. 10° ... 20°) genau synchron mit der
Kugeldrehung. Werden beide Rollen gelenkt, so erfolgt die Lenkbewegung zueinander in Gegenphase,
also mit einer Phasenverschiebung von 180 Grad. Die Einkopplung der Lenkbewegung auf
die gesteuerten Rollen R erfolgt in z.B. durch Hebel H mit dem Pendelwinkel Gamma auf die
verlängerten Achsen dieser Rollen, wobei die Hebel z.B. durch Exzenter E1, E2, realisiert durch
exzentrisch gelagerte Kugellager mit feststehendem Außenring, oder Nocken auf der Achse des
Antriebszylinders Z in Bewegung gesetzt werden. Die Abtastung der Exzenter oder Nocken erfolgt
beispielsweise durch Stellschrauben S, wobei die Rückführung der Hebel durch Federn mit
Fußpunkt auf einer ortsfesten Grundplatte oder durch eine Zugfeder erfolgen kann, die zwischen
den Hebeln H oder zwischen den verlängerten Achsen der gesteuerten Rollen angeordnet wird.
Sollen beide Rollen R gesteuert werden, was für einen reibungsarmen, störungsfreien und präzisen
Bewegungsablauf vorzuziehen ist, müssen, um die oben beschriebene Kinematik zu erfüllen, die
Exzenter E1, E2 um 180 Grad versetzt angeordnet und in der Amplitude möglichst gleich, sowie
die Hebel H gleich lang sein (e1 = e2). Die Durchmesser des Zylinders Z und der Kugel K müssen
dann gleich groß sein, wenn das Übersetzungsverhältnis der Reibübertragung i = 1
gewählt wurde. Jede Abweichung von i=1 führt zu Fehlern in der Spurenaufzeichnung dergestalt,
daß sich im Bereich der Spurkreuzungen (Pole) Flächenstücke als unbeschrieben bzw. unabgetastet
erweisen, die ggfs. größer als zulässig ausfallen. Ein zulässiges Maß hierfür könnte die vorgegebene
Spurbreite sein. Wie in Fig. 3 dargestellt, ist die Spurbreite s der maximale Abstand
zweier benachbarter Spuren bzw. Rollbahnen in Äquatorhöhe. Diese Spurbreite wird durch den
Pendelwinkel Beta bestimmt.
Um z.B. eine lückelose Erfassung von Qualitätsmerkmalen auf der Kugeloberfläche sowie dicht
darunter vorzunehmen, wird durch einen Wirbelstromsensor zur Rißerkennung und einen optischen
Sensor zur Erfassung der optischen Oberflächengüte nach dem Reflexprinzip eine berührungsfreie
Abtastung der Oberfläche durchgeführt, wobei die Spurbreite s der Meridionalbewegung geringer
als die kleinere der Erfassungsbreiten (Sichtbreite) der Sensoren eingestellt wird.On a rotating about its axis of symmetry cylinder Z with the diameter D is in frictional contact to be rotated ball K, which in the longitudinal direction of the drive cylinder by two stops A in the form of z. B. cylinder pins or balls is held with. Press on the surface of the ball (by means of elastic force) symmetrically to the connecting line ball center - drive cylinder axis two control cylinder rollers R at the angle alpha, which prevents lateral deflection of the ball in a plane perpendicular to the drive cylinder axis. The pressing force is e.g. B. generated by springs F, weights or liquid or gas pressure. The axes of these control cylinder rollers, represented in the example by ball bearings, are mounted in forks G which can be moved about the control axes a1, a2. A symmetrical pendulum movement with the amplitude angle Beta (0 ° <Beta <Beta max , with Beta max approx. 10 ° ... 20 °) takes place around one or both of these axes a1, a2 as a steering movement, exactly in synchronization with the ball rotation. If both roles are steered, the steering movement takes place in opposite phase to each other, i.e. with a phase shift of 180 degrees. The steering movement is coupled to the controlled rollers R, for example by lever H with the pendulum angle gamma on the extended axles of these rollers, the levers being, for example, by eccentric E1, E2, realized by eccentrically mounted ball bearings with a fixed outer ring, or cams on the axle of the drive cylinder Z are set in motion. The eccentrics or cams are scanned, for example, by means of set screws S, and the levers can be returned by springs with a base on a fixed base plate or by a tension spring which is arranged between the levers H or between the extended axes of the controlled rollers. If both rollers R are to be controlled, which is preferable for a low-friction, trouble-free and precise movement sequence, in order to fulfill the kinematics described above, the eccentrics E1, E2 must be offset by 180 degrees and have the same amplitude as possible, and the levers H be of equal length (e1 = e2). The diameter of the cylinder Z and the ball K must then be the same size if the transmission ratio of the friction transmission i = 1 has been selected. Any deviation from i = 1 leads to errors in the track recording in such a way that patches in the area of the track crossings (poles) prove to be unwritten or unscanned, which may be larger than permissible. A permissible measure for this could be the specified track width. As shown in Fig. 3, the track width s is the maximum distance between two adjacent tracks or taxiways at equatorial height. This track width is determined by the pendulum angle beta.
For example, in order to carry out a complete recording of quality features on the spherical surface as well as closely below it, an eddy current sensor for crack detection and an optical sensor for recording the optical surface quality based on the reflex principle perform a contact-free scanning of the surface, the track width s of the meridional movement being smaller than the smaller one the detection widths (visible width) of the sensors is set.
In Fig. 3 ist eine Ausführungsvariante der Erfindung dargestellt, wie sie z.B. in automatisierten Fertigungs- bzw. Prüfsystemen zum Einsatz kommen kann. Dabei werden die für die Kugelhalterung erforderlichen Anschläge durch im technologischen Ablauf vor- bzw. nachgelagerte Kugeln der gleichen Größe wie die abzutastende Kugel gebildet. Der Kugelwechsel erfolgt durch zyklisches Weiterschieben immer neuer Kugeln mittels z. B. Hubkolben aus einer Zuführrinne in die Meßposition entlang einer Parallelen zur Antriebszylinderachse. Auf diese Weise wird die bereits ausgemessene Kugel als Anschlag für die nachfolgend zu vermessende Kugel benutzt, die darauf folgende dient jeweils als zweiter Anschlag, so daß eine Automatisierung des Kugelwechsels möglich wird. Die Kugeln werden beim Verschieben längs der Zylinderachse in geeigneten Kulissen bzw. Begrenzungen geführt, so daß der beschriebene Bewegungsablauf zwangsweise zustandekommt.In Fig. 3 an embodiment variant of the invention is shown as e.g. in automated Manufacturing or testing systems can be used. The ones for the ball holder required stops by balls upstream or downstream in the technological process the same size as the ball to be scanned. The balls are changed by cyclical Continue pushing new balls using z. B. piston from a feed channel in the Measuring position along a parallel to the drive cylinder axis. That way, the already measured ball used as a stop for the ball to be measured subsequently, the on it The following serves as a second stop, so that automation of the ball change becomes possible. The balls become suitable when moving along the cylinder axis Scenes or limits performed, so that the movement sequence described forcibly comes about.
Claims (5)
- A device for meriodional scanning of spherical surfaces, in which the sphere (K) to be scanned with the aid of a sensor is driven by frictional contact with a rotating cylinder (Z) and which is supported in longitudinal direction of that cylinder (Z) by two limit stops (A) and in transverse direction by two cylindrical rollers, and which is equipped with additional control devices (E1, E2, S, H), by which the sphere (K) is superimposed with a second rotating motion acting vertically on the axis of the drive motion,
characterized by the fact that, for the transmission of this second rotating motion, two control cylinder rollers (R) following on the surface of the sphere are arranged symmetrically under an angle Alpha to the connecting line between the center of the sphere and the axis of the drive cylinder, whereat Alpha is between 0° and 90° and lies in the same plane with the rotation axis of the cylinder (Z) and whereat at least one of the control cylinder rollers (R) is designed steerable about the steering axis determined by angle Alpha (a1, a2), and a steering motion with the amplitude angle Beta between 0° and 20° is coupled exactly synchronous with the drive of the sphere and that at least one sensor is used. - Device according to Claim 1, characterized by the fact that both control cylinder rollers (R) are arranged steerable and that their steering motion to each other takes place with a phase lead of 180° in opposite phase.
- Device according to Claim 1, characterized by the fact that the coupling of the steering motion on the control cylinder rollers (R) takes place through lever (H) with the pendulum angle Gamma between 0° and 30° on the extended axis of these control cylinder rollers (R), whereat the levers (H) are moved directly by the linkage devices connected to cylinder (Z).
- Device according to Claim 1, characterized by the fact that means are provided by which the control cylinder rollers (R) are pressed elastically against the surface of sphere (K).
- Device according to Claim 1, characterized by the fact that the limit stops (A) are formed by spheres of the same size located upstream and downstream in the technological process.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4341198A DE4341198A1 (en) | 1993-12-03 | 1993-12-03 | Device for the meridional scanning of spherical surfaces |
DE4341198 | 1993-12-03 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0656523A2 EP0656523A2 (en) | 1995-06-07 |
EP0656523A3 EP0656523A3 (en) | 1996-01-03 |
EP0656523B1 true EP0656523B1 (en) | 1998-07-22 |
Family
ID=6504075
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP94118547A Expired - Lifetime EP0656523B1 (en) | 1993-12-03 | 1994-11-25 | Device for meridional sensing spherical surface |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0656523B1 (en) |
CZ (1) | CZ285267B6 (en) |
DE (2) | DE4341198A1 (en) |
ES (1) | ES2119948T3 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10235964B3 (en) * | 2002-08-06 | 2004-04-08 | H. C. Starck Ceramics Gmbh & Co. Kg | Ball rolling device for visual inspection of ball surface has rolling plate subjected to defined movement and cover plate with attached bearing surfaces for ball |
CN102507872B (en) * | 2011-11-04 | 2014-06-11 | 哈尔滨工程大学 | Spherical defects scanning method based on equivalent perimeter |
CN111896628B (en) * | 2020-06-30 | 2023-08-04 | 洛阳轴承研究所有限公司 | Ultrasonic nondestructive testing method for silicon nitride ceramic balls |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CS123081A (en) * | ||||
US3361961A (en) * | 1964-10-27 | 1968-01-02 | United States Steel Corp | Probe supporting apparatus with pivotably adjustable legs |
US3398592A (en) * | 1964-12-01 | 1968-08-27 | Vyzk Ustav Stroj Tech | Arrangement for the control of the movement of balls |
DE1573840B1 (en) * | 1966-12-24 | 1970-07-16 | Skf Kugellagerfabriken Gmbh | Drive device for balls to be tested in a test device |
DE2106891A1 (en) * | 1971-02-13 | 1972-11-30 | Skf Kugellagerfabriken Gmbh | Ball tester |
US4155455A (en) * | 1977-09-06 | 1979-05-22 | Magnetic Analysis Corporation | Eddy current and variable reluctance test apparatus for rollers and the like |
US4430614A (en) * | 1980-12-10 | 1984-02-07 | The Barden Corporation | Eddy current bearing ball flaw detector |
US4864239A (en) * | 1983-12-05 | 1989-09-05 | General Electric Company | Cylindrical bearing inspection |
JPH0625756B2 (en) * | 1988-02-26 | 1994-04-06 | 日本碍子株式会社 | Ultrasonic flaw inspection method and ultrasonic flaw inspection apparatus for balls for structural members |
JPH0820247B2 (en) * | 1988-11-09 | 1996-03-04 | 株式会社ミツトヨ | Surface roughness meter nosepiece |
US5223793A (en) * | 1991-04-29 | 1993-06-29 | Intex Inc. | Apparatus for controlled rotation of a sphere or ball for inspecting or marking the surface with a predetermined pattern |
-
1993
- 1993-12-03 DE DE4341198A patent/DE4341198A1/en not_active Withdrawn
-
1994
- 1994-11-25 ES ES94118547T patent/ES2119948T3/en not_active Expired - Lifetime
- 1994-11-25 DE DE59406487T patent/DE59406487D1/en not_active Expired - Fee Related
- 1994-11-25 EP EP94118547A patent/EP0656523B1/en not_active Expired - Lifetime
- 1994-12-01 CZ CZ942993A patent/CZ285267B6/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
ES2119948T3 (en) | 1998-10-16 |
EP0656523A3 (en) | 1996-01-03 |
DE59406487D1 (en) | 1998-08-27 |
EP0656523A2 (en) | 1995-06-07 |
CZ285267B6 (en) | 1999-06-16 |
DE4341198A1 (en) | 1995-06-08 |
CZ299394A3 (en) | 1997-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3423873C2 (en) | ||
DE3751515T2 (en) | Positioning device. | |
EP1764579B1 (en) | Method to Determine the Orthogonality of the Axes of a Coordinate Measuring Machine | |
DE60018412T2 (en) | CONTROL UNIT FOR MEASURING INSTRUMENT | |
DE4132308C2 (en) | Automatic inner diameter measuring apparatus and its zero adjustment | |
DE3879675T2 (en) | PROCEDURE AND SLIDABLE SUPPORT FOR A PROFILE MEASURING INSTRUMENT. | |
DE112018001621B4 (en) | DETECTOR, SURFACE PROPERTIES MEASURING DEVICE AND ROUNDNESS MEASURING DEVICE | |
EP0418203A1 (en) | Vertical/horizontal measuring apparatus and method for operation of same | |
DE3728313C2 (en) | ||
DE102005018787A1 (en) | Measurement of the shape of spherical and almost spherical optical surfaces | |
DE3027089C2 (en) | Device for measuring and correcting the steering geometry of motor vehicles | |
EP0656523B1 (en) | Device for meridional sensing spherical surface | |
DE3320983C2 (en) | Portable device for testing the tooth flank profile and tooth flank lines (tooth bevel) of gears on gear cutting machines or tooth flank grinding machines as well as for positioning this device and for orienting the probe on the toothing for the measuring process | |
DE2057828B2 (en) | System for the precise displacement of an object in a plane | |
EP0269789B1 (en) | Multiple coordinate feeler head | |
DE3050138C2 (en) | ||
DE4412682A1 (en) | Eccentrically rotating workpiece measuring device | |
EP1136137A1 (en) | Device and method for applying a coating material | |
DE2329712A1 (en) | ARRANGEMENT FOR COMPENSATING LENGTH CHANGES | |
DE2800340C2 (en) | Adjustment device, in particular for optical measurements | |
DE3424514C2 (en) | Device for hardness testing | |
DE10019962B4 (en) | Method and device for measuring surfaces, in particular for measuring spherical and aspherical surfaces | |
WO2022128073A1 (en) | Method for determining the thickness of a material strip during the feed of the material strip to the machining zone of a machine tool | |
EP3443304A1 (en) | Position measuring arrangement and method for operating a position measuring arrangement | |
CH620990A5 (en) | Measuring device for the coaxial alignment of two cylindrical surfaces |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE ES FR GB IT SE |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): DE ES FR GB IT SE |
|
17P | Request for examination filed |
Effective date: 19960621 |
|
17Q | First examination report despatched |
Effective date: 19970613 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE ES FR GB IT SE |
|
REF | Corresponds to: |
Ref document number: 59406487 Country of ref document: DE Date of ref document: 19980827 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2119948 Country of ref document: ES Kind code of ref document: T3 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19981015 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20040915 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20040922 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20041129 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20051123 Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20051125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051126 Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051126 |
|
EUG | Se: european patent has lapsed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060731 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20060731 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20051126 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20061125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20061125 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20081127 Year of fee payment: 15 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100601 |