EP0648979B1 - Method and means for cooling a gas turbine combustion chamber - Google Patents

Method and means for cooling a gas turbine combustion chamber Download PDF

Info

Publication number
EP0648979B1
EP0648979B1 EP94115334A EP94115334A EP0648979B1 EP 0648979 B1 EP0648979 B1 EP 0648979B1 EP 94115334 A EP94115334 A EP 94115334A EP 94115334 A EP94115334 A EP 94115334A EP 0648979 B1 EP0648979 B1 EP 0648979B1
Authority
EP
European Patent Office
Prior art keywords
cooling
combustion chamber
wall
gas turbine
duct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94115334A
Other languages
German (de)
French (fr)
Other versions
EP0648979A1 (en
Inventor
Dr. Rolf Althaus
Dr. Jakob Keller
Dr. Burkhard Schulte-Werning
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Switzerland GmbH
Original Assignee
ABB Asea Brown Boveri Ltd
Asea Brown Boveri AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Asea Brown Boveri Ltd, Asea Brown Boveri AB filed Critical ABB Asea Brown Boveri Ltd
Publication of EP0648979A1 publication Critical patent/EP0648979A1/en
Application granted granted Critical
Publication of EP0648979B1 publication Critical patent/EP0648979B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/20Heat transfer, e.g. cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/20Heat transfer, e.g. cooling
    • F05B2260/201Heat transfer, e.g. cooling by impingement of a fluid

Description

Technisches GebietTechnical field

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Kühlung einer mittels Prall- und Konvektionskühlung oder reiner Konvektionskühlung gekühlten Gasturbinenbrennkammer.The invention relates to a method and an apparatus for Cooling one by means of impingement and convection cooling or pure convection cooling cooled gas turbine combustion chamber.

Stand der TechnikState of the art

Aus GB-A-2 077 635 ist eine Gasturbinenbrennkammer bekannt, deren Brennkammerwand innen mittels Filmkühlung gekühlt wird. Die Brennkammerwand ist aus mehreren Schichten aufgebaut. Ein Teil der im Ringraum zwischen dieser Brennkammerwand und der Aussenwand entlangströmenden Kühlluft fliesst über Öffnungen in Zwischenräume innerhalb der Brennkammerwand und von dort in stromabwärtiger Richtung durch parallele Kühlkanäle in das Flammenrohr hinein, wo sich die Luft auf die Innenseite der Brennkammerwand legt und diese somit kühlt.From GB-A-2 077 635 a gas turbine combustor is known the combustion chamber wall is cooled inside by film cooling. The combustion chamber wall is made up of several layers. A Part of the in the annulus between this combustion chamber wall and the Cooling air flowing along the outer wall flows through openings in spaces within the combustion chamber wall and from there in the downstream direction through parallel cooling channels in the Flame tube into where the air is on the inside of the The combustion chamber wall lays and cools it.

Ein Nachteil dieser Filmkühlungsmethode besteht darin, dass auf Grund des Kühlluftdruckverlustes mit einem hohen Luftüberschuss gearbeitet werden muss und die NOx-Emissionswerte recht hoch sind.A disadvantage of this film cooling method is that due to the loss of cooling air pressure with a large excess of air must be worked and the NOx emission values are quite high.

Bei modernen Gasturbinenbrennkammern gelangen daher in zunehmenden Masse Kühlmethoden zur Anwendung, die wenig oder gar keine Kühlluft erfordern. Weil NOx-Emissionen möglichst vermieden werden sollen, ist man bestrebt, so viel Luft wie möglich durch die Brenner zu leiten. Aus diesem Grunde werden immer häufiger Kombinationen aus Prall- und Konvektionskühlsystemen oder reine Konvektionskühlsysteme eingesetzt. Solche Systeme können bei ungünstiger Auslegung die problematische Eigenschaft haben, dass kleine Primärschäden, z.B. ein kleines Loch in der Brennkammerwand, zu sehr grossen Folgeschäden führen können, die den Betrieb einer Gasturbine gefährden. So kann ein Loch in einem Kühlkanal beispielsweise dazu führen, dass der Kühlkanal nach dem Loch nicht ausreichend mit Luft versorgt wird. Dies kann zu Beschädigungen des gesamten Kanals nach dem Loch oder sogar zu weitergehenden Schäden führen.In modern gas turbine combustors, cooling methods are therefore increasingly used which require little or no cooling air. Because NO x emissions should be avoided as much as possible, efforts are made to pass as much air as possible through the burners. For this reason, combinations of impingement and convection cooling systems or pure convection cooling systems are increasingly being used. With an unfavorable design, such systems can have the problematic property that small primary damage, for example a small hole in the combustion chamber wall, can lead to very large consequential damage which endanger the operation of a gas turbine. For example, a hole in a cooling duct can result in the cooling duct not being adequately supplied with air after the hole. This can result in damage to the entire channel after the hole or even further damage.

Darstellung der ErfindungPresentation of the invention

Die Erfindung versucht, all diese Nachteile zu vermeiden. Ihr liegt die Aufgabe zugrunde, bei einer mittels Prall- und Konvektionskühlung oder reiner Konvektionskühlung gekühlten Gasturbinenbrennkammer ein Verfahren und eine Vorrichtung zur Kühlung zu schaffen, mit denen es möglich ist, beim Auftreten kleinerer lokaler Schäden, beispielsweise Löcher, im Kühlkanal eine weitere Vergrösserung dieser Schäden zu verhindern.The invention tries to avoid all these disadvantages. you the task is based on an impact and convection cooling or pure convection cooling cooled gas turbine combustion chamber a method and an apparatus for To create cooling with which it is possible to occur minor local damage, such as holes, in the cooling channel to prevent further enlargement of this damage.

Erfindungsgemäss wird dies bei einem Verfahren zur Kühlung der Gasturbinenbrennkammer gemäss Oberbegriff des Hauptanspruchs dadurch erreicht, dass die Ausgleichsströmung im Kühlkanal an der Brennkammeraussenwand vorbeigeführt wird.According to the invention, this is the case with a method for cooling the gas turbine combustion chamber according to the preamble of the main claim achieved in that the compensating flow in Cooling duct is guided past the outer wall of the combustion chamber.

Erfindungsgemäss wird dies bei einer Vorrichtung zur Kühlung der Gasturbinenbrennkammer gemäss Oberbegriff des Hauptanspruchs dadurch erreicht, dass zwischen benachbarten Kühlkanälen Verbindungsöffnungen angeordnet sind, wobei die Verbindungsöffnungen aussenwandseitig in den Kühlrippen jeweils versetzt auf gegenüberliegenden Seiten eines Kühlkanals angeordnet sind.According to the invention, this is done in a cooling device the gas turbine combustion chamber according to the preamble of the main claim achieved in that between adjacent cooling channels Connection openings are arranged, the connection openings on the outside wall in each of the cooling fins staggered on opposite sides of a cooling channel are.

Die Vorteile der Erfindung sind unter anderem darin zu sehen, dass eine Kettenreaktion beim Auftreten von lokalen Beschädigungen im Kühlkanal vermieden wird und eine "Selbstheilung" des beschädigten Kühlkanals erfolgt. Die Strömungsgeschwindigkeit im beschädigten Kühlkanal überschreitet auch nach der Schadensstelle stets einen kritischen Grenzwert, so dass dadurch eine kritische Grenztemperatur unterschritten wird. Wenn die Ausgleichsströmung an der Brennkammeraussenwand entlanggeführt wird, bilden sich an der Aussenwand Kühlfilmströmungen, welche die Aussenwand im Bereich der Schadensstelle intensiv und vollständig kühlen.The advantages of the invention include that a chain reaction when local damage occurs is avoided in the cooling channel and "self-healing" of the damaged cooling duct. The flow rate in the damaged cooling duct even after the Damage point always a critical limit, so that the temperature falls below a critical limit. If the equalizing flow on the outer wall of the combustion chamber is led along, cooling film flows form on the outer wall, which is the outer wall in the area of the damage point cool intensely and completely.

Es ist vorteilhaft, wenn die Steglängen und die Öffnungslängen der Verbindungsöffnungen gleich gross sind, weil dadurch günstige Kühlverhältnisse erreicht werden.It is advantageous if the web lengths and the opening lengths of the connection openings are the same size, because of that favorable cooling conditions can be achieved.

Es ist zweckmässig, wenn die Verbindungsöffnungen zwischen den Kühlkanälen so dimensioniert sind, dass das Produkt aus mittlerer Öffnungsbreite und Kühlkanallänge bezogen auf die Querschnittsfläche des Kühlkanals im Bereich zwischen 2 und 8 liegt. Dann kann die wirkungsvollste Kühlung erreicht werden.It is useful if the connection openings between the cooling ducts are dimensioned so that the product average opening width and cooling channel length based on the Cross-sectional area of the cooling channel in the range between 2 and 8 lies. Then the most effective cooling can be achieved.

Kurze Beschreibung der ZeichnungBrief description of the drawing

In der Zeichnung ist ein Ausführungsbeispiel der Erfindung anhand einer dichten Gasturbinenbrennkammer dargestellt.In the drawing is an embodiment of the invention represented by a dense gas turbine combustion chamber.

Es zeigen:

Fig. 1
eine vereinfachte perspektivische Darstellung der Gasturbinenbrennkammer;
Fig. 2
einen Teil der Kühlkanäle der Brennkammer;
Fig. 3
einen Längsschnitt durch einen Kühlkanal.
Show it:
Fig. 1
a simplified perspective view of the gas turbine combustor;
Fig. 2
part of the cooling channels of the combustion chamber;
Fig. 3
a longitudinal section through a cooling channel.

Es sind nur die für das Verständnis der Erfindung wesentlichen Elemente gezeigt. Die Strömungsrichtung der Kühlluft ist mit Pfeilen bezeichnet.It is only essential for understanding the invention Elements shown. The direction of flow of the cooling air is marked with arrows.

Weg zur Ausführung der ErfindungWay of carrying out the invention

Nachfolgend wird die Erfindung anhand eines Ausführungsbeispieles und der Figuren 1 bis 3 näher erläutert.The invention is described below using an exemplary embodiment and Figures 1 to 3 explained in more detail.

In Fig. 1 ist vereinfacht eine Gasturbinenbrennkammer dargestellt. Zur Kühlung der Brennkammerwand 1 wird ein konvektives Kühlsystem benutzt. Die gesamte Kühlluft strömt in Kühlkanälen 2 zwischen der Aussenwand 3 und der Brennkammerwand 1 entlang, bevor sie als Verbrennungsluft der Brennkammer zugeführt wird. Wie aus Fig. 2 zu entnehmen ist, befinden sich zwischen den Kühlkanälen 2 Kühlrippen 4, in denen erfindungsgemäss Verbindungsöffnungen 5 vorhanden sind. Diese Verbindungsöffnungen 5 sind jeweils auf den gegenüberliegenden Seiten eines Kühlkanals 2 versetzt angeordnet.A gas turbine combustion chamber is shown in simplified form in FIG. 1. To cool the combustion chamber wall 1 is a convective Cooling system used. The entire cooling air flows in cooling channels 2 between the outer wall 3 and the combustion chamber wall 1 along before being fed to the combustion chamber as combustion air becomes. As can be seen from Fig. 2, there are between the cooling channels 2 cooling fins 4, in which according to the invention Connection openings 5 are present. These connection openings 5 are on opposite sides each a cooling channel 2 arranged offset.

Fig. 3 zeigt in einem Teillängsschnitt, dass die Steglänge LB und die Öffnungslänge LO etwa gleich gross sind. Die mittlere Spaltbreite s zwischen zwei benachbarten Kühlkanälen 2 ergibt sich aus der Gleichung s = LOdLO+LB mit

  • d = Breite der Öffnung
  • LO = Öffnungslänge
  • LB = Steglänge.
  • Fig. 3 shows in a partial longitudinal section that the web length L B and the opening length L O are approximately the same size. The average gap width s between two adjacent cooling channels 2 results from the equation s = L O d L O + L B With
  • d = width of the opening
  • L O = opening length
  • L B = web length.
  • Die Dimensionierung der Verbindungsöffnungen 5 zwischen den Kühlkanälen 2 erfolgt vorteilhaft nach der Auslegungsregel 2<sL/A<8, d.h. dass das Produkt aus mittlerer Öffnungsbreite s zwischen zwei Kühlkanälen 2 und der Kühlkanallänge L bezogen auf die Querschnittsfläche A des Kühlkanals 2 im Bereich grösser 2 und kleiner 8 liegt. Wird die untere Grenze dieses Intervalls unterschritten, dann kann ein sehr grosses Loch zu Überhitzungen des Kühlkanals 2 nach dem Loch führen. Wird der obere Wert deutlich überschritten, dann kann ein sehr grosses Loch oder ein Längsschlitz in einem oder mehreren Kühlkanälen zu einem derart hohen Luftverlust führen, dass die Brenner im Vollastbetrieb die Primärzone der Brennkammer lokal überhitzen.The dimensioning of the connection openings 5 between the cooling channels 2 is advantageously carried out according to the design rule 2 <sL / A <8, that is, the product of the average opening width s between two cooling channels 2 and the cooling channel length L, based on the cross-sectional area A of the cooling channel 2, is in the range greater than 2 and less than 8. If the value falls below the lower limit of this interval, a very large hole can lead to overheating of the cooling channel 2 after the hole. If the upper value is clearly exceeded, then a very large hole or a longitudinal slot in one or more cooling channels can lead to such a high air loss that the burners locally overheat the primary zone of the combustion chamber in full load operation.

    Im Laufe des Betriebes der Gasturbinenbrennkammer kann in den Kühlkanälen eine lokale Schädigung des Materials auftreten, z.B. kann sich in der Brennkammerwand 1 eine lokale Schadensstelle 6 in Form eines kleinen Loches bilden. Dann besteht in üblichen Gasturbinenbrennkammern, welche durch kombinierte Prall- und Konvektionskühlsysteme oder durch reine Konvektionskühlsysteme entsprechend dem Stand der Technik gekühlt werden, die Gefahr, dass diese kleine Schadensstelle 6 zu grossen Folgeschäden führt, weil der Kühlkanal 2 nach dem Loch nicht mehr ausreichend mit Kühlluft versorgt wird.In the course of operation of the gas turbine combustor can Cooling channels a local damage to the material occur e.g. can be a local damage in the combustion chamber wall 1 6 in the form of a small hole. Then there is in usual gas turbine combustion chambers, which by combined Impact and convection cooling systems or through pure convection cooling systems cooled according to the state of the art be the danger that this small damage point 6 too major consequential damage, because the cooling channel 2 after the Hole is no longer adequately supplied with cooling air.

    Diese Kettenreaktion wird aber im vorliegenden erfindungsgemässen Ausführungsbeispiel verhindert, da zwischen den Kühlkanälen 2 durch die Verbindungsöffnungen 5 eine Ausgleichsströmung erzeugt wird, welche dazu führt, dass die Strömungsgeschwindigkeit der Kühlluft in dem beschädigten Kühlkanal 2 auch nach der lokalen Schadensstelle 6 einen kritischen Grenzwert nie unterschreitet, so dass ein Überschreiten einer kritischen Grenztemperatur verhindert wird. This chain reaction is, however, according to the present invention Embodiment prevented because between the cooling channels 2 through the connection openings 5, a compensating flow is generated, which causes the flow velocity the cooling air in the damaged cooling duct 2 a critical one even after the local damage point 6 Never falls below the limit value, so that an excess is exceeded critical limit temperature is prevented.

    Durch die versetzte Anordnung der Verbindungsöffnungen 5 wird gewährleistet, dass an jeder axialen Position Luft aus mindestens einem Nachbarkanal in den beschädigten Kühl kanal 2 einfliessen kann. Die Ausgleichsströmung erfolgt dabei an der Brennkammeraussenwand 3.The staggered arrangement of the connection openings 5 ensures that there is air at least in every axial position flow into an adjacent duct in the damaged cooling duct 2 can. The compensating flow takes place at the Combustion chamber outer wall 3.

    Im Falle des Vorhandenseins eines Loches in der Brennkammerinnenwand 1 bilden sich an der Aussenwand 3 entlang Kühlfilmströmungen, welche den Kühlkanal 2 und besonders die Aussenwand 3 im Bereich der lokalen Schadensstelle 6 (Loch) intensiv und vollständig kühlen. Damit kann ein weiteres Anwachsen des Loches vermieden werden. Es erfolgt eine "Selbstheilung" des beschädigten Kühlkanals. Die Erfindung hat besonders grosse Bedeutung bei dünnen Brennkammerwänden mit hohen Wärmelasten.If there is a hole in the combustion chamber inner wall 1 are formed on the outer wall 3 along cooling film flows, which the cooling channel 2 and especially the outer wall 3 intensive in the area of the local damage site 6 (hole) and cool completely. This can allow further growth of the hole can be avoided. There is a "self-healing" of the damaged cooling duct. The invention has particular very important for thin combustion chamber walls with high heat loads.

    BezugszeichenlisteReference list

    11
    BrennkammerwandCombustion chamber wall
    22nd
    KühlkanalCooling channel
    33rd
    AussenwandOuter wall
    44th
    KühlrippeCooling fin
    55
    VerbindungsöffnungConnection opening
    66
    lokale Schadensstellelocal damage site
    LO L O
    ÖffnungslängeOpening length
    LB L B
    SteglängeBridge length
    ss
    mittlere Öffnungsbreitemedium opening width
    LL
    KühlkanallängeCooling channel length
    AA
    Querschnittsfläche eines KühlkanalsCross-sectional area of a cooling channel
    dd
    Breite der ÖffnungWidth of the opening

    Claims (4)

    1. Method for cooling a gas turbine combustion chamber in which the entire cooling air is guided in cooling ducts (2), which are separated from one another by means of cooling ribs (4), between the combustion chamber wall (1) and the outer wall (3), the gas turbine combustion chamber being cooled by means of impingement and convection cooling or pure convection cooling, and after a local damage location (6) has arisen in the cooling duct (2), a compensating flow of the cooling air is guided out of adjacent cooling ducts (2) into the damaged cooling duct (2), characterized in that the compensating flow in the cooling duct (2) is guided past the combustion chamber outer wall (3).
    2. Appliance for carrying out the method according to Claim 1, consisting of a gas turbine combustion chamber cooled by means of impingement and convection cooling or pure convection cooling, in which cooling ducts (2) separated from one another by cooling ribs (4) are arranged between the combustion chamber wall (1) and outer wall (3), characterized in that connecting openings (5) are arranged between adjacent cooling ducts (2), the connecting openings (5) being respectively offset on the opposite sides of a cooling duct (2) in the cooling ribs (4) on the outer wall side.
    3. Appliance according to Claim 2, characterized in that the web lengths (LB) and the opening lengths (LO) of the connecting openings (5) are of equal size.
    4. Appliance according to Claim 2 or 3, characterized in that the connecting openings (5) between the cooling ducts (2) are dimensioned in such a way that the product of the average opening width (5) and the cooling duct length (L), referred to the cross-sectional area (A) of the cooling duct (2), is located in the range greater than 2 and smaller than 8.
    EP94115334A 1993-10-18 1994-09-29 Method and means for cooling a gas turbine combustion chamber Expired - Lifetime EP0648979B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE4335413A DE4335413A1 (en) 1993-10-18 1993-10-18 Method and device for cooling a gas turbine combustion chamber
    DE4335413 1993-10-18

    Publications (2)

    Publication Number Publication Date
    EP0648979A1 EP0648979A1 (en) 1995-04-19
    EP0648979B1 true EP0648979B1 (en) 1999-10-20

    Family

    ID=6500380

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP94115334A Expired - Lifetime EP0648979B1 (en) 1993-10-18 1994-09-29 Method and means for cooling a gas turbine combustion chamber

    Country Status (4)

    Country Link
    US (2) US5615546A (en)
    EP (1) EP0648979B1 (en)
    JP (1) JP3863576B2 (en)
    DE (2) DE4335413A1 (en)

    Families Citing this family (9)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE19812236C2 (en) 1998-03-20 2001-10-18 Daimler Chrysler Ag Method for suppressing high-frequency vibrations on the steered axles of a vehicle
    US8959886B2 (en) * 2010-07-08 2015-02-24 Siemens Energy, Inc. Mesh cooled conduit for conveying combustion gases
    US8894363B2 (en) 2011-02-09 2014-11-25 Siemens Energy, Inc. Cooling module design and method for cooling components of a gas turbine system
    EP2397653A1 (en) 2010-06-17 2011-12-21 Siemens Aktiengesellschaft Platform segment for supporting a nozzle guide vane for a gas turbine and method of cooling thereof
    US9644511B2 (en) 2012-09-06 2017-05-09 Mitsubishi Hitachi Power Systems, Ltd. Combustion gas cooling apparatus, denitration apparatus including the combustion gas cooling apparatus, and combustion gas cooling method
    US10422235B2 (en) 2014-05-29 2019-09-24 General Electric Company Angled impingement inserts with cooling features
    US10690055B2 (en) 2014-05-29 2020-06-23 General Electric Company Engine components with impingement cooling features
    US9957816B2 (en) 2014-05-29 2018-05-01 General Electric Company Angled impingement insert
    CA2965338C (en) 2014-10-31 2019-09-10 General Electric Company Engine component assembly

    Family Cites Families (20)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US2644302A (en) * 1948-06-17 1953-07-07 Gen Electric Combustion chamber having a flat wall liner with oppositely disposed apertures
    US3408812A (en) * 1967-02-24 1968-11-05 Gen Electric Cooled joint construction for combustion wall means
    SE314558B (en) * 1968-10-28 1969-09-08 Stal Laval Turbin Ab
    US3777484A (en) * 1971-12-08 1973-12-11 Gen Electric Shrouded combustion liner
    US4071194A (en) * 1976-10-28 1978-01-31 The United States Of America As Represented By The Secretary Of The Navy Means for cooling exhaust nozzle sidewalls
    US4236378A (en) * 1978-03-01 1980-12-02 General Electric Company Sectoral combustor for burning low-BTU fuel gas
    CH633347A5 (en) * 1978-08-03 1982-11-30 Bbc Brown Boveri & Cie GAS TURBINE.
    GB2033071B (en) * 1978-10-28 1982-07-21 Rolls Royce Sheet metal laminate
    US4302941A (en) * 1980-04-02 1981-12-01 United Technologies Corporation Combuster liner construction for gas turbine engine
    GB2077635B (en) * 1980-06-13 1984-01-04 Rolls Royce Manufacture of laminated material
    GB2087065B (en) * 1980-11-08 1984-11-07 Rolls Royce Wall structure for a combustion chamber
    GB2118710B (en) * 1981-12-31 1985-05-22 Secr Defence Improvements in or relating to combustion chamber wall cooling
    US4773227A (en) * 1982-04-07 1988-09-27 United Technologies Corporation Combustion chamber with improved liner construction
    US4653279A (en) * 1985-01-07 1987-03-31 United Technologies Corporation Integral refilmer lip for floatwall panels
    US4642993A (en) * 1985-04-29 1987-02-17 Avco Corporation Combustor liner wall
    EP0225527A2 (en) * 1985-12-02 1987-06-16 Siemens Aktiengesellschaft Cooled wall structure for gas turbines
    DE3615226A1 (en) * 1986-05-06 1987-11-12 Mtu Muenchen Gmbh HOT GAS OVERHEATING PROTECTION DEVICE FOR GAS TURBINE ENGINES
    DE59010740D1 (en) * 1990-12-05 1997-09-04 Asea Brown Boveri Gas turbine combustor
    US5246341A (en) * 1992-07-06 1993-09-21 United Technologies Corporation Turbine blade trailing edge cooling construction
    US5363654A (en) * 1993-05-10 1994-11-15 General Electric Company Recuperative impingement cooling of jet engine components

    Also Published As

    Publication number Publication date
    DE4335413A1 (en) 1995-04-20
    EP0648979A1 (en) 1995-04-19
    US5651253A (en) 1997-07-29
    JP3863576B2 (en) 2006-12-27
    DE59408840D1 (en) 1999-11-25
    JPH07167436A (en) 1995-07-04
    US5615546A (en) 1997-04-01

    Similar Documents

    Publication Publication Date Title
    DE10001109B4 (en) Cooled shovel for a gas turbine
    DE60216180T2 (en) Gas turbine combustion chamber with a bypass channel
    EP0745809B1 (en) Vortex generator for combustion chamber
    EP2423599B1 (en) Method for operating a burner arrangement and burner arrangement for implementing the method
    DE3113380C2 (en)
    EP0798448B1 (en) System and device to cool a wall which is heated on one side by hot gas
    EP0599055B1 (en) Gasturbine combustor
    DE2147135A1 (en) Combustion chamber jacket especially for gas turbine engines
    DE10064264B4 (en) Arrangement for cooling a component
    DE4443864A1 (en) Cooled wall part
    CH702172A2 (en) Combustion chamber for a gas turbine, with improved cooling.
    EP0648979B1 (en) Method and means for cooling a gas turbine combustion chamber
    DE60005529T2 (en) Plate heat exchanger
    EP0718561A2 (en) Combustor
    DE10343049B3 (en) Combustion chamber with cooling device and method for producing the combustion chamber
    EP0971172A1 (en) Gas turbine combustion chamber with silencing wall structure
    DE60225411T2 (en) Flame pipe or clothing for the combustion chamber of a gas turbine with low pollutant emissions
    EP0602384A1 (en) Gasturbine combustor
    EP0990851A1 (en) Gas turbine combustor
    EP0892151A1 (en) Cooling system for the leading edge of a hollow blade for gas turbine
    CH634139A5 (en) DEVICE FOR REDUCING THE SMOKE DENSITY OF A BURNER.
    DE102004010620A1 (en) Method for the effective use of cooling for the acoustic damping of combustion chamber pulsations and combustion chamber
    EP0882932B1 (en) Combustor
    DE4244302C2 (en) Impact cooling device
    EP0892150A1 (en) System for cooling the trailing edge of a hollow gasturbine blade

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE FR GB

    17P Request for examination filed

    Effective date: 19950916

    17Q First examination report despatched

    Effective date: 19961030

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: ASEA BROWN BOVERI AG

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE FR GB

    REF Corresponds to:

    Ref document number: 59408840

    Country of ref document: DE

    Date of ref document: 19991125

    ET Fr: translation filed
    RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

    Owner name: ABB ALSTOM POWER (SCHWEIZ) AG

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20000223

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: 732E

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: TP

    Ref country code: FR

    Ref legal event code: CD

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 59408840

    Country of ref document: DE

    Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

    Effective date: 20120621

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 59408840

    Country of ref document: DE

    Owner name: ALSTOM TECHNOLOGY LTD., CH

    Free format text: FORMER OWNER: ALSTOM, PARIS, FR

    Effective date: 20120621

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: 732E

    Free format text: REGISTERED BETWEEN 20120802 AND 20120808

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: TP

    Owner name: ALSTOM TECHNOLOGY LTD., CH

    Effective date: 20120918

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20130827

    Year of fee payment: 20

    Ref country code: FR

    Payment date: 20130826

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20130930

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 59408840

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: PE20

    Expiry date: 20140928

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20140930

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20140928