EP0653496B1 - Process and apparatus for the recovery of valuable materials - Google Patents

Process and apparatus for the recovery of valuable materials Download PDF

Info

Publication number
EP0653496B1
EP0653496B1 EP94250266A EP94250266A EP0653496B1 EP 0653496 B1 EP0653496 B1 EP 0653496B1 EP 94250266 A EP94250266 A EP 94250266A EP 94250266 A EP94250266 A EP 94250266A EP 0653496 B1 EP0653496 B1 EP 0653496B1
Authority
EP
European Patent Office
Prior art keywords
furnace
slag
melt
partition wall
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94250266A
Other languages
German (de)
French (fr)
Other versions
EP0653496A1 (en
Inventor
Heribert König
Heinz Stark
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vodafone GmbH
Original Assignee
Mannesmann AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mannesmann AG filed Critical Mannesmann AG
Publication of EP0653496A1 publication Critical patent/EP0653496A1/en
Application granted granted Critical
Publication of EP0653496B1 publication Critical patent/EP0653496B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/10Dry methods smelting of sulfides or formation of mattes by solid carbonaceous reducing agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/5252Manufacture of steel in electric furnaces in an electrically heated multi-chamber furnace, a combination of electric furnaces or an electric furnace arranged for associated working with a non electric furnace
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/56Manufacture of steel by other methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/08Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces heated electrically, with or without any other source of heat
    • F27B3/085Arc furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/20Arrangements of heating devices
    • F27B3/205Burners

Definitions

  • the invention relates to a method for extracting valuable materials Oxygen-bound metals through reduction in metallurgical Vessels and a melting furnace with the vessel in two parts separating partition protruding from the furnace ceiling into the vessel, with a device for supplying thermal energy, material supply and Melt removal devices and a connection to a Gas cleaning system.
  • the invention has set itself the goal of specifying a method and the melting furnace system required for this to obtain valuable materials from oxygen-bound metals, by means of which the output is increased with a simultaneous reduction in the reduction time.
  • the invention solves the problem with the characterizing features of method claim 1 and device claim 5.
  • a first furnace part of the metallurgical vessel is equipped with a partition wall which dips into the slag and which separates a part of the furnace chamber. The oxidic melt penetrates under the partition into the separated part of the hearth and assumes the same level there.
  • the second part of the furnace is designed as a shaft and filled with coke, so high that the weight of the coke column becomes so great that the buoyancy of the oxidic bath is overcome and the coke is immersed over the entire height of the slag bath floating on the molten metal.
  • electrodes protruding sideways into the reducing agent shaft are provided, which are connected to an energy supply device.
  • an electrical voltage is applied to the electrodes, a current flows from electrode to electrode through the electrical resistance of the reducing agent, which current generates the Joule heat required for the reduction process.
  • the gas generated during the reduction roams the coke layers of the shaft against the direction of the coke. Possibly.
  • Carbon dioxide produced during the course of the process is reduced by the reducing agent, so that a high-quality fuel gas is obtained in total above the coke bed.
  • the gas generated in the first furnace part is passed through the partition into the reducing agent shaft. In the reducing agent shaft, this carbon dioxide is reduced to valuable gas by the reducing agent.
  • Another advantage is that the dust load of the exhaust gas from the first furnace part is deposited in the coke structure and is returned to the process. This relieves the pressure on the gas cleaning system and increases the amount of valuable gas.
  • FIG. 1 shows a side view
  • FIG. 2 shows a plan view
  • the figures show a first furnace part 11 and a second furnace part 12, which are connected to one another by a common vessel bottom 15 are.
  • the furnace part 11 is closed off by a furnace roof 13 the electrodes 51 to 53 and feed 33 for the supply of solid Möller are provided.
  • a feed 32 provided for liquid grinder, which is operated by a pan 35 can be.
  • a partition 21 is provided between the furnace part 11 and the shaft-shaped furnace part 12.
  • This partition wall 21 has a length which allows such a large distance between the mouth 22 and the bottom of the vessel that the partition wall does not come into contact with liquid metal during operation.
  • An opening 23 is provided in the partition 21, through which gas can get into the furnace part 12 from the furnace part 11.
  • the part of the partition wall 21 which dips into the slag during operation is constructed from cooling elements 24 through which a coolant can be passed.
  • a tapping 17 for slag S and a tapping 16 for liquid metal M are provided in the side wall 19 of the furnace part 12. The tapping 16 is arranged at the same height as the vessel bottom 15 falling at an angle of inclination.
  • the head end of the shaft-shaped furnace part 12 is lid-like fed and has in its center a feed 31 for the Reducing agent R on. Have the feed 31 as well as the feed 33 Locks 34, which prevent the gas from escaping from the furnace. In the area of the head end 14 of the furnace part 12 there is a connection 41 gas cleaning 42 is provided.
  • the total shaft of the furnace section 12 has a shaft height H that is significantly higher than the column height h of the reducing agent R.
  • FIG. 2 shows the position of the electrodes 54, 55 (not shown in FIG. 1) that protrude into the reducing agent R to above the slag level and are connected to an energy device 56 for direct current.
  • the electrodes 51 to 53 are connected to an energy device 57 for alternating current. Energy devices for other media for supplying heat are also possible for operating the furnace system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Processing Of Solid Wastes (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Wertstoffgewinnung sauerstoffgebundener Metalle durch Reduktion in metallurgischen Gefäßen und eine Schmelzofenanlage mit einer das Gefäß in zwei Teile trennende von der Ofendecke in das Gefäß hineinragenden Trennwand, mit einer Einrichtung zur Zuführung von Wärmeenergie, Materialzufuhr- und Schmelzabfuhrvorrichtungen sowie einen Anschluß an eine Gasreinigungsanlage.The invention relates to a method for extracting valuable materials Oxygen-bound metals through reduction in metallurgical Vessels and a melting furnace with the vessel in two parts separating partition protruding from the furnace ceiling into the vessel, with a device for supplying thermal energy, material supply and Melt removal devices and a connection to a Gas cleaning system.

Bei metallurgischen Prozessen zur Gewinnung von sauerstoffgebundenen Wertmetallen, wie beispielsweise Blei oder Kupfer, durch Reduktion, wird das für den Reduktionsprozeß erforderliche Reduktionsmittel regelmäßig durch Schüttung auf das schmelzflüssige Bad gegeben. Als Folge des großen Unterschiedes im spezifischen Gewicht zwischen dem Reduktionsmittel, in den meisten Fällen Koks, und der metallurgischen Schmelze, die einer Schlackenschmelze gleichzusetzen ist, kann das Reduktionsmittel in Form von Koks nur als Schicht auf der Schmelze schwimmen. Dies bedingt einen nur wenig effektiven Kontakt der Reduktanten mit dem großen zu reduzierenden Volumen des metallurgischen, oxydischen Bades. Die Folgen dieses schlechten Kontaktes sind sehr lange (bis zu Tagen) Verweil- und Reduktionszeiten mit erheblichem Aufwand an Warmhalteenergie.In metallurgical processes for the extraction of oxygen-bound Valuable metals, such as lead or copper, through reduction, becomes the reducing agent required for the reduction process regularly poured onto the molten bath. As Consequence of the big difference in specific gravity between the Reducing agents, in most cases coke, and the metallurgical Melt that can be equated to a slag melt can do that Reducing agent in the form of coke only as a layer on the melt swim. This requires an ineffective contact of the Reductants with the large volume to be reduced metallurgical, oxidic bath. The consequences of this bad Contact times are very long (up to days) dwell and reduction times with considerable expenditure of keeping warm energy.

Weiterhin ist aus der DE OS 25 09 061 ein Verfahren bekannt, bei dem metalloxydhaltiges Material in einem glühenden Koksbett reduziert wird, das als horizontaler Ring geformt ist und auf elektrischem Wege erwärmt wird. Bei diesem Verfahren, das im wesentlichen zur Gewinnung einer kohlenstoffhaltigen Metallschmelze aus metalloxydhaltigem Material dient, wird das erschmolzene Metall daran gehindert, eine zusammenhängende Schmelzenschicht unter dem Koksbett zu bilden.Furthermore, a method is known from DE OS 25 09 061 in which metal oxide-containing material is reduced in a glowing coke bed, which is shaped as a horizontal ring and heated electrically becomes. In this process, which is essentially used to obtain a carbon-containing molten metal from material containing metal oxide serves, the molten metal is prevented from to form a continuous layer of melt under the coke bed.

Als Nachteile dieses Verfahrens sind neben der schwierigen Steuerung der Verhinderung des Bildens einer zusammenhängenden Schmelzenschicht unter dem Koksbett der Einsatz eines Ringofens mit der Fülle seiner beweglichen und verschleißanfälligen Einzelteile.The disadvantages of this method are the difficult control the prevention of the formation of a coherent melt layer under the coke bed the use of a ring furnace with the fullness of its movable and wear-prone individual parts.

Aus der Schrift DE 36 14 048 A1 ist eine Anlage mit einem mit flüssigem Metall gefüllten Reaktor bekannt, bei dem im mittleren Bereich des Reaktors eine Trennwand angeordnet ist, die am Boden des Reaktors wenigstens eine Durchlaßöffnung für das flüssige Metall aufweist. Diese Anlage dient der Vergasung minderwertige Brennstoffe in einem feuerflüssigen Metallschmelzbad, insbesondre einem Eisenschmelzbad, und ist zur Reduktion einer oxydischen, metallurgischen Wertschmelze nicht geeignet. Hierbei werden minderwertige Brennstoffe, u.a. Altöl, Hausmüll, Sperrmüll, Abfallstoffe, Autoreifen u. ä., in die Metallschmelze eingeführt. Der im minderwertigen Brennstoff enthaltene Kohlenstoff sowie auch der Schwefel gehen im Eisenbad in Lösung. Die nicht vergasbaren bzw. nicht löslichen Bestandteile der minderwertigen Brennstoffe werden verschlackt und sofort über das Abzugsorgan aus der Reaktorkammer abgezogen. Ein inniger Kontakt zwischen einem Reduktionsmittel und der Schlackenschmelze liegt hier nicht vor. From the document DE 36 14 048 A1 is a system with a liquid Metal-filled reactor known in the middle of the Reactor a partition is arranged at the bottom of the reactor has at least one passage opening for the liquid metal. This Plant serves the gasification of inferior fuels in one molten metal bath, in particular an iron bath, and is not for reducing an oxidic, metallurgical value melt suitable. Inferior fuels, including Waste oil, Household waste, bulky waste, waste materials, car tires and. Ä., in the Metal melt introduced. The contained in the inferior fuel Carbon and sulfur go into solution in the iron bath. The non-gasifiable or insoluble components of the inferior Fuels are slagged and immediately removed from the extractor Reactor chamber withdrawn. An intimate contact between one Reducing agent and the slag melt are not available here.

Aus der US 4168156 ist ein Elektroofen bekannt, bei dem der Schmelzraum durch eine in die Schmelze eintauchende Wand unterteilt wird in eine Schmelzzone und eine Reaktionszone. In dieser Reaktionszone wird die Schlacke innig mit einem zugeführten Reduktionsmittel in Kontakt gebracht. Zur Aufrechterhaltung der Temperatur sind in beiden Zonen durch die Ofendecke geführte Elektroden vorgesehen. From US 4168156 an electric furnace is known, in which the melting chamber through a the melt immersing wall is divided into a melting zone and a Reaction zone. In this reaction zone, the slag is intimately fed with a Reducing agent contacted. To maintain the temperature are in both Zones provided through the furnace ceiling electrodes.

Die Erfindung hat sich das Ziel gesetzt, ein Verfahren und die dazu erforderliche Schmelzofenanlage zur Wertstoffgewinnung sauerstoffgebundener Metalle anzugeben, mit denen die Ausbringung erhöht wird bei gleichzeitiger Verkürzung der Reduktionszeit.
Die Erfindung löst die Aufgabe mit den kennzeichnenden Merkmalen des Verfahrensanspruchs 1 und des Vorrichtungsanspruchs 5.
Erfindungsgemäß wird ein erster Ofenteil des metallurgischen Gefäßes mit einer in die Schlacke eintauchenden Trennwand ausgerüstet, die einen Teil des Herdraumes abtrennt. Die oxydische Schmelze drängt unter der Trennwand durch in abgetrennten Teil des Herdes und nimmt dort das gleiche Höhenniveau an.
Der zweite Ofenteil ist als Schacht ausgebildet und mit Koks verfüllt, und zwar so hoch, daß das Kokssäulengewicht so groß wird, daß die Auftriebkraft des oxydischen Bades überwunden wird und der Koks über die gesamte Höhe des auf der Metallschmelze aufschwimmenden Schlackebades eintaucht. Damit entsteht ein inniger effektiver Kontakt zwischen Reduktionsmittel und dem in der Schmelze befindlichen
Metallwertstoffoxyden. Hierdurch wird die Reduktion eingeleitet und das ausreduzierte Metall wird sich unterhalb der Wertschlacke ansammeln.
Durch kontinuierliches Abfließenlassen des gewonnenen Metalls und diskontinuierliches Abstechen von abgereicherter oder ausreduzierter Schlacke im Erdbereich des Reduktionsmittelschachtes entsteht ein kontinuierlicher Fluß von oxydischer Wertschlacke zum Reduktionsbereich des Herdes unter dem Koks/Reduktionsschacht.
Zur Aufbringung des für den Reduktionsvorgang erforderlichen Energie werden seitwärts in den Reduktionsmittelschacht hineinragende Elektroden vorgesehen, die an eine Energiezufuhreinrichtung angeschlossen sind. Beaufschlagung der Elektroden mit einer elektrischen Spannung fließt durch den elektrischen Widerstand des Reduktionsmittels ein Strom von Elektrode zu Elektrode, der die für den Reduktionsprozeß erforderliche joul'sche Wärme erzeugt.
Das bei der Reduktion entstehende Gas durchstreift die Koksschichten des Schachtes entgegen der Förderrichtung des Koks. Evtl. beim Prozeßverlauf entstehendes Kohlendioxyd wird durch das Reduktionsmittel reduziert, so daß in Summe oberhalb der Koksschüttung ein hochwertiges Brenngas gewonnen wird.
In einer vorteilhaften Weiterbildung wird vorgesehen, das im ersten Ofenteil entstehende Gas durch die Trennwand in den Reduktionsmittelschacht zu leiten. Im Reduktionsmittelschacht wird dieses Kohlendioxyd durch das Reduktionsmittel zu Wertgas reduziert.
Ein weiterer Vorteil besteht darin, daß die Staublast des Abgases aus dem ersten Ofenteil im Koksgerüst sich niederschlägt und in den Prozeß zurückgeführt wird. Hierdurch wird das Gasreinigungssystem entlastet und die Wertgasmenge vergrößert.
The invention has set itself the goal of specifying a method and the melting furnace system required for this to obtain valuable materials from oxygen-bound metals, by means of which the output is increased with a simultaneous reduction in the reduction time.
The invention solves the problem with the characterizing features of method claim 1 and device claim 5.
According to the invention, a first furnace part of the metallurgical vessel is equipped with a partition wall which dips into the slag and which separates a part of the furnace chamber. The oxidic melt penetrates under the partition into the separated part of the hearth and assumes the same level there.
The second part of the furnace is designed as a shaft and filled with coke, so high that the weight of the coke column becomes so great that the buoyancy of the oxidic bath is overcome and the coke is immersed over the entire height of the slag bath floating on the molten metal. This creates an intimate, effective contact between the reducing agent and the one in the melt
Metal recycling oxides. This will initiate the reduction and the reduced metal will accumulate below the valuable paint.
By continuously draining the recovered metal and discontinuously tapping depleted or reduced slag in the earth area of the reducing agent shaft, there is a continuous flow of oxidic value slag to the reduction area of the hearth under the coke / reduction shaft.
To apply the energy required for the reduction process, electrodes protruding sideways into the reducing agent shaft are provided, which are connected to an energy supply device. When an electrical voltage is applied to the electrodes, a current flows from electrode to electrode through the electrical resistance of the reducing agent, which current generates the Joule heat required for the reduction process.
The gas generated during the reduction roams the coke layers of the shaft against the direction of the coke. Possibly. Carbon dioxide produced during the course of the process is reduced by the reducing agent, so that a high-quality fuel gas is obtained in total above the coke bed.
In an advantageous development, it is provided that the gas generated in the first furnace part is passed through the partition into the reducing agent shaft. In the reducing agent shaft, this carbon dioxide is reduced to valuable gas by the reducing agent.
Another advantage is that the dust load of the exhaust gas from the first furnace part is deposited in the coke structure and is returned to the process. This relieves the pressure on the gas cleaning system and increases the amount of valuable gas.

Ein Beispiel der Erfindung ist in der beigefügten Zeichnung dargelegt. Hierbei zeigen die Figur 1 eine Seitenansicht, Figur 2 eine Draufsicht.An example of the invention is set out in the accompanying drawing. 1 shows a side view, FIG. 2 shows a plan view.

Die Figuren zeigen einen ersten Ofenteil 11 und einen zweiten Ofenteil 12, die durch einen gemeinsamen Gefäßboden 15 miteinander verbunden sind. Der Ofenteil 11 ist durch eine Ofendecke 13 abgeschlossen, durch die Elektroden 51 bis 53 und Zuführung 33 zur Zufuhr von festem Möller vorgesehen sind. In der Seitenwand 18 des Ofenteils 11 ist eine Zufuhr 32 für flüssigen Möller vorgesehen, der durch eine Pfanne 35 bedient werden kann.The figures show a first furnace part 11 and a second furnace part 12, which are connected to one another by a common vessel bottom 15 are. The furnace part 11 is closed off by a furnace roof 13 the electrodes 51 to 53 and feed 33 for the supply of solid Möller are provided. In the side wall 18 of the furnace part 11 is a feed 32 provided for liquid grinder, which is operated by a pan 35 can be.

Zwischen dem Ofenteil 11 und dem schachtförmig ausgeführten Ofenteil 12 ist eine Trennwand 21 vorgesehen. Diese Trennwand 21 besitzt eine Länge, die einen so weiten Abstand der Mündung 22 zum Gefäßboden zuläßt, daß die Trennwand während des Betriebes nicht mit Flüssigmetall in Kontakt kommt.
In der Trennwand 21 ist eine Öffnung 23 vorgesehen, durch die Gas von im Ofenteil 11 in den Ofenteil 12 gelangen kann.
Der Teil der Trennwand 21, der während des Betriebes in die Schlacke eintaucht, ist aus Kühlelementen 24 aufgebaut, durch die ein Kühlmittel führbar ist.
In der Seitenwand 19 des Ofenteils 12 sind ein Abstich 17 für Schlacke S und ein Abstich 16 für Flüssigmetall M vorgesehen. Der Abstich 16 ist auf gleicher Höhe wie der unter einem Neigungswinkel abfallenden Gefäßboden 15 angeordnet.
A partition 21 is provided between the furnace part 11 and the shaft-shaped furnace part 12. This partition wall 21 has a length which allows such a large distance between the mouth 22 and the bottom of the vessel that the partition wall does not come into contact with liquid metal during operation.
An opening 23 is provided in the partition 21, through which gas can get into the furnace part 12 from the furnace part 11.
The part of the partition wall 21 which dips into the slag during operation is constructed from cooling elements 24 through which a coolant can be passed.
A tapping 17 for slag S and a tapping 16 for liquid metal M are provided in the side wall 19 of the furnace part 12. The tapping 16 is arranged at the same height as the vessel bottom 15 falling at an angle of inclination.

Das Kopfende des schachtförmigen Ofenteils 12 ist deckelartig eingezogen und weist in seinem Zentrum eine Zufuhr 31 für das Reduktionsmittel R auf. Die Zufuhr 31 wie auch die Zufuhr 33 besitzen Schleusen 34, die ein Ausströmen des Gases aus dem Ofen verhindern. Im Bereich des Kopfendes 14 des Ofenteils 12 ist ein Anschluß 41 an eine Gasreinigung 42 vorgesehen. Der Gesamtschacht des Ofenteils 12 besitzt eine Schachthöhe H, die deutlich höher ist als die Säulenhöhe h des Reduktionsmittels R.The head end of the shaft-shaped furnace part 12 is lid-like fed and has in its center a feed 31 for the Reducing agent R on. Have the feed 31 as well as the feed 33 Locks 34, which prevent the gas from escaping from the furnace. In the area of the head end 14 of the furnace part 12 there is a connection 41 gas cleaning 42 is provided. The total shaft of the furnace section 12 has a shaft height H that is significantly higher than the column height h of the reducing agent R.

Die Figur 2 zeigt die Lage der in das Reduktionsmittel R bis oberhalb des Schlackepegels hineinragenden Elektroden 54, 55 (in Figur 1 nicht weiter dargestellt), die an eine Energieeinrichtung 56 für Gleichstrom angeschlossen sind.
Die Elektroden 51 bis 53 sind an eine Energieeinrichtung 57 für Wechselstrom angeschlossen.
Zum Betreiben der Ofenanlage sind auch Energieeinrichtungen für andere Medien zur Wärmezufuhr möglich.
FIG. 2 shows the position of the electrodes 54, 55 (not shown in FIG. 1) that protrude into the reducing agent R to above the slag level and are connected to an energy device 56 for direct current.
The electrodes 51 to 53 are connected to an energy device 57 for alternating current.
Energy devices for other media for supplying heat are also possible for operating the furnace system.

Positionsliste:Position list:

1010th
SchmelzofenanlageMelting furnace plant
1111
Ofenteil 1Oven part 1
1212th
Ofenteil 2Oven part 2
1313
OfendeckeFurnace roof
1414
KopfendeHeadboard
1515
GefäßbodenVessel bottom
1616
Abstich für MetallschlackeRacking for metal slag
1717th
Abstich für SchlackeRacking for slag
1818th
Seitenwand 11Sidewall 11
1919th
Seitenwand 12Sidewall 12
2020th
Trennungseparation
2121
Trennwandpartition wall
2222
Mündungmuzzle
2323
Öffnungopening
2424th
KühlelementCooling element
3030th
MaterialzufuhrMaterial supply
3131
Zufuhr ReduktionsmittelReductant supply
3232
Zufuhr Möller flüssigMöller liquid feed
3333
Zufuhr Möller festMöller supply fixed
3434
MaterialschleuseMaterial lock
3535
Pfannepan
4040
GasreinigungsanlageGas cleaning system
4141
AnschlußConnection
4242
GasreinigungGas cleaning
5050
EnergiezufuhrEnergy supply
51, 52, 5351, 52, 53
Elektrodeelectrode
54, 5554, 55
Elektrodeelectrode
5656
Energieeinrichtung GleichstromEnergy device direct current
5757
Energieeinrichtung Wechselstrom Energy device alternating current
HH
SchachthöheShaft height
LL
Länge TrennwandPartition length
MM
FlüssigmetallLiquid metal
SS
Schlackeslag
RR
ReduktionsmittelReducing agent
hH
SäulenhöheColumn height
αα
NeigungswinkelAngle of inclination

Claims (8)

  1. A method for recovering valuable substances by reduction of oxygen-bound metals in metallurgical vessels, wherein a solid or liquid charge is acted upon by thermal energy in a first reaction zone (11) until, in the case of a solid charge, a melt bath is formed or, in the case of a liquid charge, a melt bath is maintained, in which liquid slag (S) floats on a metal melt bath (M), wherein furthermore the melt bath is fed to a second reaction zone (12) in which the slag comes into intimate contact with a reduction agent (R), the reduction agent being piled up in column form and the column height (h) being selected such that its weight overcomes the buoyancy force of the oxidic slag bath and the melt in the reduction zone is additionally supplied with thermal energy which prevents freezing-up by means of electrodes (54, 55) which project obliquely into the reduction agent.
  2. A method according to Claim 1, characterised in that the molten metal is tapped continuously and the slag discontinuously after the reduction work.
  3. A method according to Claim 1, characterised in that the flue gas present in the first reaction zone is passed through the reduction agent and subsequently is purified together with the nitrogen oxides of the second reaction zone once it has given off its sensible heat.
  4. A melting furnace installation having a partition wall projecting from the furnace cover into the vessel, which wall divides the furnace vessel into two parts, with a means for supplying thermal energy, with material supply and melt removal devices and a connection to a gas purification plant, for performing the method according to Claim 1,
    characterised in that
    the partition wall (21) from the furnace cover (13) of the first furnace section (11) has a length (L) at which the mouth (22) of the partition wall projects into the slag (S) during the melting operation to closely above the level (M) of the molten metal, that the partition wall (21) in the region of the furnace cover (13) has an opening (23) from the first to the second furnace section (11, 12), that the second furnace section (12) is shaft-shaped, with a shaft height (H) which extends beyond the column height (h) of the reduction agent and the top end (14) of which is provided with a connection (41) for joining to the gas purification plant (42), and
    that electrodes (54, 55) project laterally into the second furnace vessel section (12) in the region above the melt, which electrodes are connected to an energy supply means (56).
  5. A melting furnace installation according to Claim 4, characterised in that the partition wall (21) in the region of the cover (13) has openings (23) [sic] of such a size that gas can flow through without reduction agent (R) passing into the first furnace section (11).
  6. A melting furnace installation according to Claim 4, characterised in that the region of the partition wall (21) which dips into the slag (S) during the melting operation has elements (24) cooled by liquid media.
  7. A melting furnace installation according to Claim 4, characterised in that a supply means (31) provided with a lock chamber (34) for the reduction agent (R) is provided at the top end (14) above the gas offtake (41) of the second furnace vessel (12).
  8. A melting furnace installation according to Claim 4, characterised in that the common base (15) of the first and second furnace vessel sections (11, 12) is inclined towards the taphole (16) at an angle of inclination α of 1 to 70°.
EP94250266A 1993-11-15 1994-11-01 Process and apparatus for the recovery of valuable materials Expired - Lifetime EP0653496B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4339226 1993-11-15
DE4339226A DE4339226A1 (en) 1993-11-15 1993-11-15 Method and device for extracting valuable materials

Publications (2)

Publication Number Publication Date
EP0653496A1 EP0653496A1 (en) 1995-05-17
EP0653496B1 true EP0653496B1 (en) 1999-03-10

Family

ID=6502792

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94250266A Expired - Lifetime EP0653496B1 (en) 1993-11-15 1994-11-01 Process and apparatus for the recovery of valuable materials

Country Status (8)

Country Link
US (1) US5500870A (en)
EP (1) EP0653496B1 (en)
CN (1) CN1037530C (en)
BR (1) BR9404454A (en)
CA (1) CA2135830A1 (en)
DE (2) DE4339226A1 (en)
NO (1) NO304030B1 (en)
ZA (1) ZA949068B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH686764A8 (en) * 1994-09-29 1996-08-15 Von Roll Umwelttechnik Ag Process for the treatment of solid residues from waste incineration plants and device for carrying out the process.
BE1009996A3 (en) * 1996-01-29 1997-11-04 Univ Bruxelles Treatment method of powder products and installation for implementing the method.
LU90154B1 (en) 1997-10-17 1999-04-19 Wurth Paul Sa Process for the continuous melting of solid metal products
CN105420498B (en) * 2015-12-25 2017-11-03 天津闪速炼铁技术有限公司 A kind of continuous metallurgical device and metallurgical method
DE102017218649A1 (en) * 2017-10-19 2019-04-25 Sms Group Gmbh Intermediate container for slag separation

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1252215B (en) *
AT15489B (en) * 1901-11-05 1904-03-10 Henri Harmet Electrometallurgical process for the extraction of iron and iron alloys in a triple furnace.
US1522665A (en) * 1922-02-16 1925-01-13 Wright Parvin Electric furnace and method of operating the same
US2254809A (en) * 1936-12-21 1941-09-02 Tharaldsen Filip Metal melting furnace
GB827622A (en) * 1955-11-16 1960-02-10 Union Carbide Corp Treatment of flue gases containing suspended solids
US3555164A (en) * 1967-02-17 1971-01-12 Vladimir Nikolaevich Kostin Method of processing ores and concentrates containing rare metals and a unit for effecting said method
FR1601438A (en) * 1968-10-17 1970-08-24
US4203761A (en) * 1973-02-21 1980-05-20 Robert C. LeMay Process of smelting with submerged burner
SE380832B (en) * 1974-03-15 1975-11-17 Asea Ab KIT AND DEVICE FOR THE PREPARATION OF CARBONED METAL MELTS FROM METAL OXIDES CONTAINING MATERIAL
SE427047B (en) * 1976-06-17 1983-02-28 Gnii Tsvetny PROCEDURE AND OVEN FOR THE TREATMENT OF NON-IRON METAL INDUSTRY RECOVERY COATS WITH CARBONAL REDUCING AGENT
LU78341A1 (en) * 1977-10-19 1979-02-02
AT384669B (en) * 1986-03-17 1987-12-28 Voest Alpine Ag PLANT FOR PRODUCING STEEL FROM SCRAP
DE3614048A1 (en) * 1986-04-25 1987-11-05 Kloeckner Humboldt Deutz Ag METHOD AND DEVICE FOR GASIFYING LOW-QUALITY FUELS IN A FLUID METAL MELTING BATH
US5400358A (en) * 1992-10-13 1995-03-21 Consteel, S.A. Continuous scrap preheating

Also Published As

Publication number Publication date
DE59407914D1 (en) 1999-04-15
DE4339226A1 (en) 1995-05-18
NO944267L (en) 1995-05-16
NO304030B1 (en) 1998-10-12
US5500870A (en) 1996-03-19
ZA949068B (en) 1995-07-20
CN1037530C (en) 1998-02-25
BR9404454A (en) 1995-06-20
NO944267D0 (en) 1994-11-09
CN1111287A (en) 1995-11-08
EP0653496A1 (en) 1995-05-17
CA2135830A1 (en) 1995-05-16

Similar Documents

Publication Publication Date Title
DE3750881T2 (en) Smelting reduction process.
DE19782202C2 (en) Direct reduction of metal oxide agglomerates
DE3042222C2 (en) Process for the reduction of fine-grained metal oxides containing, inter alia, iron oxides, with the recovery of metals that are volatile at the temperature of the iron melt
AT507262B1 (en) METHOD FOR REPROCESSING SOLID OR MELTING SUBSTANCES
EP0657549A1 (en) Process for producing an iron melt
EP0143102B1 (en) Method and apparatus for the production of liquid pig iron or steel
WO2006079132A1 (en) Method for reducing metal oxide slags or glasses and/or for degassing mineral melts and device for carrying out said method
EP0707083A1 (en) Process for treating waste or metal oxide containing incinerator refuse, and device for carrying out this process
DE2727618C2 (en)
EP0182775A2 (en) Process for the production of molten pig iron or steel pre-products as well as arrangement for carrying out the process
DE2805944C2 (en) Process and device for the reduction of finely divided iron oxide to metallic iron by means of a solid reducing agent
DE2618929A1 (en) PROCESS FOR THE PRODUCTION OF CRUDE COPPER FROM A COPPER-IRON SULPHIDE CONCENTRATE
EP0046146B1 (en) Use of a muffle furnace for the dezincification of oxidic ferriferous materials containing zinc
DE3616868C2 (en) Process for the extraction of non-ferrous metals
EP0653496B1 (en) Process and apparatus for the recovery of valuable materials
EP0174291A1 (en) Process and installation for melting metals for non-ferrous oxidic and/or finely ground sulfidic ores or concentrates
DE3827086A1 (en) Process and apparatus for thermal decontamination of filter dusts and other residues
US3525604A (en) Process for refining pelletized metalliferous materials
US2035016A (en) Smelting of ores
DE3735966C2 (en)
DE60212815T2 (en) SEPARATION METHOD FOR REDUCING AND MELTING WITH RECOVERY OF VOLATILE SECONDARY METALS
DE3735965C2 (en)
DE2351374A1 (en) PROCESS FOR DIRECTLY REDUCING FERROUS OXIDE TO MOLTEN IRON
DE3207026A1 (en) METHOD FOR CONCENTRATING OR RECOVERING NON-FERROUS METALS
DE397231C (en) Treatment of complex ores to separate copper, lead, zinc and other metals from antimony and arsenic

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE SE

17P Request for examination filed

Effective date: 19950522

17Q First examination report despatched

Effective date: 19971008

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE SE

REF Corresponds to:

Ref document number: 59407914

Country of ref document: DE

Date of ref document: 19990415

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20031103

Year of fee payment: 10

Ref country code: DE

Payment date: 20031103

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050601

EUG Se: european patent has lapsed