EP0648560B1 - Method for the production of ceramic cores for casting - Google Patents

Method for the production of ceramic cores for casting Download PDF

Info

Publication number
EP0648560B1
EP0648560B1 EP94402286A EP94402286A EP0648560B1 EP 0648560 B1 EP0648560 B1 EP 0648560B1 EP 94402286 A EP94402286 A EP 94402286A EP 94402286 A EP94402286 A EP 94402286A EP 0648560 B1 EP0648560 B1 EP 0648560B1
Authority
EP
European Patent Office
Prior art keywords
core
process according
heat treatment
fraction
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94402286A
Other languages
German (de)
French (fr)
Other versions
EP0648560A1 (en
Inventor
Thierry Alain Bardot
Chantal Sylvette Marie Noelle Langlois
Nadine Burkarth
Nicolas Lequeux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA, SNECMA SAS filed Critical Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA
Publication of EP0648560A1 publication Critical patent/EP0648560A1/en
Application granted granted Critical
Publication of EP0648560B1 publication Critical patent/EP0648560B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/12Treating moulds or cores, e.g. drying, hardening

Definitions

  • the present invention relates to a method for manufacturing ceramic cores for foundry from a paste thermoplastic according to the preamble of claim 1, which is based on US-A-4,685,503.
  • foundry cores ceramics
  • foundry cores ceramics
  • aeronautical applications and by example, obtaining turbine blades in the foundry for turbojets.
  • Improvement of foundry processes evolving from the equiax foundry to the foundry by directed or monocrystalline solidification, further increased these kernel requirements, the use and complexity are imposed by the search for high performance for parts to be obtained, as is the case for example for hollow blades with internal cooling.
  • These fields of application are related to the precision foundry, in particular to the process known under the lost wax foundry designation. In all cases the use of the nucleus intervenes for the manufacture of hollow parts.
  • compositions intended for the preparation of such nuclei are given by FR-A 2,371,257 and mainly contain fused silica, flour zircon and cristobalite which is a form of silica crystallized, a silicone resin being used as binder and additional elements in small quantities such that lubricant and catalyst being added.
  • FR-A 2,371,257 mainly contain fused silica, flour zircon and cristobalite which is a form of silica crystallized, a silicone resin being used as binder and additional elements in small quantities such that lubricant and catalyst being added.
  • FR-A 2,371,257 examples of known compositions intended for the preparation of such nuclei are given by FR-A 2,371,257 and mainly contain fused silica, flour zircon and cristobalite which is a form of silica crystallized, a silicone resin being used as binder and additional elements in small quantities such that lubricant and catalyst being added. The process of preparation
  • the cores used to cast the parts and blades are made of ceramic with a generally porous structure: these cores are made from a mixture consisting of a refractory fraction (in the form of particles) and an organic fraction more or less complex.
  • a refractory fraction in the form of particles
  • an organic fraction more or less complex is described by EP-A 0 328 452.
  • the shaping of the foundry cores in particular from thermoplastic pastes, can be done by molding using for example a press injection. This shaping is followed by a debinding operation during which the organic fraction of the nucleus is eliminated by various known means such as sublimation or thermal degradation, depending on the materials used.
  • a porous structure results.
  • a heat treatment for baking the core to consolidate the porous structure is then applied to the refractory fraction.
  • This treatment introduces a dimensional modification, in the form of a withdrawal which is often non-isotropic in the volume of the nucleus, compared to the initial form. At this stage, it may be necessary to strengthen the core so that it is not damaged in the cycle following use. It is known in this case in particular to perform an impregnation by means of an organic resin.
  • US-A-4,685,503 describes a process for manufacturing a core foundry where after mixing a ceramic material refractory and an organic binder and molding a core to the desired shape, the core is impregnated from a aqueous solution of an alumina and phosphorus oxide before to carry out a heat treatment.
  • US-A-5,067,548 further teaches a shaping process of a foundry ceramic mold comprising a molding by injection of mold elements and low heating temperature before assembly of the elements and treatment high temperature thermal.
  • the cores must have good strength mechanical strength sufficient to withstand mechanical and thermomechanical constraints during the stages of lost wax process: injection of the wax model around the core, thermomechanical constraints between core and shell during dewaxing, burning, sintering and during casting of the alloy around the nucleus.
  • the properties of the core result from cooking but according to known methods, consolidation of the structure of the refractory core fraction is accompanied by withdrawal. This phenomenon leads to difficulties in developing core shaping products and materials such as injection mold and has an impact on the quality of nuclei, the amplitude of the withdrawal anisotropies being added dimensional dispersions.
  • the invention aims to improve the process of manufacturing ceramic cores by reducing these dimensional changes while tightening them dimensional dispersions and retaining a hold i adequate mechanics.
  • an additional heat treatment may be necessary after impregnation to ensure dilatometric stability of the product. It follows from the process according to the invention that the dry residues of the impregnation products form particles which partially fill the porosity of the core and have the effect of reinforcing the mechanical resistance of the core by consolidating it and blocking at a low level the removal, without significant modification during subsequent heat treatments.
  • a first composition I contains a ceramic mineral filler based on fused silica mixed with zircon flour and a waxy organic binder based on synthetic wax.
  • a second composition II in addition to the components of the first composition described above, further comprises in the mineral filler a small fraction of silica crystallized and a mineral release agent.
  • the parts obtained are then unbound by heating to 200 ° C, as it is known per se.
  • the heat treatment temperature is between 1000 ° C and 1150 ° C and the duration between 1 and 5 hours.
  • Product A is an aqueous colloidal suspension of silica particles having 40% by mass of silica. After 24 hours of impregnation, approximately 90% of the open porosity is impregnated. After drying in an oven at 70 ° C for 24 hours, a gain in mass of the parts of between 8.7% and 9.5% is observed. A clear improvement in mechanical strength is noted. Drying can be done under vacuum A second product B was tested consisting of a colloidal suspension at 10% by mass of alumina, obtained by dispersing boehmite / AlOOH powder in a solution of acetic acid at 0.7%. Impregnation of 90% of the open pores is also obtained after 24 hours. After drying and high-temperature decomposition of the boehmite into alumina, a mass gain of 3% of the parts is obtained.
  • a mullite formation reaction occurs as follows: 3 Al 2 O 3 + 2 SiO 2 ⁇ 3 Al 2 O 3. 2 SiO 2
  • a third product C is obtained by mixing the two previous A and B. To obtain it, colloidal silica is added to the boehmite solution in acetic acid to 0.7%. The impregnation allows in this case to fill 80 to 90% porosity opened in 24 hours and the mass gain of parts is 3 to 3.5% after heat treatment.
  • a fourth soil used D is obtained by mixing silica colloidal (product A above) and a nitrate solution aluminum.
  • the mixtures are produced so as to obtain, after drying, a mixture of alumina and silica in the stoichiometric proportion of the mullite.
  • the soil obtained is loaded with 8% Al 2 O 3 and 3.1% SiO 2 .
  • the very low viscosity solution allows in this case a pore impregnation close to 100%
  • a mass gain of 2.6% is observed.
  • the core can be subjected to preheating, in particular at a temperature between 1000 ° C and 1100 ° C and for a period between 1 and 4 hours.
  • the tests carried out corresponding to the implementation of the process for manufacturing ceramic cores according to the invention made it possible to record significant and advantageous results.
  • the method according to the invention avoids a excessive fragility of the nuclei. Impregnation after sintering using an organic resin of the "glue" type previously applied and which causes disadvantages of deformation of the cores during their use can thus be avoided. Satisfactory mechanical properties of resistance of the cores is obtained by the process in accordance with the invention, in particular with regard to impact resistance thermal and mechanical resistance to heat, in particular flexion which is increased from 170% to 230%, depending on the impregnator used.

Description

La présente invention concerne un procédé de fabrication de noyaux céramiques pour fonderie à partir d'une pâte thermoplastique suivant le préambule de la revendication 1, qui est basé sur US-A-4 685 503.The present invention relates to a method for manufacturing ceramic cores for foundry from a paste thermoplastic according to the preamble of claim 1, which is based on US-A-4,685,503.

L'utilisation de noyaux de fonderie d'un type dits "céramiques" est notamment connue dans certaines applications qui imposent l'obtention d'un ensemble de caractéristiques et de critères sévères de qualité comme la tenue aux hautes températures, l'absence de réactivité, la stabilité dimensionnelle et de bonnes caractéristiques mécaniques. Parmi ces applications présentant de telles exigences, on citera notamment les applications aéronautiques et par exemple, l'obtention en fonderie d'aubes de turbine pour turboréacteurs. Le perfectionnement des procédés de fonderie, évoluant de la fonderie équiaxe à la fonderie par solidification dirigée ou monocristalline, a encore accru ces exigences concernant les noyaux dont l'utilisation et la complexité sont imposées par la recherche des hautes performances pour les pièces à obtenir, comme c'est le cas par exemple pour les aubes creuses à refroidissement interne. Ces domaines d'application se rattachent aux procédés de fonderie de précision, notamment au procédé connu sous la désignation de fonderie à la cire perdue. Dans tous les cas l'utilisation du noyau intervient pour la fabrication de pièces creuses.The use of so-called foundry cores "ceramics" is notably known in certain applications which require obtaining a set of characteristics and strict quality criteria such as resistance to high temperatures, lack of reactivity, stability dimensional and good mechanical characteristics. Among these applications presenting such requirements, will cite in particular aeronautical applications and by example, obtaining turbine blades in the foundry for turbojets. Improvement of foundry processes, evolving from the equiax foundry to the foundry by directed or monocrystalline solidification, further increased these kernel requirements, the use and complexity are imposed by the search for high performance for parts to be obtained, as is the case for example for hollow blades with internal cooling. These fields of application are related to the precision foundry, in particular to the process known under the lost wax foundry designation. In all cases the use of the nucleus intervenes for the manufacture of hollow parts.

Dans la méthode de fonderie dite à la cire perdue, on utilise un noyau en matériau céramique qui est tenu dans le moule lors de la coulée de métal, la surface extérieure du noyau formant la surface intérieure d'une cavité interne du produit fini obtenu de cette façon. La précision et la stabilité dimensionnelle du noyau sont donc essentielles pour satisfaire aux épaisseurs visées sur pièces métalliques coulées. In the lost wax foundry method, we use a ceramic material core which is held in the mold when casting metal, the outer surface of the core forming the inner surface of an internal cavity of the product finished up this way. Precision and stability dimensional of the nucleus are therefore essential for meet the thicknesses targeted on metal parts flows.

Des exemples de composition connues destinées à la préparation de tels noyaux sont donnés par FR-A 2.371.257 et comportent essentiellement de la silice fondue, de la farine de zircon et de la cristobalite qui est une forme de silice cristallisée, une résine de silicone étant utilisée comme liant et des éléments additionnels en faibles quantités tels que lubrifiant et catalyseur étant ajoutés. Le procédé de préparation est également décrit.Examples of known compositions intended for the preparation of such nuclei are given by FR-A 2,371,257 and mainly contain fused silica, flour zircon and cristobalite which is a form of silica crystallized, a silicone resin being used as binder and additional elements in small quantities such that lubricant and catalyst being added. The process of preparation is also described.

De manière générale, les noyaux utilisés pour couler les pièces et aubes sont composés de céramique à structure généralement poreuse : ces noyaux sont réalisés à partir d'un mélange constitué d'une fraction réfractaire (sous forme de particules) et d'une fraction organique plus ou moins complexe. Un autre exemple est décrit par EP-A 0 328 452.
De manière connue en soi, la mise en forme des noyaux de fonderie, notamment à partir de pâtes thermoplastiques, peut se faire par moulage en utilisant par exemple une injection à la presse. Cette mise en forme est suivie d'une opération de déliantage au cours de laquelle la fraction organique du noyau est éliminée par divers moyens connus tels que sublimation ou dégradation thermique, suivant les matériaux utilisés. Une structure poreuse en résulte. Un traitement thermique de cuisson du noyau permettant de consolider la structure poreuse est alors appliqué à la fraction réfractaire. Ce traitement introduit une modification dimensionnelle, sous forme d'un retrait qui est souvent non isotrope dans le volume du noyau, par rapport à la forme initiale.
A ce stade, il peut être nécessaire de renforcer le noyau afin qu'il ne soit pas endommagé dans le cycle suivant l'utilisation. Il est connu dans ce cas notamment d'effectuer une imprégnation au moyen d'une résine organique.
In general, the cores used to cast the parts and blades are made of ceramic with a generally porous structure: these cores are made from a mixture consisting of a refractory fraction (in the form of particles) and an organic fraction more or less complex. Another example is described by EP-A 0 328 452.
In a manner known per se, the shaping of the foundry cores, in particular from thermoplastic pastes, can be done by molding using for example a press injection. This shaping is followed by a debinding operation during which the organic fraction of the nucleus is eliminated by various known means such as sublimation or thermal degradation, depending on the materials used. A porous structure results. A heat treatment for baking the core to consolidate the porous structure is then applied to the refractory fraction. This treatment introduces a dimensional modification, in the form of a withdrawal which is often non-isotropic in the volume of the nucleus, compared to the initial form.
At this stage, it may be necessary to strengthen the core so that it is not damaged in the cycle following use. It is known in this case in particular to perform an impregnation by means of an organic resin.

A ce stade le noyau est prêt pour être utilisé c'est à dire qu'il doit supporter le cycle de fabrication dit à la cire perdue suivant :

  • injection du modèle cire autour du noyau
  • réalisation du moule carapace
  • élimination du modèle cire
  • divers traitements thermiques : brûlage des résidus cire, frittage du moule carapace, préchauffage, coulée de l'alliage, refroidissement de l'alliage
  • élimination du noyau.
At this stage the core is ready to be used, that is to say it must withstand the following lost wax production cycle:
  • injection of the wax model around the nucleus
  • shell mold creation
  • elimination of the wax model
  • various heat treatments: burning of wax residues, sintering of the shell mold, preheating, casting of the alloy, cooling of the alloy
  • removal of the nucleus.

US-A-4.685.503 décrit un procédé de fabrication d'un noyau de fonderie où après mélange d'un matériau céramique réfractaire et d'un liant organique et moulage d'un noyau à la forme désirée, le noyau est imprégné à partir d'une solution aqueuse d'un oxyde d'alumine et phosphore avant d'effectuer un traitement thermique.US-A-4,685,503 describes a process for manufacturing a core foundry where after mixing a ceramic material refractory and an organic binder and molding a core to the desired shape, the core is impregnated from a aqueous solution of an alumina and phosphorus oxide before to carry out a heat treatment.

US-A-5.067.548 enseigne en outre un procédé de mise en forme de moule céramique de fonderie comportant un moulage par injection d'éléments de moule et un chauffage à basse température avant assemblage des éléments et traitement thermique à haute température. US-A-5,067,548 further teaches a shaping process of a foundry ceramic mold comprising a molding by injection of mold elements and low heating temperature before assembly of the elements and treatment high temperature thermal.

Dans la mise en oeuvre de ces procédés connus des difficultés subsistent et les résultats obtenus ne sont pas totalement satisfaisants. Des dispersions sur la géométrie du noyau se répercutent sur la pièce terminée alors qu'une tolérance dimensionnelle de l'ordre de ± O,1 mm peut être exigée. Une amélioration des résultats impose d'obtenir une stabilité dimensionnelle des noyaux qui reste délicate à maítriser car la structure du matériau évolue au cours des traitements thermiques successifs précédemment indiqués : cuisson du noyau, échanges thermiques dans le moule carapace de fonderie.In the implementation of these known methods difficulties remain and the results obtained are not completely satisfactory. Dispersions on the geometry of the nucleus affect the finished part while a tolerance dimensional in the range of ± 0.1 mm may be required. A improved results require stability dimension of the nuclei which remains difficult to master because the structure of the material changes during the treatments successive thermal previously indicated: cooking core, heat exchanges in the shell mold of foundry.

En outre, les noyaux doivent présenter une bonne tenue mécanique et une résistance suffisante pour supporter les contraintes mécaniques et thermomécaniques lors des étapes du procédé à la cire perdue : injection du modèle cire autour du noyau, contraintes thermomécaniques entre noyau et carapace au cours du décirage, brûlage, frittage et lors de la coulée de l'alliage autour du noyau.In addition, the cores must have good strength mechanical strength sufficient to withstand mechanical and thermomechanical constraints during the stages of lost wax process: injection of the wax model around the core, thermomechanical constraints between core and shell during dewaxing, burning, sintering and during casting of the alloy around the nucleus.

Les propriétés du noyau résultent de la cuisson mais selon les procédés connus, la consolidation de la structure de la fraction réfractaire de noyau s'accompagne d'un retrait. Ce phénomène entraíne les difficultés de mise au point des produits et matériels de mise en forme du noyau tels que le moule d'injection et a des répercussions sur la qualité des noyaux, l'amplitude des anisotropies de retrait s'ajoutant aux dispersions dimensionnelles. L'invention vise à améliorer le procédé de fabrication des noyaux céramiques en réduisant ces modifications dimensionnelles tout en en resserrant les dispersions dimensionnelles et en conservant une tenue i mécanique adéquate.The properties of the core result from cooking but according to known methods, consolidation of the structure of the refractory core fraction is accompanied by withdrawal. This phenomenon leads to difficulties in developing core shaping products and materials such as injection mold and has an impact on the quality of nuclei, the amplitude of the withdrawal anisotropies being added dimensional dispersions. The invention aims to improve the process of manufacturing ceramic cores by reducing these dimensional changes while tightening them dimensional dispersions and retaining a hold i adequate mechanics.

Ces résultats améliorés sont obtenus grâce à un procédé de fabrication de noyaux céramiques comportant les étapes connues en soi de mise en forme puis d'élimination de la fraction organique du noyau, caractérisé en ce que le traitement thermique est limité à une consolidation minimale de la structure de la fraction céramique du noyau, procurant une résistance mécanique juste suffisante pour la manipulation des noyaux et de manière à limiter le retrait à une valeur minimale et est suivi d'une étape d'imprégnation de la structure poreuse du noyau au moyen d'une solution constituée d'au moins un colloïde simple pris dans le groupe silice et alumine colloïdales et d'ajouts éventuels comportant plusieurs sols en mélanges ou des mélanges de sols et de sels, puis d'une étape d'élimination de la partie liquide du produit d'imprégnation.
L'élimination de la partie liquide du produit d'imprégnation peut être obtenue notamment par séchage.
Dans certains cas, un traitement thermique complémentaire peut être nécessaire après l'imprégnation pour assurer une stabilité dilatométrique du produit.
Il résulte du procédé conforme à l'invention que les résidus secs des produits d'imprégnation forment des particules qui comblent partiellement la porosité du noyau et ont pour effet de renforcer la résistance mécanique du noyau en le consolidant et de bloquer à un faible niveau le retrait, sans modification notable lors des traitements thermiques ultérieurs.
These improved results are obtained by a process for manufacturing ceramic cores comprising the steps known per se of shaping and then elimination of the organic fraction of the core, characterized in that the heat treatment is limited to a minimum consolidation of the structure of the ceramic fraction of the core, providing a mechanical resistance just sufficient for handling the cores and so as to limit the shrinkage to a minimum value and is followed by a step of impregnating the porous structure of the core by means of a solution consisting of at least one simple colloid taken from the colloidal silica and alumina group and possible additions comprising several mixed soils or mixtures of soils and salts, then a step of eliminating the liquid part of the impregnation product.
The elimination of the liquid part of the impregnation product can be obtained in particular by drying.
In some cases, an additional heat treatment may be necessary after impregnation to ensure dilatometric stability of the product.
It follows from the process according to the invention that the dry residues of the impregnation products form particles which partially fill the porosity of the core and have the effect of reinforcing the mechanical resistance of the core by consolidating it and blocking at a low level the removal, without significant modification during subsequent heat treatments.

D'autres caractéristiques et avantages de l'invention seront mieux compris à la lecture de la description qui va suivre d'exemples de modes de réalisation de l'invention, en référence aux dessins annexés sur lesquels :

  • la figure 1 représente les courbes de variation de températures lors d'essais de pièces représentatives des noyaux de fonderie obtenus par un procédé conforme à l'invention,
  • la figure 2 représente une courbe de variation des retraits en pourcentages en fonction d'un cycle de température pour une pièce obtenue selon un procédé antérieur connu,
  • la figure 3 représente les courbes de variation comparative des retraits en pourcentages en fonction de la température pour diverses variantes du procédé de fabrication.
Other characteristics and advantages of the invention will be better understood on reading the following description of examples of embodiments of the invention, with reference to the accompanying drawings in which:
  • FIG. 1 represents the temperature variation curves during tests of parts representative of the foundry cores obtained by a process in accordance with the invention,
  • FIG. 2 represents a curve of variation of the withdrawals in percentages as a function of a temperature cycle for a part obtained according to a known prior process,
  • FIG. 3 represents the curves of comparative variation of the withdrawals in percentages as a function of the temperature for various variants of the manufacturing process.

La mise au point du procédé de fabrication de noyaux céramiques pour fonderie de précision a été effectuée à partir de tests expérimentaux. Des pièces représentatives de noyaux sont ainsi réalisées suivant des techniques connues d'injection d'une pâte céramique thermoplastique. Une première composition I comporte une charge minérale céramique à base de silice fondue mélangée à de la farine de zircon et un liant organique cireux à base de cire de synthèse.Development of the core manufacturing process precision foundry ceramics was carried out at from experimental tests. Representative pieces of cores are thus produced according to known techniques injection of a thermoplastic ceramic paste. A first composition I contains a ceramic mineral filler based on fused silica mixed with zircon flour and a waxy organic binder based on synthetic wax.

Une deuxième composition II en plus des composants de la première composition décrits ci-dessus, comporte en outre dans la charge minérale une faible fraction de silice cristallisée et un agent démoulant minéral.A second composition II in addition to the components of the first composition described above, further comprises in the mineral filler a small fraction of silica crystallized and a mineral release agent.

Les pièces obtenues sont alors déliantées par chauffage vers 200°C, comme il est connu en soi.The parts obtained are then unbound by heating to 200 ° C, as it is known per se.

Un traitement thermique est ensuite appliqué aux pièces. Des résultats satisfaisants sont obtenus après un traitement à 1100°C pendant 5 heures. Un préfrittage est ainsi obtenu sans qu'il en résulte un retrait significatif et une tenue mécanique acceptable est obtenue de manière à permettre une manipulation des noyaux sans risque de détérioration. Au moins 30 % de porosité ouverte est observée. Selon les applications, la température de traitement thermique est comprise entre 1000°C et 1150°C et la durée comprise entre 1 et 5 heures.A heat treatment is then applied to the parts. Of satisfactory results are obtained after treatment with 1100 ° C for 5 hours. Pre-sintering is thus obtained without that this results in a significant withdrawal and acceptable mechanics is obtained in such a way as to allow handling of the cores without risk of deterioration. At minus 30% of open porosity is observed. According to applications, the heat treatment temperature is between 1000 ° C and 1150 ° C and the duration between 1 and 5 hours.

Pour réaliser l'imprégnation des pièces, plusieurs compositions ont été testées. Un produit A est une suspension colloïdale aqueuse de particules de silice présentant 40 % en masse de silice. Après 24 heures d'imprégnation, environ 90 % de la porosité ouverte est imprégnée. Après séchage en étuve à 70°C pendant 24 heures, un gain en masse des pièces compris entre 8,7 % et 9,5% est observé. Une nette amélioration de la tenue mécanique est constatée. Le séchage peut être effectué sous vide
Un second produit B a été testé consistant en une suspension colloïdale à 10 % en masse d'alumine, obtenue en dispersant de la poudre de boehmite/AlOOH dans une solution d'acide acétique à 0,7 %. Une imprégnation de 90 % des pores ouvertes est également obtenue au bout de 24 heures. Après séchage et décomposition à haute température de la boehmite en alumine, un gain de masse de 3% des pièces est obtenu.
In order to impregnate the pieces, several compositions were tested. Product A is an aqueous colloidal suspension of silica particles having 40% by mass of silica. After 24 hours of impregnation, approximately 90% of the open porosity is impregnated. After drying in an oven at 70 ° C for 24 hours, a gain in mass of the parts of between 8.7% and 9.5% is observed. A clear improvement in mechanical strength is noted. Drying can be done under vacuum
A second product B was tested consisting of a colloidal suspension at 10% by mass of alumina, obtained by dispersing boehmite / AlOOH powder in a solution of acetic acid at 0.7%. Impregnation of 90% of the open pores is also obtained after 24 hours. After drying and high-temperature decomposition of the boehmite into alumina, a mass gain of 3% of the parts is obtained.

Une réaction de formation de mullite se produit suivant : 3 Al2 O3 + 2 SiO2 → 3 Al2 O3.2SiO2 A mullite formation reaction occurs as follows: 3 Al 2 O 3 + 2 SiO 2 → 3 Al 2 O 3. 2 SiO 2

Un troisième produit C est obtenu par mélange des deux précédents A et B. Pour l'obtenir, la silice colloïdale est ajoutée dans la solution de boehmite dans l'acide acétique à 0,7 %. L'imprégnation permet dans ce cas de remplir 80 à 90 % de la porosité ouverte en 24 heures et le gain en masse des pièces est de 3 à 3,5 % après traitement thermique.A third product C is obtained by mixing the two previous A and B. To obtain it, colloidal silica is added to the boehmite solution in acetic acid to 0.7%. The impregnation allows in this case to fill 80 to 90% porosity opened in 24 hours and the mass gain of parts is 3 to 3.5% after heat treatment.

Un quatrième sol utilisé D est obtenu par mélange de silice colloïdale (produit A ci-dessus) et d'une solution de nitrate d'aluminium. A fourth soil used D is obtained by mixing silica colloidal (product A above) and a nitrate solution aluminum.

Pour le produit D, comme pour le produit C, les mélanges sont réalisés de manière à obtenir après séchage un mélange d'alumine et de silice dans la proportion stoechiométrique de la mullite. le sol obtenu est chargé à 8 % de Al2 O3 et 3,1 % de SiO2. La solution très peu visqueuse permet dans ce cas une imprégnation des pores proche de 100 % Après traitement thermique des pièces, effectué à 1150°C pendant 1 heure, un gain en masse de 2,6 % est observé.
Selon les applications, avant coulée du métal, le noyau peut être soumis à un préchauffage, notamment à une température comprise entre 1000°C et 1100°C et pendant une durée comprise entre 1 et 4 heures.
Les tests effectués correspondant à la mise en oeuvre du procédé de fabrication de noyaux céramiques conforme à l'invention ont permis d'enregistrer des résultats significatifs et avantageux.
For product D, as for product C, the mixtures are produced so as to obtain, after drying, a mixture of alumina and silica in the stoichiometric proportion of the mullite. the soil obtained is loaded with 8% Al 2 O 3 and 3.1% SiO 2 . The very low viscosity solution allows in this case a pore impregnation close to 100% After heat treatment of the parts, carried out at 1150 ° C. for 1 hour, a mass gain of 2.6% is observed.
Depending on the applications, before casting the metal, the core can be subjected to preheating, in particular at a temperature between 1000 ° C and 1100 ° C and for a period between 1 and 4 hours.
The tests carried out corresponding to the implementation of the process for manufacturing ceramic cores according to the invention made it possible to record significant and advantageous results.

Des mesures par dilatomètrie au moyen d'un dilatomètre absolu permettent notamment de relever le retrait des pièces en fonction de la température correspondant aux variations dimensionnelles des pièces qui représentent un critère important de qualité dans l'utilisation des noyaux en fonderie de précision.
Ainsi des pièces suivant la deuxième composition II précédemment décrite ont été soumises soit à un cycle thermique de montée en température à 1500°C qui correspond à la température atteinte par les noyaux lors de la coulée de super-alliages, comme représenté par la courbe 1 de la figure 1, soit à un cycle thermique comportant un palier intermédiaire de 5 heures à 1200°C, comme représenté par la courbe 2 de la figure 1 qui représente la température en degrés en ordonnées et le temps en minutes en abscisses.
Measurements by dilatometry using an absolute dilatometer make it possible in particular to note the shrinkage of the parts as a function of the temperature corresponding to the dimensional variations of the parts which represent an important criterion of quality in the use of cores in precision foundry.
Thus, parts according to the second composition II previously described were subjected either to a thermal cycle of temperature rise to 1500 ° C. which corresponds to the temperature reached by the cores during the casting of superalloys, as represented by curve 1 in FIG. 1, or in a thermal cycle comprising an intermediate level of 5 hours at 1200 ° C., as represented by curve 2 in FIG. 1 which represents the temperature in degrees on the ordinate and the time in minutes on the abscissa.

La variation correspondante des retraits représentés en pourcentage en ordonnées est montrée par la courbe 3 de la figure 2 pour une pièce de composition II obtenue suivant un procédé antérieur connu et soumise au cycle de la courbe 1 de la figure 1.
Les courbes de la figure 3 montrent les variations de retraits comparatives suivant les imprégnations réalisées pour des pièces de composition II :

  • la courbe 4, sans infiltration
  • la courbe 5 avec une infiltration par le produit A
  • la courbe 6 avec une infiltration par le produit B
  • la courbe 7 avec une infiltration par le produit D.
The corresponding variation in shrinkage represented as a percentage on the ordinate is shown by curve 3 in FIG. 2 for a piece of composition II obtained according to a known prior process and subjected to the cycle of curve 1 in FIG. 1.
The curves in FIG. 3 show the variations in comparative withdrawals according to the impregnations carried out for pieces of composition II:
  • curve 4, without infiltration
  • curve 5 with infiltration by product A
  • curve 6 with infiltration by product B
  • curve 7 with infiltration by product D.

Les tests effectués et les résultats observés montrent que l'opération d'imprégnation des pièces de compositions utilisées pour la fabrication de noyaux céramiques pour fonderie de précision au moyen d'oxydes colloïdaux du type précurseurs de silice, d'alumine ou de mullite assure un retrait mesuré sur les pièces 2 à 7 fois plus faible à l'issue d'un traitement thermique à 1500°C que le résultat obtenu pour des pièces non imprégnées suivant le procédé antérieur. Le support imprégné voit sa tenue mécanique en flexion à froid augmentée de 50 à 70%, suivant l'imprégnant utilisé.The tests carried out and the results observed show that the impregnation operation of the pieces of compositions used for the manufacture of ceramic cores for precision foundry using colloidal oxides of the type precursors of silica, alumina or mullite provides a shrinkage measured on parts 2 to 7 times lower at the result of a heat treatment at 1500 ° C than the result obtained for parts not impregnated according to the process prior. The impregnated support sees its mechanical behavior in cold bending increased from 50 to 70%, depending on the impregnation used.

En outre, le procédé conforme à l'invention évite une fragilité trop importante des noyaux. L'imprégnation après frittage au moyen d'une résine organique de type "colle" antérieurement appliquée et qui entraíne des inconvénients de déformation des noyaux lors de leur utilisation peut ainsi être évitée. Des propriétés mécaniques satisfaisantes de tenue des noyaux sont obtenues grâce au procédé conforme à l'invention, notamment en ce qui concerne une tenue aux chocs thermiques et la tenue mécanique à chaud, notamment en flexion qui se trouve augmentée de 170% à 230%, suivant l'imprégnant utilisé.In addition, the method according to the invention avoids a excessive fragility of the nuclei. Impregnation after sintering using an organic resin of the "glue" type previously applied and which causes disadvantages of deformation of the cores during their use can thus be avoided. Satisfactory mechanical properties of resistance of the cores is obtained by the process in accordance with the invention, in particular with regard to impact resistance thermal and mechanical resistance to heat, in particular flexion which is increased from 170% to 230%, depending on the impregnator used.

Claims (10)

  1. A process for producing ceramic cores for precision casting comprising a shaping step known per se, such as by hot injection of a thermoplastic paste consisting of a refractory ceramic fraction and an organic fraction into a metal mould followed by a binder-removing step in which the organic core fraction is removed in conditions known per se such as by sublimation or heat degradation, characterised in that the subsequent heat treatment is limited to a very reduced consolidation of the structure of the refractory ceramic fraction of the core providing just sufficient mechanical strength for the core to withstand handling and so as to reduce shrinkage to a minimum and is followed by a step of impregnating the porous structure of the core with a solution consisting of at least one single oxide colloid from the group consisting of colloidal silica and colloidal alumina and of possible additions comprising a number of mixed earths or mixtures of earths and salts, then by a step of removing the liquid part from the impregnating product.
  2. A process according to claim 1 wherein the binder-removing step is separate from the consolidating heat treatment.
  3. A process according to claim 1 wherein the binder-removing step or elimination of the organic core fraction is performed during the heat treatment step.
  4. A process according to any of claims 1 to 3 wherein the liquid part is removed from the impregnating product by drying.
  5. A process according to claim 4 wherein the drying is performed in vacuo.
  6. A process according to claim 4 wherein the drying is performed by baking at 70°C for 24 hours.
  7. A process according to any of claims 1 to 6 wherein the heat treatment is performed at a temperature between 1000°C and 1150°C for a period between 1 and 5 hours.
  8. A process according to any of claims 1 to 7 wherein the impregnating solution used is colloidal boehmite and the impregnation time is 24 hours.
  9. A process according to any of claims 1 to 8 wherein before the casting of the metal the core is preheated, the said heat treatment producing a reaction between the impregnation residues and the refractory ceramic core part so as to strengthen the core and ensure good mechanical behaviour at the high casting temperatures.
  10. A process according to claim 9 wherein the preheating is performed at a temperature between 1000°C and 1100°C for a period between 1 and 4 hours.
EP94402286A 1993-10-13 1994-10-12 Method for the production of ceramic cores for casting Expired - Lifetime EP0648560B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9312163A FR2711082B1 (en) 1993-10-13 1993-10-13 Process for manufacturing ceramic cores for foundries.
FR9312163 1993-10-13

Publications (2)

Publication Number Publication Date
EP0648560A1 EP0648560A1 (en) 1995-04-19
EP0648560B1 true EP0648560B1 (en) 1998-12-02

Family

ID=9451776

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94402286A Expired - Lifetime EP0648560B1 (en) 1993-10-13 1994-10-12 Method for the production of ceramic cores for casting

Country Status (6)

Country Link
US (1) US5697418A (en)
EP (1) EP0648560B1 (en)
JP (1) JP3540842B2 (en)
DE (1) DE69414974T2 (en)
FR (1) FR2711082B1 (en)
ZA (1) ZA947978B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6029736A (en) * 1997-08-29 2000-02-29 Howmet Research Corporation Reinforced quartz cores for directional solidification casting processes
FR2785836B1 (en) 1998-11-12 2000-12-15 Snecma PROCESS FOR PRODUCING THIN CERAMIC CORES FOR FOUNDRY
US6588484B1 (en) 2000-06-20 2003-07-08 Howmet Research Corporation Ceramic casting cores with controlled surface texture
US6808010B2 (en) 2001-03-13 2004-10-26 Howmet Research Corporation Method for treating ceramic cores
US6494250B1 (en) 2001-05-14 2002-12-17 Howmet Research Corporation Impregnated alumina-based core and method
CN102489670B (en) * 2011-12-13 2013-04-03 丹阳市精密合金厂有限公司 Ceramic core for molding of support plate and preparation method thereof
CN103073319B (en) * 2011-12-13 2014-01-15 丹阳市精密合金厂有限公司 Alumina-based ceramic core for support plate forming
JP6374752B2 (en) * 2014-10-08 2018-08-15 株式会社ノリタケカンパニーリミテド Refractory and its manufacturing method
CN104289678A (en) * 2014-10-30 2015-01-21 沈阳工业大学 Method for manufacturing lacy square hole in casting manner
CN104289666A (en) * 2014-10-30 2015-01-21 沈阳工业大学 Method for manufacturing eagle-wing-shaped hole in casting manner
CN104289670A (en) * 2014-10-30 2015-01-21 沈阳工业大学 Method for manufacturing hexagonal hole in casting manner
CN110465627B (en) * 2019-09-16 2021-02-02 郑州航空工业管理学院 Method for manufacturing surface-layer compact internal loose ceramic core for precision casting of hollow turbine blade
CN112222362B (en) * 2020-09-10 2021-10-29 中国科学院金属研究所 Silicon-based ceramic core resistant to cold and hot impact, high-temperature creep and easy to remove and preparation process thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1187768B (en) * 1959-04-13 1965-02-25 Howe Sound Co Process for the production of foundry mold masks
US3686006A (en) * 1970-12-02 1972-08-22 Precision Metalsmiths Inc Refractory cores and methods of making the same
US3688832A (en) * 1971-02-22 1972-09-05 Precision Metalsmiths Inc Refractory cores
JPS5131009B2 (en) * 1973-05-09 1976-09-04
JPS5317375B2 (en) * 1973-07-19 1978-06-08
JPS5846471B2 (en) * 1976-06-24 1983-10-17 トヨタ自動車株式会社 Manufacturing method of ceramic products
DD127213A1 (en) * 1976-08-27 1977-09-14
US4190450A (en) * 1976-11-17 1980-02-26 Howmet Turbine Components Corporation Ceramic cores for manufacturing hollow metal castings
JPS5370030A (en) * 1976-12-03 1978-06-22 Taiyou Butsusan Kk Rapid molding method of investment mold
JPS5550947A (en) * 1978-10-12 1980-04-14 Hitachi Metal Precision:Kk Ceramic core for precision casting
JPS6061138A (en) * 1983-09-12 1985-04-08 Aisin Seiki Co Ltd Production of collapsible core
FR2626794B1 (en) * 1988-02-10 1993-07-02 Snecma THERMOPLASTIC PASTE FOR THE PREPARATION OF FOUNDRY CORES AND PROCESS FOR THE PREPARATION OF SAID CORES
US5067548A (en) * 1991-03-19 1991-11-26 Certech Incorporated Method of forming a ceramic mold for metal casting

Also Published As

Publication number Publication date
DE69414974T2 (en) 1999-06-02
FR2711082B1 (en) 1995-12-01
FR2711082A1 (en) 1995-04-21
DE69414974D1 (en) 1999-01-14
US5697418A (en) 1997-12-16
EP0648560A1 (en) 1995-04-19
JPH07232236A (en) 1995-09-05
ZA947978B (en) 1995-06-15
JP3540842B2 (en) 2004-07-07

Similar Documents

Publication Publication Date Title
EP0648560B1 (en) Method for the production of ceramic cores for casting
JP4762392B2 (en) Core compositions and articles with excellent performance for casting in gas turbine applications
RU2299111C2 (en) Method (variants) and apparatus for making casting mold for casting with use of investment patterns and method for casting with use of investment patterns (variants)
EP1013360B1 (en) Method for producing thin ceramic foundry cores
CH618361A5 (en)
EP3634668B1 (en) Method for producing parts having a complex shape by metal powder injection moulding
JP6097307B2 (en) Manufacturing method of ceramic core for movable blade, ceramic core and movable blade
EP0328452B1 (en) Process for manufacturing ceramic foundry cores
FR2785559A1 (en) METHOD FOR THE MANUFACTURE BY METALLURGY OF POWDERS OF AUTOBRASANT SHAPED PARTS
FR2824554A1 (en) Treatment of aluminum based porous ceramic cores used for casting metallic materials involves impregnating the core with yttrium oxide to improve the resistance to sliding at the elevated casting temperature
KR20180076355A (en) Manufacturing method for mold for casting titanium alloy and mold for casting titanium alloy thereof
EP3833497B1 (en) Ceramic coating for foundry core
EP0251847A1 (en) Cristobalitic foundry shell mould, composition of the slurry and method of making the mould
KR100509938B1 (en) Method for fabricating TiAl intermetallic articles by metal injection molding
US10364189B2 (en) Methods for forming ceramic cores
EP3894107A1 (en) Improved casting slurry for the production of shell molds
KR101755832B1 (en) Method of manufacturing precision cast parts for vehicle exhaust system
EP0478413A1 (en) Process for manufacture of a foundry mould by use of foam material and ceramique binder
FR3115220A1 (en) Foundry shell mold for metal parts
US20070181285A1 (en) Die for producing a casting and method for making the die
FR3123365A1 (en) METHOD FOR COATING A PART IN REFRACTORY ALLOY AND PART THUS COATED.
FR3125446A1 (en) Process for producing a refractory preparation for the manufacture of a ceramic mould, preparation obtained by this process, process for manufacturing a ceramic mold and mold for a turbomachine blade obtained by this process
FR2967364A1 (en) Fabricating shell molding pattern by applying refractory layers including discontinuous flax fibers on destructible pattern to form shell around pattern, heating shell to remove fibers by combustion, and solidifying molten metal material
JPH1150173A (en) Production of metal-ceramic composite material
FR3062323A1 (en) PROCESS FOR PRODUCING A CERAMIC CORE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19941021

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 19970704

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 69414974

Country of ref document: DE

Date of ref document: 19990114

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990107

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20120517 AND 20120523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120924

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120924

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130930

Year of fee payment: 20

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20131012

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69414974

Country of ref document: DE

Effective date: 20140501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140501