EP0653600B2 - Method for determining the rotation speed of the aiming line with a strapped down seeker head - Google Patents
Method for determining the rotation speed of the aiming line with a strapped down seeker head Download PDFInfo
- Publication number
- EP0653600B2 EP0653600B2 EP94116112A EP94116112A EP0653600B2 EP 0653600 B2 EP0653600 B2 EP 0653600B2 EP 94116112 A EP94116112 A EP 94116112A EP 94116112 A EP94116112 A EP 94116112A EP 0653600 B2 EP0653600 B2 EP 0653600B2
- Authority
- EP
- European Patent Office
- Prior art keywords
- missile
- virtual
- seeker head
- head
- azimuth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 19
- 230000009466 transformation Effects 0.000 claims description 30
- 238000013178 mathematical model Methods 0.000 claims description 3
- 238000004088 simulation Methods 0.000 claims description 2
- 239000011159 matrix material Substances 0.000 description 17
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 206010041953 Staring Diseases 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 238000000844 transformation Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41G—WEAPON SIGHTS; AIMING
- F41G7/00—Direction control systems for self-propelled missiles
- F41G7/20—Direction control systems for self-propelled missiles based on continuous observation of target position
- F41G7/22—Homing guidance systems
Definitions
- the invention relates to a method for determining the line of sight missile / target with a seeker head rigidly connected to the missile.
- a device for detecting targets on the ground by sensors is different Spectral ranges for low-flying aircraft are known, with a sensor on a lift-generating aircraft towed by the aircraft Missile is mounted and the sensor signals from the own movements of the missile without Use of gyroscopes can be decoupled from the aircraft by constant measurement of its position angle.
- DE 40 34 419 A1 and DE 40 07 999 C2 are missiles with a gimbal-mounted, inertially stabilized Known television camera, whose signals are directed to a monitor, from there to the missile to steer.
- US-A-5 253 823 discloses a steering processor in which a Kalman filter is used in combination with a rigid seeker head using coordinate transformations to determine the validity of the to ensure the underlying approximation.
- the object of the invention is to provide a method with the help of which together with the missile Proportional navigation can be carried out easily in a rigidly connected search head.
- the output signals of the search head rigidly connected to the missile are used, to track a gimballed and gyro-stabilized virtual seeker head.
- the virtual search head represents the mathematical model of a gimbal stored and gyro-stabilized search head in the computer. The same time with the movement of the missile Running motion simulation of the virtual seeker head enables the rotation rate of the line of sight to be determined Missile / target.
- the frame arrangement and the gyro stabilization of the virtual seeker head play no essential for the inventive method Role.
- the type of frame design and gyro stabilization are reflected in the software of the virtual Seeker head down.
- the azimuth and elevation placement angles of the target are converted into the azimuth and elevation placement angles of the virtual search head.
- the virtual search head tracks the line of sight with a time behavior of the 1st order (or higher).
- the rotation rates of the virtual result from the movements of the virtual search head calculated by software Search head in the inertial system or, in the case of earth-fixed application, in the geodetic system, which in the steering algorithm incorporated.
- the respective position angles of the are also determined from the rotation rates of the virtual search head virtual search head, i.e. its angular position in the inertial system. These are used to convert the position angle from staring at the virtual seeker head needed.
- the missile follows the steering commands, changes its position and position, and this changes the placement angle in the rigid search head. These are in turn converted into the virtual search head. With that, the loop has closed.
- a missile 1 has a search head 2 rigidly arranged therein. With s 1 the missile longitudinal axis is designated, which is also the axis of the rigid seeker head 2, and with SL the line of sight missile 1 - target Z.
- ⁇ s represents the elevation offset angle of the rigid seeker head 2, that is to say the angle between the missile longitudinal axis s 1 or the axis of the rigid seeker head 2 and the line of sight SL.
- the virtual seeker head With 2v the virtual seeker head is designated, with v 1 its axis and with ⁇ v the offset angle between the axis v 1 of the virtual seeker head 2v and the line of sight SL.
- the 1st order follow-up behavior is only an example and can also be achieved through a higher order follow-up behavior be replaced.
- FIG. 2 shows the three-dimensional coordinate system of the rigid and the virtual search head with the respective storage angles ⁇ s and ⁇ v (elevation) and ⁇ s and ⁇ v (azimuth).
- the rigid seeker head 2 has the actual azimuth and elevation placement angles ⁇ s and ⁇ s as input variables.
- the placement angles ⁇ s and ⁇ s are measured with a measuring mechanism and the measured placement angles ⁇ sm and ⁇ sm in the virtual search head 2v are transformed by the transformation software 3 into the azimuth and elevation placement angles ⁇ v and ⁇ v of the virtual search head 2v.
- the virtual offset angles ⁇ v and ⁇ v are fed to the dynamic mathematical model 4 of the virtual search head 2 and from this the rotation rates q v , r v of the virtual search head 2v are calculated, with which the virtual search head 2v tracks the line of sight SL.
- the values of the rotation rates q v and r v simultaneously flow into the steering controller 5 in order to form the commands for the missile 6, so that the missile speed vector is rotated in proportion to the line of sight SL.
- the loop is closed via the feedback 7.
- the conversion with the transformation software 3 from the rigid to the virtual system using the equations (5) and (6) takes place via the loops 8 and 9.
- the rotation rates p v , q v and r v of the virtual search head 2v is determined, which are used to form the transformation matrix [T] vl .
- the rotational speeds p, q and r of the rigid seeker head 2 are measured via the loop 9, which are used to form the transformation matrix [T] IS .
- the rates of rotation p, q, r of the rigid seeker head 2 can be made with turning gyros 11, for example from three uniaxial ones or a uniaxial and a biaxial gyroscope.
- the search head 2 rigidly connected to the missile 1 has the placement angles Ab s and ⁇ s , while the gyroscope 11 measure the rotation rates p m , q m , r m .
- the time derivative Q of the quarternion Q is formed from the rotation rates p m , q m , r m .
- the quarternion Q and thus the transformation matrix [T] SI for the transformation from the inertial (geodetic) into the missile-fixed (rigid) system is obtained by integration.
- the transformation matrix [T] VS is obtained according to equation (5) above for the transformation from the rigid (rigid) search head system into the virtual search head system.
- the components of the unit vector [r 1 ] in the target direction Z in the missile-fixed (rigid) system are formed from the measured placement angles ⁇ sm , ⁇ sm of the rigid seeker head 2, as explained above in connection with FIG. 1 using the components x s , z s , These components are converted into the virtual seeker head system using the transformation matrix [T] VS (see equation (2)).
- the placement angles ⁇ v and ⁇ v are determined in the virtual search head 2v.
- the sought-after rotation rates of the virtual seeker head 2v are proportional to the storage angles, assuming a first-order follow-up behavior (equations 4 and 7).
- the rotation rates q v and r v of the virtual search head 2v are completed by the rotation rate p v , which is determined separately via a positive coupling (ZK), since the virtual search head 2v cannot rotate freely about its longitudinal axis.
- the azimuth and elevation placement angles ⁇ sm and ⁇ sm measured with the rigidly connected search head are thus transformed into the azimuth and elevation placement angles ⁇ v and ⁇ v of a gimbal-mounted and gyro-stabilized virtual search head 2v, which is rotated by p v , q v and r v around its axes v 1 , v 2 , v 3 of the line of sight SL is tracked.
- the transformation of the azimuth and elevation placement angles ⁇ sm and ⁇ sm measured with the rigidly connected search head 2 into the azimuth and elevation placement angles ⁇ v and ⁇ v of the virtual search head 2v takes place on the one hand on the basis of the rotation rates p v , q v , r v of the virtual search head 2v about its axes v 1 , v 2 , v 3 , which result from the continuously determined azimuth and elevation placement angles ⁇ v , ⁇ v of the virtual seeker head and the forced coupling ZK, and on the other hand due to the rotation rates p m , q m , r m of the rigidly connected search head around the body-fixed axes s 1 , s 2 , s 3 .
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
- Navigation (AREA)
- Eye Examination Apparatus (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Communication Control (AREA)
Abstract
Description
Die Erfindung bezieht sich auf ein Verfahren zur Bestimmung der Sichtliniendrehraten Flugkörper/Ziel mit einem mit dem Flugkörper starr verbundenen Suchkopf.The invention relates to a method for determining the line of sight missile / target with a seeker head rigidly connected to the missile.
Ein derartiges Verfahren ist bekannt (DE 34 42 598 A1). Dabei ist im Flugkörper ein inertial-stabilisierter Suchkopf kardanisch aufgehängt, der die Komponenten der Drehraten der Sichtlinie Flugkörper/Ziel mißt. Die Meßwerte werden als Eingangswerte benutzt, um den Flugkörper nach dem Lenkgesetz der Proportionalnavigation zu steuern.Such a method is known (DE 34 42 598 A1). There is an inertial-stabilized search head in the missile gimbaled, which measures the components of the rotation rates of the missile / target line of sight. The measured values are used as input values to steer the missile according to the steering law of proportional navigation.
Die kardanische Aufhängung von Suchköpfen erfordert eine aufwendige Präzisionsmechanik. Ein mit dem Flugkörper starr verbundener Suchkopf hätte demgegenüber wegen seiner Einfachheit erhebliche Vorteile. Er weist jedoch den Nachteil auf, daß der damit festgestellte Ablagewinkel zu einem Ausgangssignal führt, das nicht nur von der Drehrate der Sichtlinie Flugkörper/Ziel, sondern auch von der Drehrate des Flugkörpers abhängig ist.The gimbal mounting of seekers requires complex precision mechanics. One with the missile rigidly connected search head would have considerable advantages because of its simplicity. However, he points the disadvantage that the deposit angle thus determined leads to an output signal that is not only dependent on the rotation rate the line of sight missile / target, but also depends on the rate of rotation of the missile.
Aus DE 42 38 521 C2 ist eine Einrichtung zur Erfassung von Zielen am Boden durch Sensoren verschiedener Spektralbereiche für tieffliegende Flugzeuge bekannt, wobei ein Sensor an einem vom Flugzeug geschleppten, auftriebserzeugenden Flugkörper montiert ist und die Sensorsignale von den Eigenbewegungen des Flugkörpers ohne Verwendung von Kreiseln durch ständige Vermessung seiner Lagewinkel zum Flugzeug entkoppelt werden.From DE 42 38 521 C2, a device for detecting targets on the ground by sensors is different Spectral ranges for low-flying aircraft are known, with a sensor on a lift-generating aircraft towed by the aircraft Missile is mounted and the sensor signals from the own movements of the missile without Use of gyroscopes can be decoupled from the aircraft by constant measurement of its position angle.
Aus DE 40 34 419 A1 und DE 40 07 999 C2 sind Flugkörper mit einer kardanisch aufgehängten, inertial-stabilisierten Fernsehkamera bekannt, deren Signale zu einem Monitor geleitet werden, um von dort aus den Flugkörper zu lenken.DE 40 34 419 A1 and DE 40 07 999 C2 are missiles with a gimbal-mounted, inertially stabilized Known television camera, whose signals are directed to a monitor, from there to the missile to steer.
Feiner ist aus US-A-5 253 823 ein Lenkprozessor bekannt, bei dem ein Kalman-Filter in Kombination mit einem starren Suchkopf verwendet wird, wobei Koordinatentransformationen benutzt werden, um die Gültigkeit der zugrunde liegenden Approximation zu gewährleisten.US-A-5 253 823, more precisely, discloses a steering processor in which a Kalman filter is used in combination with a rigid seeker head using coordinate transformations to determine the validity of the to ensure the underlying approximation.
Aufgabe der Erfindung ist es, ein Verfahren bereitzustellen, mit dessen Hilfe zusammen mit einem mit dem Flugkörper starr verbundenen Suchkopf eine Proportionalnavigation auf einfache Weise durchgeführt werden kann.The object of the invention is to provide a method with the help of which together with the missile Proportional navigation can be carried out easily in a rigidly connected search head.
Dies wird erfindungsgemäß mit dem im Anspruch 1 gekennzeichneten Verfahren erreicht. In den Unteransprüchen
sind vorteilhafte Ausgestaltungen der Erfindung wiedergegeben.This is achieved according to the invention with the method characterized in
Erfindungsgemäß werden also die Ausgangssignale des mit dem Flugkörper starr verbundenen Suchkopfes benutzt, um einen kardanisch aufgehängten und kreiselstabilisierten virtuellen Suchkopf der Sichtlinie nachzuführen.According to the invention, the output signals of the search head rigidly connected to the missile are used, to track a gimballed and gyro-stabilized virtual seeker head.
Der virtuelle Suchkopf stellt bei dem erfindungsgemäßen Verfahren das mathematische Modell eines kardanisch gelagerten und kreiselstabilisierten Suchkopfes im Rechner dar. Die zeitgleich mit der Bewegung des Flugkörpers ablaufende Bewegungssimulation des virtuellen Suchkopfes ermöglicht die Bestimmung der Drehrate der Sichtlinie Flugkörper/Ziel.In the method according to the invention, the virtual search head represents the mathematical model of a gimbal stored and gyro-stabilized search head in the computer. The same time with the movement of the missile Running motion simulation of the virtual seeker head enables the rotation rate of the line of sight to be determined Missile / target.
Die Rahmenanordnung sowie die Kreiselstabilisierung des virtuellen Suchkopfes, also ob er z. B. durch eine rotierende Masse oder externe Wendekreisel stabilisiert ist, spielen für das erfindungsgemäße Verfahren keine wesentliche Rolle. Die Art der Rahmenausführung und der Kreiselstabilisierung schlagen sich in der Software des virtuellen Suchkopfes nieder.The frame arrangement and the gyro stabilization of the virtual seeker head, so whether it z. B. by a rotating Mass or external rate gyro is stabilized, play no essential for the inventive method Role. The type of frame design and gyro stabilization are reflected in the software of the virtual Seeker head down.
Läßt man Einzelheiten wie notwendige Koordinatentransformationen und diverse Umrechnungen beiseite, so erfolgt die Bestimmung der Sichtliniendrehrate erfindungsgemäß wie folgt:If one leaves aside details such as necessary coordinate transformations and various conversions, this is done the determination of the line of sight rotation rate according to the invention as follows:
Azimut- und Elevationsablagewinkel des Ziels, gemessen im starren Suchkopf, werden in die Azimut- und Elevationsablagewinkel des virtuellen Suchkopfes umgerechnet.The azimuth and elevation placement angles of the target, measured in the rigid seeker head, are converted into the azimuth and elevation placement angles of the virtual search head.
Der virtuelle Suchkopf wird mit einem Zeitverhalten 1. Ordnung (oder höher) der Sichtlinie nachgeführt.The virtual search head tracks the line of sight with a time behavior of the 1st order (or higher).
Aus den per Software berechneten Bewegungen des virtuellen Suchkopfes ergeben sich die Drehraten des virtuellen Suchkopfes im Inertialsystem bzw. bei erdfester Anwendung im geodätischen System, welche in den Lenkalgorithmus einfließen. Aus den Drehraten des virtuellen Suchkopfes ermitteln sich auch die jeweiligen Lagewinkel des virtuellen Suchkopfes, d.h. seine Winkellage im Inertialsystem. Diese werden zur Umrechnung der Lagewinkel vom starren zum virtuellen Suchkopf benötigt.The rotation rates of the virtual result from the movements of the virtual search head calculated by software Search head in the inertial system or, in the case of earth-fixed application, in the geodetic system, which in the steering algorithm incorporated. The respective position angles of the are also determined from the rotation rates of the virtual search head virtual search head, i.e. its angular position in the inertial system. These are used to convert the position angle from staring at the virtual seeker head needed.
Der Flugkörper folgt den Lenkkommandos, ändert seine Lage und Position, und dadurch ändern sich die Ablagewinkel im starren Suchkopf. Diese werden wiederum in den virtuellen Suchkopf umgerechnet. Damit hat sich die Schleife geschlossen.The missile follows the steering commands, changes its position and position, and this changes the placement angle in the rigid search head. These are in turn converted into the virtual search head. With that, the loop has closed.
Nachstehend ist die Erfindung anhand der Zeichnung näher erläutert. Darin zeigen:
Gemäß Fig. 1 weist ein Flugkörper 1 einen darin starr angeordneten Suchkopf 2 auf. Mit s1 ist die FlugkörperLängsachse
bezeichnet, die zugleich die Achse des starren Suchkopfes 2 ist, und mit SL die Sichtlinie Flugkörper 1 -
Ziel Z.1, a
Θs stellt den Elevationsablagewinkel des starren Suchkopfes 2, also den Winkel zwischen der Flugkörper-Längsachse
s1 bzw. der Achse des starren Suchkopfes 2 und der Sichtlinie SL dar.Θ s represents the elevation offset angle of the
Mit 2v ist der virtuelle Suchkopf bezeichnet, mit v1 dessen Achse und mit Θv der Ablagewinkel zwischen der Achse
v1 des virtuellen Suchkopfes 2v und der Sichtlinie SL.With 2v the virtual seeker head is designated, with v 1 its axis and with Θ v the offset angle between the axis v 1 of the
Aus dem Ablagewinkel Θs ergeben sich für den Sichtlinien-Einheitsvektor [r1] die Komponenten xs und zs im System des starren Suchkopfes, wie folgt: For the line-of-sight unit vector [r 1 ], the components x s and z s in the system of the rigid seeker head result from the offset angle Θ s as follows:
Die Umrechnung der Komponenten des Einheitsvektors [r1] im starren System, also xs und zs, in die Komponenten des virtuellen Systems xv und zv erfolgt nach folgender Gleichung: worin [T]VS die Transformationsmatrix zur Umrechnung vom starren in das virtuelle System darstellt.The components of the unit vector [r 1 ] in the rigid system, ie x s and z s , are converted into the components of the virtual system x v and z v using the following equation: where [T] VS represents the transformation matrix for the conversion from the rigid to the virtual system.
Der gesuchte virtuelle Ablagewinkel Θv ist nach Fig. 1
Die Drehrate qv des virtuellen Suchkopfes 2v ist unter der Annahme eines Folgeverhaltens 1. Ordnung
Das Folgeverhalten 1. Ordnung steht nur beispielhaft und kann auch durch ein Folgeverhalten höherer Ordnung ersetzt werden.The 1st order follow-up behavior is only an example and can also be achieved through a higher order follow-up behavior be replaced.
In Fig. 2 ist das dreidimensionale Koordinatensystem des starren und des virtuellen Suchkopfes mit den jeweiligen Ablagewinkeln Θs und Θv (Elevation) und Ψs und Ψv (Azimut) dargestellt.2 shows the three-dimensional coordinate system of the rigid and the virtual search head with the respective storage angles Θ s and Θ v (elevation) and Ψ s and Ψ v (azimuth).
Nach der funktionalen Prinzipskizze der Fig. 3 hat der starre Suchkopf 2 die tatsächlichen Azimut- und Elevationsablagewinkel
Ψs und Θs als Eingangsgrößen. Die Ablagewinkel Ψs und Θs werden mit einem Meßwerk gemessen
und die gemessenen Ablagewinkel Ψsm und Θsm im virtuellen Suchkopf 2v durch die Transformations-Software 3 in
die Azimut- und Elevationsablagewinkel Ψv und Θv des virtuellen Suchkopfs 2v transformiert.3, the
Die virtuellen Ablagewinkel Ψv und Θv werden dem dynamischen mathematischen Modell 4 des virtuellen Suchkopfes
2 zugeführt und daraus die Drehraten qv, rv des virtuellen Suchkopfes 2v berechnet, mit denen der virtuelle
Suchkopf 2v der Sichtlinie SL nachgeführt wird.The virtual offset angles Ψ v and Θ v are fed to the dynamic mathematical model 4 of the
Die Werte der Drehraten qv und rv fließen zugleich in den Lenkregler 5 ein, um die Kommandos für den Flugkörper
6 zu bilden, so daß der Flugkörpergeschwindigkeitsvektor proportional zur Sichtlinie SL gedreht wird. Die Schleife wird
über die Rückführung 7 geschlossen.The values of the rotation rates q v and r v simultaneously flow into the
Die Transformation vom starren Suchkopf 2 in den virtuellen Suchkopf 2v mit der Transformationsmatrix [T]VS
erfolgt nach folgender Gleichung:
Darin stellen [T]VI die Transformationsmatrix vom inertialen (geodätischen) System in das virtuelle System und
[T]IS die Transformationsmatrix vom flugkörperfesten oder starren System in das inertiale (geodätische) System dar,
wobei gilt:
Die Umrechnung mit der Transformations-Software 3 vom starren in das virtuelle System anhand der Gleichungen
(5) und (6) erfolgt über die Schleifen 8 und 9. Dazu werden über die Schleife 8 durch die Software 10 die Drehraten
pv, qv und rv des virtuellen Suchkopfes 2v ermittelt, die zur Bildung der Transformationsmatrix [T]vl herangezogen
werden. Über die Schleife 9 werden die Drehgeschwindigen p, q und r des starren Suchkopfes 2 gemessen, die
zur Bitdung der Transformationsmatrix [T]IS herangezogen werden. The conversion with the
Die Drehraten p, q, r des starren Suchkopfes 2 können mit Wendekreiseln 11, beispielsweise aus drei einachsigen
oder einem einachsigen und einem zweiachsigen Wendekreisel, erhalten werden.The rates of rotation p, q, r of the
In Fig. 4 ist die Software zur Realisierung des virtuellen Suchkopfes 2v näher erläutert.4 the software for realizing the
Danach weist der starr mit dem Flugkörper 1 verbundene Suchkopf 2 die Ablagewinkel Ψs und Θs auf, während
die Wendekreisel 11 die Drehraten pm, qm, rm messen.Then the
Damit ergeben sich folgende Eingangsgrößen des virtuellen Suchkopfes 2v:
Aus den Drehraten pm, qm, rm wird die zeitliche Ableitung Q der Quarternion Q gebildet. Durch Integration erhält man die Quarternion Q und damit die Transformationsmatrix [T]SI für die Transformation vom inertialen (geodätischen) in das flugkörperfeste (starre) System.The time derivative Q of the quarternion Q is formed from the rotation rates p m , q m , r m . The quarternion Q and thus the transformation matrix [T] SI for the transformation from the inertial (geodetic) into the missile-fixed (rigid) system is obtained by integration.
Mit Hilfe der Transformationsmatrix [T]VI für die Transformation vom inertialen System in das virtuelle Suchkopfsystem und der Transformationsmatrix [T]IS für die Transformation vom starren in das inertiale geodätische System erhält man nach der vorstehenden Gleichung (5) die Transformationsmatrix [T]VS für die Transformation vom körperfesten (starren) Suchkopfsystem in das virtuelle Suchkopfsystem.With the help of the transformation matrix [T] VI for the transformation from the inertial system into the virtual search head system and the transformation matrix [T] IS for the transformation from the rigid into the inertial geodetic system, the transformation matrix [T] VS is obtained according to equation (5) above for the transformation from the rigid (rigid) search head system into the virtual search head system.
Aus den gemessenen Ablagewinkeln Ψsm, Θsm des starren Suchkopfes 2 werden die Komponenten des Einheitsvektors
[r1] in Zielrichtung Z im flugkörperfesten (starren) System gebildet, wie vorstehend im Zusammenhang in Fig.
1 anhand der Komponenten xs, zs erläutert. Diese Komponenten werden mit der Transformationsmatrix [T]VS in das
virtuelle Suchkopfsystem umgerechnet (vergleiche Gleichung (2)).The components of the unit vector [r 1 ] in the target direction Z in the missile-fixed (rigid) system are formed from the measured placement angles Ψ sm , Θ sm of the
Mit den transformierten Komponenten (xv, zv) des Einheitsvektors [r1] werden die Ablagewinkel Ψv und Θv im
virtuellen Suchkopf 2v ermittelt.With the transformed components (x v , z v ) of the unit vector [r 1 ], the placement angles Ψ v and Θ v are determined in the
Die gesuchten Drehraten des virtuellen Suchkopfes 2v sind unter der Annahme eines Folgeverhaltens 1. Ordnung
den Ablagewinkeln proportional (Gleichungen 4 und 7).
Die Drehraten qv und rv des virtuellen Suchkopfes 2v werden durch die Drehrate pv vervollständigt, welche gesondert
über eine Zwangskopplung (ZK) ermittelt wird, da sich der virtuelle Suchkopf 2v nicht frei um seine Längsachse
drehen kann.The rotation rates q v and r v of the
Aus pv, qv, rv erhält man die zeitliche Ableitung Qv und durch Integration die Quarternion Qv, aus der die Transformationsmatrix [T]VI gebildet wird und mit deren Hilfe zusammen mit der Transformationsmatrix [T]IS die Transformationsmatrix [T]VS gemäß der Gleichung (5) ermittelt wird.From p v , q v , r v one obtains the time derivative Q v and by integration the quarternion Q v , from which the transformation matrix [T] VI is formed and with the help of which, together with the transformation matrix [T] IS, the transformation matrix [T ] VS is determined according to equation (5).
Bei dem erfindungsgemäßen Verfahren werden also die mit dem starr verbundenen Suchkopf gemessenen Azimut-
und Elevationsablagewinkel ψsm und Θsm in die Azimut- und Elevationsablagewinkel ψv und Θv eines kardanisch
gelagerten und kreiselstabilisierten virtuellen Suchkopfes 2v transformiert, der durch Drehung pv, qv und rv um seine
Achsen v1, v2, v3 der Sichtlinie SL nachgeführt wird.In the method according to the invention, the azimuth and elevation placement angles ψ sm and Θ sm measured with the rigidly connected search head are thus transformed into the azimuth and elevation placement angles ψ v and Θ v of a gimbal-mounted and gyro-stabilized
Die Transformation der mit dem starr verbundenen Suchkopf 2 gemessenen Azimut- und Elevationsablagewinkel
ψ sm und Θsm in die Azimut- und Elevationsablagewinkel ψv und Θv des virtuellen Suchkopfes 2v erfolgt einerseits
aufgrund der Drehraten pv, qv, rv des virtuellen Suchkopfes 2v um seine Achsen v1, v2, v3, die sich aus den kontinuierlich
ermittelten Azimut- und Elevationsablagewinkeln ψv, Θv des virtuellen Suchkopfes und der Zwangskopplung ZK ergeben,
und andererseits aufgrund der Drehraten pm, qm, rm des starr verbundenen Suchkopfes um die körperfesten
Achsen s1, s2, s3.The transformation of the azimuth and elevation placement angles ψ sm and Θ sm measured with the rigidly connected
Unter der Zwangskopplung ZK ist dabei eine mathematische Bedingung zu verstehen, welche berücksichtigt, daß der virtuelle Suchkopf in der Längsachse nicht frei drehbar gegenüber dem Flugkörper ist. Vielmehr ergibt sich die Drehrate pv um die Achse v1 des virtuellen Koordinatensystems aus:
- den Drehraten qv um die Achse v2 und rv um die Achse v3 des virtuellen Koordinatensystems
- den Drehraten des Flugkörpers pm, qm, rm um die flugkörperfesten Achsen s1, s2 und s3
- der Transformationsmatrix [T]VS,
- the rotation rates q v about the axis v 2 and r v about the axis v 3 of the virtual coordinate system
- the rotation rates of the missile p m , q m , r m around the missile fixed axes s 1 , s 2 and s 3
- the transformation matrix [T] VS ,
Claims (7)
- A method for determining the rates of turn of the missile/target line of sight with a seeker head (2) rigidly mounted on the missile (1), the azimuth and elevation deviation angles (Ψsm and sm) of the target measured with the rigidly mounted seeker head (2) in the missile-fixed coordinate system (s1, s2, s3) being transformed to the azimuth and elevation deviation angles (Ψv and v)of the target based on a coordinate system, characterized in that the coordinate system is a coordinate system (v1, v2, v3) of a virtual, gimbal mounted and gyrostabilized seeker head (2v) that is the mathematical model of a gimbal mounted and gyrostabilized seeker head in a computer and that tracks the missile/target line of sight (SL) by rotation with the rates of turn (pv, qv, rv) about its three axes (v1, v2, v3) by performing a virtual seeker head's follow-up simulation at the same time, the nature of the frame design and gyrostabilisation being reflected in the software of the gimbal mounted, gyrostabilized seeker head to be simulated.
- The method of claim 1, characterized in that the transformation of the azimuth and elevation deviation angles ((Ψsm and sm) measured with the rigidly mounted seeker head (2) to the azimuth and elevation deviation angles (Ψv and v) of the virtual seeker head (2v) takes place about its three axes (v1, v2, v3) and, on the other hand, via the rates of turn (pm, qm, rm) of the rigidly mounted seeker head (2) about the three missile-fixed axes (s1, s2, s3).
- The method of claim 1 or 2, characterized in that the virtual seeker head (2v) tracks the missile/target line of sight (SL) with a first- or higher-order time response.
- The method of any of claims 1 to 3, characterized in that the quaternion method is used during transformation.
- The method of any of claims 1 to 3, characterized in that the Euler's angle method is used during transformation.
- The method of any of the above claims, characterized in that the rates of turn (qv, rv) of the virtual seeker head (2v) about its two axes (v2, v3) perpendicular to its longitudinal axis (v1) are used to guide the missile (1) by proportional navigation.
- The method of any of the above claims, characterized in that any desired frame assembly of the virtual seeker head (2v) is used.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4339187A DE4339187C1 (en) | 1993-11-16 | 1993-11-16 | Procedure for determining the line of sight rotation rate with a rigid search head |
DE4339187 | 1993-11-16 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0653600A1 EP0653600A1 (en) | 1995-05-17 |
EP0653600B1 EP0653600B1 (en) | 1996-05-08 |
EP0653600B2 true EP0653600B2 (en) | 2002-01-02 |
Family
ID=6502769
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP94116112A Expired - Lifetime EP0653600B2 (en) | 1993-11-16 | 1994-10-12 | Method for determining the rotation speed of the aiming line with a strapped down seeker head |
Country Status (5)
Country | Link |
---|---|
US (1) | US5669579A (en) |
EP (1) | EP0653600B2 (en) |
AT (1) | ATE137857T1 (en) |
CA (1) | CA2135362A1 (en) |
DE (2) | DE4339187C1 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19500993A1 (en) * | 1995-01-14 | 1996-07-18 | Contraves Gmbh | Establishing roll attitude of rolling flying object, e.g rocket or other projectile |
DE29512894U1 (en) * | 1995-08-10 | 1995-10-26 | Mafo Systemtechnik Dr.-Ing. A. Zacharias GmbH & Co. KG, 83317 Teisendorf | weapon |
DE19756763A1 (en) | 1997-12-19 | 1999-06-24 | Bodenseewerk Geraetetech | Seeker for tracking missiles |
US6651004B1 (en) * | 1999-01-25 | 2003-11-18 | The United States Of America As Represented By The Secretary Of The Navy | Guidance system |
JP4285367B2 (en) * | 2003-10-29 | 2009-06-24 | セイコーエプソン株式会社 | Gaze guidance degree calculation system, gaze guidance degree calculation program, and gaze guidance degree calculation method |
US8946606B1 (en) * | 2008-03-26 | 2015-02-03 | Arete Associates | Determining angular rate for line-of-sight to a moving object, with a body-fixed imaging sensor |
US9222755B2 (en) * | 2014-02-03 | 2015-12-29 | The Aerospace Corporation | Intercepting vehicle and method |
CN107270904B (en) * | 2017-06-23 | 2020-07-03 | 西北工业大学 | Unmanned aerial vehicle auxiliary guide control system and method based on image registration |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH565988A5 (en) † | 1958-07-01 | 1975-08-29 | Bodenseewerk Geraetetech | |
DE3233612A1 (en) † | 1982-09-10 | 1984-03-15 | Bodenseewerk Gerätetechnik GmbH, 7770 Überlingen | DEVICE FOR DETERMINING THE NORTH DIRECTION |
DE3436839A1 (en) † | 1983-10-07 | 1993-07-08 | Secr Defence Brit | STEERING PROCESSOR |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB106066A (en) * | 1917-01-04 | 1917-05-10 | Robert Renton Hind | Improvements in Sugar-cane Mill Housings. |
US4108400A (en) * | 1976-08-02 | 1978-08-22 | The United States Of America As Represented By The Secretary Of The Navy | Dual mode guidance system |
JPS5644909A (en) * | 1979-09-20 | 1981-04-24 | Tech Res & Dev Inst Of Japan Def Agency | Inducing device of flying material |
US4492352A (en) * | 1982-09-22 | 1985-01-08 | General Dynamics, Pomona Division | Noise-adaptive, predictive proportional navigation (NAPPN) guidance scheme |
US4502650A (en) * | 1982-09-22 | 1985-03-05 | General Dynamics, Pomona Division | Augmented proportional navigation in third order predictive scheme |
US4542870A (en) * | 1983-08-08 | 1985-09-24 | The United States Of America As Represented By The Secretary Of The Army | SSICM guidance and control concept |
GB2208017B (en) * | 1983-11-25 | 1989-07-05 | British Aerospace | Guidance systems |
US4643373A (en) * | 1984-12-24 | 1987-02-17 | Honeywell Inc. | Missile system for naval use |
EP0222571A3 (en) * | 1985-10-31 | 1988-05-04 | British Aerospace Public Limited Company | Line of sight missile guidance |
JPH02150698A (en) * | 1988-12-01 | 1990-06-08 | Mitsubishi Electric Corp | Guiding device for missile |
DE4034419A1 (en) * | 1989-10-28 | 1991-05-02 | Messerschmitt Boelkow Blohm | Single control for cable-steered missile - uses sensor e.g. TV selecting and locking on target |
US5279478A (en) * | 1989-12-20 | 1994-01-18 | Westinghouse Electric Corp. | Seeker circuit for homing missile guidance |
JP3232564B2 (en) * | 1990-02-26 | 2001-11-26 | 三菱電機株式会社 | Flying object guidance device |
DE4007999A1 (en) * | 1990-03-13 | 1991-09-19 | Messerschmitt Boelkow Blohm | Remote controlled projectile or missile - uses camera as sensor for holding missile at required height |
US5052637A (en) * | 1990-03-23 | 1991-10-01 | Martin Marietta Corporation | Electronically stabilized tracking system |
DE4238521C1 (en) * | 1991-08-09 | 1993-10-21 | Deutsche Aerospace | Target detection device for low-flying aircraft - uses sensors associated with separate airborne body ,e.g. missile, coupled to aircraft via flexible cable with relative position correction of sensor signals, i.e. optical fibre carries targetting data to missile |
FR2700640B1 (en) * | 1993-01-15 | 1995-02-24 | Thomson Csf | Device for stabilizing the beam pointing of an electronic scanning antenna rigidly fixed on a mobile. |
-
1993
- 1993-11-16 DE DE4339187A patent/DE4339187C1/en not_active Revoked
-
1994
- 1994-10-12 AT AT94116112T patent/ATE137857T1/en not_active IP Right Cessation
- 1994-10-12 EP EP94116112A patent/EP0653600B2/en not_active Expired - Lifetime
- 1994-10-12 DE DE59400264T patent/DE59400264D1/en not_active Expired - Fee Related
- 1994-11-08 CA CA002135362A patent/CA2135362A1/en not_active Abandoned
-
1995
- 1995-12-11 US US08/570,382 patent/US5669579A/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH565988A5 (en) † | 1958-07-01 | 1975-08-29 | Bodenseewerk Geraetetech | |
DE3233612A1 (en) † | 1982-09-10 | 1984-03-15 | Bodenseewerk Gerätetechnik GmbH, 7770 Überlingen | DEVICE FOR DETERMINING THE NORTH DIRECTION |
DE3436839A1 (en) † | 1983-10-07 | 1993-07-08 | Secr Defence Brit | STEERING PROCESSOR |
Non-Patent Citations (1)
Title |
---|
AGARD Conference Proceedings No.292, "Guidance and Control Aspects of Tactical Air-Launched Missiles" † |
Also Published As
Publication number | Publication date |
---|---|
US5669579A (en) | 1997-09-23 |
DE4339187C1 (en) | 1995-04-13 |
EP0653600B1 (en) | 1996-05-08 |
EP0653600A1 (en) | 1995-05-17 |
ATE137857T1 (en) | 1996-05-15 |
DE59400264D1 (en) | 1996-06-13 |
CA2135362A1 (en) | 1995-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE1936820C1 (en) | Aircraft tracking device | |
US4092716A (en) | Control means and method for controlling an object | |
EP0924490B1 (en) | Seeker head for target tracking missile | |
DE69412944T2 (en) | Inertia measuring unit and method for increasing its measuring accuracy | |
DE3436839C2 (en) | Steering processor | |
DE2648227A1 (en) | ALIGNMENT SYSTEM FOR AIRCRAFT CARRIAGE PLATFORMS | |
DE4331259C1 (en) | Seeker for guided missile has electro-optical seeker mounted in Cardan frame with actuators to align seeker onto target | |
EP0653600B2 (en) | Method for determining the rotation speed of the aiming line with a strapped down seeker head | |
DE3229819C2 (en) | Integrated navigation and fire control system for battle tanks | |
DE3873760T2 (en) | STABILIZED LEVELING MIRROR. | |
DE2818202A1 (en) | NAVIGATION DEVICE FOR LAND, AIR OR SEA VEHICLES | |
DE4218600C2 (en) | Device for determining movement quantities of a missile | |
DE4208158C2 (en) | Gyro system | |
DE3923783A1 (en) | INTEGRATED STABILIZED OPTICS AND NAVIGATION SYSTEM | |
EP0335116A2 (en) | Method of aligning a two axis platform | |
DE3019743A1 (en) | Gyroscopic platform for inertial guidance system - has gimbal mounted platform with motor-driven gyroscopic stabilisation system | |
EP0962740B1 (en) | Target seeker head and method of target recognition and tracking by means of the target seeker head | |
DE69912053T2 (en) | Method and device for directing a missile, in particular a missile, to a target | |
DE2932468C1 (en) | Seeker head | |
EP0106066B1 (en) | Apparatus for determining the north | |
CH635428A5 (en) | DEVICE FOR DETERMINING THE SOLDERING DIRECTION IN A SYSTEM ATTACHED ON A MOVABLE BASE. | |
DE2827056C2 (en) | Missile guidance system | |
EP0184632A2 (en) | Arrangement for initializing and/or recalibrating a repeating inertial navigator | |
DE4223531A1 (en) | High speed missile inertial reference optical support and re-initialising system - derives alignment error estimates from comparison of outputs of video camera sensors of reference points located on launcher with values from guidance system | |
DE3409318A1 (en) | System which is carried by a helicopter for localising a target and for determining the parameters of the displacement of this target, and a method for operating this system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI NL SE |
|
17P | Request for examination filed |
Effective date: 19950323 |
|
17Q | First examination report despatched |
Effective date: 19951025 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI NL SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19960508 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19960508 Ref country code: DK Effective date: 19960508 Ref country code: BE Effective date: 19960508 |
|
REF | Corresponds to: |
Ref document number: 137857 Country of ref document: AT Date of ref document: 19960515 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 59400264 Country of ref document: DE Date of ref document: 19960613 |
|
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19960628 |
|
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19960808 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
ET | Fr: translation filed | ||
26 | Opposition filed |
Opponent name: BODENSEEWERK GERAETETECHNIK GMBH Effective date: 19960726 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Effective date: 19961012 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
26 | Opposition filed |
Opponent name: STN ATLAS ELEKTRONIK GMBH Effective date: 19970206 Opponent name: BODENSEEWERK GERAETETECHNIK GMBH Effective date: 19960726 |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: AEN Free format text: AUFGRUND DES WEITERBEHANDLUNGSANTRAGS VOM 23.06.97 IST DAS PATENT REAKTIVIERT WORDEN. |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL Ref country code: CH Ref legal event code: NV Representative=s name: KELLER & PARTNER PATENTANWAELTE AG |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: AEN Free format text: DIE LOESCHUNG VOM 31.10.1996 ERFOLGTE IRRTUEMLICH. DAS PATENT WURDE REAKTIVIERT. |
|
RDAH | Patent revoked |
Free format text: ORIGINAL CODE: EPIDOS REVO |
|
APAC | Appeal dossier modified |
Free format text: ORIGINAL CODE: EPIDOS NOAPO |
|
APAE | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOS REFNO |
|
APAC | Appeal dossier modified |
Free format text: ORIGINAL CODE: EPIDOS NOAPO |
|
APAC | Appeal dossier modified |
Free format text: ORIGINAL CODE: EPIDOS NOAPO |
|
PLAW | Interlocutory decision in opposition |
Free format text: ORIGINAL CODE: EPIDOS IDOP |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
27A | Patent maintained in amended form |
Effective date: 20020102 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI NL SE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: AEN Free format text: AUFRECHTERHALTUNG DES PATENTES IN GEAENDERTER FORM |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20020413 |
|
GBTA | Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977) | ||
ET3 | Fr: translation filed ** decision concerning opposition | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20040917 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20041006 Year of fee payment: 11 |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051012 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051012 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051031 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051031 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20051102 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20051221 Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20051012 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060630 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20060630 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: D3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070501 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20080131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19961031 |