EP0602384A1 - Gasturbine combustor - Google Patents
Gasturbine combustor Download PDFInfo
- Publication number
- EP0602384A1 EP0602384A1 EP93118190A EP93118190A EP0602384A1 EP 0602384 A1 EP0602384 A1 EP 0602384A1 EP 93118190 A EP93118190 A EP 93118190A EP 93118190 A EP93118190 A EP 93118190A EP 0602384 A1 EP0602384 A1 EP 0602384A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- combustion chamber
- cooling
- flow
- wall
- gas turbine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000001816 cooling Methods 0.000 claims abstract description 51
- 238000002485 combustion reaction Methods 0.000 claims abstract description 49
- 230000007423 decrease Effects 0.000 claims abstract description 6
- 239000000446 fuel Substances 0.000 claims abstract description 4
- 230000003746 surface roughness Effects 0.000 claims abstract description 4
- 230000003247 decreasing effect Effects 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 3
- 230000000694 effects Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/42—Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
- F23R3/54—Reverse-flow combustion chambers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/02—Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/20—Rotors
- F05B2240/30—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
- F05B2240/32—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor with roughened surface
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2260/00—Function
- F05B2260/20—Heat transfer, e.g. cooling
- F05B2260/221—Improvement of heat transfer
- F05B2260/222—Improvement of heat transfer by creating turbulence
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2260/00—Function
- F05B2260/20—Heat transfer, e.g. cooling
- F05B2260/221—Improvement of heat transfer
- F05B2260/224—Improvement of heat transfer by increasing the heat transfer surface
- F05B2260/2241—Improvement of heat transfer by increasing the heat transfer surface using fins or ribs
Definitions
- the invention relates to a gas turbine combustion chamber with environmentally friendly burners, which consist of at least two hollow conical partial bodies positioned one on top of the other in the direction of flow, the longitudinal axes of symmetry of which run radially offset from one another, the walls of the combustion chamber being protected from excessive material temperatures by cooling, and a method for operating the Combustion chamber.
- Such gas turbine combustors are known.
- a hood is arranged in front of the burners, through which the main mass flow flows directly to the burners and which generates the pressure drop necessary to maintain the required cooling mass flow.
- this throttling worsens the efficiency, while at the same time the mass flow supplied to the combustion chamber via film cooling indirectly contributes to a deterioration in the NO x values.
- the invention tries to avoid all these disadvantages. It is based on the object of designing the cooling duct in a gas turbine combustion chamber in such a way that pure convective cooling of the combustion chamber walls is made possible and that the efficiency of the gas turbine combustion chamber is increased by a method for operating the combustion chamber.
- the gas turbine combustion chamber has a cooling channel which has a continuously decreasing height and / or increasing surface roughness in the flow direction of the cooling air, and in that the gas turbine combustion chamber is operated such that the entire mass flow coming from the compressor flows through the cooling channel for pure convective cooling of the combustion chamber walls is used and the entire mass flow then takes part in the combustion.
- the height of the cooling duct decreases linearly in the direction of flow of the cooling air in order to adapt the cooling effect to a locally different heat load.
- the height of the cooling channel in the flow direction can also decrease exponentially, for example.
- the combustion chamber 1 shows an embodiment of the gas turbine combustor 1 according to the invention. It is an annular combustion chamber with a combustion chamber inner wall 2 and a combustion chamber outer wall 3. The two walls 2, 3 delimit the cooling channel 4 of the combustion chamber 1.
- the combustion chamber 1 is equipped with environmentally friendly burners 5, of which only one burner 5 in FIG. 1 is shown. These burners 5 consist of at least two hollow conical ones positioned one on top of the other in the flow direction Partial bodies whose axes of longitudinal symmetry are radially offset from one another, resulting in flow-wise tangential air inlet slots for a combustion air flow, wherein at least one nozzle for injecting the fuel is placed in the conical cavity formed by the conical partial cone bodies.
- a hood 6 is arranged in front of the environmentally friendly burners 5.
- the essence of the invention is that the entire mass flow coming from the compressor 7 is used for pure convective cooling of the combustion chamber 1. This is done by adapting the cooling effect to the locally different thermal load, in that the cooling duct 4 has a continuously decreasing height in the flow direction of the cooling air. In the exemplary embodiment, the height of the cooling channel 4 decreases linearly. But this can, for. B. may also be exponentially decreasing. It is known that the use of longitudinal and transverse ribs 8 can improve the convective cooling effect, which is why 4 longitudinal and transverse ribs 8 can additionally be arranged in the cooling channel. In addition, the local surface roughness can optionally be varied.
- the cooling air velocity u or the heat transfer coefficient ⁇ increases with decreasing height of the cooling channel 4 in the flow direction of the cooling air. This means that the highest cooling effect is achieved where the highest temperatures arise in the combustion chamber 1, i. H. it is cooled the most exactly where the greatest cooling effect is necessary.
- the entire mass flow coming from the compressor 7 is passed through the cooling channel 4 and cools the combustion chamber inner wall 2 as a result of pure convective cooling. It is preheated by the cooling and then flows directly to the burners 5 within the hood 6. So the whole takes Mass flow inside the combustion chamber 1 participates in the combustion and has a positive influence on the NO x formation.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Description
Die Erfindung betrifft eine Gasturbinenbrennkammer mit umweltfreundlichen Brennern, welche aus mindestens zwei in Strömungsrichtung aufeinander positionierten, hohlen kegelförmigen Teilkörpern bestehen, deren Längssymmetrieachsen Zueinander radial versetzt verlaufen, wobei die Wände der Brennkammer durch Kühlung vor zu hohen Materialtemperaturen geschützt werden, und ein Verfahren zum Betrieb der Brennkammer.The invention relates to a gas turbine combustion chamber with environmentally friendly burners, which consist of at least two hollow conical partial bodies positioned one on top of the other in the direction of flow, the longitudinal axes of symmetry of which run radially offset from one another, the walls of the combustion chamber being protected from excessive material temperatures by cooling, and a method for operating the Combustion chamber.
Derartige Gasturbinenbrennkammern sind bekannt. So werden z. B. Ringbrennkammerwände von Gasturbinen, die mit umweltfreundlichen Brennern ausgerüstet sind, welche aus mindestens zwei in Strömungsrichtung aufeinander positionierten, hohlen kegelförmigen Teilkörpern bestehen, deren Längssymmetrieachsen zueinander radial versetzt verlaufen, wodurch strömungsmässig entgegengesetzte tangentiale Lufteintrittsschlitze für einen Verbrennungsluftstrom entstehen, wobei im von den kegelförmigen Teilkegelkörpern gebildeten Kegelhohlraum mindestens eine Düse zur Eindüsung des Brennstoffes plaziert ist, durch eine Kombination von Konvektions- und Filmkühlung mit Hilfe eines Kühlmassenstromes vor zu hohen Materialtemperaturen geschützt.Such gas turbine combustors are known. So z. B. annular combustion chamber walls of gas turbines which are equipped with environmentally friendly burners, which consist of at least two hollow conical partial bodies positioned one on top of the other in the flow direction, the longitudinal axes of symmetry of which run radially offset from one another, as a result of which flow-wise opposite tangential air inlet slots for a combustion air flow arise, in which of the conical partial cone bodies formed cone cavity is placed at least one nozzle for injecting the fuel, protected by a combination of convection and film cooling with the aid of a cooling mass flow against excessive material temperatures.
Konstruktiv wird vor den Brennern eine Haube angeordnet, über die der Hauptmassenstrom direkt den Brennern zuströmt und die das zur Aufrechterhaltung des erforderlichen Kühlmassenstromes notwendige Druckgefälle erzeugt. Diese Drosselung verschlechtert aber den Wirkungsgrad, während gleichzeitig der über die Filmkühlung der Brennkammer zugeführte Massenstrom indirekt zu einer Verschlechterung der NOX-Werte beiträgt.In terms of design, a hood is arranged in front of the burners, through which the main mass flow flows directly to the burners and which generates the pressure drop necessary to maintain the required cooling mass flow. However, this throttling worsens the efficiency, while at the same time the mass flow supplied to the combustion chamber via film cooling indirectly contributes to a deterioration in the NO x values.
Die Erfindung versucht, all diese Nachteile zu vermeiden. Ihr liegt die Aufgabe zugrunde, bei einer Gasturbinenbrennkammer gemäss Oberbegriff des Anspruches 1 den Kühlkanal so zu gestalten, dass eine reine Konvektivkühlung der Brennkammerwände ermöglicht wird, und dass durch ein Verfahren zum Betrieb der Brennkammer der Wirkungsgrad der Gasturbinenbrennkammer erhöht wird.The invention tries to avoid all these disadvantages. It is based on the object of designing the cooling duct in a gas turbine combustion chamber in such a way that pure convective cooling of the combustion chamber walls is made possible and that the efficiency of the gas turbine combustion chamber is increased by a method for operating the combustion chamber.
Erfindungsgemäss wird dies dadurch erreicht, dass die Gasturbinenbrennkammer einen Kühlkanal besitzt, der eine in Strömungrichtung der Kühlluft stetig abnehmende Höhe und/oder zunehmende Oberflächenrauigkeit aufweist, und dass die Gasturbinenbrennkammer so betrieben wird, dass der gesamte vom Verdichter kommende Massenstrom durch den Kühlkanal fliesst, für eine reine Konvektivkühlung der Brennkammerwände eingesetzt wird und anschliessend der gesamte Massenstrom an der Verbrennung teilnimmt.According to the invention, this is achieved in that the gas turbine combustion chamber has a cooling channel which has a continuously decreasing height and / or increasing surface roughness in the flow direction of the cooling air, and in that the gas turbine combustion chamber is operated such that the entire mass flow coming from the compressor flows through the cooling channel for pure convective cooling of the combustion chamber walls is used and the entire mass flow then takes part in the combustion.
Die Vorteile der Erfindung sind unter anderem darin zu sehen, dass durch eine Verringerung der Drosselverluste der Wirkungsgrad der Gasturbinenbrennkammer erhöht wird und dass gleichzeitig die NOX-Emissionen minimiert werden.The advantages of the invention can be seen, inter alia, in that the efficiency of the gas turbine combustion chamber is increased by reducing the throttle losses and that at the same time the NO x emissions are minimized.
Es ist besonders zweckmässig, wenn die Höhe des Kühlkanals in Strömungsrichtung der Kühlluft linear abnehmend ist, um eine Anpassung der Kühlwirkung an eine lokal unterschiedliche Wärmebelastung zu erreichen. Die Höhe des Kühlkanals in Strömungsrichtung kann aber auch beispielsweise exponentiell abnehmend sein.It is particularly expedient if the height of the cooling duct decreases linearly in the direction of flow of the cooling air in order to adapt the cooling effect to a locally different heat load. However, the height of the cooling channel in the flow direction can also decrease exponentially, for example.
In der Zeichnung ist ein Ausführungsbeispiel der Erfindung dargestellt.
Es zeigen:
- Fig. 1
- einen Teillängsschnitt der Gasturbinenbrennkammer;
- Fig. 2
- die Abhängigkeit der Kühlluftgeschwindigkeit und der Wärmeübergangszahl von der Höhe des Kühlluftkanals über die Brennkammerlänge gesehen.
Show it:
- Fig. 1
- a partial longitudinal section of the gas turbine combustor;
- Fig. 2
- the dependence of the cooling air speed and the heat transfer coefficient on the height of the cooling air duct over the length of the combustion chamber.
Es sind nur die für das Verständnis der Erfindung wesentlichen Elemente gezeigt. Die Strömungsrichtung der Arbeitsmittel ist mit Pfeilen bezeichnet.Only the elements essential for understanding the invention are shown. The direction of flow of the work equipment is indicated by arrows.
In Fig. 1 ist ein Ausführungsbeispiel der erfindungsgemässen Gasturbinenbrennkammer 1 dargestellt. Es ist eine Ringbrennkammer mit einer Brennkammerinnenwand 2 und einer Brennkammeraussenwand 3. Die beiden Wände 2,3 begrenzen den Kühlkanal 4 der Brennkammer 1. Die Brennkammer 1 ist mit umweltfreundlichen Brennern 5 ausgerüstet, von denen zwecks Vereinfachung der Darstellung nur ein Brenner 5 in Fig. 1 abgebildet ist. Diese Brenner 5 bestehen aus mindestens zwei in Strömungsrichtung aufeinander positionierten, hohlen kegelförmigen Teilkörpern, deren Längssymmetrieachsen zueinander radial versetzt verlaufen, wodurch strömungsmässig entgegengesetzte tangentiale Lufteintrittsschlitze für einen Verbrennungsluftstrom entstehen, wobei im von den kegelförmigen Teilkegelkörpern gebildeten Kegelhohlraum mindestens eine Düse zur Eindüsung des Brennstoffes plaziert ist. Vor den umweltfreundlichen Brennern 5 ist eine Haube 6 angeordnet.1 shows an embodiment of the
Das Wesentliche der Erfindung besteht nun darin, dass der gesamte vom Verdichter 7 kommende Massenstrom für eine reine Konvektivkühlung der Brennkammer 1 eingesetzt wird. Das geschieht durch eine Anpassung der Kühlwirkung an die lokal unterschiedliche thermische Belastung, indem der Kühlkanal 4 eine in Strömungsrichtung der Kühlluft stetig abnehmende Höhe aufweist. Im Ausführungsbeispiel ist die Höhe des Kühlkanals 4 linear abnehmend. Diese kann aber z. B. auch exponentiell abnehmend sein. Bekannt ist, dass durch den Einsatz von Längs- und Querrippen 8 die Konvektivkühlwirkung verbessert werden kann, deshalb können zusätzlich im Kühlkanal 4 Längs- und Querrrippen 8 angeordnet sein. Desweitern kann auch wahlweise die örtliche Oberflächenrauhigkeit variiert werden.The essence of the invention is that the entire mass flow coming from the
Wie aus Fig. 2 hervorgeht, erhöhen sich die Kühlluftgeschwindigkeit u bzw. die wärmeübergangszahl α mit abnehmender Höhe des Kühlkanals 4 in Strömungsrichtung der Kühlluft. Das bedeutet, dass die höchste Kühlwirkung dort erzielt wird, wo in der Brennkammer 1 die höchsten Temperaturen entstehen, d. h. es wird genau dort am meisten gekühlt, wo die grösste Kühlwirkung notwendig ist.As can be seen from FIG. 2, the cooling air velocity u or the heat transfer coefficient α increases with decreasing height of the
Der gesamte vom Verdichter 7 kommende Massenstrom wird durch den Kühlkanal 4 geleitet und kühlt infolge reiner Konvektivkühlung die Brennkammerinnenwand 2. Er wird dabei durch die Kühlung vorgewärmt und strömt anschliessend innerhalb der Haube 6 direkt den Brennern 5 zu. Somit nimmt der gesamte Massenstrom im Inneren der Brennkammer 1 an der Verbrennung teil und beeinflusst positiv die NOX-Bildung.The entire mass flow coming from the
In Abhängigkeit von der Brennkammerauslegung verringern sich die Drosselverluste und es kommt zu einer Verbesserung des Wirkungsgrades gegenüber dem bekannten Stand der Technik.Depending on the design of the combustion chamber, the throttle losses decrease and there is an improvement in efficiency compared to the known prior art.
- 11
- BrennkammerCombustion chamber
- 22nd
- BrennkammerinnenwandInternal combustion chamber wall
- 33rd
- BrennkammeraussenwandCombustion chamber outer wall
- 44th
- KühlkanalCooling channel
- 55
- Brennerburner
- 66
- HaubeHood
- 77
- Verdichtercompressor
- 88th
- RippenRibs
- uu
- KühlluftgeschwindigkeitCooling air speed
- αα
- WärmeübergangszahlHeat transfer coefficient
- LL
- Länge des zylindrischen Teils der BrennkammerLength of the cylindrical part of the combustion chamber
Claims (4)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4242721A DE4242721A1 (en) | 1992-12-17 | 1992-12-17 | Gas turbine combustion chamber |
DE4242721 | 1992-12-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0602384A1 true EP0602384A1 (en) | 1994-06-22 |
Family
ID=6475612
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP93118190A Withdrawn EP0602384A1 (en) | 1992-12-17 | 1993-11-10 | Gasturbine combustor |
Country Status (4)
Country | Link |
---|---|
US (1) | US5426943A (en) |
EP (1) | EP0602384A1 (en) |
JP (1) | JP3523309B2 (en) |
DE (1) | DE4242721A1 (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5983624A (en) | 1997-04-21 | 1999-11-16 | Anderson; J. Hilbert | Power plant having a U-shaped combustion chamber with first and second reflecting surfaces |
GB2328011A (en) * | 1997-08-05 | 1999-02-10 | Europ Gas Turbines Ltd | Combustor for gas or liquid fuelled turbine |
SE9801822L (en) * | 1998-05-25 | 1999-11-26 | Abb Ab | combustion device |
DE19856458B4 (en) * | 1998-12-03 | 2017-08-10 | General Electric Technology Gmbh | Cooling device for targeted exposure to a surface to be cooled with a gaseous cooling medium and method for this purpose |
DE10239534A1 (en) | 2002-08-23 | 2004-04-22 | Man Turbomaschinen Ag | Hot gas leading gas manifold |
CH699309A1 (en) * | 2008-08-14 | 2010-02-15 | Alstom Technology Ltd | Thermal machine with air cooled, annular combustion chamber. |
EP2372245A1 (en) * | 2010-03-26 | 2011-10-05 | Siemens Aktiengesellschaft | Burner for stabilising the combustion of a gas turbine and method |
US9319433B2 (en) | 2010-06-29 | 2016-04-19 | At&T Intellectual Property I, L.P. | Prioritization of protocol messages at a server |
JP6066065B2 (en) | 2013-02-20 | 2017-01-25 | 三菱日立パワーシステムズ株式会社 | Gas turbine combustor with heat transfer device |
JP6202976B2 (en) * | 2013-10-10 | 2017-09-27 | 三菱日立パワーシステムズ株式会社 | Gas turbine combustor |
JP6267085B2 (en) | 2014-09-05 | 2018-01-24 | 三菱日立パワーシステムズ株式会社 | Gas turbine combustor |
JP6910036B2 (en) * | 2017-10-31 | 2021-07-28 | 国立研究開発法人産業技術総合研究所 | Combustor and combustion method |
CN109973223B (en) * | 2019-04-01 | 2020-06-02 | 中国航发湖南动力机械研究所 | Processing method of particle separator, particle separator and aviation turboshaft engine |
CN115371081A (en) * | 2021-05-18 | 2022-11-22 | 中国航发商用航空发动机有限责任公司 | Measuring section behind combustion chamber and cooling method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR957604A (en) * | 1950-02-23 | |||
US3169369A (en) * | 1963-06-19 | 1965-02-16 | Gen Electric | Combustion system |
EP0128541A1 (en) * | 1983-06-08 | 1984-12-19 | Hitachi, Ltd. | Gas turbine combustor |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US872806A (en) * | 1904-06-09 | 1907-12-03 | Sebastian Ziani De Ferranti | Elastic-fluid turbine-engine. |
US3589128A (en) * | 1970-02-02 | 1971-06-29 | Avco Corp | Cooling arrangement for a reverse flow gas turbine combustor |
CA980584A (en) * | 1972-11-10 | 1975-12-30 | Edward E. Ekstedt | Double walled impingement cooled combustor |
FR2232966A5 (en) * | 1973-06-05 | 1975-01-03 | Hartmann Pere & Fils | Combustion air cooled gas burner - coaxial casing, inner wall and partition ensure smooth flow |
CH633347A5 (en) * | 1978-08-03 | 1982-11-30 | Bbc Brown Boveri & Cie | GAS TURBINE. |
SE413431B (en) * | 1978-08-30 | 1980-05-27 | Volvo Flygmotor Ab | Aggregate for combustion of non-explosive process gases |
US4361010A (en) * | 1980-04-02 | 1982-11-30 | United Technologies Corporation | Combustor liner construction |
GB2078364B (en) * | 1980-06-17 | 1984-02-15 | Bs & B Eng Co | Fuel inlet assemblies for fuel reactors |
CH678757A5 (en) * | 1989-03-15 | 1991-10-31 | Asea Brown Boveri | |
CH680467A5 (en) * | 1989-12-22 | 1992-08-31 | Asea Brown Boveri |
-
1992
- 1992-12-17 DE DE4242721A patent/DE4242721A1/en not_active Withdrawn
-
1993
- 1993-11-10 EP EP93118190A patent/EP0602384A1/en not_active Withdrawn
- 1993-12-16 JP JP31668493A patent/JP3523309B2/en not_active Expired - Fee Related
-
1994
- 1994-11-14 US US08/340,454 patent/US5426943A/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR957604A (en) * | 1950-02-23 | |||
US3169369A (en) * | 1963-06-19 | 1965-02-16 | Gen Electric | Combustion system |
EP0128541A1 (en) * | 1983-06-08 | 1984-12-19 | Hitachi, Ltd. | Gas turbine combustor |
Also Published As
Publication number | Publication date |
---|---|
US5426943A (en) | 1995-06-27 |
JPH06221562A (en) | 1994-08-09 |
DE4242721A1 (en) | 1994-06-23 |
JP3523309B2 (en) | 2004-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0599055B1 (en) | Gasturbine combustor | |
EP0602384A1 (en) | Gasturbine combustor | |
DE102007004864B4 (en) | Combustion chamber of a gas turbine and combustion control method for a gas turbine | |
DE69818376T2 (en) | Gas turbine combustor | |
DE69917655T2 (en) | SYSTEM FOR CONTROLLING ACOUSTIC VIBRATIONS IN A COMBUSTION CHAMBER | |
EP1801504B1 (en) | Lean-burn premix burner with an atomising lip | |
CH697920A2 (en) | Turbine engine with a combustor liner with wirbelluftgekühltem rear end and cooling methods. | |
DE4443864A1 (en) | Cooled wall part | |
DE102005038395A1 (en) | Combustor cooling with inclined segmented surfaces | |
DE102010060286A1 (en) | Combustor device for a gas turbine, with improved cooling | |
DE3924473A1 (en) | COMBUSTION CHAMBER FOR A GAS TURBINE ENGINE | |
EP0774100A1 (en) | Thermal shield for a gas turbine combustion chamber | |
DE1476796B2 (en) | A component of a gas turbine system made integrally from a high-strength material | |
EP2423599A2 (en) | Method for operating a burner arrangement and burner arrangement for implementing the method | |
DE19538746A1 (en) | Segmented middle body for a double ring combustion chamber | |
EP0718561A2 (en) | Combustor | |
DE60018706T2 (en) | COOLING PROCESS FOR A COMBUSTION TURBINE | |
DE102015113146A1 (en) | Systems and devices related to gas turbine combustors | |
DE3328682A1 (en) | BURNER LINING FOR A GAS TURBINE ENGINE | |
DE19901422C2 (en) | Combustion chamber cooling structure for a rocket engine | |
EP2462379B1 (en) | Stabilising of the flame of a burner | |
DE3741021A1 (en) | COMBUSTION DEVICE FOR A GAS TURBINE ENGINE | |
DE3239195A1 (en) | GAS FUEL INJECTOR FOR A GAS TURBINE ENGINE | |
EP0611879A1 (en) | Cooling means for a gas turbine | |
EP0730121A2 (en) | Premix burner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB |
|
17P | Request for examination filed |
Effective date: 19941125 |
|
17Q | First examination report despatched |
Effective date: 19960307 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 19980324 |