EP0649512A1 - Device for measuring straightness - Google Patents

Device for measuring straightness

Info

Publication number
EP0649512A1
EP0649512A1 EP94915602A EP94915602A EP0649512A1 EP 0649512 A1 EP0649512 A1 EP 0649512A1 EP 94915602 A EP94915602 A EP 94915602A EP 94915602 A EP94915602 A EP 94915602A EP 0649512 A1 EP0649512 A1 EP 0649512A1
Authority
EP
European Patent Office
Prior art keywords
sensors
rail
straightness
rule
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP94915602A
Other languages
German (de)
French (fr)
Inventor
Jean-Louis Delastre
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SA Prodys Equipement
Original Assignee
SA Prodys Equipement
EXA Ingenierie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SA Prodys Equipement, EXA Ingenierie filed Critical SA Prodys Equipement
Publication of EP0649512A1 publication Critical patent/EP0649512A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/28Measuring arrangements characterised by the use of electric or magnetic techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/34Measuring arrangements characterised by the use of electric or magnetic techniques for measuring roughness or irregularity of surfaces
    • G01B7/345Measuring arrangements characterised by the use of electric or magnetic techniques for measuring roughness or irregularity of surfaces for measuring evenness

Definitions

  • the present invention relates to straightness measuring devices, in particular for measuring the straightness of a rail at its weld.
  • FIG. 1 very schematically represents a conventional device for measuring rail straightness.
  • This is a device known as the GEISMAR rule.
  • This device includes a chassis, not shown, provided with two feet 10 which are placed on a rail 12.
  • a toothed belt 14 is stretched between two pulleys 16 and 17 parallel to the rails 12.
  • One of the pulleys, 16, is provided with a crank 16 -1 allowing to drive, parallel to the rails 12, a carriage 18 fixed to the belt 14.
  • the carriage 18 is guided by slides, not shown, which must be manufactured with great care because their straightness must be particularly precise.
  • the carriage 18 is provided with a probe 18-1 urged elastically towards the rail 12.
  • a probe 18-1 urged elastically towards the rail 12.
  • an operator actuates the crank 16-1 to move the carriage 18 from one pulley to the other.
  • a stylus not shown, actuated by the probe 18-1 via a link system, traces the profile of the rail on a strip of unrolled paper while the carriage 18 moves.
  • a first drawback of this device is that it is particularly heavy (it takes at least two people to transport it) because, to guarantee suitable precision, it is rigid in construction, which requires the use of massive steel parts.
  • Another object of the present invention is to provide such a device which is particularly practical to use.
  • a device for measuring the straightness of a conductive object comprising a plurality of non-contact distance sensors aligned along an axis of a ruler to be placed on the object, and means of communication of the measurements provided by each sensor.
  • the sensors are capacitive sensors.
  • the rule comprises at each end a shim to be placed on the object, at least one of which is conductive and provides the object with an electrical signal necessary for the operation of the capacitive sensors.
  • the capacitive sensors are produced on rectangular printed circuits comprising on a face opposite to that where the sensors are made of surface-mount electronic circuits intended to process the signals from the sensors.
  • the device comprises means for displaying in a coordinate system the amplitudes of the measurements supplied by the sensors as a function of the respective positions of the sensors.
  • said object is a rail.
  • each end of the rule is removably attached to a block which includes jaws intended to clamp the rail while aligning the axis of the sensors on the axis of the rail, means being further provided for, once the blocks are fixed on the rail, reposition the ruler laterally so as to be able to measure the straightness of a side of the rail at a predetermined position.
  • the capacitive sensors are formed by the central part of aligned rings engraved on a layer of copper on the printed circuits, the copper remaining outside the rings playing the role of guard rings. .
  • the printed circuits are held in two internal internal grooves of a U-shaped portion of the rule, one of the sides of each groove being straight and serving as a support for the printed circuits. and the other of the sides of each groove being inclined so as to come into contact with the printed circuit without the latter reaching the bottom of the groove.
  • Clamping means are provided to bring the two flanks closer to the "U" portion.
  • FIG. 1, previously described, represents a positive device. conventional portable rail straightness measurement
  • FIG. 2 represents an embodiment of a portable device for measuring the straightness of a conductive object according to the present invention
  • FIG. 3 schematically represents an architecture of an information processing circuit supplied by distance sensors used in the device according to the invention
  • FIG. 4 represents capacitive distance sensors produced on printed circuit
  • 5 shows a rule for maintaining a set of printed circuits of the type of that of Figure 4;
  • FIG. 1 previously described, represents a positive device. conventional portable rail straightness measurement
  • FIG. 2 represents an embodiment of a portable device for measuring the straightness of a conductive object according to the present invention
  • FIG. 3 schematically represents an architecture of an information processing circuit supplied by distance sensors used in the device according to the invention
  • FIG. 4 represents capacitive distance sensors produced on printed circuit
  • 5 shows a rule for maintaining a set of printed circuits of the type of that of Figure 4
  • FIG. 1 represents a positive device. conventional portable rail straightness measurement
  • FIG. 2 represents an embodiment
  • FIG. 6 represents an external perspective view of an embodiment of a measuring device according to the invention
  • Figure 7 shows a sectional view of the device of Figure 6 placed on a rail, a second position of an element of the device being shown in dotted lines.
  • FIG. 2 schematically represents a device for measuring straightness according to the invention placed above a weld 12-1 of a rail 12.
  • This device comprises an elongated part 20, hereinafter rule, provided on its underside a plurality of non-contact distance sensors 22, for example inductive or capacitive, aligned along an axis corresponding to the axis along which the straightness is to be measured.
  • Contactless sensors can be used thanks to the fact that the rail 12 is electrically conductive.
  • the measuring device further comprises a housing
  • the display 24 provided with a screen 24-1 making it possible to display, thanks to the electronic circuits described later, the measurements provided by each of the sensors 22.
  • the display takes place in a coordinate system where the the values of the measurements are represented as a function of the positions of the corresponding sensors.
  • the difference between sensors 22 is constant according to one embodiment. It could also be variable in other embodiments; it is possible to have more sensors per unit of length in the center of the rule 20 in order to raise the profile of the rail more precisely at the level of the weld 12-1.
  • the coordinate axis assigned to the positions of the sensors is then graduated accordingly on display 24-1.
  • the rule 20 is provided at each end with a wedge 26 to be placed on the rail 12.
  • These wedges are made of a hard material, for example metal carbide, to minimize their wear during the many uses of the device.
  • Such a measuring device is particularly easy to produce because it is not necessary to position the sensors 22 with great precision, in particular perpendicular to the rail 12.
  • the sensors 22 are managed by a microprocessor (which is the easiest way to do this) which, on request, runs a calibration program to store values of correction for each sensor 22.
  • a microprocessor which is the easiest way to do this
  • the positions of the sensors 22 have been modified following a shock, for example, it suffices to rerun the calibration program.
  • the measuring device according to the invention does not have heavy parts.
  • a measuring device is particularly light and portable by a single person (for a measuring length of approximately 1 m, the device weighs approximately 8 kg).
  • a device according to the invention is particularly practical to use since the micr ⁇ prO ⁇ esseur performs most of the measurement steps. The user only has to press a button to view the rail profile.
  • FIG. 3 schematically represents an embodiment of the architecture of the sensor management circuit 22 of the capacitive type.
  • capacitive sensors are chosen because they make it possible to provide an amplitude signal proportional to the distance measured.
  • the same elements as in FIG. 2 are designated by the same references.
  • Each sensor 22 consists of a metal plate surrounded by a guard ring 22-1 which is connected to a reference potential. The plates 22 are arranged close to and parallel to the rail 12 to be measured.
  • Each plate 22 is connected to a terminal with an adjustable capacity C and to the input of a differential amplifier 28, another input of which is connected to the guard ring. Capacities C are adjusted once and for all during manufacture.
  • the outputs of the amplifiers 28 are supplied to an analog multiplexer 30 which switches only one of the outputs of these amplifiers 28 to the input of an amplifier 32.
  • the multiplexer 30 is controlled by a microprocessor 34.
  • the output of the amplifier 32 is supplied to a demodulator 36, another input of which receives a sinusoidal signal supplied by a generator 38.
  • the output of the demodulator 36 is supplied to a filter 40 which supplies a practically continuous voltage Vd corresponding to the distance measured by the sensor 22 selected by the multiplexer 30.
  • the voltage Vd is applied to a modulator 42 whose other input receives the sinusoidal signal supplied by the generator 38.
  • the generator 38 also supplies the adjustable capacitors C.
  • the rail 12 receives the output of the demodulator 42 , which is connected to one of the shims 26 on which the measuring device is placed.
  • one aspect of the invention is to group the amplifier 32, the demodulator 36, the generator 38, the filter 40 and the modulator 42 for all of the sensors 22 which may be in high number. These elements being grouped together being the most costly in a capacitive measurement system, significant savings are made.
  • the output Vd of the filter 40 is supplied to an analog / digital converter 44 connected to the central unit 34.
  • the microprocessor 34 is further associated with a memory 46 (ROM ROM and RAM), with a keyboard 48 and in the above-mentioned screen 24-1, which is for example a liquid crystal matrix display.
  • a user presses a specific key on the keyboard 48.
  • a program stored in ROM memory, is then executed by the microprocessor 34.
  • This program successively selects the sensors 22, reads the corresponding Vd values supplied by the converter 44, and stores these values in RAM memory. Then, or simultaneously, the values read are corrected by values stored in a non-volatile memory, for example during a calibration step, and displayed adequately on the screen 24-1.
  • the measured values can be displayed in a coordinate system as a function of the relative positions of the respective sensors, which directly gives the profile of the measured rail.
  • the microprocessor 34 can also perform numerous operations on the stored values, for example smoothing or any other operation deemed useful.
  • a calibration therefore consists in memorizing the values A and B for each sensor. To do this, we proceed as follows.
  • a first calibration phase is carried out with the rule placed directly on a conductive reference plane.
  • This plane can be a steel plate of precise flatness.
  • the reference plane is a body of water whose flatness has the advantage of being perfect. It is possible, according to the invention, to use a water body as a reference plane because the sensors are non-contact, that is to say that they do not disturb the surface of the water which stays perfectly flat.
  • the wedges 26 are then placed on metal pillars which bathe in the water. The user then selects, by pressing a specific key, this first calibration phase.
  • the microprocessor performs a first series of measurements by measuring the voltages Vd for each sensor 22, these voltages Vd corresponding to distances d assumed to be zero.
  • a second calibration phase is then carried out which consists in placing the rule on the reference plane by placing reference blocks of known height between the reference plane and the blocks 26.
  • the user selects the second calibration phase which consists in carrying out a second series of measurements by memorizing the voltages Vd, which then correspond to distances d equal to the height of the reference blocks.
  • Vd voltages
  • the microprocessor calculates and stores the coefficients A and B for each sensor.
  • FIG. 4 represents an embodiment of a set of sensors 22. These sensors are produced on one face of a rectangular printed circuit 50.
  • the sensors 22 are formed by etching in the copper layer of one of the faces of the printed circuit of the rings whose internal zones constitute the sensors 22. The remaining copper surface constitutes the set of guard rings 22-1.
  • FIG. 5 represents an embodiment of a measurement rule according to the invention, that is to say the part serving as support for the sensor 22. This rule is formed from a profile comprising a part 20-0 to inverted "U" section.
  • One or more printed circuits 50 of the type of FIG. 4 are slid into internal grooves 20-1 of the sides of the U-shaped part, near the lower part.
  • each groove 20-1 is horizontal and serves as a reference surface and as a support for the printed circuit 50.
  • the other side of the grooves 20-1 is inclined so that the printed circuit 50 is supported on the two sides of the grooves without however reaching the bottoms of the grooves.
  • Screws 52 distributed over the length of the rule, pass through one of the sides of the U-shaped part and are screwed into the other side. By tightening these screws 52, the two sides of the U-shaped part approach and jam the printed circuit 50 in the grooves 20-1, the inclined sides of these grooves press the printed circuit 50 on the reference plane formed by the right sides of the grooves.
  • it includes an ascending part 20-2 so that the rule has a section in "h". This ascending part may have a folded end, as shown, which is used to fix elements such as printed circuits.
  • the printed circuit 50 is provided, on its internal face, with components mounted on the surface 54, such as, for example, the amplifiers 28 and the capacitors C of FIG. 3. To perform rail straightness measurements, it is advisable to choose a rule about a meter long. Since it is diffi ⁇ cult to produce printed circuits of such a dimension, the printed circuit 50 is subdivided into, for example, five printed circuits 20 cm long. Each printed circuit 50 is provided with a surface-mounted connector making it possible to connect the outputs of the amplifiers 28 and the common connection of the capacitors C to a printed circuit, not shown, comprising the other elements of FIG. 3. The connectors of the printed circuits 50 are accessible through openings 20-3 made in the U-shaped part 20-0.
  • FIG. 6 represents a perspective view of an external embodiment of the straightness measuring device according to the invention.
  • the housing 24 of this device is generally elongated parailITApi conclusionsdique.
  • Handles 62 are provided in three lateral recesses of the housing 24, one recess being located at the central part and the other two at the end parts.
  • the screen 24-1 mentioned above is arranged between an extreme recess and the central recess, and the keyboard 48 is arranged between the central recess and the other extreme recess.
  • Each end of the device is provided with a removable fixing block 64 including a quick mounting system on a rail or other profile.
  • the housing 24 has an inverted "U" section closed at its lower part by a plate 65.
  • the rule 20 is fixed by its longer part on a side of the housing 60, on the side opposite to the handle 62.
  • the shims d 'support 26, only one of which is visible in Figure 7, are fixed at the respective ends of the rule 20.
  • the wedges 26 are supported on a rail 12 and are electrically isolated from the rest of the device because one of they or both, as mentioned above, transmit an electrical signal to the rail 12 used to perform the distance measurements.
  • the block 64 comprises, below the rule 20, a housing for the rail 12 provided with jaws 66. These jaws 66 allow, using a mechanical or hydraulic control, not shown, to tighten the rail 12 for fixing the device on the rail while centering the rule 20 on the axis of the rail in order to carry out a measurement at the appropriate place.
  • the blocks 64 are removable. By actuating a mechanical control, the housing 24 of the measuring device can be detached from the blocks 64 which remain fixed on the rail. This possibility is provided so that the housing 24 can be repositioned according to the dotted representation to perform a straightness measurement of the side of the rail 12.
  • the end of the housing 24 includes a groove 24-2 provided for sliding on a lug 64-1 of the block 64 and maintain the housing 24 in an adequate position.
  • the straightness measuring device according to the present invention has been described in the context of the straightness measurement of rails. Of course, the invention applies to the measurement of straightness of any conductive object, even in a bad conductive material, such as water, graphite ...

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

Device for measuring the straightness of a conductive object (12), comprising a plurality of contactless distance sensors (22) aligned in the axis of a straight-edge (20) to be placed on the object. Means (24-1) are provided for transmitting the measurements supplied by each sensor.

Description

DISPOSITIF DE MESURE DE RECTITUDE STRAIGHTNESS MEASURING DEVICE
La présente invention concerne les dispositifs de mesure de rectitude, en particulier pour mesurer la rectitude d'un rail au niveau de sa soudure.The present invention relates to straightness measuring devices, in particular for measuring the straightness of a rail at its weld.
Il existe, en laboratoire, de nombreuses manières de mesurer ou contrôler la rectitude d'un objet. Ces méthodes mettent en oeuvre des systèmes trop complexes ou trop volumineux pour qu'on les utilise en dehors du laboratoire, par exemple pour mesurer sur place la rectitude d'un rail, ou bien de tout autre objet fixe ou trop encombrant pour le transporter dans un laboratoire de mesure.There are many ways in the laboratory to measure or control the straightness of an object. These methods use systems that are too complex or too bulky to be used outside the laboratory, for example to measure the straightness of a rail on site, or of any other fixed object or too bulky to transport it in a measurement laboratory.
Il est important, après la soudure et le meulage d'un rail, de contrôler la rectitude de celui-ci pour s'assurer que des déformations trop importantes ne risquent pas d'entraîner des vibrations lors du passage d'un train. La figure 1 représente très schématiquement un dispo¬ sitif classique de mesure de rectitude de rail. Il s'agit d'un dispositif dit règle GEISMAR. Ce dispositif comprend un châssis, non représenté, muni de deux pieds 10 que l'on pose sur un rail 12. une courroie crantée 14 est tendue entre deux poulies 16 et 17 parallèlement aux rails 12. L'une des poulies, 16, est munie d'une manivelle 16-1 permettant d'entraîner, parallèlement aux rails 12, un chariot 18 fixé à la courroie 14. Le chariot 18 est guidé par des glissières, non représentées, qui doivent être fabriquées avec grand soin car leur rectitude doit être particu¬ lièrement précise. Le chariot 18 est muni d'un palpeur 18-1 sollicité élastiquement vers le rail 12. Pour mesurer la rectitude du rail 12, notamment au niveau d'une soudure 12-1, un opérateur actionne la manivelle 16-1 pour déplacer le chariot 18 d'une poulie vers l'autre. Au cours du déplacement, un stylet, non représenté, actionné par le palpeur 18-1 par l'intermédiaire d'un système à biellettes, trace le profil du rail sur une bande de papier déroulée tandis que le chariot 18 se déplace.It is important, after welding and grinding a rail, to check its straightness to ensure that excessive deformations do not risk causing vibrations when passing a train. FIG. 1 very schematically represents a conventional device for measuring rail straightness. This is a device known as the GEISMAR rule. This device includes a chassis, not shown, provided with two feet 10 which are placed on a rail 12. a toothed belt 14 is stretched between two pulleys 16 and 17 parallel to the rails 12. One of the pulleys, 16, is provided with a crank 16 -1 allowing to drive, parallel to the rails 12, a carriage 18 fixed to the belt 14. The carriage 18 is guided by slides, not shown, which must be manufactured with great care because their straightness must be particularly precise. The carriage 18 is provided with a probe 18-1 urged elastically towards the rail 12. To measure the straightness of the rail 12, in particular at a weld 12-1, an operator actuates the crank 16-1 to move the carriage 18 from one pulley to the other. During the movement, a stylus, not shown, actuated by the probe 18-1 via a link system, traces the profile of the rail on a strip of unrolled paper while the carriage 18 moves.
Un premier inconvénient de ce dispositif est qu'il est particulièrement lourd (il faut au moins deux personnes pour le transporter) car, pour garantir une précision convenable, il est de construction rigide, ce qui néαessite l'utilisation de pièces massives en acier.A first drawback of this device is that it is particularly heavy (it takes at least two people to transport it) because, to guarantee suitable precision, it is rigid in construction, which requires the use of massive steel parts.
Un autre inconvénient d'un tel dispositif est qu'il est particulièrement fragile, c'est-à-dire qu'il peut vite perdre sa précision, par exemple par suite à des chocs ou du fait qu'il a été disposé dans une position bancale au cours de son transport ou de son stockage. Une fois qu'un tel dispositif a perdu sa précision, il est pratiquement impossible de le cor¬ riger. Il faut alors établir un profil étalon de l'appareil que l'on doit soustraire à chaque profil relevé d'un rail pour obtenir le profil réel du rail.Another drawback of such a device is that it is particularly fragile, that is to say that it can quickly lose its precision, for example as a result of shocks or the fact that it has been placed in a wobbly position during transport or storage. Once such a device has lost its precision, it is practically impossible to correct it. It is then necessary to establish a standard profile of the device which must be subtracted from each profile taken from a rail to obtain the real profile of the rail.
Un objet de la présente invention est de prévoir un dispositif portable de mesure de rectitude d'un objet conduc¬ teur, notamment d'un rail, qui soit particulièrement léger et facile à transporter. Un autre objet de la présente invention est de prévoir un tel dispositif qui soit particulièrement facile à étalonner même après une déformation Importante.An object of the present invention is to provide a portable device for measuring the straightness of a conductive object, in particular of a rail, which is particularly light and easy to transport. Another object of the present invention is to provide such a device which is particularly easy to calibrate even after a significant deformation.
Un autre objet de la présente invention est de prévoir un tel dispositif qui soit particulièrement pratique à utiliser.Another object of the present invention is to provide such a device which is particularly practical to use.
Ces objets sont atteints grâce à un dispositif de mesure de rectitude d'un objet conducteur, comprenant une plura¬ lité de capteurs de distance sans contact alignés selon un axe d'une règle à poser sur l'objet, et des moyens de communication des mesures fournies par chaque capteur.These objects are achieved thanks to a device for measuring the straightness of a conductive object, comprising a plurality of non-contact distance sensors aligned along an axis of a ruler to be placed on the object, and means of communication of the measurements provided by each sensor.
Selon un mode de réalisation de la présente invention, les capteurs sont des capteurs capacitifs. La règle comporte à chaque extrémité une cale à poser sur l'objet, dont l'une au moins est conductrice et fournit à l'objet un signal électrique nécessaire au fonctionnement des capteurs capacitifs.According to an embodiment of the present invention, the sensors are capacitive sensors. The rule comprises at each end a shim to be placed on the object, at least one of which is conductive and provides the object with an electrical signal necessary for the operation of the capacitive sensors.
Selon un mode de réalisation de la présente invention, les capteurs capacitifs sont réalisés sur des circuits imprimés rectangulaires comportant sur une face opposée à celle où sont réalisés les capteurs des circuits électroniques à montage en surface destinés à exploiter les signaux des capteurs.According to an embodiment of the present invention, the capacitive sensors are produced on rectangular printed circuits comprising on a face opposite to that where the sensors are made of surface-mount electronic circuits intended to process the signals from the sensors.
Selon un mode de réalisation de la présente invention, le dispositif comprend des moyens pour afficher dans un système de coordonnées les amplitudes des mesures fournies par les capteurs en fonction des positions respectives des capteurs. Selon un mode de réalisation de la présente invention, ledit objet est un rail.According to an embodiment of the present invention, the device comprises means for displaying in a coordinate system the amplitudes of the measurements supplied by the sensors as a function of the respective positions of the sensors. According to an embodiment of the present invention, said object is a rail.
Selon un mode de réalisation de la présente invention, chaque extrémité de la règle est fixée de façon amovible à un bloc qui comprend des mâchoires destinées à serrer le rail tout en alignant l'axe des capteurs sur l'axe du rail, des moyens étant en outre prévus pour, une fois que les blocs sont fixés sur le rail, repositionner la règle latéralement de manière à pouvoir mesurer la rectitude d'un flanc du rail à une position prédéterminée. Selon un mode de réalisation de la présente invention, les capteurs capacitifs sont formés par la partie centrale d'anneaux alignés gravés sur une couche de cuivre des circuits imprimés, le cuivre restant à l'extérieur des anneaux jouant le rôle d'anneaux de garde.According to an embodiment of the present invention, each end of the rule is removably attached to a block which includes jaws intended to clamp the rail while aligning the axis of the sensors on the axis of the rail, means being further provided for, once the blocks are fixed on the rail, reposition the ruler laterally so as to be able to measure the straightness of a side of the rail at a predetermined position. According to an embodiment of the present invention, the capacitive sensors are formed by the central part of aligned rings engraved on a layer of copper on the printed circuits, the copper remaining outside the rings playing the role of guard rings. .
Selon un mode de réalisation de la présente invention, les circuits imprimés sont maintenus dans deux rainures opposées internes d'une partie en "U" de la règle, l'un des flancs de chaque rainure étant droit et servant d'appui aux circuits imprimés et l'autre des flancs de chaque rainure étant incliné de manière à entrer en contact avec le circuit imprimé sans que celui-ci atteigne le fond de la rainure. Des moyens de serrage sont prévus pour rapprocher les deux flancs de la partie en "U".According to an embodiment of the present invention, the printed circuits are held in two internal internal grooves of a U-shaped portion of the rule, one of the sides of each groove being straight and serving as a support for the printed circuits. and the other of the sides of each groove being inclined so as to come into contact with the printed circuit without the latter reaching the bottom of the groove. Clamping means are provided to bring the two flanks closer to the "U" portion.
Ces objets, caractéristiques et avantages ainsi que d'autres de la présente invention seront exposés en détail dans la description suivante de modes de réalisation particuliers faite en relation avec les figures jointes parmi lesquelles : la figure 1, précédemment décrite, représente un dis¬ positif portable classique de mesure de rectitude d'un rail ; la figure 2 représente un mode de réalisation de dis¬ positif portable de mesure de rectitude d'un objet conducteur selon la présente invention ; la figure 3 représente schématiquement une architec¬ ture de circuit d'exploitation d'informations fournies par des capteurs de distance utilisés dans le dispositif selon l'inven¬ tion ; la figure 4 représente des capteurs de distance capa¬ citifs réalisés sur circuit imprimé ; la figure 5 représente une règle de maintien d'un ensemble de circuits imprimés du type de celui de la figure 4 ; la figure 6 représente une vue externe en perspective d'un mode de réalisation de dispositif de mesure selon l'inven¬ tion ; et la figure 7 représente une vue en coupe du dispositif de la figure 6 placé sur un rail, une deuxième position d'un élément du dispositif étant représentée en pointillés. La figure 2 représente schématiquement un dispositif de mesure de rectitude selon l'invention posé au-dessus d'une soudure 12-1 d'un rail 12. Ce dispositif comprend une pièce allongée 20, ci-après règle, munie à sa face inférieure d'une pluralité de capteurs de distance 22 sans contact, par exemple inductifs ou capacitifs, alignés selon un axe correspondant à l'axe selon lequel on veut mesurer la rectitude. On peut utiliser des capteurs sans contact grâce au fait que le rail 12 est conducteur d'électricité. Le dispositif de mesure comprend en outre un boîtierThese objects, characteristics and advantages as well as others of the present invention will be explained in detail in the following description of particular embodiments made in relation to the attached figures, among which: FIG. 1, previously described, represents a positive device. conventional portable rail straightness measurement; FIG. 2 represents an embodiment of a portable device for measuring the straightness of a conductive object according to the present invention; FIG. 3 schematically represents an architecture of an information processing circuit supplied by distance sensors used in the device according to the invention; FIG. 4 represents capacitive distance sensors produced on printed circuit; 5 shows a rule for maintaining a set of printed circuits of the type of that of Figure 4; FIG. 6 represents an external perspective view of an embodiment of a measuring device according to the invention; and Figure 7 shows a sectional view of the device of Figure 6 placed on a rail, a second position of an element of the device being shown in dotted lines. FIG. 2 schematically represents a device for measuring straightness according to the invention placed above a weld 12-1 of a rail 12. This device comprises an elongated part 20, hereinafter rule, provided on its underside a plurality of non-contact distance sensors 22, for example inductive or capacitive, aligned along an axis corresponding to the axis along which the straightness is to be measured. Contactless sensors can be used thanks to the fact that the rail 12 is electrically conductive. The measuring device further comprises a housing
24 muni d'un écran 24-1 permettant d'afficher grâce à des cir¬ cuits électroniques décrits ultérieurement les mesures fournies par chacun des capteurs 22. De préférence, l'affichage s'effec¬ tue dans un système de coordonnées où l'on représente les valeurs des mesures en fonction des positions des capteurs cor¬ respondants. L'écart entre capteurs 22 est constant selon un mode de réalisation. Il pourrait aussi être variable dans d'autres modes de réalisation ; on peut disposer davantage de capteurs par unité de longueur au centre de la règle 20 pour relever avec davantage de précision le profil du rail au niveau de la soudure 12-1. L'axe de coordonnées affecté aux positions des capteurs est alors gradué en conséquence sur l'affichage 24-1.24 provided with a screen 24-1 making it possible to display, thanks to the electronic circuits described later, the measurements provided by each of the sensors 22. Preferably, the display takes place in a coordinate system where the the values of the measurements are represented as a function of the positions of the corresponding sensors. The difference between sensors 22 is constant according to one embodiment. It could also be variable in other embodiments; it is possible to have more sensors per unit of length in the center of the rule 20 in order to raise the profile of the rail more precisely at the level of the weld 12-1. The coordinate axis assigned to the positions of the sensors is then graduated accordingly on display 24-1.
La règle 20 est munie à chaque extrémité d'une cale 26 à poser sur le rail 12. Ces cales sont en un matériau dur, par exemple en carbure métallique, pour minimiser leur usure au cours des nombreuses utilisations du dispositif.The rule 20 is provided at each end with a wedge 26 to be placed on the rail 12. These wedges are made of a hard material, for example metal carbide, to minimize their wear during the many uses of the device.
Un tel dispositif de mesure est particulièrement facile à réaliser car il n'est pas nécessaire de positionner les capteurs 22 avec une grande précision, notaπment perpendiculai¬ rement au rail 12. En effet, comme on le verra ultérieurement, les capteurs 22 sont gérés par un microprocesseur (ce qui est la façon la plus simple de procéder) qui, sur demande, exécute un programme d'étalonnage permettant de mémoriser des valeurs de correction pour chaque capteur 22. Ainsi, si l'on craint que les positions des capteurs 22 aient été modifiées à la suite d'un choc, par exemple, il suffit de réexécuter le programme d'éta¬ lonnage. En outre, du fait qu'il n'est pas nécessaire de prévoir des organes mécaniques de précision devant supporter des efforts et une usure dans le temps (glissières de chariot dans le dispositif de la figure 1), le dispositif de mesure selon l'invention ne comporte pas de pièces lourdes. Bien entendu, il faut que la position des capteurs 22 soit stable dans le temps, mais ces capteurs ne sont soumis à aucun effort et il n'est pas nécessaire de réaliser la règle 20 qui les maintient de manière particulièrement rigide. En conséquence, un dispositif de mesure selon l'invention est particulièrement léger et portable par une seule personne (pour une longueur de mesure d'environ 1 m, le dispositif pèse environ 8 kg) .Such a measuring device is particularly easy to produce because it is not necessary to position the sensors 22 with great precision, in particular perpendicular to the rail 12. In fact, as will be seen later, the sensors 22 are managed by a microprocessor (which is the easiest way to do this) which, on request, runs a calibration program to store values of correction for each sensor 22. Thus, if it is feared that the positions of the sensors 22 have been modified following a shock, for example, it suffices to rerun the calibration program. In addition, since it is not necessary to provide precision mechanical members which must withstand forces and wear over time (carriage slides in the device of FIG. 1), the measuring device according to the invention does not have heavy parts. Of course, the position of the sensors 22 must be stable over time, but these sensors are not subjected to any force and it is not necessary to make the rule 20 which keeps them particularly rigidly. Consequently, a measuring device according to the invention is particularly light and portable by a single person (for a measuring length of approximately 1 m, the device weighs approximately 8 kg).
Il va de soi qu'un dispositif selon l'invention est particulièrement pratique à utiliser puisque le micrαprOσesseur effectue la plupart des étapes de mesure. L'utilisateur n'a qu'à appuyer sur un bouton pour voir s'afficher le profil du rail.It goes without saying that a device according to the invention is particularly practical to use since the micrαprOσesseur performs most of the measurement steps. The user only has to press a button to view the rail profile.
La figure 3 représente schématiquement un mode de réalisation de l'architecture du circuit de gestion de capteurs 22 de type capacitif. De préférence, on choisit des capteurs capacitifs car ils permettent de fournir un signal d'amplitude proportionnelle à la distance mesurée. Des mêmes éléments qu'à la figure 2 sont désignés par des mêmes références. Chaque capteur 22 est constitué d'une plaque métallique entourée d'un anneau de garde 22-1 qui est relié à un potentiel de référence. Les plaques 22 sont disposées à proximité du rail 12 à mesurer et parallèles à celui-ci. Chaque plaque 22 est reliée à une borne d'une capacité ajustable C et à l'entrée d'un amplifica¬ teur différentiel 28 dont une autre entrée est reliée à l'anneau de garde. Les capacités C sont ajustées une fois pour toutes à la fabrication. Les sorties des amplificateurs 28 sont fournies à un multiplexeur analogique 30 qui aiguille une seule des sorties de ces amplificateurs 28 sur l'entrée d'un amplificateur 32. Le multiplexeur 30 est commandé par un microprocesseur 34. La sortie de l'amplificateur 32 est fournie à un démodulateur 36 dont une autre entrée reçoit un signal sinusoïdal fourni par un générateur 38. La sortie du démodulateur 36 est fournie à un filtre 40 qui fournit une tension pratiquement continue Vd cor¬ respondant à la distance mesurée par le capteur 22 sélectionné par le multiplexeur 30. La tension Vd est appliquée à un modula¬ teur 42 dont une autre entrée reçoit le signal sinusoïdal fourni par le générateur 38. Le générateur 38 alimente également les capacités ajustables C. Le rail 12 reçoit la sortie du démodula¬ teur 42, qui est reliée à l'une des cales 26 sur lesquelles est posé le dispositif de mesure.FIG. 3 schematically represents an embodiment of the architecture of the sensor management circuit 22 of the capacitive type. Preferably, capacitive sensors are chosen because they make it possible to provide an amplitude signal proportional to the distance measured. The same elements as in FIG. 2 are designated by the same references. Each sensor 22 consists of a metal plate surrounded by a guard ring 22-1 which is connected to a reference potential. The plates 22 are arranged close to and parallel to the rail 12 to be measured. Each plate 22 is connected to a terminal with an adjustable capacity C and to the input of a differential amplifier 28, another input of which is connected to the guard ring. Capacities C are adjusted once and for all during manufacture. The outputs of the amplifiers 28 are supplied to an analog multiplexer 30 which switches only one of the outputs of these amplifiers 28 to the input of an amplifier 32. The multiplexer 30 is controlled by a microprocessor 34. The output of the amplifier 32 is supplied to a demodulator 36, another input of which receives a sinusoidal signal supplied by a generator 38. The output of the demodulator 36 is supplied to a filter 40 which supplies a practically continuous voltage Vd corresponding to the distance measured by the sensor 22 selected by the multiplexer 30. The voltage Vd is applied to a modulator 42 whose other input receives the sinusoidal signal supplied by the generator 38. The generator 38 also supplies the adjustable capacitors C. The rail 12 receives the output of the demodulator 42 , which is connected to one of the shims 26 on which the measuring device is placed.
Le principe de mesure d'un capteur capacitif est clas¬ sique et ne sera pas décrit. Par contre, un aspect de l'inven¬ tion est de regrouper l'amplificateur 32, le démodulateur 36, le générateur 38, le filtre 40 et le modulateur 42 pour l'ensemble des capteurs 22 qui peuvent être en nombre élevé. Ces éléments regroupés étant les plus coûteux dans un système de mesure capa¬ citive, on réalise une importante économie.The measuring principle of a capacitive sensor is classic and will not be described. On the other hand, one aspect of the invention is to group the amplifier 32, the demodulator 36, the generator 38, the filter 40 and the modulator 42 for all of the sensors 22 which may be in high number. These elements being grouped together being the most costly in a capacitive measurement system, significant savings are made.
La sortie Vd du filtre 40 est fournie à un convertis¬ seur analogique/numérique 44 relié à l'unité centrale 34. Le microprocesseur 34 est en outre associée à une mémoire 46 (mémoire morte ROM et mémoire vive RAM), à un clavier 48 et à l'écran 24-1 susmentionné, qui est par exemple un affichage matriciel à cristaux liquides.The output Vd of the filter 40 is supplied to an analog / digital converter 44 connected to the central unit 34. The microprocessor 34 is further associated with a memory 46 (ROM ROM and RAM), with a keyboard 48 and in the above-mentioned screen 24-1, which is for example a liquid crystal matrix display.
Pour utiliser le dispositif de mesure selon l'inven- tion, un utilisateur appuie sur une touche spécifique du clavier 48. Un programme, stocké en mémoire ROM, est alors exécuté par le microprocesseur 34. Ce programme sélectionne successivement les capteurs 22, relève les valeurs Vd correspondantes fournies par le convertisseur 44, et stocke ces valeurs en mémoire RAM. Ensuite, ou simultanément, les valeurs relevées sont corrigées par des valeurs préméπ risées dans une mémoire non-volatile, par exemple au cours d'une étape d'étalonnage, et affichées de manière adéquate sur l'écran 24-1. Comme on l'a précédemment indiqué, les valeurs mesurées peuvent être affichées dans un système de coordonnées en fonction des positions relatives des capteurs respectifs, ce qui donne directement le profil du rail mesuré. Le microprocesseur 34 peut en outre effectuer de nom¬ breuses opérations sur les valeurs mémorisées, par exemple un lissage ou toute autre opération jugée utile.To use the measuring device according to the invention, a user presses a specific key on the keyboard 48. A program, stored in ROM memory, is then executed by the microprocessor 34. This program successively selects the sensors 22, reads the corresponding Vd values supplied by the converter 44, and stores these values in RAM memory. Then, or simultaneously, the values read are corrected by values stored in a non-volatile memory, for example during a calibration step, and displayed adequately on the screen 24-1. As previously indicated, the measured values can be displayed in a coordinate system as a function of the relative positions of the respective sensors, which directly gives the profile of the measured rail. The microprocessor 34 can also perform numerous operations on the stored values, for example smoothing or any other operation deemed useful.
Comme on l'a précédemment indiqué, on mémorise des valeurs d'étalonnage pour chaque capteur. En effet, la distance d à mesurer par chaque capteur s'exprime par d≈ A Vd + B, où A et B sont des constantes. Un étalonnage consiste donc à mémori- ser les valeurs A et B pour chaque capteur. Pour cela, on procède de la manière suivante.As previously indicated, calibration values are stored for each sensor. Indeed, the distance d to be measured by each sensor is expressed by d≈ A Vd + B, where A and B are constants. A calibration therefore consists in memorizing the values A and B for each sensor. To do this, we proceed as follows.
On effectue une première phase d'étalonnage avec la règle posée directement sur un plan de référence conducteur. Ce plan peut être une plaque d'acier de planéité précise. De préfé- rence, le plan de référence est un plan d'eau dont la planéité a l'avantage d'être parfaite. Il est possible, selon l'invention, d'utiliser un plan d'eau comme plan de référence car les cap¬ teurs sont sans contact, c'est-à-dire qu'ils ne perturbent pas la surface de l'eau qui reste parfaitement plane. Les cales 26 sont alors posées sur des piliers métalliques qui baignent dans l'eau. L'utilisateur sélectionne ensuite, en appuyant sur une touche spécifique, cette première phase d'étalonnage. Le micro¬ processeur exécute une première série de mesures en mesurant les tensions Vd pour chaque capteur 22, ces tensions Vd correspon- dant à des distances d supposées nulles.A first calibration phase is carried out with the rule placed directly on a conductive reference plane. This plane can be a steel plate of precise flatness. Preferably, the reference plane is a body of water whose flatness has the advantage of being perfect. It is possible, according to the invention, to use a water body as a reference plane because the sensors are non-contact, that is to say that they do not disturb the surface of the water which stays perfectly flat. The wedges 26 are then placed on metal pillars which bathe in the water. The user then selects, by pressing a specific key, this first calibration phase. The microprocessor performs a first series of measurements by measuring the voltages Vd for each sensor 22, these voltages Vd corresponding to distances d assumed to be zero.
On effectue ensuite une deuxième phase d'étalonnage qui consiste à poser la règle sur le plan de référence en inter¬ posant des cales de référence de hauteur connue entre le plan de référence et les cales 26. L'utilisateur sélectionne la deuxième phase d'étalonnage qui consiste à effectuer une deuxième série de mesures en mémorisant les tensions Vd, qui correspondent alors à des distances d égales à la hauteur des cales de réfé¬ rence. On dispose ainsi, pour chaque capteur, d'un système d'équations à deux inconnues dont les inconnues sont les coef¬ ficients A et B. A la fin de la deuxième phase d'étalonnage, le microprocesseur calcule et mémorise les coefficients A et B pour chaque capteur. La réalisation des programmes permettant d'effectuer les diverses opérations décrites ci-dessus est à la portée de tout programmeur.A second calibration phase is then carried out which consists in placing the rule on the reference plane by placing reference blocks of known height between the reference plane and the blocks 26. The user selects the second calibration phase which consists in carrying out a second series of measurements by memorizing the voltages Vd, which then correspond to distances d equal to the height of the reference blocks. There is thus, for each sensor, a system of equations with two unknowns whose unknowns are the coefficients A and B. At the end of the second calibration phase, the microprocessor calculates and stores the coefficients A and B for each sensor. The realization of the programs allowing to carry out the various operations described above is within the reach of any programmer.
La figure 4 représente un mode de réalisation d'un ensemble de capteurs 22. Ces capteurs sont réalisés sur une face d'un circuit imprimé rectangulaire 50. Les capteurs 22 sont formés en gravant dans la couche de cuivre de l'une des faces du circuit imprimé des anneaux dont les zones internes constituent les capteurs 22. La surface de cuivre restante constitue l'ensemble des anneaux de garde 22-1. La figure 5 représente un mode de réalisation d'une règle de mesure selon l'invention, c'est-à-dire la pièce servant de support au capteur 22. Cette règle est formée d'un profilé comprenant une partie 20-0 à section en "U" renversé. Un ou plusieurs circuits imprimés 50 du type de la figure 4 sont glissés dans des rainures internes 20-1 des flancs de la partie en U, à proximité de la partie inférieure. Comme cela est repré¬ senté, l'un des flancs de chaque rainure 20-1 est horizontal et sert de surface de référence et d'appui au circuit imprimé 50. L'autre flanc des rainures 20-1 est incliné de manière que le circuit imprimé 50 soit appuyé sur les deux flancs des rainures sans toutefois atteindre les fonds des rainures. Des vis 52, réparties sur la longueur de la règle, traversent l'un des flancs de la partie en U et se vissent dans l'autre flanc. En serrant ces vis 52, les deux flancs de la partie en U se rap- prochent et viennent coincer le circuit imprimé 50 dans les rainures 20-1, les flancs inclinés de ces rainures venant plaquer le circuit imprimé 50 sur le plan de référence constitué par les flancs droits des rainures. Comme cela est représenté, pour augmenter davantage la rigidité à la flexion de la règle 20, celle-ci comprend une partie ascendante 20-2 de manière que la règle ait une section en "h". Cette partie ascendante peut avoir une extrémité re¬ pliée, comme cela est représenté, qui sert à fixer des éléments tels que des circuits imprimés.FIG. 4 represents an embodiment of a set of sensors 22. These sensors are produced on one face of a rectangular printed circuit 50. The sensors 22 are formed by etching in the copper layer of one of the faces of the printed circuit of the rings whose internal zones constitute the sensors 22. The remaining copper surface constitutes the set of guard rings 22-1. FIG. 5 represents an embodiment of a measurement rule according to the invention, that is to say the part serving as support for the sensor 22. This rule is formed from a profile comprising a part 20-0 to inverted "U" section. One or more printed circuits 50 of the type of FIG. 4 are slid into internal grooves 20-1 of the sides of the U-shaped part, near the lower part. As is shown, one of the sides of each groove 20-1 is horizontal and serves as a reference surface and as a support for the printed circuit 50. The other side of the grooves 20-1 is inclined so that the printed circuit 50 is supported on the two sides of the grooves without however reaching the bottoms of the grooves. Screws 52, distributed over the length of the rule, pass through one of the sides of the U-shaped part and are screwed into the other side. By tightening these screws 52, the two sides of the U-shaped part approach and jam the printed circuit 50 in the grooves 20-1, the inclined sides of these grooves press the printed circuit 50 on the reference plane formed by the right sides of the grooves. As shown, to further increase the flexural rigidity of the rule 20, it includes an ascending part 20-2 so that the rule has a section in "h". This ascending part may have a folded end, as shown, which is used to fix elements such as printed circuits.
Le circuit imprimé 50 est muni, sur sa face interne, de composants montés en surface 54, comme par exemple les ampli¬ ficateurs 28 et les capacités C de la figure 3. Pour effectuer des mesures de rectitude de rail, il convient de choisir une règle d'environ un mètre de long. Etant donné qu'il est diffi¬ cile de réaliser des circuits imprimés d'une telle dimension, le circuit imprimé 50 est subdivisé en, par exemple, cinq circuits imprimés de 20 cm de long. Chaque circuit imprimé 50 est muni d'un connecteur monté en surface permettant de relier les sor- ties des amplificateurs 28 et la liaison commune des capacités C à un circuit imprimé, non représenté, comportant les autres éléments de la figure 3. Les connecteurs des circuits imprimés 50 sont accessibles par des ouvertures 20-3 réalisées dans la partie en U 20-0. Dans une réalisation pratique, on prévoit un écart d'environ 1 cm entre les capteurs, notamment dans la zone centrale destinée à être située au-dessus d'une soudure. Dans les zones extrêmes, un écart de 2 cm entre capteurs suffit. Toutefois, pour simplifier la fabrication, les circuits imprimés 50 seront identiques mais seulement un capteur sur deux sera équipé de ses composants montés en surface au niveau des -zones extrêmes de la règle. On pourra bien entendu choisir un écart inférieur à 1 cm. La figure 6 représente une vue en perspective exté¬ rieure d'un mode de réalisation du dispositif de mesure de rectitude selon l'invention. Le boîtier 24 de ce dispositif est de forme généralement parailélépipédique allongée. Des poignées 62 sont prévues dans trois évidements latéraux du boîtier 24, un évidement se trouvant au niveau de la partie centrale et les deux autres aux parties extrêmes. L'écran 24-1 susmentionné est disposé entre un évidement extrême et 1'évidement central, et le clavier 48 est disposé entre 1'évidement central et l'autre évidement extrême.The printed circuit 50 is provided, on its internal face, with components mounted on the surface 54, such as, for example, the amplifiers 28 and the capacitors C of FIG. 3. To perform rail straightness measurements, it is advisable to choose a rule about a meter long. Since it is diffi¬ cult to produce printed circuits of such a dimension, the printed circuit 50 is subdivided into, for example, five printed circuits 20 cm long. Each printed circuit 50 is provided with a surface-mounted connector making it possible to connect the outputs of the amplifiers 28 and the common connection of the capacitors C to a printed circuit, not shown, comprising the other elements of FIG. 3. The connectors of the printed circuits 50 are accessible through openings 20-3 made in the U-shaped part 20-0. In a practical embodiment, a gap of about 1 cm is provided between the sensors, in particular in the central zone intended to be located above a weld. In extreme areas, a gap of 2 cm between sensors is sufficient. However, to simplify manufacturing, the printed circuits 50 will be identical but only one sensor out of two will be equipped with its components mounted on the surface at the extreme zones of the rule. We can of course choose a difference of less than 1 cm. FIG. 6 represents a perspective view of an external embodiment of the straightness measuring device according to the invention. The housing 24 of this device is generally elongated parailélépipédique. Handles 62 are provided in three lateral recesses of the housing 24, one recess being located at the central part and the other two at the end parts. The screen 24-1 mentioned above is arranged between an extreme recess and the central recess, and the keyboard 48 is arranged between the central recess and the other extreme recess.
Chaque extrémité du dispositif est munie d'un bloc de fixation 64 amovible coπprenant un système de montage rapide sur un rail ou autre profilé.Each end of the device is provided with a removable fixing block 64 including a quick mounting system on a rail or other profile.
La figure 7 représente une vue en coupe du dispositif au niveau de l'une de ses poignées 62. Des mêmes références que dans les figures précédentes désignent des mêmes éléments. Le boîtier 24 a une section en "U" renversé obturé à sa partie inférieure par une plaque 65. La règle 20 est fixée par sa partie la plus longue sur un flanc du boîtier 60, du côté opposé à la poignée 62. Les cales d'appui 26, dont une seule est visible à la figure 7, sont fixées au niveau des extrémités respectives de la règle 20. Les cales 26 sont en appui sur un rail 12 et sont isolées électriquement du reste du dispositif car l'une d'elles ou les deux, comme on l'a précédemment men- tionné, transmettent au rail 12 un signal électrique servant à effectuer les mesures de distance.7 shows a sectional view of the device at one of its handles 62. The same references as in the previous figures denote the same elements. The housing 24 has an inverted "U" section closed at its lower part by a plate 65. The rule 20 is fixed by its longer part on a side of the housing 60, on the side opposite to the handle 62. The shims d 'support 26, only one of which is visible in Figure 7, are fixed at the respective ends of the rule 20. The wedges 26 are supported on a rail 12 and are electrically isolated from the rest of the device because one of they or both, as mentioned above, transmit an electrical signal to the rail 12 used to perform the distance measurements.
Comme cela est représenté, le bloc 64 comprend, en dessous de la règle 20, un logement pour le rail 12 muni de mâchoires 66. Ces mâchoires 66 permettent, à l'aide d'une commande mécanique ou hydraulique, non représentée, de serrer le rail 12 pour fixer le dispositif sur le rail tout en centrant la règle 20 sur l'axe du rail afin d'effectuer une mesure à l'endroit adéquat. Comme on l'a précédemment indiqué, les blocs 64 sont amovibles. En actionnant une commande mécanique, le boîtier 24 du dispositif de mesure peut être désolidarisé des blocs 64 qui restent fixés sur le rail. Cette possibilité est prévue pour que l'on puisse repositionner le boîtier 24 selon la représentation en pointillés pour effectuer une mesure de rectitude du flanc du rail 12. A cet effet, l'extrémité du boîtier 24 comprend une rainure 24-2 prévue pour glisser sur un ergot 64-1 du bloc 64 et maintenir le boîtier 24 à une position adéquate. Le dispositif de mesure de rectitude selon la présente invention a été décrit dans le cadre de la mesure de rectitude de rails. Bien entendu, 1'invention s'applique à la mesure de rectitude de tout objet conducteur, même en un matériau mauvais conducteur, tel que de l'eau, du graphite... As shown, the block 64 comprises, below the rule 20, a housing for the rail 12 provided with jaws 66. These jaws 66 allow, using a mechanical or hydraulic control, not shown, to tighten the rail 12 for fixing the device on the rail while centering the rule 20 on the axis of the rail in order to carry out a measurement at the appropriate place. As previously indicated, the blocks 64 are removable. By actuating a mechanical control, the housing 24 of the measuring device can be detached from the blocks 64 which remain fixed on the rail. This possibility is provided so that the housing 24 can be repositioned according to the dotted representation to perform a straightness measurement of the side of the rail 12. For this purpose, the end of the housing 24 includes a groove 24-2 provided for sliding on a lug 64-1 of the block 64 and maintain the housing 24 in an adequate position. The straightness measuring device according to the present invention has been described in the context of the straightness measurement of rails. Of course, the invention applies to the measurement of straightness of any conductive object, even in a bad conductive material, such as water, graphite ...

Claims

REVENDICATIONS
1. Dispositif de mesure de rectitude d'un objet conducteur (12), comprenant une pluralité de capteurs de distance (22) capacitifs alignés selon un axe d'une règle (20) à poser sur l'objet, et des moyens de communication (24-1) des mesures fournies par chaque capteur, caractérisé en ce que les capteurs capacitifs (22) sont formés sur des circuits imprimés rectangulaires (50) par la partie centrale d'anneaux alignés gravés sur une couche de cuivre des circuits imprimés (50), le cuivre restant à l'extérieur des anneaux jouant le rôle d'anneaux de garde (22-1).1. Device for measuring the straightness of a conductive object (12), comprising a plurality of capacitive distance sensors (22) aligned along an axis of a rule (20) to be placed on the object, and means of communication (24-1) of the measurements supplied by each sensor, characterized in that the capacitive sensors (22) are formed on rectangular printed circuits (50) by the central part of aligned rings engraved on a copper layer of the printed circuits ( 50), the copper remaining outside the rings playing the role of guard rings (22-1).
2. Dispositif de mesure de rectitude selon la revendi¬ cation 1, caractérisé en ce que la règle (20) comporte à chaque extrémité une cale (26) à poser sur l'objet (12), l'une au moins de ces cales étant conductrice et fournissant à l'objet un signal électrique nécessaire au fonctionnement des capteurs capacitifs.2. Straightness measuring device according to revendi¬ cation 1, characterized in that the rule (20) comprises at each end a shim (26) to be placed on the object (12), at least one of these shims being conductive and providing the object with an electrical signal necessary for the operation of the capacitive sensors.
3. Dispositif de mesure de rectitude selon la reven¬ dication 1, caractérisé en ce que les circuits imprimés (50) comportent sur une face opposée à celle où sont réalisés les capteurs des circuits électroniques à montage en surface (54) destinés à exploiter les signaux des capteurs.3. Straightness measuring device according to Reven¬ dication 1, characterized in that the printed circuits (50) have on a face opposite to that where the sensors of the electronic circuits are mounted on the surface (54) intended to exploit the sensor signals.
4. Dispositif de mesure de rectitude selon la reven¬ dication 1, caractérisé en ce qu'il comprend des moyens (24-1) pour afficher dans un système de coordonnées les amplitudes des mesures fournies par les capteurs (22) en fonction des positions respectives des capteurs.4. Straightness measuring device according to Reven¬ dication 1, characterized in that it comprises means (24-1) for displaying in a coordinate system the amplitudes of the measurements supplied by the sensors (22) as a function of the positions respective sensors.
5. Dispositif de mesure de rectitude selon la reven¬ dication 1, caractérisé en ce que ledit objet est un rail (12).5. Device for measuring straightness according to Reven¬ dication 1, characterized in that said object is a rail (12).
6. Dispositif de mesure de rectitude selon la reven- dication 5, caractérisé en ce que chaque extrémité de la règle6. Straightness measuring device according to claim 5, characterized in that each end of the rule
(20) est fixée de façon amovible à un bloc (64) qui comprend des mâchoires (66) destinées à serrer le rail (12) tout en alignant l'axe des capteurs (22) sur l'axe du rail, des moyens (24-2, 64-1) étant en outre prévus pour, une fois que les blocs (64) sont fixés sur le rail, repositionner la règle latéralement de manière à pouvoir mesurer la rectitude d'un flanc du rail à une position prédéterminée.(20) is removably attached to a block (64) which includes jaws (66) intended to clamp the rail (12) while aligning the axis of the sensors (22) on the axis of the rail, means (24-2, 64-1) being furthermore provided for, once the blocks (64) are fixed on the rail, reposition the ruler laterally so as to be able to measure the straightness of a side of the rail at a predetermined position.
7. Dispositif de mesure de rectitude selon la revendi¬ cation 1, caractérisé en ce que les circuits imprimés (50) sont maintenus dans deux rainures (20-1) opposées internes d'une partie en "U" de la règle (20), l'un des flancs de chaque rainure étant droit et servant d'appui aux circuits imprimés et l'autre des flancs de c-haque rainure étant incliné de manière à entrer en contact avec le circuit imprimé sans que celui-ci atteigne le fond de la rainure, des moyens de serrage (52) étant prévus pour rapprocher les deux flancs de la partie en "U". 7. Straightness measuring device according to revendi¬ cation 1, characterized in that the printed circuits (50) are held in two internal internal grooves (20-1) of a "U" part of the rule (20) , one of the sides of each groove being straight and serving as a support for the printed circuits and the other of the sides of each groove being inclined so as to come into contact with the printed circuit without the latter reaching the bottom of the groove, clamping means (52) being provided to bring the two flanks closer to the "U" portion.
EP94915602A 1993-05-10 1994-05-09 Device for measuring straightness Withdrawn EP0649512A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9305887A FR2705145B1 (en) 1993-05-10 1993-05-10 Straightness measuring device.
FR9305887 1993-05-10
PCT/FR1994/000546 WO1994027114A1 (en) 1993-05-10 1994-05-09 Device for measuring straightness

Publications (1)

Publication Number Publication Date
EP0649512A1 true EP0649512A1 (en) 1995-04-26

Family

ID=9447180

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94915602A Withdrawn EP0649512A1 (en) 1993-05-10 1994-05-09 Device for measuring straightness

Country Status (7)

Country Link
US (1) US5519944A (en)
EP (1) EP0649512A1 (en)
JP (1) JPH08503777A (en)
KR (1) KR950702701A (en)
FR (1) FR2705145B1 (en)
HU (1) HUT71145A (en)
WO (1) WO1994027114A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5617645A (en) * 1995-05-02 1997-04-08 William R. W. Wick Non-contact precision measurement system
GB2335493B (en) * 1998-03-20 2000-09-13 Mitsubishi Heavy Ind Ltd Method for measuring roll profile
US6111419A (en) * 1998-05-19 2000-08-29 Motorola Inc. Method of processing a substrate including measuring for planarity and probing the substrate
US6580519B1 (en) 1999-03-16 2003-06-17 William R. W. Wick Method and apparatus for determining the alignment of rotational bodies
DE19918699B4 (en) * 1999-04-26 2008-03-27 Betriebsforschungsinstitut VDEh - Institut für angewandte Forschung GmbH Measuring roller for determining flatness deviations
EP1191304B1 (en) * 2000-09-20 2011-11-16 Bridgestone Corporation Hole center detecting apparatus, straightness measuring apparatus and residual torsion measuring apparatus
DE10050193A1 (en) * 2000-10-09 2002-04-18 Micro Epsilon Messtechnik Sensor arrangement has coating on measurement side of housing that forms active component of second sensor; active component has at least one active measurement surface
WO2003004968A1 (en) * 2001-07-06 2003-01-16 Inventio Ag Method and device for determining the rectilinearity of guide rails
WO2004042317A1 (en) * 2002-11-06 2004-05-21 Lixin Sun A detection method of lift guide rail perpendicularity and a detector for implementing this method
FI20035137A (en) * 2003-08-26 2005-02-27 Metso Paper Inc Method and apparatus for measuring flatness of the flow surface of a paper machine headbox
KR101223389B1 (en) 2011-01-27 2013-01-16 경북대학교 산학협력단 Apparatus for measuring roll error and method for measuring roll error thereof
EP2527785A1 (en) * 2011-05-20 2012-11-28 Tata Steel UK Limited Method and device for flatness measurement
US9303364B2 (en) * 2012-09-13 2016-04-05 Holland, L.P. Rail cant measurement tool and method
CN103776338A (en) * 2014-02-25 2014-05-07 天津三星电机有限公司 Device for detecting linearity of Tract device
WO2016151680A1 (en) * 2015-03-20 2016-09-29 東京電力ホールディングス株式会社 Method of measuring deflection in columnar structure and method of evaluating performance of columnar structure
CN109870103A (en) * 2017-12-05 2019-06-11 成都神澜科技有限公司 A kind of electronics ruler for railway track joint maintenance test

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2308018A (en) * 1941-07-25 1943-01-12 Oliver B Misz Slope indicator
US3706919A (en) * 1970-08-17 1972-12-19 Ade Corp Capacitive gauge
US3805036A (en) * 1972-09-05 1974-04-16 Bendix Corp Arrangement for a columnar display of variation gaging signals
US4190797A (en) * 1978-03-31 1980-02-26 Gould Inc. Capacitive gauging system utilizing a low internal capacitance, high impedance amplifier means
US4324048A (en) * 1980-01-16 1982-04-13 Chemetron Railway Products, Inc. Locator for rail aligning device
US4693012A (en) * 1985-07-16 1987-09-15 Speedfam Corporation Measuring bar for free abrasive machines
JPS62231111A (en) * 1986-03-31 1987-10-09 Shibaura Eng Works Co Ltd Rail position detector
JP2539461B2 (en) * 1987-10-12 1996-10-02 三菱マテリアル株式会社 Straightness meter
US4851760A (en) * 1988-07-21 1989-07-25 Sandvik Special Metals Method and apparatus for measuring the straightness of tubes
JPH042908A (en) * 1990-04-20 1992-01-07 Asaka Riken Kogyo Kk Straightness and surface roughness measuring apparatus
US5189798A (en) * 1991-11-06 1993-03-02 Force Jeffrey Alignment gauge
ATE160864T1 (en) * 1992-02-10 1997-12-15 Syel Di Franchi A Martolini A ELECTRONIC CAPACITIVE SENSOR BAR DEVICE

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9427114A1 *

Also Published As

Publication number Publication date
HU9500025D0 (en) 1995-03-28
US5519944A (en) 1996-05-28
FR2705145A1 (en) 1994-11-18
WO1994027114A1 (en) 1994-11-24
KR950702701A (en) 1995-07-29
JPH08503777A (en) 1996-04-23
FR2705145B1 (en) 1995-08-04
HUT71145A (en) 1995-11-28

Similar Documents

Publication Publication Date Title
EP0649512A1 (en) Device for measuring straightness
EP1056985B1 (en) Tensile testing sensor for measuring mechanical jamming deformations on first installation and automatic calibrating based on said jamming
EP0453824B1 (en) Sensor for measuring the relative transversial displacement of an elongated conducting piece
EP0141710B1 (en) Strain gauges weighing apparatus
FR2962214A1 (en) METHOD FOR CALIBRATING WEIGHT SENSOR, WEIGHT SENSOR FOR IMPLEMENTING SAID METHOD AND ELECTRONIC WEIGHING APPARATUS
EP1702220B1 (en) Magnetic-field-measuring probe
JP2892075B2 (en) Measuring method of refractive index distribution and transmitted wavefront and measuring device used for this method
FR2647901A1 (en) CONSTRAINED GAUGE WEIGHING DEVICE
FR2727778A1 (en) MAGNETIC ENCODER FOR READING MARKS ON AN ASSOCIATED MAGNETIC TRACK
EP0136238B1 (en) Device for measuring the proximity of a metallic conductive surface
US3802781A (en) Extensometers
EP1671145B1 (en) Electric circuit analysis device
Moilanen et al. Laser interferometric measurement of displacement-field characteristics of piezoelectric actuators and actuator materials
FR2535457A1 (en) CHARGE MEASURING DEVICE
FR2598226A1 (en) FORCE SENSOR WITH RESISTIVE GAUGES
EP0034991B1 (en) Extensometer for concrete
FR2616224A1 (en) EXTENSOMETRY GAUGE WEIGHING APPARATUS
FR2741147A1 (en) METHOD AND DEVICE FOR MEASURING AN AXIAL DIFFERENCE IN A TENSILE WIRELESS ALIGNMENT SYSTEM
FR2899969A1 (en) Four point bending applying device for performing e.g. electrical point test of integrated circuit, has base and mobile carriage moved such that cylinders carried by carriage pass on both sides of positions of cylinders carried by base
EP0539571A1 (en) Dynamic shearing interferometer
FI111991B (en) Arrangement for measuring sheet metal
FR2693266A1 (en) Thickness and curvature measuring system for test pieces subject to mechanical force - has drive system for moving inductive distance detectors mounted at opposite sides of specimen, perpendicularly to specimen, and connected to dimension calculating appts.
CA2321134A1 (en) Tensile testing sensor for measuring mechanical jamming deformations on first installation and automatic calibrating based on said jamming
FR2529335A1 (en) Measuring head for hardness testing machine - has force pick-up and displacement pick-up for height independent differential measurement
FR3050822A1 (en) MEASURING MEDIUM CAPABLE OF DETERMINING THE INTENSITY AND THE APPLICATION POSITION OF AN EFFORT

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19950130

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES GB IT

17Q First examination report despatched

Effective date: 19961104

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SA PRODYS EQUIPEMENT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19971216