EP0648283B1 - Intermetallic compound component with diffused aluminium coating - Google Patents
Intermetallic compound component with diffused aluminium coating Download PDFInfo
- Publication number
- EP0648283B1 EP0648283B1 EP93915829A EP93915829A EP0648283B1 EP 0648283 B1 EP0648283 B1 EP 0648283B1 EP 93915829 A EP93915829 A EP 93915829A EP 93915829 A EP93915829 A EP 93915829A EP 0648283 B1 EP0648283 B1 EP 0648283B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- aluminium
- component
- coating
- intermetallic compound
- diffusion coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C10/00—Solid state diffusion of only metal elements or silicon into metallic material surfaces
- C23C10/02—Pretreatment of the material to be coated
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C10/00—Solid state diffusion of only metal elements or silicon into metallic material surfaces
- C23C10/06—Solid state diffusion of only metal elements or silicon into metallic material surfaces using gases
- C23C10/08—Solid state diffusion of only metal elements or silicon into metallic material surfaces using gases only one element being diffused
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C10/00—Solid state diffusion of only metal elements or silicon into metallic material surfaces
- C23C10/28—Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
- C23C10/34—Embedding in a powder mixture, i.e. pack cementation
- C23C10/36—Embedding in a powder mixture, i.e. pack cementation only one element being diffused
- C23C10/48—Aluminising
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12736—Al-base component
- Y10T428/12743—Next to refractory [Group IVB, VB, or VIB] metal-base component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12736—Al-base component
- Y10T428/12764—Next to Al-base component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12806—Refractory [Group IVB, VB, or VIB] metal-base component
Definitions
- the invention relates to a component made of an intermetallic compound made of titanium and aluminum or of alloys of such intermetallic compounds with alloy additives as the base material and with aluminum diffusion coating of the base material.
- This base material has interesting properties for engine construction. It has comparable mechanical properties to conventional titanium alloys with a low specific weight, but can be used at significantly higher operating temperatures. However, the ductility at room temperature of this base material is lower and must be improved by alloying elements and heat treatment processes, as are known from DE 30 24 645.
- the object of the invention is to provide a generic component and a method for its production, in which no coating defects occur and which can be used at operating temperatures of 700 ° C.
- the component between the base material and the aluminum diffusion coating has a closed zone near the surface with a recrystallization structure.
- the intermetallic compound is TiAl.
- this base material it was found that crystallites with a high stacking defect density occur in the form of crystallographic twin planes in the crystallite. These crystallites show a plate structure that has never been observed with conventional titanium alloys. With conventional aluminum diffusion coating, the twin layers remained uncoated. Only after a zone near the surface with a recrystallization structure was formed, components made of the base material with a closed aluminum diffusion coating could be produced.
- a particularly high density of crystalline plate structures shows base materials made of alloys made of the intermetallic compounds with a TiAl content between 50 and 95 vol.% And with a Ti 3 Al content between 5 and 50 vol.%.
- components made of these critical base materials which have a higher proportion of titanium than TiAl and are therefore more prone to embrittlement, it was advantageously possible to achieve uniformly thick aluminum diffusion coatings from the recrystallization structure near the surface according to the invention.
- alloy additives made of niobium, molybdenum, tantalum, tungsten or vanadium or mixtures thereof are preferably contained in the component material.
- the depth of the near-surface closed zone with recrystallization structure is at least 0.1 ⁇ m.
- a recrystallization structure depth between 1 and 10 ⁇ m has proven to be practical, since it can be prepared inexpensively, preferably by cold working close to the surface. Recrystallization depths between 0.1 and 1 ⁇ m are preferably achieved by near-surface laser melting and recrystallization. With recrystallization structure depths of more than 100 ⁇ m, the risk increases that large-volume crystallites with a plate structure form during recrystallization and hinder a closed aluminum diffusion coating.
- the tasks of specifying a method for producing the generic components are solved by the following method steps.
- the component is cold-formed or melted in a zone near the surface and then annealed at recrystallization temperature, and finally an aluminum diffusion coating is applied to the recrystallized zone.
- This method has the advantage that low-cost process steps suitable for mass production are provided, so that inexpensively improved components can be used in engine construction.
- shot peening or mechanical processing of the surface regions of the component to be recrystallized is preferably carried out.
- the surface is blasted with ceramic balls made of Al 2 0 3 , glass balls or steel balls.
- the crystalline structure of the base material is disturbed and internal stresses are introduced into the surface of the base material.
- a fine crystalline recrystallization structure is formed on which an aluminum diffusion layer can grow undisturbed.
- protective measures must be taken by means of covers or screens during shot peening.
- pressure rollers For mechanical processing and near-surface cold forming, pressure rollers, presses, rollers, impact or pressure grinding tools can be used.
- the recrystallization structure can preferably also be formed by first scanning the surface of the component in the areas that are finally to be coated with aluminum and melting it in the process. This has the advantage that particularly small depths of the recrystallization structure between 0.1 and 1 .mu.m can be realized and the surface areas can be scanned, melted and recrystallized precisely without additional protective measures.
- recrystallization and aluminum diffusion coating are carried out by means of a heat cycle, by first heating the surface, which has been cold-formed or melted and solidified on the surface, to the recrystallization temperature in a system for aluminum diffusion coating, and after recrystallization has been carried out, the temperature for aluminum diffusion coating is set and at the same time aluminum-containing Transmitter gas is supplied.
- This implementation of the method takes full advantage of the technical conditions of a system for aluminum diffusion coating, since in such systems the component can be heated independently of the coating process. Furthermore, the risk of contamination is reduced since there is no need to remove or convert between recrystallization annealing and coating, which at the same time also reduces the process costs.
- the component is preferably exposed to a reduced pressure or a protective gas atmosphere during the recrystallization, so that the heat cycle takes place under protective gas or reduced pressure until the aluminum-containing donor gas is supplied.
- the powder packing process is known for the aluminum diffusion coating of components made of iron, nickel or cobalt-based alloy.
- a wide variety of aluminum donors are also used to generate aluminum donor gases.
- the powder packing method is used as the preferred method for aluminum diffusion coating and an aluminum donor of the ternary alloy Ti / Al / C is used to generate a donor gas.
- the carbon content causes the residual oxygen concentrations remaining in the powder pack to be bound or neutralized by carbon monoxide and carbon dioxide formations, while Ti and Al correspond to the base material and therefore promote the growth process of an aluminum diffusion coating on the base material.
- FIG. 1 shows an aluminum diffusion coating 1 of components made of intermetallic compounds made of titanium and aluminum without a near-surface zone with a recrystallization structure, the base material 2 being solidified in large-volume crystallites 3 to 8.
- One of the crystallites 3 shows a pronounced plate structure with stacking defects in the form of twin planes 9.
- the aluminum diffusion coating has trench-shaped defects at the penetration lines 10 of these defects along the surface. A flawless coating is only found on crystallites 4, 5 and 8, which have no plate structure.
- the sketched section A was examined with a metallographic cut. The result is shown in FIG. 2.
- FIG. 2 shows the photo of a metallurgical micrograph through a material according to FIG. 1 in the area of section A.
- a rotor blade of a TiAl engine was coated in a powder packer with the ternary alloy of Ti / Al / C as an aluminum donor on its airfoil surface.
- the aluminum diffusion coating 1 shows significant defects in the area of crystallite 3 with a pronounced plate structure.
- the base material 2 shows large-volume crystallites 12 to 14 with 12 and without a plate structure 13 to 15. In the vicinity of the surface, the base material 2 has a closed zone 11 with a recrystallization structure, which is evenly covered by a closed layer of aluminum without defects.
- the sketched section B was examined with a metallographic cut.
- FIG. 4 shows the photo of a metallurgical micrograph through a material according to FIG. 3 in the area of the section B.
- a guide vane of an engine made of 60% by volume TiAl and 40% by volume Ti 3 Al was first surface to a depth of 5 ⁇ m cold-formed by shot peening and then recrystallized in an aluminum powder packaging plant and finally provided with a 5 ⁇ m thick aluminum diffusion coating 1.
- a completely uniform aluminum coating 1 has grown on the base material 2 even over the crystallite 12 with an originally extremely pronounced plate structure in the aluminum diffusion process in the aluminum powder packaging system.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Description
Die Erfindung betrifft ein Bauteil aus einer intermetallischen Verbindung aus Titan und Aluminium oder aus Legierungen solcher intermetallischen Verbindungen mit Legierungszusätzen als Grundwerkstoff und mit Aluminiumdiffusionsbeschichtung des Grundwerkstoffs.The invention relates to a component made of an intermetallic compound made of titanium and aluminum or of alloys of such intermetallic compounds with alloy additives as the base material and with aluminum diffusion coating of the base material.
Dieser Grundwerkstoff hat für den Triebwerksbau interessante Eigenschaften. Er weist vergleichbare mechanische Eigenschaften wie konventionelle Titanlegierungen bei geringem spezifischem Gewicht auf, ist aber bei bedeutend höheren Betriebstemperaturen einsetzbar. Die Duktilität bei Raumtemperatur dieses Grundwerkstoffes ist jedoch geringer und muß durch Legierungselemente und Wärmebehandlungsverfahren, wie sie aus DE 30 24 645 bekannt sind, verbessert werden.This base material has interesting properties for engine construction. It has comparable mechanical properties to conventional titanium alloys with a low specific weight, but can be used at significantly higher operating temperatures. However, the ductility at room temperature of this base material is lower and must be improved by alloying elements and heat treatment processes, as are known from DE 30 24 645.
Während bei konventionellen Titanlegierungen eine Sauerstoffversprödung in oxidierender Atmosphäre bereits bei Temperaturen ab 550 C einsetzt, liegt diese Temperatur bei intermetallischen Verbindungen aus Titan und Aluminium bei 700 °C. Die Sauerstoffversprödung hat nachteilig zur Folge, daß die geringe Duktilität bei Raumtemperatur weiter verschlechtert wird und zu einer Sprödigkeit führt, wie sie von keramischen Bauteilen bekannt ist.While with conventional titanium alloys, embrittlement of oxygen begins in an oxidizing atmosphere at temperatures from 550 C, this temperature is 700 ° C for intermetallic compounds made of titanium and aluminum. The disadvantage of oxygen embrittlement is that the low ductility is further deteriorated at room temperature and leads to a brittleness, as is known from ceramic components.
Um diesen Grundwerkstoff für Bauteile einzusetzten, die Betriebstemperaturen von 700 °C ausgesetzt sind, wie sie bei Bauteilen vorzugsweise im Kompressor und Turbinenbereich von Triebwerken auftreten, ist eine geschlossene und defektfreie Aluminiumdiffusionsbeschichtung auf den hochtemperaturbelasteten Bauteiloberflächen erforderlich.In order to use this base material for components that are exposed to operating temperatures of 700 ° C, as they occur in components, preferably in the compressor and turbine area of engines, a closed and defect-free aluminum diffusion coating is required on the component surfaces exposed to high temperatures.
Bei Anwendung herkömmlicher Aluminiumdiffusionsbeschichtungen auf Bauteilen aus dem Grundwerkstoff wird keine geschlossene Aluminiumdiffusionsbeschichtung erreicht. Es treten nachteilig Beschichtungsdefekte mit Bereichen äußerst ungleichmäßiger Beschichtungsdicken bis zu grabenförmigen Beschichtungsstrukturen, die im Grabengrund keine Beschichtung aufweisen, auf. Bei extrem dicker Beschichtung können diese Gräben und Defekte mit Aluminium überdeckt werden. Bei Belastung des Bauteil brechen aber nachteilig diese Bereiche auf und die Aluminiumbedeckung platzt ab.When using conventional aluminum diffusion coatings on components made of the base material, no closed aluminum diffusion coating is achieved. There are disadvantageous coating defects with areas of extremely uneven coating thicknesses up to trench-shaped coating structures which have no coating in the trench bottom. If the coating is extremely thick, these trenches and defects can be covered with aluminum. When the component is loaded, however, these areas disadvantageously break open and the aluminum covering breaks off.
Aufgabe der Erfindung ist es, ein gattungsgemäßes Bauteil und ein Verfahren zu seiner Herstellung anzugeben, bei dem keine Beschichtungsdefekte auftreten und welches bei Betriebstemperaturen von 700°C einsetzbar ist.The object of the invention is to provide a generic component and a method for its production, in which no coating defects occur and which can be used at operating temperatures of 700 ° C.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß das Bauteil zwischen Grundwerkstoff und Aluminiumdiffusionsbeschichtung eine oberflächennahe geschlossene Zone mit Rekristallisationsgefüge aufweist.This object is achieved in that the component between the base material and the aluminum diffusion coating has a closed zone near the surface with a recrystallization structure.
Wie in umfangreichen Entwicklungsarbeit festgestellt wurde, wächst eine geschlossene Aluminiumdiffusionsbeschichtung ungestört und gleichmäßig nur auf einem derartigen Rekristallisationsgefüge einer intermetallischen Verbindung als Grundwerkstoff aus Titan und Aluminium oder aus Legierungen solcher intermetallischen Verbindungen mit oder ohne Legierungszusätze. Die Vorteile dieser Erfindung bestehen darin, daß der Einsatzbereich derartiger Grundwerkstoffe wesentlich erweitert wird und konventionelle für die Massenfertigung geeignete Technologien und Verfahren einsetzbar werden, um derartige Bauteile herzustellen.As has been established in extensive development work, a closed aluminum diffusion coating grows undisturbed and uniformly only on such a recrystallization structure of an intermetallic compound as the base material made of titanium and aluminum or of alloys of such intermetallic compounds with or without alloy additives. The advantages of this invention are that the field of use of such base materials is expanded considerably and conventional technologies and processes suitable for mass production can be used to produce such components.
Bei einer bevorzugten Ausbildung der Erfindung ist die intermetallische Verbindung TiAl. Bei diesem Grundwerkstoff konnte festgestellt werden, daß Kristallite mit hoher Stapelfehlerdichte in Form von kristallographischen Zwillingsebenen im Kristallit auftreten. Diese Kristallite zeigen eine Plattenstruktur, wie sie bei konventionellen Titanlegierungen bisher nicht beobachtet wurden. Beim konventionellen Aluminiumdiffusionsbeschichten blieben die Zwillingsebenen unbeschichtet. Erst nach Bildung einer oberflächennahen Zone mit Rekristallisationsgefüge wurden Bauteile aus dem Grundwerkstoff mit einer geschlossenen Aluminiumdiffusionsbeschichtung darstellbar.In a preferred embodiment of the invention, the intermetallic compound is TiAl. With this base material, it was found that crystallites with a high stacking defect density occur in the form of crystallographic twin planes in the crystallite. These crystallites show a plate structure that has never been observed with conventional titanium alloys. With conventional aluminum diffusion coating, the twin layers remained uncoated. Only after a zone near the surface with a recrystallization structure was formed, components made of the base material with a closed aluminum diffusion coating could be produced.
Eine besonders hohe Dichte an kristallinen Plattenstrukturen zeigen Grundwerkstoffe aus Legierungen aus den intermetallischen Verbindungen mit einem TiAl-Anteil zwischen 50 und 95 Vol.% und mit einem Ti3Al-Anteil zwischen 5 und 50 Vol.%. Bei Bauteilen aus diesen kritischen Grundwerkstoffen, die einen höheren Anteil an Titan als TiAl aufweisen und deshalb stärker zur Sauerstoffversprödung neigen, konnten mittels der erfindungsgemäßen oberflächennahen geschlossenen Zone aus Rekristallisationsgefüge vorteilhaft gleichmäßig dicke Aluminiumdiffusionsbeschichtungen realisiert werden.A particularly high density of crystalline plate structures shows base materials made of alloys made of the intermetallic compounds with a TiAl content between 50 and 95 vol.% And with a Ti 3 Al content between 5 and 50 vol.%. In the case of components made of these critical base materials, which have a higher proportion of titanium than TiAl and are therefore more prone to embrittlement, it was advantageously possible to achieve uniformly thick aluminum diffusion coatings from the recrystallization structure near the surface according to the invention.
Zur Duktilitätsverbesserung der Bauteile aus intermetallischen Verbindungen sind vorzugsweise bis zu 4 % Legierungszusätze aus Niob, Molybdän, Tantal, Wolfram oder Vanadium oder aus Mischungen derselben im Bauteilwerkstoff enthalten.To improve the ductility of the components made of intermetallic compounds, up to 4% alloy additives made of niobium, molybdenum, tantalum, tungsten or vanadium or mixtures thereof are preferably contained in the component material.
Die Tiefe der oberflächennahen geschlossenen Zone mit Rekristallisationsgefüge beträgt mindestens 0,1 µm. Eine Rekristallisationsgefügetiefe zwischen 1 und 10 µm hat sich als praktikabel erwiesen, da sie sich kostengünstig vorzugsweise durch oberflächennahe Kaltverformung vorbereiten läßt. Rekristallisationsgefügetiefen zwischen 0,1 und 1 µm werden vorzugsweise durch oberflächennahes Laserschmelzen und Rekristallisieren realisiert. Bei Rekristallisationsgefügetiefen über 100 µm wächst die Gefahr, daß sich großvolumige Kristallite mit Plattenstruktur bei der Rekristallisation bilden und eine geschlossene Aluminiumdiffusionsbeschichtung behindern.The depth of the near-surface closed zone with recrystallization structure is at least 0.1 µm. A recrystallization structure depth between 1 and 10 µm has proven to be practical, since it can be prepared inexpensively, preferably by cold working close to the surface. Recrystallization depths between 0.1 and 1 µm are preferably achieved by near-surface laser melting and recrystallization. With recrystallization structure depths of more than 100 μm, the risk increases that large-volume crystallites with a plate structure form during recrystallization and hinder a closed aluminum diffusion coating.
Die Aufgaben ein Verfahren zur Herstellung der gattungsgemäßen Bauteile anzugeben wird durch die folgenden Verfahrensschritte gelöst. Das Bauteil wird in einer oberflächennahen Zone kaltverformt oder angeschmolzen und danach bei Rekristallisationstemperatur geglüht und abschließend wird eine Aluminiumdiffusionsbeschichtung auf die rekristallisierte Zone aufgebracht. Dieses Verfahren hat den Vorteil, daß kostengünstige für die Massenfertigung geeignete Verfahrensschritte vorgesehen sind, so daß preiswert verbesserte Bauteile im Triebwerksbau einsetzbar werden.The tasks of specifying a method for producing the generic components are solved by the following method steps. The component is cold-formed or melted in a zone near the surface and then annealed at recrystallization temperature, and finally an aluminum diffusion coating is applied to the recrystallized zone. This method has the advantage that low-cost process steps suitable for mass production are provided, so that inexpensively improved components can be used in engine construction.
Zur oberflächigen Kaltverformung wird vorzugsweise ein Kugelstrahlen oder eine mechanische Bearbeitung der zu rekristallisierenden Oberflächenbereiche des Bauteils durchgeführt. Beim Kugelstrahlen wird das Bauteil mit Keramikkugeln aus Al203, Glaskugeln oder Stahlkugeln oberflächig bestrahlt. Die kristalline Struktur des Grundwerkstoffs wird dabei gestört und Eigenspannungen in die Oberfläche des Grundwerkstoffs eingebracht. Beim anschließenden Rekristallisationsglühen unterhalb der Schmelztemperatur des Werkstoffs bildet sich ein feinkristallines Rekristallisationsgefüge aus, auf dem eine Aluminiumdiffusionsschicht ungestört wachsen kann. Für Oberflächenbereiche, die nicht beschichtet werden sollen, müssen beim Kugelstrahlen Schutzmaßnahmen durch Abdekkungen oder Blenden getroffen werden.For surface cold forming, shot peening or mechanical processing of the surface regions of the component to be recrystallized is preferably carried out. During shot peening, the surface is blasted with ceramic balls made of Al 2 0 3 , glass balls or steel balls. The crystalline structure of the base material is disturbed and internal stresses are introduced into the surface of the base material. During the subsequent recrystallization annealing below the melting temperature of the material, a fine crystalline recrystallization structure is formed on which an aluminum diffusion layer can grow undisturbed. For surface areas that should not be coated, protective measures must be taken by means of covers or screens during shot peening.
Zum mechanischen Bearbeiten und oberflächennahen Kaltverformen können Druckrollen, Pressen, Walzen Schlag- oder Druckschleifwerkzeuge eingesetzt werden.For mechanical processing and near-surface cold forming, pressure rollers, presses, rollers, impact or pressure grinding tools can be used.
Das Rekristallisationsgefüge kann vorzugsweise auch dadurch gebildet werden, daß die Oberfläche des Bauteils in den Bereichen, die abschließend mit Aluminium beschichtet werden sollen, zunächst mit einem Laserstrahl abgerastert und dabei angeschmolzen wird. Das hat den Vorteil, daß besonders geringe Tiefen des Rekristallisationsgefüges zwischen 0,1 und 1 µm realisiert werden können und die Oberflächenbereiche geometrisch exakt ohne zusätzliche Schutzmaßnahmen abgerastert, geschmolzen und rekristallisiert werden können.The recrystallization structure can preferably also be formed by first scanning the surface of the component in the areas that are finally to be coated with aluminum and melting it in the process. This has the advantage that particularly small depths of the recrystallization structure between 0.1 and 1 .mu.m can be realized and the surface areas can be scanned, melted and recrystallized precisely without additional protective measures.
Bei einer bevorzugten Durchführung des Verfahrens wird mittels eines Wärmezyklus ein Rekristallisieren und ein Aluminiumdiffusionsbeschichten durchgeführt, indem zunächst das oberflächig kaltverformte oder oberflächig angeschmolzene und erstarrte Bauteil auf die Rekristallisationstemperatur in einer Anlage zur Aluminiumdiffusionsbeschichtung aufgeheizt wird und nach erfolgter Rekristallisation die Temperatur zur Aluminiumdiffusionsbeschichtung eingestellt und gleichzeitig aluminiumhaltiges Sendergas zugeführt wird.In a preferred implementation of the method, recrystallization and aluminum diffusion coating are carried out by means of a heat cycle, by first heating the surface, which has been cold-formed or melted and solidified on the surface, to the recrystallization temperature in a system for aluminum diffusion coating, and after recrystallization has been carried out, the temperature for aluminum diffusion coating is set and at the same time aluminum-containing Transmitter gas is supplied.
Diese Durchführung des Verfahrens nutzt die technischen Gegebenheiten einer Anlage zur Aluminiumdiffusionsbeschichtung voll aus, da in derartigen Anlagen das Bauteil unabhängig vom Beschichtungsprozess beheizbar ist. Ferner wird die Kontaminationsgefahr vermindert, da ein Aus- oder Umbau zwischen Rekristallisationsglühen und Beschichten eingespart wird, was gleichzeitig auch die Verfahrenskosten mindert.This implementation of the method takes full advantage of the technical conditions of a system for aluminum diffusion coating, since in such systems the component can be heated independently of the coating process. Furthermore, the risk of contamination is reduced since there is no need to remove or convert between recrystallization annealing and coating, which at the same time also reduces the process costs.
Vorzugsweise wird das Bauteil während der Rekristallisation einem verminderten Druck oder einer Schutzgasatmosphäre ausgesetzt, so daß der Wärmezyklus bis zum Zuführen des aluminiumhaltigen Spendergases unter Schutzgas oder vermindertem Druck erfolgt. Das hat den Vorteil, daß die Bauteiloberfläche vor Fremdstoffen und vor Oxidationsvorgängen geschützt bleibt.The component is preferably exposed to a reduced pressure or a protective gas atmosphere during the recrystallization, so that the heat cycle takes place under protective gas or reduced pressure until the aluminum-containing donor gas is supplied. This has the advantage that the component surface remains protected against foreign substances and against oxidation processes.
Das Pulverpackverfahren ist für die Aluminiumdiffusionsbeschichtung von Bauelementen aus Eisen-, Nickel- oder Kobaltbasislegierung bekannt. Ferner werden zur Erzeugung von Aluminiumspendergasen die unterschiedlichsten Aluminiumdonatoren eingesetzt. Als bevorzugtes Verfahren für die Aluminiumdiffusionsbeschichtung wird das Pulverpackverfahren eingesetzt und zur Erzeugung eines Spendergases ein Aluminiumdonator der ternären Legierung Ti/Al/C verwendet. Dabei bewirkt der Kohlenstoffanteil, daß die im Pulverpack verbliebenen Restsauerstoffkonzentrationen durch Kohlenmonoxid- und Kohlendioxidbildungen abgebunden bzw. neutralisiert werden, während Ti und Al dem Grundwerkstoff entsprechen und deshalb den Wachstumsprozess einer Aluminiumdiffusionsbeschichtung auf dem Grundwerkstoff fördern.The powder packing process is known for the aluminum diffusion coating of components made of iron, nickel or cobalt-based alloy. A wide variety of aluminum donors are also used to generate aluminum donor gases. The powder packing method is used as the preferred method for aluminum diffusion coating and an aluminum donor of the ternary alloy Ti / Al / C is used to generate a donor gas. The carbon content causes the residual oxygen concentrations remaining in the powder pack to be bound or neutralized by carbon monoxide and carbon dioxide formations, while Ti and Al correspond to the base material and therefore promote the growth process of an aluminum diffusion coating on the base material.
Die Fig. zeigen Durchführungsbeispiele für ein Aluminiumdiffusinsbeschichten von Bauteilen aus intermetallischen Verbindungen aus Titan und Aluminium.
- Fig. 1
- zeigt eine Aluminiumdiffusinsbeschichtung von Bauteilen aus intermetallischen Verbindungen aus Titan und Aluminium ohne oberflächennahe Zone mit Rekristallisationsgefüge.
- Fig. 2
- zeigt das Photo eines metallurgischen Schliffbildes durch ein Material nach Fig. 1 im Bereich des Ausschnittes A.
- Fig. 3
- zeigt eine Aluminiumdiffusinbeschichtung von Bauteilen aus intermetallischen Verbindungen aus Titan und Aluminium mit oberflächennaher Zone mit Rekristallisationsgefüge.
- Fig. 4
- zeigt das Photo eines metallurgischen Schliffbildes durch ein Material nach Fig. 3 im Bereich des Ausschnittes B.
- Fig. 1
- shows an aluminum diffuser coating of components made of intermetallic compounds made of titanium and aluminum without a near-surface zone with a recrystallization structure.
- Fig. 2
- shows the photo of a metallurgical micrograph through a material according to FIG. 1 in the area of section A.
- Fig. 3
- shows an aluminum diffusin coating of components made of intermetallic compounds made of titanium and aluminum with a near-surface zone with recrystallization structure.
- Fig. 4
- shows the photo of a metallurgical micrograph through a material according to FIG. 3 in the region of section B.
Fig. 1 zeigt eine Aluminiumdiffusionsbeschichtung 1 von Bauteilen aus intermetallischen Verbindungen aus Titan und Aluminium ohne oberflächennahe Zone mit Rekristallisationsgefüge, wobei der Grundwerkstoff 2 in großvolumigen Kristalliten 3 bis 8 erstarrt ist. Einer der Kristallite 3 zeigt eine ausgeprägte Plattenstruktur mit Stapelfehlern in Form von Zwillingsebenen 9. an den Durchstoßlinien 10 dieser Fehlstellen entlang der Oberfläche weist die Aluminiumdiffusionsbeschichtung grabenförmige Fehler auf. Eine fehlerfreie Beschichtung wird nur auf den Kristalliten 4, 5 und 8 festgestellt, die keine Plattenstruktur aufweisen. Der skizzierte Ausschnitt A wurde mit einem metallographischen Schliff untersucht. Das Ergebnis zeigt Fig. 2.1 shows an
Fig. 2 zeigt das Photo eines metallurgischen Schliffbildes durch ein Material nach Fig. 1 im Bereich des Ausschnitts A. Dazu wurde eine Laufschaufel eines Triebwerks aus TiAl in einer Pulverpackanlage mit der ternären Legierung aus Ti/Al/C als Aluminiumdonator an ihrer Schaufelblattoberfläche beschichtet. Die Aluminiumdiffusionsbeschichtung 1 zeigt im Bereich des Kristalliten 3 mit ausgeprägter Plattenstruktur erhebliche Defekte.FIG. 2 shows the photo of a metallurgical micrograph through a material according to FIG. 1 in the area of section A. For this purpose, a rotor blade of a TiAl engine was coated in a powder packer with the ternary alloy of Ti / Al / C as an aluminum donor on its airfoil surface. The
Fig. 3 zeigt eine Aluminiumdiffusionsbeschichtung 1 von Bauteilen aus intermetallischen Verbindungen aus Titan und Aluminium mit oberflächennaher Zone 11 mit Rekristallisationsgefüge. Der Grundwerkstoff 2 zeigt großvolumige Kristallite 12 bis 14 mit 12 und ohne Plattenstruktur 13 bis 15. In Oberflächennähe weist der Grundwerkstoff 2 eine geschlossene Zone 11 mit Rekristallisationsgefüge auf, die von einer geschlossenen Schicht aus Aluminium gleichmäßig ohne Fehlstellen bedeckt ist. Der skizzierte Ausschnitt B wurde mit einem metallographischen Schliff untersucht.3 shows an
Fig. 4 zeigt das Photo eines metallurgischen Schliffbildes durch ein Material nach Fig. 3 im Bereich des Ausschnitts B. Dazu wurde eine Leitschaufel eines Triebwerks aus 60 Vol.% TiAl und 40 Vol.% Ti3Al zunächst oberflächig bis zu einer Tiefe von 5 µm mittels Kugelstrahlen kaltverformt und anschließend in einer Aluminiumpulverpackanlage rekristallisationsgeglüht und schließlich mit einer 5 µm dicken Aluminiumdiffusionsbeschichtung 1 versehen. Wie das metallurgische Schliffbild zeigt, ist eine vollkommen gleichmäßige Aluminiumbeschichtung 1 selbst über dem Kristallit 12 mit ursprünglich äußerst ausgeprägter Plattenstruktur beim Aluminiumdiffusionsprozess in der Aluminiumpulverpackanlage auf dem Grundwerkstoff 2 gewachsen.FIG. 4 shows the photo of a metallurgical micrograph through a material according to FIG. 3 in the area of the section B. For this purpose, a guide vane of an engine made of 60% by volume TiAl and 40% by volume Ti 3 Al was first surface to a depth of 5 µm cold-formed by shot peening and then recrystallized in an aluminum powder packaging plant and finally provided with a 5 µm thick
Claims (11)
- A component comprising an intermetallic compound of titanium and aluminium or alloys of such intermetallic compounds with alloying additives as a base material and with aluminium diffusion coating of the base material, characterised in that the component has a closed zone with a recrystallisation structure near the surface between the base material and the diffused aluminium coating.
- A component according to claim 1, characterised in that the intermetallic compound is TiAl.
- A component according to claim 1 or 2, characterised in that the intermetallic compound is an alloy of 50 to 95 vol.% TiAl and 5 to 50 vol.% Ti3Al.
- A component according to any one of claims 1 to 3, characterised in that the intermetallic compound contains up to 4 atom % alloying additives.
- A component according to any one of claims 1 to 4, characterised in that the alloying additives comprise niobium, molybdenum, tantalum, tungsten or vanadium or mixtures of the same.
- A component according to any one of claims 1 to 5, characterised in that the depth of the zone is at least 0.1 µm.
- A method of manufacturing a component according to any one of claims 1 to 6, characterised in that a zone near the surface of the component is cold-formed or melted and subsequently annealed at recrystallisation temperature and, finally, a diffused aluminium coating is applied to the recrystallised zone.
- A method according to claim 7, characterised in that superficial cold-forming is carried out by shot-peening or mechanical processing of the surface regions of the component to be recrystallised.
- A method according to claim 7 or 8, characterised in that recrystallisation and aluminium diffusion coating are carried out by means of a heat cycle, the superficially cold-formed component first being heated to the recrystallisation temperature in an aluminium diffusion coating installation and, after recrystallisation has taken place, the temperature being regulated for aluminium diffusion coating and aluminium-containing donor gas simultaneously being supplied.
- A method according to any one of claims 7 to 9, characterised in that the heat cycle takes place using protective gas or under reduced pressure until the aluminium-containing donor gas is supplied.
- A method according to any one of claims 7 to 10, characterised in that aluminium diffusion coating is carried out by means of a powder packing method and, to generate a donor gas, an aluminium donor of the ternary alloy Ti/Al/C is used.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4222211A DE4222211C1 (en) | 1992-07-07 | 1992-07-07 | |
DE4222211 | 1992-07-07 | ||
PCT/EP1993/001765 WO1994001594A1 (en) | 1992-07-07 | 1993-07-07 | Intermetallic compound component with diffused aluminium coating |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0648283A1 EP0648283A1 (en) | 1995-04-19 |
EP0648283B1 true EP0648283B1 (en) | 1996-10-09 |
Family
ID=6462622
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP93915829A Expired - Lifetime EP0648283B1 (en) | 1992-07-07 | 1993-07-07 | Intermetallic compound component with diffused aluminium coating |
Country Status (5)
Country | Link |
---|---|
US (1) | US5562999A (en) |
EP (1) | EP0648283B1 (en) |
JP (1) | JP3188904B2 (en) |
DE (1) | DE4222211C1 (en) |
WO (1) | WO1994001594A1 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9302978D0 (en) * | 1993-02-15 | 1993-03-31 | Secr Defence | Diffusion barrier layers |
JP3459138B2 (en) * | 1995-04-24 | 2003-10-20 | 日本発条株式会社 | TiAl-based intermetallic compound joined body and method for producing the same |
US5695821A (en) * | 1995-09-14 | 1997-12-09 | General Electric Company | Method for making a coated Ni base superalloy article of improved microstructural stability |
DE69614136T2 (en) | 1995-11-08 | 2002-03-21 | Citizen Watch Co., Ltd. | Surface hardened material based on titanium and method for surface hardening of titanium material |
US5807443A (en) * | 1995-11-30 | 1998-09-15 | Hitachi Metals, Ltd. | Sputtering titanium target assembly and producing method thereof |
FR2775297B1 (en) * | 1998-02-25 | 2000-04-28 | Lorraine Laminage | SHEET WITH CRACK RESISTANT ALUMINUM COATING |
US6267558B1 (en) * | 1999-05-26 | 2001-07-31 | General Electric Company | Dual intensity peening and aluminum-bronze wear coating surface enhancement |
US6805971B2 (en) | 2002-05-02 | 2004-10-19 | George E. Talia | Method of making coatings comprising an intermetallic compound and coatings made therewith |
DE102004034312A1 (en) * | 2004-07-15 | 2006-02-02 | Mtu Aero Engines Gmbh | Sealing arrangement and method for producing a sealing body for a sealing arrangement |
DE102013209994A1 (en) * | 2013-05-29 | 2014-12-04 | MTU Aero Engines AG | TiAl blade with surface modification |
DE102016215556A1 (en) * | 2016-08-19 | 2018-02-22 | MTU Aero Engines AG | HOT GAS CORROSION AND OXIDATION PROTECTION LAYER FOR TIAL ALLOYS |
DE102016224546A1 (en) * | 2016-12-09 | 2018-06-14 | MTU Aero Engines AG | HOT GAS CORROSION AND OXIDATING PROTECTION LAYER FOR TIAL ALLOYS |
CN111647845B (en) * | 2020-06-15 | 2021-04-06 | 燕山大学 | Preparation method of zirconium-titanium-based alloy embedded aluminized layer |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2903785A (en) * | 1957-02-11 | 1959-09-15 | Gen Motors Corp | Method of hot working titanium |
US2920007A (en) * | 1958-01-16 | 1960-01-05 | Gen Electric | Elastic fluid blade with a finegrained surface |
US3615279A (en) * | 1967-12-04 | 1971-10-26 | Reynolds Metals Co | Metal composite having an aluminum alloy layer bonded to a titanium alloy layer |
US3804679A (en) * | 1968-05-21 | 1974-04-16 | Cockerill | Method of coating steel products |
US4168183A (en) * | 1978-06-23 | 1979-09-18 | University Of Delaware | Process for improving the fatigue properties of structures or objects |
US4824482A (en) * | 1979-03-30 | 1989-04-25 | Alloy Surfaces Company, Inc. | Pyrophoric iron product and process of making |
DE3742721C1 (en) * | 1987-12-17 | 1988-12-22 | Mtu Muenchen Gmbh | Process for the aluminum diffusion coating of components made of titanium alloys |
US5300159A (en) * | 1987-12-23 | 1994-04-05 | Mcdonnell Douglas Corporation | Method for manufacturing superplastic forming/diffusion bonding tools from titanium |
US4830265A (en) * | 1988-05-13 | 1989-05-16 | Grumman Aerospace Corporation | Method for diffusion of metals and alloys using high energy source |
JP2768518B2 (en) * | 1989-12-25 | 1998-06-25 | 新日本製鐵株式会社 | High purity TiAA-based intermetallic compound and method for producing the same |
JPH03249147A (en) * | 1990-02-27 | 1991-11-07 | Sumitomo Metal Ind Ltd | Intermetallic compound ti-al base alloy excellent in oxidation resistance and its manufacture |
-
1992
- 1992-07-07 DE DE4222211A patent/DE4222211C1/de not_active Expired - Lifetime
-
1993
- 1993-07-07 US US08/362,586 patent/US5562999A/en not_active Expired - Lifetime
- 1993-07-07 EP EP93915829A patent/EP0648283B1/en not_active Expired - Lifetime
- 1993-07-07 JP JP50295494A patent/JP3188904B2/en not_active Expired - Fee Related
- 1993-07-07 WO PCT/EP1993/001765 patent/WO1994001594A1/en active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
EP0648283A1 (en) | 1995-04-19 |
JP3188904B2 (en) | 2001-07-16 |
JPH07508561A (en) | 1995-09-21 |
US5562999A (en) | 1996-10-08 |
WO1994001594A1 (en) | 1994-01-20 |
DE4222211C1 (en) | 1993-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69706850T2 (en) | ARTICLE WITH PROTECTIVE LAYER CONTAINING AN IMPROVED ANCHOR LAYER AND ITS PRODUCTION | |
DE3750947T2 (en) | Highly wear-resistant component, method for its production and valve gear for use within an internal combustion engine. | |
EP0648283B1 (en) | Intermetallic compound component with diffused aluminium coating | |
DE69330018T2 (en) | HEAT TREATMENT AND METHOD FOR REPAIRING A COBALT-BASED SUPER ALLOY BODY | |
DE69404455T2 (en) | DESULFURATION METHOD FOR IMPROVING THE OXYDATION RESISTANCE OF WORKPIECES FROM SUPER ALLOY | |
DE69732046T2 (en) | PROTECTIVE COATING FOR HIGH TEMPERATURE | |
DE69418470T2 (en) | METHOD FOR PRODUCING A TITANIUM ALLOY PRODUCT | |
DE2655617C2 (en) | Wrought cobalt-based alloy and process for producing a sheet from this alloy | |
DE69828941T2 (en) | HIGH TEMPERATURE RESISTANT, SPRAY-COATED PART AND METHOD FOR THE PRODUCTION THEREOF | |
DE3243283C2 (en) | ||
DE3937526A1 (en) | WEAR-RESISTANT TITANIUM ALLOY, PROCESS FOR THEIR PRODUCTION AND THEIR USE | |
DE3535548A1 (en) | METAL PROTECTIVE COATING | |
DE69826606T2 (en) | PART COATED BY HIGH TEMPERATURE SPRAYING AND METHOD FOR THE PRODUCTION THEREOF | |
DE3104581A1 (en) | OBJECT OF A SUPER ALLOY PROVIDED WITH A COATING LAYER AND METHOD FOR PRODUCING THE SAME | |
EP2796588A1 (en) | Method for producing a high temperature protective coating and correspondingly manufactured component | |
DE3816310A1 (en) | Process for enriching titanium in the immediate surface zone of a component consisting of a nickel-based superalloy containing at least 2.0 % by weight of titanium, and use of the surface enriched according to the process | |
DE19756354A1 (en) | Turbine blade and method for its manufacture | |
DE69403474T2 (en) | DESULFURATION METHOD FOR IMPROVING THE OXIDATION RESISTANCE OF WORKPIECES FROM SUPERALLOY | |
DE4010076A1 (en) | MATERIAL SYSTEMS FOR USE IN HIGHER TEMPERATURE JET ENGINES | |
EP0386618B1 (en) | Element with wear-resisting layer comprising nickel or cobalt | |
DE4035114C2 (en) | Fe-Cr-Ni-Al ferrite alloys | |
DE69704010T2 (en) | Process for coating a substrate made of a superalloy based on nickel or cobalt | |
EP2607515A2 (en) | Diffusion coating method and chromium layer produced according to the method | |
DE1521559A1 (en) | Construction element and process for its manufacture | |
DE69211423T2 (en) | Process for producing a metallic coating on a SiC / SiC composite body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19941207 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH FR GB LI NL |
|
17Q | First examination report despatched |
Effective date: 19950814 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH FR GB LI NL |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: DIPL.-ING. ETH H. R. WERFFELI PATENTANWALT |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19961009 |
|
ET | Fr: translation filed |
Free format text: CORRECTIONS |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20110729 Year of fee payment: 19 Ref country code: CH Payment date: 20110725 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20110721 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20110726 Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V1 Effective date: 20130201 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20120707 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20130329 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120731 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120731 Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130201 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120731 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120707 |