EP0649183A1 - Ensemble de radiodiffusion comportant une antenne rotative à dipôles filiares et joint rotatif conçu pour cet ensemble - Google Patents

Ensemble de radiodiffusion comportant une antenne rotative à dipôles filiares et joint rotatif conçu pour cet ensemble Download PDF

Info

Publication number
EP0649183A1
EP0649183A1 EP94402276A EP94402276A EP0649183A1 EP 0649183 A1 EP0649183 A1 EP 0649183A1 EP 94402276 A EP94402276 A EP 94402276A EP 94402276 A EP94402276 A EP 94402276A EP 0649183 A1 EP0649183 A1 EP 0649183A1
Authority
EP
European Patent Office
Prior art keywords
dipoles
joint
mast
antenna
transmitters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP94402276A
Other languages
German (de)
English (en)
Inventor
Jean-Marc Martin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0649183A1 publication Critical patent/EP0649183A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/06Movable joints, e.g. rotating joints
    • H01P1/062Movable joints, e.g. rotating joints the relative movement being a rotation
    • H01P1/066Movable joints, e.g. rotating joints the relative movement being a rotation with an unlimited angle of rotation
    • H01P1/069Movable joints, e.g. rotating joints the relative movement being a rotation with an unlimited angle of rotation the energy being transmitted in at least one ring-shaped transmission line located around an axial transmission line; Concentric coaxial systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/062Two dimensional planar arrays using dipole aerials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole
    • H01Q3/04Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole for varying one co-ordinate of the orientation

Definitions

  • the present invention relates to broadcasting assemblies comprising a rotary antenna with wire dipoles and which are designed to work in HF.
  • Each of the dipole curtains with its reflector constitutes an antenna proper of which, in certain applications, a part of the dipoles can, as desired, be or not be supplied and this thanks to switching assemblies.
  • the complete assembly with the dipole curtains and the reflective curtain (s) will be said to be a rotating antenna each time it is necessary to avoid confusion with the two antennas proper also called antenna faces. or dipole curtains or high frequency antenna and low frequency antenna.
  • the dipoles of each of the two curtains are generally arranged in rows and columns, symmetrically with respect to the projection of the axis of the mast in the plane of the curtain.
  • a supply line feeder in Anglo-Saxon literature
  • a power cable starts from the power source, crosses the rotary crown which separates the fixed base and the mast, is subdivided into two cables which run horizontally following two horizontal beams integral with the mast and is subdivided again to leave, vertically, supplying the different dipoles.
  • switches in this supply line to authorize or prohibit the supply of some of the dipoles of the antenna in order to use only one curtain when there are two, or to use only all or part of the dipoles a curtain in order to vary the angle of elevation of the curtain in question.
  • Rotary antennas in use today use only one source of emission at a time. This is the case, in particular, in high power broadcasting.
  • Broadcasting stations are now transmitting more and more in frequency duality in the same direction; that is to say that the same program is transmitted in the same direction on two different frequencies, for example 6 and 7 MHz; for this it is known to use two rotary antennas each with a transmitter. It is therefore an expensive solution to transmit the same program in frequency duality, since it requires two rotary antennas and that a rotary antenna is very expensive.
  • This double A antenna is an antenna of the HR 4/4 / 0.5 type for the face visible in FIG. 1, the half-dipoles d1 to d16 constituting, with the ribbon cable N, a low frequency antenna intended to work in the 6-7-9-11 MHz frequency bands, i.e. in frequencies ranging from 5,950 to 12,050 MHz.
  • the double A antenna is of the HR 4/4/1 type for the face visible in FIG. 2, the half-dipoles D1 to D16 constituting with the ribbon cable N, a high frequency antenna intended to work in the frequency bands of the 11 -13-15-17-21-26 MHz, i.e. in frequencies ranging from 11,650 to 26,100 MHz.
  • the curtain of dipoles makes half-dipoles D1 to D16, is less than half as high and half as wide as the ribbon cable N and is partially supported by the auxiliary arms b1, b2.
  • the sheet N has two parts N 'and N' '; since the high frequency antenna of the double A antenna has a surface markedly smaller than the surface of the sheet N, this feature is taken advantage of, in order to give the wires of this sheet a small spacing only in the opposite part N ' the high frequency antenna; given that the part, N '', of the ribbon cable N, has a role to play only in the low frequency antenna, the spacing of its wires is twice as large as for the wires of part N ' .
  • the pair of lower arms B3-B4 constitutes a platform from which, in a conventional manner, supply cables (feeders in the Anglo-Saxon literature) run vertically to supply the dipoles; in the example described, these are cables forming vertical bundles which pass through the middle of the dipoles d4-d8, d12-d16, D4-D8, D12-D16 and then rise to the upper dipoles.
  • the B3-B4 platform is wide, providing a passage for the antenna assembly and maintenance teams.
  • Figure 4 is the diagram of the dipole power supply of the rotary antenna of Figures 1 to 3 as it is produced in the context of the invention. In this figure, the proportions have not been respected to facilitate representation and understanding.
  • the supply is done from two transmitters E1, E2 arranged in a room, in the vicinity of the mast foot P which was discussed during the description of FIGS. 1 to 3.
  • This supply comprises a fixed part which goes from the transmitters to a "double-coaxial" rotating joint, J, and a rotating part which goes from the joint J to the dipoles.
  • Joint J is disposed in the center of the crown C shown in Figures 1 to 3; it has the same vertical axis of rotation as this crown.
  • the transmitters E1, E2 are each connected by a coaxial cable, G1, G2, to two coaxial inputs of the rotating joint J.
  • G1, G2 are introduced measurement probes connected to a phase comparator, N; this phase comparator is used, when it is put into service, to control the transmitters E1, E2 so that they transmit in phase.
  • the joint J is described below using FIGS. 5 and 6. It has two coaxial outputs connected, respectively by two coaxial cables G3, G4 followed by two baluns, Sd, Sg, at the common points of two band switches Qd and HQ.
  • the band switches have two positions: a position in which they link with the common point of a high frequency switch Khd, Khg and a position in which they link with the common point of a low frequency switch Kbd , Kbg.
  • the low frequency and high frequency switches include impedance transformers.
  • the Kbg switch controls the supply of the dipoles d1-d5, d2-d6, d3-d7, d4-d8; the switch Kbd controls the supply of the dipoles d9-d13, d10-d14, d11-d15, d12-d16; the Khg switch controls the supply of dipoles D9-D13, D10-D14, D11-D15, D12-D16; the Khd switch controls the supply of dipoles D1-D5, D2-D6, D3-D7, D4-D8. Details on the making of these switches will be given using FIGS. 9 and 10.
  • Figures 5 and 6 are views of the seal J of Figure 3.
  • the seal consists of two identical half-seals, each of them constituting a half-housing; the two half-housings are located on either side of a line XX in FIG. 5 and in sliding contact according to a circular zone situated in a plane perpendicular along XX to the plane of FIG. 5; that of the half-housings which is located below the line XX, is integral with the mast foot P shown in Figures 1 to 3, while it which is located above the line XX is integral with the rotating part of the rotating antenna.
  • Figure 6 shows the half-joint integral with the mast foot, that is to say the fixed half-joint; it is seen from above in this figure; it comprises a metal half-housing, J5, with two coaxial sockets J1, J2.
  • the outer conductor of the coaxial sockets is soldered to the half-housing and the inner conductor is extended first vertically then horizontally by a crescent-shaped pallet, J1 ', in the half-housing; the pallet is intended to ensure sliding contact in the plane which already contains the sliding contact zone between the two half-housings.
  • the upper half-joint comprises a metal half-housing J6 and two coaxial sockets J3, J4 with pallet J3 ', J4', but only the socket J3 appears in FIG. 5: the socket J4 is hidden by the socket J3 since, in this figure, the half-housings are rotated 90 ° relative to each other.
  • the position shown in FIG. 5 is that where the pallets of the outlet sockets, J3, J4, of the joint, exactly cover the pallets, J1, J2, of the inlet sockets; to facilitate understanding of the drawing, only the parts of the sockets J2, J3 contained in the housing J have been shown as seen by transparency.
  • FIG. 7 represents a balun of known type as it is in particular described in French patent 2,556,508 filed on December 13, 1983 and as it is used to constitute the balancers Sd, Sg according to FIG. 4. It s 'Acts of a balun for coupling a coaxial line to a two-wire line and which comprises in series a section of coaxial cable 10 and a symmetrical two-wire line 12, with a conductor 13 in parallel on the section of coaxial cable.
  • the symmetrizers Sd, Sg are represented with the two elements of symmetrical two-wire line seen from above but slightly offset while in FIG. 7 the two elements of the symmetrical two-wire line are shown from the side.
  • the conductors, such as 13 in FIG. 7 have each time been represented in the plane of the figure in order to prevent them from being confused with the output of the internal conductor of the coaxial cable section.
  • FIG. 8 schematically represents, in perspective and without again the proportions being respected, the mast M at the level of the beam B3 of the platform, the balun Sd which is held on the beam B3 by insulating spacers represented by broken lines, and the two-position switch, Qd, also fixed on beam B3.
  • the two two-wire outputs of the Qd switch which are connected respectively at the switches Khd and Kbd, have been shown in strong lines, but these switches, which are also fixed on the beam B3, have not been shown; they will be described using FIGS. 9 and 10.
  • the switches Khd, Kbd, Khg, Kbg are all produced on the same model and are distinguished only by the impedance transformers which they comprise and which are different in the high frequency switches from those in the low frequency switches; thus only the switch Kbd which controls the supply of the dipoles d9-d13, d10-d14, d11-d15, d12-d16 and which is represented in FIGS. 9 and 10, will be described.
  • Figure 9 shows that the dipoles d9-d13, d10-d14, d11-d15, d12-d16 form three groups fed respectively by three distinct lines L1, L2, L3.
  • Line L1, of characteristic impedance Zo supplies a first group consisting of the two dipoles d11-d15 and d12-d16;
  • line L2, of characteristic impedance 2Zo feeds the second group made up of the dipole d10-d14 and line L3, also of characteristic impedance 2Zo, feeds the third group made up of the dipole d9-d13.
  • Lines L1, L2, L3 lead respectively to the distribution accesses constituted by terminals 1a, 2 and 3 of the switch Kbd, which has eight terminals, 1a, 1b, 2-7, and fixed or mobile links between some of these terminals .
  • These links are intended to allow the supply, either of the single line L1, or of the lines L1 and L2, or of the lines L1, L2 and L3, from a supply line E of characteristic impedance Zo, leading the common access provided by terminal 7; this line E is the line coming from the balun Sd of FIGS. 4 and 8.
  • Terminal 7 is coupled to a mobile arm which, by pivoting, can take three positions represented respectively by a series of crosses, by a series of lines and by a series of points;
  • terminal 2 is coupled to two mobile arms which, by pivoting, can each take three positions also represented by sequences of crosses, lines and dots.
  • the three movable arms are mechanically linked in such a way that they can only assume simultaneously the three positions identified by crosses, or that those identified by lines, or that those identified by dots.
  • the terminals 1a and 1b are connected by a very short line, H, of uniform characteristic impedance Zo.
  • terminal 7 is connected to terminal 1b and terminal 1a is not connected to terminal 2 so that only line L1 and, therefore, the two dipoles d11-d15 and d12-d16 are powered.
  • terminal 7 is connected to terminal 5 and terminal 2 to terminals 1a and 4.
  • an impedance transformer, T1 establishes a fixed link , lines L1 and L2 and, therefore, the dipoles d10-d14, d11-d15, d12-d16 are supplied while the dipole d9-d13 is not supplied.
  • the impedance transformer T1 is a broadband transformer, intended to ensure the impedance matching between the line E of characteristic impedance Zo and the lines L1, L2, of respective characteristic impedances Zo and 2Zo.
  • terminal 7 is connected to terminal 6 and terminal 2 to terminals 1a and 3.
  • an impedance transformer, T2 establishes a fixed link , the three lines L1, L2, L3 and, therefore, the four dipoles are supplied.
  • the transformer T2 is also a broadband impedance transformer, intended to ensure the impedance matching between the line E of characteristic impedance Zo and the lines L1, L2, L3 of respective characteristic impedances Zo, 2Zo and 2Zo.
  • FIG. 10 shows, in a perspective view, how the switch Kbd of FIGS. 4 and 9 was made.
  • the switch Kbd comprises a metal box B shown as if it were transparent; this box has the shape of a right prism whose section is constituted by a large equilateral triangle which is truncated, according to the same small equilateral triangle, at each of its three vertices.
  • the different terminals, 1a, 1b, 2-7, of the switch Kbd are carried by the wall of the box.
  • the switch Kbd has, inside the box, three double arms, G ', G' ', G, mobile, mounted on an insulating axis, common, R, arranged on the right, not shown, which passes through the point center of the straight sections of the prism.
  • the double arms G 'and G' ' rotate in two same planes parallel to the bases of the prism; they are 120 ° from each other and are integral with the axis R by means of hubs a1, a2 each comprising a disc situated outside the planes in which the arms G 'and G' 'rotate; a fixed, double cursor, which rubs on the discs a1 and a2, makes it possible to connect the terminal 2 to the arms G 'and G' '; arms G ', G' 'can make a full turn around the axis R.
  • the double G arm is integral with two hubs a3, a4 each comprising a disc; a fixed cursor, double rubs, at one of its ends, on the discs of the hubs, and, at the other of its ends, is connected to terminal 7; the arm G can thus also make a complete revolution around the axis R.
  • the arms G ', G' ', G are shown in the position where they respectively connect the terminals 4 and 2, la and 2, 5 and 7.
  • the arms G', G '' and G can be brought into two other positions: a position where they connect terminals 3 and 2, 1a and 2, 6 and 7 respectively and a position where they respectively connect terminals 3 and 2, 4 and 2, 1b and 7.
  • the transformers T1 and T2 and the line H associated with the switch Kbd in FIG. 10 are respectively connected between the terminals 4 and 5, 3 and 6, 1a and 1b.
  • the rotary antenna which has just been described therefore makes it possible to emit in several configurations of half-curtains and to choose, from among the four right or left half-curtains, the one which will be connected to the emitter E1 represented in FIG. 4 and the one that will be connected to the transmitter E2.
  • a transmitter can just as easily be connected to a right half-curtain as to a left half-curtain, the connection being a function of the position of the mobile part of the rotary antenna relative to the fixed part. and that for a given position of the rotary antenna, the transmitter E1, for example, can be connected either to the left half-curtain high frequencies or to the right half-curtain low frequencies.
  • dipole switches can be deleted, thus in the embodiment described the switches Khg, Kbg, Khd, Kbd can be deleted.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

La présente invention concerne la radiodiffusion à l'aide d'antennes rotatives à dipôles filaires. Deux voies d'alimentations distinctes (G1, J, G4, Sg, Qg, Khg, Kbg ; G2, J, G3, Sd, Qd, Khd, Kbd) partent respectivement de deux émetteurs (E1, E2), passent à travers le joint (J) qui sépare le support fixe de la partie mobile de l'antenne rotative, puis partent à l'horizontale, de part et d'autre du mât, en appui sur la structure portante de l'antenne rotative pour, ensuite, remonter à la verticale des points d'alimentation des dipôles de deux groupements verticaux distincts des dipôles ; il est ainsi possible de réaliser deux émissions simultanées à partir de la même antenne rotative. Application à la radiodiffusion en ondes décamétriques. <IMAGE>

Description

  • La présente invention concerne les ensembles de radiodiffusion comportant une antenne rotative à dipôles filaires et qui sont conçus pour travailler en ondes décamétriques.
  • De tels ensembles existent, leur antenne rotative comporte une base fixe surmontée d'un mât vertical qui, associé à des poutres horizontales, supporte le plus généralement deux rideaux verticaux parallèles de dipôles filaires, séparés par un ou deux rideaux verticaux de fils horizontaux qui jouent le rôle de réflecteurs d'ondes ; certaines antennes ne comportent qu'un seul rideau de dipôles associé à un rideau de fils. Chacun des rideaux de dipôles avec son réflecteur constitue une antenne proprement dite dont, dans certaines applications, une partie des dipôles peut, au choix, être ou ne pas être alimentée et cela grâce à des ensembles de commutation. Dans ce qui suit, l'ensemble complet avec les rideaux de dipôles et le ou les rideaux réflecteurs, sera dit antenne rotative chaque fois qu'il y aura lieu d'éviter des confusions avec les deux antennes proprement dites aussi appelées faces d'antenne ou rideaux de dipôles ou antenne fréquences hautes et antenne fréquences basses. Ces dernières dénominations rendent compte du fait que les deux rideaux de dipôles d'une antenne rotative sont conçus pour travailler l'un en fréquences hautes, par exemple dans les bandes 13/15/17/21/26MHz situées entre 13,600 et 26,100 MHz et l'autre en fréquences basses, par exemple dans les bandes 61719111 MHz situées entre 5,950 et 12,050 MHz.
  • Les dipôles de chacun des deux rideaux sont généralement arrangés en lignes et en colonnes, de façon symétrique par rapport à la projection de l'axe du mât dans le plan du rideau. Quant à l'alimentation des dipôles elle est assurée à l'aide d'une ligne d'alimentation (feeder dans la littérature anglo-saxonne) qui réalise des liaisons entre une source d'émission située au niveau du sol et l'un, ou l'autre des deux rideaux de dipôles filaires ; pour cela un câble d'alimentation part de la source d'alimentation, traverse la couronne rotative qui sépare la base fixe et le mât, se subdivise en deux câbles qui partent à l'horizontale en suivant deux poutres horizontales solidaires du mât et se subdivise à nouveau pour partir, à la verticale, alimenter les différents dipôles. Il est à noter qu'il est connu d'utiliser des commutateurs dans cette ligne d'alimentation pour autoriser ou interdire l'alimentation de certains des dipôles de l'antenne afin de n'employer qu'un seul rideau quand il y en a deux, ou de n'utiliser que tout ou partie des dipôles d'un rideau afin de faire varier l'angle de site du rideau considéré.
  • Les antennes rotatives en service actuellement n'utilisent qu'une seule source d'émission à la fois. C'est le cas, en particulier, en radiodiffusion de grande puissance. Or, compte tenu du prix d'une antenne de radiodiffusion dont la hauteur atteint plusieurs dizaines de mètres, il serait intéressant de pouvoir les utiliser en association avec deux sources d'émission émettant simultanément. En effet les stations de radiodiffusion émettent maintenant, de plus en plus, en dualité de fréquence dans une même direction ; c'est-à-dire qu'un même programme est émis dans une même direction sur deux fréquences différentes, par exemple 6 et 7 MHz ; pour cela il est connu d'utiliser deux antennes rotatives avec chacune un émetteur. Il s'agit donc d'une solution onéreuse pour émettre un même programme en dualité de fréquence, puisqu'elle nécessite deux antennes rotatives et qu'une antenne rotative coûte très cher.
  • La présente invention a pour but d'éviter cet inconvénient en proposant un ensemble de radiodiffusion comportant une seule antenne rotative à dipôles filaires, mais capable de travailler selon au moins les deux configurations suivantes
    • deux émissions sur, respectivement, deux demi-faces d'une face de l'antenne rotative, selon deux fréquences différentes,
    • une émission sur une face complète de l'antenne rotative selon une fréquence donnée,

       et, en plus, dans le cas d'une antenne rotative à deux rideaux de dipôles, dans la configuration suivante
       - une émission sur une face de l'antenne rotative selon une première fréquence et une émission sur l'autre face selon une seconde fréquence différente de la première ; il est à noter que, lorsque les deux rideaux de dipôles sont séparés par deux rideaux réflecteurs distincts, l'un uniquement pour les fréquences hautes, l'autre uniquement pour les fréquences basses, les fréquences d'émission sur les deux faces peuvent être les mêmes sous réserve qu'au moins une bande de fréquences soit commune aux fréquences hautes et aux fréquences basses .
  • Ceci est obtenu, en particulier, en donnant à une partie verticale de l'antenne rotative une ligne d'alimentation indépendante de celle destinée à l'autre partie verticale.
  • Selon l'invention ceci est obtenu, en particulier, avec une antenne telle que décrite dans la revendication 1 du présent document.
  • Selon l'invention ceci est facilité par l'utilisation d'un joint tel que décrit dans la revendication 5 du présent document.
  • La présente invention sera mieux comprise et d'autres caractéristiques apparaîtront à l'aide de la description ci-après et des figures s'y rapportant qui représentent :
    • les figures 1 à 3, un ensemble de radiodiffusion pour la mise en oeuvre de l'invention,
    • la figure 4, des moyens pour la mise en oeuvre de l'invention dans l'ensemble selon les figures 1 à 3
    • les figures 5 à 10 des vues de détail pour préciser ou compléter la figure 4.
  • Sur les différentes figures les éléments correspondants sont désignés par les mêmes références.
  • Les figures 1, 2 et 3 représentent une antenne rotative double, pour ondes décamétriques, de 85 mètres de haut et de 76 mètres d'envergure. Cette antenne comporte un support et deux antennes proprement dites. Le support comporte un pied de mât fixe, P, surmonté d'une couronne rotative C, elle-même surmontée d'un mât vertical, M, auquel sont fixées trois paires de bras horizontaux B1-B2, B3-B4 et b1-b2. Le mât et les six bras servent à soutenir, dans trois plans parallèles, à l'aide de câbles :
    • un premier rideau vertical formé de demi-dipôles horizontaux, d1 à d16, associés par paires telles que d1-d5 ; ce rideau de dipôles est vu de face sur la figure 1,
    • une nappe verticale, N, de fils horizontaux,
    • un second rideau vertical formé de demi-dipôles horizontaux, D1 à D16, associés par paires telles que D1-D5 ; ce rideau de dipôles est vu de face sur la figure 2.
  • Cette antenne double A est une antenne du type HR 4/4/0,5 pour la face visible sur la figure 1, les demi-dipôles d1 à d16 constituant, avec la nappe N, une antenne fréquences basses prévue pour travailler dans les bandes de fréquences des 6-7-9-11 MHz, c'est à dire dans des fréquences allant de 5,950 à 12,050 MHz.
  • L'antenne double A est du type HR 4/4/1 pour la face visible sur la figure 2, les demi-dipôles D1 à D16 constituant avec la nappe N, une antenne fréquences hautes prévue pour travailler dans les bandes de fréquences des 11-13-15-17-21-26 MHz, c'est à dire dans des fréquences allant de 11,650 à 26,100 MHz. Dans cette antenne fréquences hautes, comme il apparaît sur les figures 2 et 3, le rideau de dipôles fait des demi-dipôles D1 à D16, est moins de deux fois moins haut et deux fois moins large que la nappe N et est soutenu en partie par les bras auxiliaires b1, b2.
  • La nappe N comporte deux parties N' et N'' ; l'antenne fréquences hautes de l'antenne double A étant de surface nettement inférieure à la surface de la nappe N, cette particularité est mise à profit, pour ne donner un faible écartement aux fils de cette nappe que dans la partie N' en regard de l'antenne fréquences hautes ; étant donné que la partie, N'', de la nappe N, n'a de rôle à jouer que dans l'antenne fréquences basses, l'écartement de ses fils est deux fois plus grand que pour les fils de la partie N'.
  • La paire de bras inférieure B3-B4 constitue une plate-forme d'où, de manière classique, des câbles d'alimentation (feeders dans la littérature anglo-saxonne) partent à la verticale pour alimenter les dipôles ; dans l'exemple décrit il s'agit de câbles formant des faisceaux verticaux qui passent au milieu des dipôles d4-d8, d12-d16, D4-D8, D12-D16 et montent ensuite vers les dipôles supérieurs. La plate-forme B3-B4 est large, elle constitue un passage pour les équipes de montage et d'entretien de l'antenne.
  • La figure 4 est le schéma de l'alimentation des dipôles de l'antenne rotative des figures 1 à 3 telle qu'elle est réalisée dans le cadre de l'invention. Sur cette figure les proportions n'ont pas été respectées pour faciliter la représentation et la compréhension.
  • L'alimentation, selon la figure 4, se fait à partir de deux émetteurs E1, E2 disposés dans un local, au voisinage du pied de mât P dont il a été question lors de la description des figures 1 à 3. Cette alimentation comporte une partie fixe qui va des émetteurs jusqu'à un joint tournant "double-coaxial", J, et une partie tournante qui va du joint J aux dipôles. Le joint J est disposé au centre de la couronne C représentée sur les figures 1 à 3 ; il a le même axe de rotation vertical que cette couronne.
  • Les émetteurs E1, E2 sont reliés chacun par un câble coaxial, G1, G2, à deux entrées coaxiales du joint tournant J. Dans les câbles coaxiaux G1, G2 sont introduites des sondes de mesure reliées à un comparateur de phases, N ; ce comparateur de phase sert, quand il est mis en service, à commander les émetteurs E1, E2 pour qu'ils émettent en phase.
  • Le joint J est décrit plus loin à l'aide des figures 5 et 6. Il comporte deux sorties coaxiales reliées, respectivement par deux câbles coaxiaux G3, G4 suivis de deux symétriseurs, Sd, Sg, aux points communs de deux commutateurs de bandes Qd et Qg. Les commutateurs de bandes sont à deux positions : une position dans laquelle ils effectuent une liaison avec le point commun d'un commutateur fréquences hautes Khd, Khg et une position dans laquelle ils effectuent une liaison avec le point commun d'un commutateur fréquences basses Kbd, Kbg. Les commutateurs fréquences basses et fréquences hautes comportent des transformateurs d'impédance. Le commutateur Kbg commande l'alimentation des dipôles d1-d5, d2-d6, d3-d7, d4-d8 ; le commutateur Kbd commande l'alimentation des dipôles d9-d13, d10-d14, d11-d15, d12-d16 ; le commutateur Khg commande l'alimentation des dipôles D9-D13, D10-D14, D11-D15, D12-D16 ; le commutateur Khd commande l'alimentation des dipôles D1-D5, D2-D6, D3-D7, D4-D8. Des détails sur la réalisation de ces commutateurs seront donnés à l'aide des figures 9 et 10.
  • Les figures 5 et 6 sont des vues du joint J de la figure 3. Le joint se compose de deux demi-joints identiques, chacun d'eux constituant un demi-boîtier ; les deux demi-boîtiers sont situés de part et d'autre d'une ligne XX sur la figure 5 et en contact glissant selon une zone circulaire située dans un plan perpendiculaire selon XX au plan de la figure 5 ; celui des demi-boîtiers qui est situé au-dessous de la ligne XX, est solidaire du pied de mât P représenté sur les figures 1 à 3, tandis que lui qui est situé au-dessus de la ligne XX est solidaire de la partie tournante de l'antenne rotative. La figure 6 montre le demi-joint solidaire du pied de mât c'est-à-dire le demi-joint fixe ; il est vu de dessus sur cette figure ; il comporte un demi-boîtier métallique, J5, avec deux prises coaxiales J1, J2. Le conducteur extérieur des prises coaxiales est soudé sur le demi-boîtier et le conducteur intérieur se prolonge d'abord verticalement puis horizontalement par une palette en forme de croissant, J1', dans le demi-boîtier ; la palette est destinée à assurer un contact glissant dans le plan qui contient déjà la zone de contact glissant entre les deux demi-boîtiers. De la même manière le demi-joint supérieur comporte un demi-boîtier métallique J6 et deux prises coaxiales J3, J4 avec palette J3', J4', mais seule la prise J3 apparaît sur la figure 5 : la prise J4 est cachée par la prise J3 étant donné que, sur cette figure, les demi-boîtiers sont tournés de 90° l'un par rapport à l'autre. La position représentée sur la figure 5 est celle où les palettes des prises de sortie, J3, J4, du joint, recouvrent exactement les palettes, J1, J2, des prises d'entrée ; pour faciliter la compréhension du dessin seules les parties des prises J2, J3 contenues dans le boîtier J ont été représentées comme vues par transparence.
  • La figure 7 représente un symétriseur de type connu tel qu'il est en particulier décrit dans le brevet français 2 556 508 déposé le 13 décembre 1983 et tel qu'il est utilisé pour constituer les symétriseurs Sd, Sg selon la figure 4. Il s'agit d'un symétriseur pour coupler une ligne coaxiale à une ligne bifilaire et qui comporte en série un tronçon de câble coaxial 10 et une ligne bifilaire symétrique 12, avec un conducteur 13 en parallèle sur le tronçon de câble coaxial. Dans ce symétriseur la ligne symétrique 12, de longueur L, est conçue pour avoir, entre ses extrémités, une variation d'impédance, Z = f(x) avec x compris entre zéro et la longueur de la ligne 12, qui, en coordonnées rectilignes planes, a la forme d'un S.
  • Sur la figure 4 les symétriseurs Sd, Sg sont représentés avec les deux éléments de ligne bifilaire symétrique vus de dessus mais légèrement décalés tandis que sur la figure 7 les deux éléments de la ligne bifilaire symétrique sont représentés de côté. Par contre sur ces deux figures les conducteurs, tels que 13 sur la figure 7, ont chaque fois été représentés dans le plan de la figure afin d'éviter qu'ils ne se confondent avec la sortie du conducteur intérieur du tronçon de câble coaxial.
  • La figure 8 représente schématiquement, en perspective et sans que là encore les proportions soient respectées, le mât M au niveau de la poutre B3 de la plate-forme, le symétriseur Sd qui est maintenu sur la poutre B3 par des écarteurs isolants représentés par des traits interrompus, et le commutateur à deux positions, Qd, également fixé sur la poutre B3. Les deux sorties bifilaires du commutateur Qd qui sont reliées respectivement aux commutateurs Khd et Kbd, ont été représentées en traits forts, mais ces commutateurs, qui sont eux aussi fixés sur la poutre B3, n'ont pas été représentés ; ils vont être décrits à l'aide des figures 9 et 10.
  • Les commutateurs Khd, Kbd, Khg, Kbg sont tous réalisés sur le même modèle et ne se distinguent que par les transformateurs d'impédance qu'ils comportent et qui sont différents dans les commutateurs fréquences hautes de ceux dans les commutateurs fréquences basses; ainsi seul le commutateur Kbd qui commande l'alimentation des dipôles d9-d13, d10-d14, d11-d15, d12-d16 et qui est représenté sur les figures 9 et 10, sera décrit.
  • La figure 9 montre que les dipôles d9-d13, d10-d14, d11-d15, d12-d16 forment trois groupes alimentés respectivement par trois lignes distinctes L1, L2, L3. La ligne L1, d'impédance caractéristique Zo, alimente un premier groupe constitué des deux dipôles d11-d15 et d12-d16 ; la ligne L2, d'impédance caractéristique 2Zo, alimente le deuxième groupe constitué du dipôle d10-d14 et la ligne L3, également d'impédance caractéristique 2Zo, alimente le troisième groupe constitué du dipôle d9-d13. Les lignes L1, L2, L3 aboutissent respectivement aux accès de répartition constitués par les bornes 1a, 2 et 3 du commutateur Kbd, qui comporte huit bornes, 1a, 1b, 2-7, et des liaisons fixes ou mobiles entre certaines de ces bornes. Ces liaisons sont destinées à permettre l'alimentation, soit de la seule ligne L1, soit des lignes L1 et L2, soit des lignes L1, L2 et L3, à partir d'une ligne d'alimentation E d'impédance caractéristique Zo, aboutissant à l'accès commun que constitue la borne 7 ; cette ligne E est la ligne provenant du symétriseur Sd des figures 4 et 8.
  • La borne 7 est couplée à un bras mobile qui, en pivotant, peut prendre trois positions représentées respectivement par une suite de croix, par une suite de traits et par une suite de points ; de même la borne 2 est couplée à deux bras mobiles qui, en pivotant, peuvent prendre chacun trois positions représentées également par des suites de croix, de traits et de points.
  • Les trois bras mobiles sont mécaniquement liés de telle sorte qu'ils ne puissent prendre simultanément que les trois positions repérées par des croix, ou que celles repérées par des traits, ou que celles repérées par des points.
  • Les bornes 1a et 1b sont reliées par une ligne très courte, H, d'impédance caractéristique uniforme Zo.
  • Dans la première position, repérée par des croix, la borne 7 est reliée à la borne 1b et la borne 1a n'est pas reliée à la borne 2 si bien que seule la ligne L1 et, donc, les deux dipôles d11-d15 et d12-d16 sont alimentés.
  • Dans la deuxième position, repérée par des traits, la borne 7 est reliée à la borne 5 et la borne 2 aux bornes 1a et 4. Comme, entre les bornes 4 et 5, un transformateur d'impédance, T1, établit une liaison fixe, les lignes L1 et L2 et, donc, les dipôles d10-d14, d11-d15, d12-d16 sont alimentés alors que le dipôle d9-d13 n'est pas alimenté. Le transformateur d'impédance T1 est un transformateur à large bande, destiné à assurer l'adaptation d'impédance entre la ligne E d'impédance caractéristique Zo et les lignes L1, L2, d'impédances caractéristiques respectives Zo et 2Zo. Comme les lignes L1 et L2 sont alimentées en parallèle, elles correspondent à une ligne unique, d'impédance caractéristique Zo x 2Zo Zo + 2Zo = 2Zo 3 ;
    Figure imgb0001
    le transformateur T1 est donc prévu pour assurer la transformation de 2Zo 3
    Figure imgb0002
    à Zo.
  • Dans la troisième position, repérée par des points, la borne 7 est reliée à la borne 6 et la borne 2 aux bornes 1a et 3. Comme, entre les bornes 3 et 6, un transformateur d'impédance, T2, établit une liaison fixe, les trois lignes L1, L2, L3 et, donc, les quatre dipôles sont alimentés. Le transformateur T2 est, lui aussi, un transformateur d'impédance à large bande, destiné à assurer l'adaptation d'impédance entre la ligne E d'impédance caractéristique Zo et les lignes L1, L2, L3 d'impédances caractéristiques respectives Zo, 2Zo et 2Zo. Comme les lignes L1, L2, L3 sont alimentées en parallèle, elles correspondent à une ligne unique, d'impédance caractéristique Zox2Zox2Zo Zox2Zo + Zox2Zo + 2Zox2Zo = Zo 2 ;
    Figure imgb0003
    le transformateur T2 est donc prévu pour assurer la transformation de Zo 2
    Figure imgb0004
    à Zo.
  • La figure 10 montre, dans une vue en perspective, comment a été réalisé le commutateur Kbd des figures 4 et 9. Le commutateur Kbd comporte un caisson métallique B représenté comme s'il était transparent ; ce caisson a la forme d'un prisme droit dont la section est constituée par un grand triangle équilatéral qui est tronqué, suivant un même petit triangle équilatéral, à chacun de ses trois sommets. Les différentes bornes, 1a, 1b, 2-7, du commutateur Kbd sont portées par la paroi du caisson.
  • Le commutateur Kbd comporte, à l'intérieur du caisson, trois bras doubles, G', G'', G, mobiles, montés sur un axe isolant, commun, R, disposé selon la droite, non représentée, qui passe par le point central des sections droites du prisme. Les bras doubles G' et G'' tournent dans deux mêmes plans parallèles aux bases du prisme ; ils sont à 120° l'un de l'autre et sont solidaires de l'axe R grâce à des moyeux a1, a2 comportant chacun un disque situé hors des plans dans lesquels tournent les bras G' et G'' ; un curseur fixe, double, qui frotte sur les disques a1 et a2, permet de relier la borne 2 aux bras G' et G'' ; les bras G', G'' peuvent effectuer un tour complet autour de l'axe R.
  • Le bras double G est solidaire de deux moyeux a3, a4 comportant chacun un disque ; un curseur fixe, double frotte, à l'une de ses extrémités, sur les disques des moyeux, et, à l'autre de ses extrémités, est relié à la borne 7 ; le bras G peut ainsi, lui aussi, effectuer un tour complet autour de l'axe R.
  • Sur la figure 10 les bras G', G'', G sont représentés dans la position où ils relient respectivement les bornes 4 et 2, la et 2, 5 et 7. Par rotation de l'axe R les bras G', G'' et G peuvent être amenés dans deux autres positions : une position où ils relient respectivement les bornes 3 et 2, 1a et 2, 6 et 7 et une position où ils relient respectivement les bornes 3 et 2, 4 et 2, 1b et 7.
  • Les transformateurs T1 et T2 et la ligne H associés au commutateur Kbd de la figure 10 sont respectivement branchés entre les bornes 4 et 5, 3 et 6, 1a et 1b.
  • L'antenne rotative qui vient d'être décrite permet donc d'émettre selon plusieurs configurations de demi-rideaux et de choisir, parmi les quatre demi-rideaux droits ou gauches, celui qui sera relié à l'émetteur E1 représenté sur la figure 4 et celui qui sera relié à l'émetteur E2. Il est entendu qu'un émetteur peut tout aussi bien être relié à un demi-rideau droit qu'à un demi-rideau gauche, la liaison étant fonction de la position de la partie mobile de l'antenne rotative par rapport à la partie fixe et que, pour une position donnée de l'antenne rotative, l'émetteur E1, par exemple, pourra être relié soit au demi-rideau gauche fréquences hautes soit au demi-rideau droit fréquences basses.
  • Compte tenu de ces possibilités offertes par l'antenne rotative qui vient d'être décrite, quatre types d'émissions peuvent être réalisés :
    • deux émissions dirigées dans des directions azimutales à 180 degrés l'une de l'autre, l'émetteur E1 émettant sur une fréquence F1 et étant relié, par exemple, au demi-rideau gauche fréquences hautes, l'émetteur E2 étant alors relié au demi-rideau gauche fréquences basses ou fréquences hautes et émettant sur une fréquence F2 avec un écart suffisant entre F1 et F2 pour éviter les perturbations, par exemple |F1-F2| ≧ 0,1(F1+F2),
    • deux émissions dirigées dans une même direction azimutale, l'émetteur E1 émettant sur une fréquence F1 et étant relié, par exemple, au demi-rideau gauche fréquences basses, l'émetteur E2 étant alors relié au demi-rideau droit fréquences basses et émettant sur une fréquence F2 avec, là encore, un écart de fréquence suffisant pour éviter les perturbations, par exemple |F1 - F2| ≧ 0,1(F1 + F2),
    • deux émissions dirigées dans des directions azimutales à 180° l'une de l'autre, les deux émetteurs E1, E2 émettant sur la même fréquence ; dans ce cas un fort découplage entre les deux rideaux de dipôles doit être assuré ce qui nécessite que les deux réflecteurs Rb, Rh aient une hauteur et une largeur suffisantes vis-à-vis respectivement des rideaux de dipôles gamme basse et gamme haute et aient un pas entre les fils horizontaux qui les constituent suffisamment faible vis-à-vis respectivement des longueurs d'onde de la gamme basse et de la gamme haute.
    • une même émission sur un rideau complet de l'antenne rotative, c'est-à-dire sur tout le rideau fréquences hautes ou tout le rideau fréquences basses, l'émetteur E1 alimentant par exemple le demi-rideau gauche fréquences basses et l'émetteur E2 le demi-rideau droit fréquences basses ; pour ce type d'émission les puissances de sortie des deux émetteurs doivent être ajustées à la même valeur et les signaux de sortie de ces émetteurs doivent être en phase ; cette identité de phase est obtenue à l'aide du comparateur de phase N selon la figure 4 qui, de manière classique règle les phases respectives des émetteurs E1, E2 de manière à rendre nul l'écart de phase entre les signaux qu'il mesure à l'aide de ses deux sondes.
  • La présente invention n'est pas limitée à l'exemple décrit. Elle peut en particulier s'appliquer à une antenne rotative ne comportant qu'un seul rideau de dipôles afin de permettre deux types d'émission :
    • deux émissions dirigées dans une même direction azimutale,
    • une émission sur le rideau complet.
  • De même les commutateurs de dipôles peuvent être supprimés, c'est ainsi que dans la réalisation décrite les commutateurs Khg, Kbg, Khd, Kbd peuvent être supprimés.
  • Il est également possible de faire émettre simultanément tout le rideau fréquences hautes dans une direction et tout le rideau fréquences basses dans la direction opposée, par exemple en branchant sur chacune des deux sorties du joint J non pas seulement un ensemble "symétriseur-commutateurs" comme sur la figure 4, mais deux ensembles : un pour chaque moitié verticale de l'antenne.

Claims (5)

  1. Ensemble de radiodiffusion constitué par des moyens d'émission associés à une antenne rotative comportant un support avec une base fixe (L), un mât vertical (M) et un joint tournant (J) disposé entre la base et le mât, n, avec n entier positif inférieur à 3, rideaux verticaux parallèles de dipôles filaires (d1-d16,D1-D16), associés chacun à un rideau réflecteur (N, N') et des paires de poutres horizontales (B1-B2, B3-B4, b1-b2) fixées au mât à différents niveaux, la paire inférieure (B3, B4) constituant une plate-forme de part et d'autre du mât, dans lequel des moyens d'alimentation, dont une partie du trajet passe par le joint et le mât, sont prévus pour alimenter les dipôles des rideaux de dipôles, caractérisé en ce que les moyens d'émission comportent deux émetteurs (E1, E2), en ce que les moyens d'alimentation comportent deux voies distinctes (G1, J, G4, Sg, Qg, Khg, Kbg - G2, J, G3, Sd, Qd, Khd, Kbd) qui partent respectivement des deux émetteurs, remontent par le joint et à l'intérieur du bas du mât jusqu'à la plate-forme où elles se séparent en suivant chacune l'une des poutres de la plate-forme sur laquelle elles sont fixées, puis remontent à la verticale des dipôles pour alimenter respectivement au moins certains des dipôles de deux portions verticales distinctes des n rideaux de dipôles, en ce que ces voies distinctes comportent chacune un symétriseur (Sg, Sd) dans la partie de leur trajet où elles suivent la plate-forme et en ce que le joint (J) est un joint bi-coaxial.
  2. Ensemble de radiodiffusion selon la revendication 1, dans lequel n est égal à 2, caractérisé en ce que les voies comportent un commutateur de bandes (Qd, Qg) afin de permettre de choisir, pour chaque voie, si la portion verticale distincte appartiendra à l'un ou à l'autre des deux rideaux de dipôles.
  3. Ensemble de radiodiffusion selon l'une des revendications précédentes, caractérisé en ce que les voies comportent des moyens de connexion (Khg, Kbg, Khd, Kbd), associés à des transformateurs d'impédance, pour permettre, dans les portions verticales distinctes où aboutissent les deux voies, de ne connecter qu'une partie des dipôles.
  4. Ensemble de radiodiffusion selon l'une des revendications précédentes, caractérisé en ce qu'il comporte un circuit d'asservissement (N) pour mesurer la différence de phase entre les signaux de sortie des deux émetteurs (E1, E2) et commander les deux émetteurs pour que cette différence de phase s'annule.
  5. Joint rotatif conçu pour un ensemble de radiodiffusion équipé d'une antenne rotative à dipôles filaires et comportant un boîtier métallique fait de deux demi-boîtiers en contact selon une zone plane circulaire, l'un (J5) des demi-boîtiers étant fixe, l'autre (J6) pouvant tourner tout en maintenant le contact selon la zone circulaire, caractérisé en ce qu'il comporte deux accès coaxiaux (J1, J2) par demi-boîtier, ces accès ayant chacun un conducteur extérieur en contact électrique avec son demi-boîtier et un conducteur intérieur qui pénètre dans son demi-boîtier et en ce que au moins deux des quatre conducteurs intérieurs des quatre accès du boîtier sont prolongés dans le boîtier par des contacts glissants (J1', J2', J3') parallèles à la zone plane pour assurer deux liaisons électriques commençant respectivement sur les deux accès de l'un des demi-boîtiers et aboutissant respectivement sur les deux accès de l'autre des demi-boîtiers.
EP94402276A 1993-10-15 1994-10-11 Ensemble de radiodiffusion comportant une antenne rotative à dipôles filiares et joint rotatif conçu pour cet ensemble Withdrawn EP0649183A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9312287A FR2711290B1 (fr) 1993-10-15 1993-10-15 Ensemble de radiodiffusion comportant une antenne rotative à dipôles filaires et joint rotatif conçu pour cet ensemble.
FR9312287 1993-10-15

Publications (1)

Publication Number Publication Date
EP0649183A1 true EP0649183A1 (fr) 1995-04-19

Family

ID=9451871

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94402276A Withdrawn EP0649183A1 (fr) 1993-10-15 1994-10-11 Ensemble de radiodiffusion comportant une antenne rotative à dipôles filiares et joint rotatif conçu pour cet ensemble

Country Status (3)

Country Link
US (1) US5570101A (fr)
EP (1) EP0649183A1 (fr)
FR (1) FR2711290B1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59907806D1 (de) * 1999-09-10 2003-12-24 Bruger Peter Drehbares Vorhangantennensystem

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2371785A2 (fr) * 1973-06-15 1978-06-16 Spinner Georg Connecteur tournant pour cables coaxiaux multiples a haute frequence
EP0524045A1 (fr) * 1991-07-19 1993-01-20 Thomson-Csf Antenne en ondes décamétriques à prise au vent réduite

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3914715A (en) * 1974-06-26 1975-10-21 Texas Instruments Inc Coaxial ring rotary joint
FR2287118A1 (fr) * 1974-10-04 1976-04-30 Thomson Csf Antenne verticale a alimentation excentree et groupement d'antennes comportant une telle antenne
FR2287117A1 (fr) * 1974-10-04 1976-04-30 Thomson Csf Antenne verticale onde entiere et groupement d'antennes comportant une telle antenne
FR2556508B1 (fr) * 1983-12-13 1987-12-18 Thomson Csf Symetriseur pour coupler une ligne dissymetrique a un element symetrique
US4543549A (en) * 1984-02-03 1985-09-24 United Technologies Corporation Multiple channel rotary joint
FR2594602B1 (fr) * 1986-02-18 1988-05-13 Thomson Csf Antenne rideau rotative
FR2642538B1 (fr) * 1989-01-31 1991-05-24 Europ Propulsion Systeme de stabilisation mecanique a contre-rotation a rotors emboites
FR2648279B1 (fr) * 1989-06-13 1991-11-29 Thomson Csf Antenne rotative a dipoles
FR2656467B1 (fr) * 1989-12-22 1993-12-24 Thomson Csf Structure architecturale regroupant une antenne a mat support dispose sur le sol et au moins un emetteur de grande puissance.
FR2669766B1 (fr) * 1990-11-23 1993-01-22 Thomson Csf Inductance, notamment pour ondes courtes.
FR2671233B1 (fr) * 1990-12-28 1993-03-12 Thomson Csf Antenne rotative a dipoles filaires.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2371785A2 (fr) * 1973-06-15 1978-06-16 Spinner Georg Connecteur tournant pour cables coaxiaux multiples a haute frequence
EP0524045A1 (fr) * 1991-07-19 1993-01-20 Thomson-Csf Antenne en ondes décamétriques à prise au vent réduite

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BELOUSOV ET AL.: "ANTENNAS-FEEDER DEVICES Antenna Arrays with a Wide Scanning Sector", TELECOMMUNICATIONS AND RADIO ENGINEERING, vol. 33/34, no. 9, September 1979 (1979-09-01), WASHINGTON US, pages 1 - 5, XP001385593 *
EISENBERG ET AL.: "ANTENNA-FEEDER DEVICES Antennas for Radio Broadcasting, Radio Communications and Television", TELECOMMUNICATIONS AND RADIO ENGINEERING, vol. 32/33, no. 1, January 1978 (1978-01-01), WASHINGTON US, pages 1 - 11 *
TETZNER: "Drehstandantennen für Kurzwellen-Rundfunksender", FUNKSCHAU., no. 6, 1965, MUNCHEN DE, pages 141 - 142, XP001385188 *

Also Published As

Publication number Publication date
US5570101A (en) 1996-10-29
FR2711290B1 (fr) 1995-12-15
FR2711290A1 (fr) 1995-04-21

Similar Documents

Publication Publication Date Title
EP0243289B1 (fr) Antenne plaque à double polarisations croisées
FR2552938A1 (fr) Dispositif rayonnant a structure microruban perfectionnee et application a une antenne adaptative
FR2583226A1 (fr) Antenne omnidirectionnelle cylindrique
FR2863111A1 (fr) Antenne en reseau multi-bande a double polarisation
EP0430745B1 (fr) Antenne à polarisation circulaire, notamment pour réseau d&#39;antennes
FR2645353A1 (fr) Antenne plane
FR2677814A1 (fr) Antenne plate hyperfrequence a deux polarisations orthogonales avec un couple de fentes orthogonales rayonnantes.
EP1346442A1 (fr) Antenne imprimee pastille compacte
EP0649183A1 (fr) Ensemble de radiodiffusion comportant une antenne rotative à dipôles filiares et joint rotatif conçu pour cet ensemble
EP0463263B1 (fr) Antenne omnidirective en polarisation circulaire transversale à maximum de gain sous l&#39;horizon
EP0377155A1 (fr) Dispositif rayonnant bifréquence
EP0649182A1 (fr) Ensemble de radiodiffusion comportant une antenne rotative à dipôles rigides et joint rotatif conçu pour cet ensemble
EP2009735A1 (fr) Antenne a diversité de polarisation pour la transmission et/ou la reception de signaux audio et/ou video
EP0352160B1 (fr) Antenne omnidirectionnelle, notamment pour l&#39;émission de signaux de radiodiffusion ou de télévision dans la bande des ondes décimétriques, et système rayonnant formé d&#39;un groupement de ces antennes
EP0477102B1 (fr) Réseau directif pour radiocommunications, à éléments rayonnants adjacents et ensemble de tels réseaux directifs
EP0082053B1 (fr) Ensemble rayonnant à deux antennes superposées travaillant dans une même gamme de fréquences
EP0235026B1 (fr) Antenne rideau rotative
FR2629644A1 (fr) Antenne boucle large bande a alimentation dissymetrique, notamment antenne pour emission, et antenne reseau formee d&#39;une pluralite de telles antennes
FR2591805A1 (fr) Dispositif de deviation de l&#39;angle de site d&#39;une antenne rideau et antenne rideau equipee d&#39;un tel dispositif
EP1039604A1 (fr) Système de distribution d&#39;énergie électrique dans les étages d&#39;un immeuble
FR2772991A1 (fr) Antenne fixe g.s.m.
EP0156684A1 (fr) Elément rayonnant des ondes électromagnétiques, et son application à une antenne à balayage électronique
EP0283396A1 (fr) Jonction entre une ligne triplaque et une ligne microruban, et applications
WO2004006386A1 (fr) Dispositif rayonnant bi-bande a polarisations coplanaires
FR2523771A1 (fr) Dispositif symetrique de contact tournant pour alimentation d&#39;antennes rotatives

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB LI SE

17P Request for examination filed

Effective date: 19950731

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19980501