EP0646544B1 - Process and apparatus for the preparation of fullerenes - Google Patents

Process and apparatus for the preparation of fullerenes Download PDF

Info

Publication number
EP0646544B1
EP0646544B1 EP94115504A EP94115504A EP0646544B1 EP 0646544 B1 EP0646544 B1 EP 0646544B1 EP 94115504 A EP94115504 A EP 94115504A EP 94115504 A EP94115504 A EP 94115504A EP 0646544 B1 EP0646544 B1 EP 0646544B1
Authority
EP
European Patent Office
Prior art keywords
glow discharge
several
fullerenes
gas mixture
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94115504A
Other languages
German (de)
French (fr)
Other versions
EP0646544A1 (en
Inventor
Till Keesmann
Hubert Dr. Grosse-Wilde
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0646544A1 publication Critical patent/EP0646544A1/en
Application granted granted Critical
Publication of EP0646544B1 publication Critical patent/EP0646544B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/152Fullerenes
    • C01B32/154Preparation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/3255Material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B7/00Heating by electric discharge
    • H05B7/16Heating by glow discharge
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy

Definitions

  • the invention relates to a method for producing fullerenes.
  • Fullerenes are hollow or cage molecules whose shells consist of a closed network of pentagonal and hexagonal rings made of carbon atoms.
  • the invention further relates to a device for producing fullerenes with a reaction vessel device and electrodes.
  • WO 93 01 128 A1 describes a method in which a carbon rod is made electrically conductive by heating and then at least partially evaporated by electrical heating in an oxygen-free atmosphere.
  • European patent application EP 0 536 500 A1 describes a process in which fullerene production takes place in an oxygen-containing atmosphere.
  • European patent application EP 527 035 describes a process for the production of fullerenes in which carbon-containing particles of small diameter are placed in an arc and the particles evaporate due to the energy of the arc, and when the steam cools outside the hot core of the arc fullerene form.
  • WO 92 20 622 A1 describes a process for the production of fullerenes by burning carbon-containing compounds under compliance with special conditions.
  • the invention is based on the technical problem or the object of providing a process which is improved compared to the prior art mentioned and which enables a simple and economical apparatus construction with which a high yield of cage molecules can be achieved with which the conditions are selectively and sensitively adjustable for the formation of the cage molecules.
  • the inventive method is given by the features of claim 1.
  • the inventive device for manufacturing is given by the features of claim 9.
  • the process according to the invention is characterized by the following process steps: introducing a gas mixture which contains between 10% and 100% carbon monoxide (CO), in particular 30% to 60%, and igniting a glow discharge within the reaction vessel device.
  • a gas mixture which contains between 10% and 100% carbon monoxide (CO), in particular 30% to 60%
  • igniting a glow discharge within the reaction vessel device introducing a gas mixture which contains between 10% and 100% carbon monoxide (CO), in particular 30% to 60%
  • the formation of the fullerenes takes place in a glow discharge, which preferably fills the reaction vessel largely uniformly.
  • a glow discharge the gas temperature can be much lower than the electron temperature given by the mean kinetic energy of the electrons.
  • the electron temperature in glow discharges which are used for the excitation of CO 2 gas lasers, is between 1.0 eV and 1.5 eV (corresponding to approximately 11,000 K and 16,500 K), while the gas temperature is below 200 ° C.
  • the gas temperature is now set in the glow discharge so that the fullerenes are stable at this temperature and do not decay.
  • the energy required for the fusion of the carbon atoms the ordered structures of the fullerenes are added to the chain or ring-shaped carbon clusters, which are the precursors of the fullerenes, by collisions with the electrons.
  • energy transfer to the carbon clusters can take place through inelastic collisions with excited gas particles.
  • the glow discharge can also be operated at higher pressures up to a few hundred mbar if the discharge is excited by a capacitively coupled high frequency. Such arrangements are used, among other things, to excite gas lasers and are described in EP 0 275 023. Also DC discharges in tubes with several centimeters Diameters up to pressures of 50 mbar and more can be operated as a glow discharge if it is ensured that the gas temperature does not exceed a value of about 350 ° C. At higher temperatures there is a risk that an arc will occur which can lead to the destruction of the discharge vessel. To check the gas temperature, either the wall of the discharge vessel must be cooled or the gas must be replaced so quickly that the power loss of the glow discharge is dissipated with the gas stream sufficiently quickly.
  • a preferred embodiment is characterized in that the electrical energy supply is clocked, the pulse duty factor can be between 10% and 90%.
  • the energy density can thus be controlled by supplying electrical energy from 10% to 90% of a clock period or not.
  • helium in addition to carbon monoxide is advantageous because the first excited level with helium is metastable at approx. 20 eV, i. that is, the helium can give relatively large amounts of energy to carbon clusters during inelastic collisions. Good results can be achieved with a mixture of 40% to 60% CO and 60% to 40% helium.
  • the pressure in the glow discharge should be as high as possible, so that the carbon density that occurs in the dissociative Ionization of the CO arises, is as large as possible.
  • the glow discharge tends to form arcs with increasing pressure. With a high-frequency excitation, glow discharges can be operated easily mbar up to 150, as long as the gas temperature does not increase above about 300 ° C.
  • Power density, pressure and gas composition cannot be set completely independently of one another; rather, a state arises in the stationary gas discharge in which the generation rate and destruction rate of the charge carriers are the same. This is generally the case for a given pressure and gas composition only in a limited range of power density. For the above conditions, this is between 50 and 130 watts / cm 3 .
  • the gas temperature results from the coupled electrical power and the cooling conditions of the gas discharge.
  • the power loss can be dissipated via the walls of the discharge vessel, which are cooled, for example, by water, or by continuously exchanging gas and dissipating the power loss as sensible heat of the gas mixture. A combination of both methods is also easy to implement.
  • the continuous gas exchange has the further advantage that the gas composition changes only insignificantly during the limited residence time of the gas in the glow discharge space.
  • Another advantage is that the fullerenes that form in the glow discharge are carried with the flow out of the reaction space and can be washed out, for example, with a wash bottle with an organic solvent such as benzene or toluene.
  • the density of the carbon atoms and carbon clusters of low atomic numbers in the glow discharge space can be increased by the vapor of a hot graphite body being introduced into the glow discharge vessel is directed. This can be done either by diffusion into the glow discharge space or by loading the inflowing gas with the steam.
  • the device according to the invention for the production of cage molecules has a reaction container device within which a glow discharge, in particular direct current glow discharge, and at least one electrode, and is characterized in that the electrode consists at least in regions of a graphite body which can be heated to white heat by an additional current .
  • 1 denotes a discharge vessel (reaction vessel device) for direct current glow discharge, which encloses a discharge space 2, in which the gas mixture supplied through a gas line 8 is excited.
  • the discharge vessel 1 is double-walled, so that cooling water can be passed through a cylindrical cavity 3, 3 '. The connections required for this are not shown here.
  • the electrical excitation takes place via a high-voltage device 6, which is connected to electrodes 4 and 5 via the leads 15 and 16.
  • the electrodes 4 and 5 protrude into the discharge space 2.
  • a series resistor 7 is used to limit the current through the discharge.
  • the gas mixture is fed into a closed circuit by means of a pump 12 via gas lines 8, 9, 11 and 13 through the discharge space 2 and through a wash bottle 10 filled with an organic solvent.
  • the flow can be adjusted with a valve 14. To a small extent, fresh gas is advantageously supplied continuously and part of the circulating gas is exchanged (not shown in FIG. 1).
  • FIG. 2 shows an arrangement according to the invention, in which, in contrast to FIG. 1, the gas discharge is operated via a high-frequency generator.
  • the gas cycle is identical to that from Fi. 1.
  • the same components have the same reference numerals as in Fig. 1 and are not explained again.
  • a discharge vessel 21 encloses a gas space 22, in which a high-frequency discharge is generated by means of electrodes 24 and 25, which extend over the entire length of the discharge vessel 21. With 26 a high-frequency generator is designated, which also contains the necessary electrical matching elements.
  • the reaction vessel device described can be operated in the same way with low-frequency alternating current, preferably between 50 Hz and 400 Hz. For this purpose, only the high-voltage device 6 has to be suitably selected.
  • FIG. 3 shows a cross section of the high-frequency discharge vessel according to FIG. 2.
  • the discharge vessel 21 itself consists of an electrically non-conductive ceramic material, for example Al 2 O 3 .
  • Cooling bores 23 and 23 'through which cooling water can be pumped are embedded in the upper and lower walls.
  • the electrodes 24 and 25 consist of a metallic material such as aluminum, copper or stainless steel. It is also possible to use the catalytic effect of metallic surfaces in order to advantageously influence the composition of the gas mixture, which changes as a result of the discharge.
  • a DC discharge vessel with a discharge space 42 is schematically designated by 41.
  • An electrode 43 is designed as a graphite body, which by an alternating current can be heated to white heat.
  • 45 is the supply line for the current through the gas discharge.
  • the alternating current is generated by means of an isolating transformer 44 and fed to the electrode 43 via feed lines 46, 47.
  • a high-frequency discharge vessel with a discharge space 52 is shown schematically in FIG. 5 at 51.
  • a small part of a high-frequency electrode 54 is replaced by an elongated graphite body 53 which can be heated to white heat by an alternating current.
  • the alternating current of suitable current strength and voltage is generated via an isolating transformer 55 and fed to the graphite body via corresponding supply lines 56 and 57.
  • a 60 cm long discharge vessel made of Al 2 O 3 which is cooled with water according to FIG. 2 and has internal electrodes made of anodized aluminum, is connected on one side to a gas bottle with premixed gas made of 50% helium and 50% CO.
  • a gas line leads to a wash bottle with toluene.
  • a pump is connected to the outlet side of the wash bottle. In contrast to Fig. 2, the gas is not circulated.
  • the discharge vessel is connected to a high-frequency generator with a frequency of 56 MHz, the maximum power is 1000 W.
  • the inflow of the gas and the pump power are set so that the gas remains in the discharge space for about 5 seconds.
  • Raw fullerene which mainly contains the atomic numbers 60 and 70, accumulates in the wash bottle over an operating period of 10 minutes.
  • the yield can be optimized and the composition of the raw filler can be varied.
  • fullerenes are formed in the volume of the discharge. This makes it possible to produce fullerenes on a larger scale in large-volume glow discharges. Similar glow discharges are used, for example, in high-performance CO 2 lasers for material processing. The process is therefore scalable up to plants for the commercial production of fullerenes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Composite Materials (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

A process for preparing cage molecules known as fullerenes comprising carbon atoms having closed networks, in particular of pentagonal and/or hexagonal rings, in a reaction vessel facility is characterised by the process steps: introduction of a gas mixture containing between 10% and 100% of carbon monoxide (CO), in particular from 30% to 60%, and generation of a glow discharge within the reaction vessel facility. Using this process, the yield for preparing cage molecules can be optimised and the composition can be varied. An apparatus for preparing the cage molecules is characterised by a reaction vessel facility (1) within which a glow discharge, in particular a direct current glow discharge (DC glow discharge), can be generated, and at least one electrode (4,5) which consists at least in part of a graphite body which can be heated to white heat by means of an additional current. <IMAGE>

Description

TECHNISCHES GEBIETTECHNICAL AREA

Die Erfindung betrifft ein Verfahren zur Herstellung von Fullerenen. Fullerene sind Hohl- oder Käfigmoleküle, deren Hüllen aus einem geschlossenen Netzwerk aus fünfeckigen und sechseckigen Ringen aus Kohlenstoffatomen bestehen. Die Anzahl der Kohlenstoff-atome X ergibt sich aus der Gleichung X = 20 + 2*m

Figure imgb0001
. Darin bedeuten m die Anzahl der Sechserringe (Hexagone). Es hat sich gezeigt, daß die Fullerene mit der Kohlenstoffatomzahl X = 60 und größer besonders stabil sind. Die Erfindung betrifft weiterhin eine Vorrichtung zur Herstellung von Fullerenen mit einer Reaktionsbehältereinrichtung und Elektroden.The invention relates to a method for producing fullerenes. Fullerenes are hollow or cage molecules whose shells consist of a closed network of pentagonal and hexagonal rings made of carbon atoms. The number of carbon atoms X results from the equation X = 20 + 2 * m
Figure imgb0001
. Here m means the number of rings of six (hexagons). It has been shown that the fullerenes with the carbon atom number X = 60 and larger are particularly stable. The invention further relates to a device for producing fullerenes with a reaction vessel device and electrodes.

STAND DER TECHNIKSTATE OF THE ART

Zum erstenmal gelang es Krätschmer und anderen, Fullerene in wägbaren Mengen durch Verdampfen eines elektrisch geheizten Graphitstabes in einer Heliumatmosphäre herzustellen, wie in Nature, Vol 347 (1990), S. 354 ff beschrieben ist. Die Fullerene können aus dem Ruß, der sich in dem Versuchsgefäß niederschlagt, durch organische Lösungsmittel wie Toluol oder Benzol ausgewaschen werden.For the first time, Krätschmer and others were able to produce fullerenes in weighable quantities by evaporating an electrically heated graphite rod in a helium atmosphere, as described in Nature, Vol 347 (1990), p. 354 ff. The fullerenes can be washed out of the soot, which is deposited in the test vessel, by organic solvents such as toluene or benzene.

Nach der ersten Veröffentlichung von Krätschmer sind eine Reihe von Verbesserungen und alternativen Verfahren bekannt geworden, nach denen Fullerene hergestellt werden können. So wird in dem Buch "Buckminsterfullerenes", VCH Verlagsgesellschaft mbH, Weinheim (1993), S. 302 ff ein Reaktorgefäß beschrieben, das eine einfachere Herstellung der Fullerene nach dem Krätschmer-Verfahren erlaubt. Ein anderes Verfahren, das in der Zeitschrift Spektrum der Wissenschaft, Dezember 1991, S. 88 ff beschrieben ist, beruht darauf, daß Kohlenstoff von den Graphitelektroden eines Lichtbogens abdampft und sich an den Wänden des Lichtbogengefäßes als Ruß niederschlägt, der als Bestandteil Fullerene enthält. In der WO 93 01 128 A1 ist ein Verfahren beschrieben, bei dem ein Kohlestab durch Heizen elektrisch leitfähig gemacht und dann in einer sauerstofffreien Atmosphäre durch elektrische Heizung zumindest teilweise verdampft wird. In der europäischen Patentanmeldung EP 0 536 500 A1 wird demgegenüber ein Verfahren beschrieben, bei dem die Fullerenerzeugung in einer sauerstoffhaltigen Atmosphäre geschieht. In der europäischen Patentanmeldung EP 527 035 wird ein Verfahren zur Herstellung von Fullerenen beschrieben, bei dem kohlehaltige Partikel kleinen Durchmessers in einen Lichtbogen gegeben werden und die Partikel durch die Energie des Lichtbogens verdampfen und sich bei der Abkühlung des Dampfes außerhalb des heißen Kernes des Lichtbogens Fullerene bilden. In der WO 92 20 622 A1 wird ein Verfahren zur Herstellung von Fullerenen durch Verbrennen kohlenstoffhaltiger Verbindungen unter Einhaltung spezieller Bedingungen beschrieben. Bei allen diesen Verfahren wird zunächst Kohlenstoff auf eine hohe Temperatur von mehr als 2000 oC gebracht; bei der Diffusion des Kohlenstoffs aus dem heißen Bereich in kältere Zonen des Reaktionsgefäß findet dann unter bisher noch nicht ganz verstandenen Bedingungen der Zusammenschluß der Kohlenstoffatome zu den Fullerenen statt. Dieser Diffusionsvorgang läßt sich nur unzulänglich durch Druck und Art des Puffergases, Temperatur oder Stromstärke des Lichtbogens oder der Leistung der elektrischen Heizung des Graphitstabes steuern. Demzufolge sind die Ausbeuten bei der Herstellung der Fullerene auch nur gering und es entstehen hauptsächlich die Fullerene mit den Kohlenstoffzahlen 60 und 70 (C60 und C70). Fullerene mit höheren Kohlenstoffzahlen sind nur in verschwindend geringen Mengen nachgewiesen worden.After the first publication by Krätschmer, a number of improvements and alternative processes by which fullerenes can be produced have become known. For example, in the book "Buckminsterfullerenes", VCH Verlagsgesellschaft mbH, Weinheim (1993), p. 302 ff, a reactor vessel is described which allows the fullerenes to be produced more easily by the Krätschmer process. Another method, published in the journal Spektrum der Wissenschaft, December 1991, 88 ff is based on the fact that carbon evaporates from the graphite electrodes of an arc and is deposited on the walls of the arc vessel as soot, which contains fullerenes as a component. WO 93 01 128 A1 describes a method in which a carbon rod is made electrically conductive by heating and then at least partially evaporated by electrical heating in an oxygen-free atmosphere. In contrast, European patent application EP 0 536 500 A1 describes a process in which fullerene production takes place in an oxygen-containing atmosphere. European patent application EP 527 035 describes a process for the production of fullerenes in which carbon-containing particles of small diameter are placed in an arc and the particles evaporate due to the energy of the arc, and when the steam cools outside the hot core of the arc fullerene form. WO 92 20 622 A1 describes a process for the production of fullerenes by burning carbon-containing compounds under compliance with special conditions. In all of these processes, carbon is first brought to a high temperature of more than 2000 o C; when the carbon diffuses from the hot area into colder zones of the reaction vessel, the carbon atoms are combined to form the fullerenes under conditions which have not yet been fully understood. This diffusion process can only be controlled inadequately by the pressure and type of the buffer gas, temperature or current intensity of the arc or the power of the electrical heating of the graphite rod. As a result, the yields in the production of the fullerenes are only low and the fullerenes with the carbon numbers 60 and 70 (C 60 and C 70 ) are mainly formed. Fullerenes with higher carbon numbers have only been detected in negligible amounts.

DARSTELLUNG DER ERFINDUNGPRESENTATION OF THE INVENTION

Der Erfindung liegt das technische Problem bzw. die Aufgabe zugrunde, ein gegenüber dem genannten Stand der Technik verbessertes Verfahren zur Verfügung zu stellen, das einen einfachen und wirtschaftlichen apparativen Aufbau ermöglicht, mit dem eine Hohe Ausbeute an Käfigmolekülen erzielt werden kann, mit dem die Bedingungen für die Bildung der Käfigmoleküle gezielt und empfindlich einstellbar sind. Darüber hinaus ist es Aufgabe der Erfindung, eine Vorrichtung zur Durchführung des o. g. Verfahrens anzugeben. Das erfindungsgemäße Verfahren ist durch die Merkmale des Anspruchs 1 gegeben. Die erfindungsgemäße Vorrichtung zur Herstellung ist durch die Merkmale des Anspruchs 9 gegeben. Vorteilhafte Ausgestaltungen und Weiterbildungen sind Gegenstand der Unteransprüche.The invention is based on the technical problem or the object of providing a process which is improved compared to the prior art mentioned and which enables a simple and economical apparatus construction with which a high yield of cage molecules can be achieved with which the conditions are selectively and sensitively adjustable for the formation of the cage molecules. In addition, it is an object of the invention to provide a device for performing the above. Procedure. The inventive method is given by the features of claim 1. The inventive device for manufacturing is given by the features of claim 9. Advantageous refinements and developments are the subject of the dependent claims.

Das erfindungsgemäße Verfahren zeichnet sich durch folgende Verfahrensschritte aus: Einbringen eines Gasgemisches, das zwischen 10 % und 100 % Kohlenmonoxid (CO), insbesondere 30 % bis 60 %, enthält, und Zünden einer Glimmentladung innerhalb der Reaktionsbehältereinrichtung.The process according to the invention is characterized by the following process steps: introducing a gas mixture which contains between 10% and 100% carbon monoxide (CO), in particular 30% to 60%, and igniting a glow discharge within the reaction vessel device.

Die Bildung der Fullerene findet in einer Glimmentladung statt, die das Reaktionsgefäß bevorzugt weitgehend gleichmäßig ausfüllt. Insbesondere wird von der Tatsache Gebrauch gemacht, daß in einer Glimmentladung die Gastemperatur sehr viel niedriger sein kann als die Elektronentemperatur, die durch die mittlere kinetische Energie der Elektronen gegeben ist. Beispielsweise liegt die Elektronentemperatur in Glimmentladungen, die für die Anregung von CO2-Gaslasern benutzt werden, zwischen 1,0 eV und 1,5 eV (entsprechend etwa 11.000 K bzw. 16.500 K), während die Gastemperatur unter 200 oC liegt. Für die Synthese der Fullerene wird nun in der Glimmentladung die Gastemperatur so eingestellt, daß bei dieser Temperatur die Fullerene stabil sind und nicht zerfallen. Die erforderliche Energie für den Zusammenschluß der Kohlenstoffatome zu den geordneten Strukturen der Fullerene wird den aus wenigen Atomen bestehenden Ketten- oder ringförmigen Kohlenstoffclustern, die die Vorstufe der Fullerene bilden, durch Stöße mit den Elektronen zugeführt. Daneben kann auch eine Energieübertragung auf die Kohlenstoffcluster durch inelastische Stöße mit angeregten Gaspartikeln stattfinden.The formation of the fullerenes takes place in a glow discharge, which preferably fills the reaction vessel largely uniformly. In particular, use is made of the fact that in a glow discharge the gas temperature can be much lower than the electron temperature given by the mean kinetic energy of the electrons. For example, the electron temperature in glow discharges, which are used for the excitation of CO 2 gas lasers, is between 1.0 eV and 1.5 eV (corresponding to approximately 11,000 K and 16,500 K), while the gas temperature is below 200 ° C. For the synthesis of the fullerenes, the gas temperature is now set in the glow discharge so that the fullerenes are stable at this temperature and do not decay. The energy required for the fusion of the carbon atoms the ordered structures of the fullerenes are added to the chain or ring-shaped carbon clusters, which are the precursors of the fullerenes, by collisions with the electrons. In addition, energy transfer to the carbon clusters can take place through inelastic collisions with excited gas particles.

Für die erfindungsgemäße Herstellung der Fullerene wird von der bekannten Tatsache Gebrauch gemacht, daß aus Glimmentladungen mit einem hohen Kohlenmonoxidanteil (CO) Kohlenstoff in Form von Ruß ausfällt. (Gmelin, Handbuch der Anorganischen Chemie, Kohlenstoff Teil C2, Seite 6, Verlag Chemie, Weinheim (1972)). Ursache hierfür ist die dissoziative Ionisation der CO-Moleküle durch Elektronenstöße. Nach Gmelin, Handbuch der Anorganischen Chemie Teil C, Lieferung 1, S. 127 ff, Verlag Chemie, Weinheim (1970), sind die wesentlichen Prozesse in reinem CO-Gas: CO + e → C + + O - + e

Figure imgb0002
CO + e → C + + O + 2e
Figure imgb0003
CO + e → C + O + + 2e
Figure imgb0004
For the production of the fullerenes according to the invention, use is made of the known fact that carbon in the form of soot precipitates from glow discharges with a high proportion of carbon monoxide (CO). (Gmelin, Handbook of Inorganic Chemistry, Carbon Part C2, page 6, Verlag Chemie, Weinheim (1972)). The reason for this is the dissociative ionization of the CO molecules through electron collisions. According to Gmelin, Handbook of Inorganic Chemistry Part C, Delivery 1, p. 127 ff, Verlag Chemie, Weinheim (1970), the essential processes in pure CO gas are: CO + e → C + + O - + e
Figure imgb0002
CO + e → C + + O + 2e
Figure imgb0003
CO + e → C + O + + 2e
Figure imgb0004

Bei Gasgemischen mit Edelgasen oder anderen Molekülgasen nimmt die Anzahl der stattfindenden Reaktionen stark zu. Insbesondere entstehen bei längerer Verweilzeit eines Gasvolumens in der Glimmentladung Sekundärprodukte, die das Gleichgewicht verschieben. So bildet sich aus dem CO neben Kohlenstoff und Sauerstoff auch CO2.With gas mixtures with noble gases or other molecular gases, the number of reactions taking place increases rapidly. In particular, with a longer dwell time of a gas volume in the glow discharge, secondary products arise which shift the equilibrium. In addition to carbon and oxygen, CO also forms from CO 2 .

Über den bei Gmelin genannten Parameterbereich hinaus kann die Glimmentladung auch bei höheren Drücken bis zu einigen Hundert mbar betrieben werden, wenn die Entladung über eine kapazitiv eingekoppelte Hochfrequenz angeregt wird. Derartige Anordnungen werden unter anderem zur Anregung von Gaslasern eingesetzt und sind in der EP 0 275 023 beschrieben. Auch Gleichstromentladungen in Rohren mit mehreren Zentimetern Durchmesser lassen sich bis zu Drücken von 50 mbar und mehr als Glimmentladung betreiben, wenn dafür gesorgt wird, daß die Gastemperatur einen Wert von etwa 350 oC nicht übersteigt. Bei höheren Temperaturen besteht die Gefahr, daß ein Lichtbogen entsteht, der zur Zerstörung des Entladungsgefäßes führen kann. Zur Kontrolle der Gastemperatur muß entweder die Wand des Entladungsgefäßes gekühlt werden oder das Gas muß so schnell ausgetauscht werden, daß die Verlustleistung der Glimmentladung hinreichend schnell mit dem Gasstrom abgeführt wird.In addition to the parameter range specified by Gmelin, the glow discharge can also be operated at higher pressures up to a few hundred mbar if the discharge is excited by a capacitively coupled high frequency. Such arrangements are used, among other things, to excite gas lasers and are described in EP 0 275 023. Also DC discharges in tubes with several centimeters Diameters up to pressures of 50 mbar and more can be operated as a glow discharge if it is ensured that the gas temperature does not exceed a value of about 350 ° C. At higher temperatures there is a risk that an arc will occur which can lead to the destruction of the discharge vessel. To check the gas temperature, either the wall of the discharge vessel must be cooled or the gas must be replaced so quickly that the power loss of the glow discharge is dissipated with the gas stream sufficiently quickly.

Eine bevorzugte Ausgestaltung zeichnet sich dadurch aus, daß die elektrische Energiezuführung getaktet erfolgt, wobei das Tastverhältnis zwischen 10 % und 90 % liegen kann. Damit läßt sich die Energiedichte steuern, indem von 10 % bis 90 % einer Taktperiode elektrische Energie zugeführt wird oder nicht.A preferred embodiment is characterized in that the electrical energy supply is clocked, the pulse duty factor can be between 10% and 90%. The energy density can thus be controlled by supplying electrical energy from 10% to 90% of a clock period or not.

Für die Herstellung der Fullerene in einer Glimmentladung werden insbesondere die folgenden Größen geeignet gewählt und aufeinander abgestimmt:

  • Gaszusammensetzung,
  • Druck,
  • elektrische Leistungsdichte,
  • Gastemperatur,
  • Verweildauer des Gases im Glimmentladungsraum, d. h. die Strömungsgeschwindigkeit des Gases.
For the production of fullerenes in a glow discharge, the following sizes are selected and matched in particular:
  • Gas composition,
  • Pressure,
  • electrical power density,
  • Gas temperature,
  • Residence time of the gas in the glow discharge space, ie the flow rate of the gas.

Vorteilhaft ist die Verwendung von Helium neben Kohlenmonoxid, weil das erste angeregte Niveau bei Helium bei ca. 20 eV metastabil ist, d. h., daß das Helium bei inelastischen Stößen mit Kohlenstoffclustern relativ viel Energie an diese abgeben kann. Gute Ergebnisse lassen sich mit einem Gemisch von 40 % bis 60 % CO und 60 % bis 40 % Helium erzielen.The use of helium in addition to carbon monoxide is advantageous because the first excited level with helium is metastable at approx. 20 eV, i. that is, the helium can give relatively large amounts of energy to carbon clusters during inelastic collisions. Good results can be achieved with a mixture of 40% to 60% CO and 60% to 40% helium.

Der Druck in der Glimmentladung sollte möglichst hoch sein, damit die Kohlenstoffdichte, die bei der dissoziativen Ionisation des CO entsteht, möglichst groß ist. Andererseits neigt die Glimmentladung mit steigendem Druck zur Bogenbildung. Mit einer Hochfrequenzanregung lassen sich Glimmentladungen bis zu 150 mbar problemlos betreiben, solange die Gastemperatur nicht über etwa 300 oC anwächst.The pressure in the glow discharge should be as high as possible, so that the carbon density that occurs in the dissociative Ionization of the CO arises, is as large as possible. On the other hand, the glow discharge tends to form arcs with increasing pressure. With a high-frequency excitation, glow discharges can be operated easily mbar up to 150, as long as the gas temperature does not increase above about 300 ° C.

Leistungsdichte, Druck und Gaszusammensetzung lassen sich nicht völlig unabhängig voneinander einstellen; vielmehr stellt sich in der stationären Gasentladung ein Zustand ein, bei dem die Erzeugungsrate und Vernichtungsrate der Ladungsträger gleich ist. Dies ist im allgemeinen bei gegebenem Druck und gegebener Gaszusammensetzung nur in einem eingeschränkten Bereich der Leistungsdichte der Fall. Für die obengenannten Bedingungen ist dies zwischen 50 und 130 Watt/cm3 der Fall.Power density, pressure and gas composition cannot be set completely independently of one another; rather, a state arises in the stationary gas discharge in which the generation rate and destruction rate of the charge carriers are the same. This is generally the case for a given pressure and gas composition only in a limited range of power density. For the above conditions, this is between 50 and 130 watts / cm 3 .

Die Gastemperatur ergibt sich für den stationären Fall aus der eingekoppelten elektrischen Leistung und den Kühlbedingungen der Gasentladung. Die Verlustleistung kann über die Wände des Entladungsgefäßes abgeführt werden, die beispielsweise durch Wasser gekühlt werden, oder dadurch, daß Gas kontinuierlich ausgetauscht wird und die Verlustleistung als fühlbare Wärme des Gasgemisches abgeführt wird. Auch eine Kombination beider Verfahren ist leicht realisierbar.For the stationary case, the gas temperature results from the coupled electrical power and the cooling conditions of the gas discharge. The power loss can be dissipated via the walls of the discharge vessel, which are cooled, for example, by water, or by continuously exchanging gas and dissipating the power loss as sensible heat of the gas mixture. A combination of both methods is also easy to implement.

Neben der Abfuhr der Wärme bietet der kontinuierliche Gasaustausch den weiteren Vorteil, daß die Gaszusammensetzung sich während der begrenzten Verweilzeit des Gases im Glimmentladungsraum nur unwesentlich ändert. Die Verweilzeit T erreichnet sich aus der Strömungsgeschwindigkeit v und der Länge der Entladungskammer L zu T = L/v

Figure imgb0005
. Ein weiterer Vorteil liegt darin, daß die Fullerene, die sich in der Glimmentladung bilden, mit der Strömung aus dem Reaktionsraum getragen werden und beispielsweise durch eine Waschflasche mit einem organischen Lösungsmittel wie Benzol oder Toluol ausgewaschen werden können.In addition to the removal of heat, the continuous gas exchange has the further advantage that the gas composition changes only insignificantly during the limited residence time of the gas in the glow discharge space. The dwell time T is obtained from the flow velocity v and the length of the discharge chamber L. T = L / v
Figure imgb0005
. Another advantage is that the fullerenes that form in the glow discharge are carried with the flow out of the reaction space and can be washed out, for example, with a wash bottle with an organic solvent such as benzene or toluene.

Da der Gasdruck aus Gründen der Stabilität der Glimmentladung nicht so hoch gewählt werden kann, wie es für die Bildung der Fullerene wünschenswert wäre, kann die Dichte der Kohlenstoffatome und Kohlenstoffcluster niedriger Atomzahl dadurch im Glimmentladungsraum erhöht werden, daß der Dampf eines heißen Graphitkörpers in das Glimmentladungsgefäß geleitet wird. Dies kann entweder durch Diffusion in den Glimmentladungsraum oder durch Beladen des einströmenden Gases mit dem Dampf geschehen.Since the gas pressure cannot be chosen to be as high as would be desirable for the formation of the fullerenes for reasons of the stability of the glow discharge, the density of the carbon atoms and carbon clusters of low atomic numbers in the glow discharge space can be increased by the vapor of a hot graphite body being introduced into the glow discharge vessel is directed. This can be done either by diffusion into the glow discharge space or by loading the inflowing gas with the steam.

Die erfindungsgemäße Vorrichtung zur Herstellung von Käfigmolekülen weist eine Reaktionsbehältereinrichtung, innerhalb derer eine Glimmentladung, insbesondere Gleichstromglimmentladung durchführbar und zumindest eine Elektrode auf, und zeichnet sich dadurch aus, daß die Elektrode zumindest bereichsweise aus einem Graphitkörper besteht, der durch einen zusätzlichen Strom auf Weißglut erhitzbar ist.The device according to the invention for the production of cage molecules has a reaction container device within which a glow discharge, in particular direct current glow discharge, and at least one electrode, and is characterized in that the electrode consists at least in regions of a graphite body which can be heated to white heat by an additional current .

Weitere Ausführungsformen und Vorteile der Erfindung ergeben sich durch die in den Ansprüchen ferner aufgeführten Merkmale sowie durch die nachstehend angegebenen Ausführungsbeispiele. Die Merkmale der Ansprüche können in beliebiger Weise miteinander kombiniert werden, insoweit sie sich nicht offensichtlich gegenseitig ausschließen.Further embodiments and advantages of the invention result from the features further specified in the claims and from the exemplary embodiments specified below. The features of the claims can be combined with one another in any way insofar as they are not obviously mutually exclusive.

KURZE BESCHREIBUNG DER ZEICHNUNGBRIEF DESCRIPTION OF THE DRAWING

Die Erfindung sowie vorteilhafte Ausführungsformen und Weiterbildungen derselben werden im folgenden anhand der in der Zeichnung dargestellten Beispiele näher beschrieben und erläutert. Die der Beschreibung und der Zeichnung zu entnehmenden Merkmale können einzeln für sich oder zu mehreren in beliebiger Kombination erfindungsgemäß angewandt werden. Es zeigen:

Fig. 1
schematische Darstellung einer Reaktionsbehältereinrichtung für eine Gleichstromglimmentladung zur Herstellung von Fullerenen,
Fig. 2
schematische Darstellung einer Reaktionsbehältereinrichtung für eine hochfrequenzangeregte Glimmentladung zur Herstellung von Fullerenen,
Fig. 3
Querschnitt eines Entladungsgefäßes für eine Hochfrequenzglimmentladung gemäß Fig. 2,
Fig. 4
schematische Detaildarstellung einer Gleichstromreaktionsbehältereinrichtung mit einem heizbaren Graphitkörper und
Fig. 5
schematische Detaildarstellung einer Hochfrequenzreaktionsbehältereinrichtung mit einem heizbaren Graphitkörper.
The invention and advantageous embodiments and developments thereof are described and explained in more detail below with reference to the examples shown in the drawing. The features to be gathered from the description and the drawing can be used according to the invention individually or in groups in any combination. Show it:
Fig. 1
schematic representation of a reaction vessel device for a direct current glow discharge for the production of fullerenes,
Fig. 2
schematic representation of a reaction vessel device for a high-frequency excited glow discharge for the production of fullerenes,
Fig. 3
Cross section of a discharge vessel for a high-frequency glow discharge according to FIG. 2,
Fig. 4
schematic detail representation of a DC reaction vessel device with a heatable graphite body and
Fig. 5
schematic detailed representation of a high-frequency reaction container device with a heatable graphite body.

WEGE ZUM AUSFÜHREN DER ERFINDUNGWAYS OF CARRYING OUT THE INVENTION

In Fig. 1 bezeichnet 1 ein Entladungsgefäß (Reaktionsbehältereinrichtung) für die Gleichstromglimmentladung, die einen Entladungsraum 2 umschließt, in dem das durch eine Gasleitung 8 zugeführte Gasgemisch angeregt wird. Das Entladungsgefäß 1 ist doppelwandig ausgeführt, so daß durch einen zylindrischen Hohlraum 3,3' Kühlwasser geleitet werden kann. Die hierfür notwendigen Anschlüsse sind hier nicht gezeichnet. Die elektrische Anregung erfolgt über ein Hochspannungsgerät 6, das über die Zuleitungen 15 und 16 mit Elektroden 4 und 5 verbunden ist. Die Elektroden 4 und 5 ragen in den Entladungsraum 2 hinein. Zur Begrenzung des Stromes durch die Entladung dient ein Vorwiderstand 7. Das Gasgemisch wird mittels einer Pumpe 12 über Gasleitungen 8, 9, 11 und 13 durch den Entladungsraum 2 und durch eine mit einem organischen Lösungsmittel gefüllte Waschflasche 10 in einen geschlossenen Kreislauf geführt.In FIG. 1, 1 denotes a discharge vessel (reaction vessel device) for direct current glow discharge, which encloses a discharge space 2, in which the gas mixture supplied through a gas line 8 is excited. The discharge vessel 1 is double-walled, so that cooling water can be passed through a cylindrical cavity 3, 3 '. The connections required for this are not shown here. The electrical excitation takes place via a high-voltage device 6, which is connected to electrodes 4 and 5 via the leads 15 and 16. The electrodes 4 and 5 protrude into the discharge space 2. A series resistor 7 is used to limit the current through the discharge. The gas mixture is fed into a closed circuit by means of a pump 12 via gas lines 8, 9, 11 and 13 through the discharge space 2 and through a wash bottle 10 filled with an organic solvent.

Dabei kann der Durchfluß mit einem Ventil 14 eingestellt werden. Vorteilhaft wird in geringem Umfang Frischgas kontinuierlich zugeführt und ein Teil des umlaufenden Gases ausgetauscht (in Fig. 1 nicht dargestellt).The flow can be adjusted with a valve 14. To a small extent, fresh gas is advantageously supplied continuously and part of the circulating gas is exchanged (not shown in FIG. 1).

In Fig. 2 ist eine erfindungsgemäße Anordnung gezeichnet, bei der im Gegensatz zu Fig. 1 die Gasentladung über einen Hochfrequenzgenerator betrieben wird. Der Gaskreislauf ist identisch mit dem aus Fi. 1. Gleiche Bauteile tragen dasselbe Bezugszeichen wie in Fig. 1 und werden nich nochmals erläutert. Ein Entladungsgefäß 21 umschließt einen Gasraum 22, in welchem vermittels von Elektroden 24 und 25, welche sich über die gesamte Länge des Entladungsgefäßes 21 erstrecken, eine Hochfrequenzentladung erzeugt wird. Mit 26 ist ein Hochfrequenzgenerator bezeichnet, der auch die erforderlichen elektrischen Anpassungsglieder enthält. Die beschriebene Reaktionsbehältereinrichtung kann in gleicher Weise mit niederfrequentem Wechselstrom, vorzugsweise zwischen 50 Hz und 400 Hz, betrieben werden. Hierzu ist lediglich das Hochspannungsgerät 6 geeignet auszuwählen.2 shows an arrangement according to the invention, in which, in contrast to FIG. 1, the gas discharge is operated via a high-frequency generator. The gas cycle is identical to that from Fi. 1. The same components have the same reference numerals as in Fig. 1 and are not explained again. A discharge vessel 21 encloses a gas space 22, in which a high-frequency discharge is generated by means of electrodes 24 and 25, which extend over the entire length of the discharge vessel 21. With 26 a high-frequency generator is designated, which also contains the necessary electrical matching elements. The reaction vessel device described can be operated in the same way with low-frequency alternating current, preferably between 50 Hz and 400 Hz. For this purpose, only the high-voltage device 6 has to be suitably selected.

In Fig. 3 ist ein Querschnitt des Hochfrequenzentladungsgefäßes gemäß Fig. 2 dargestellt. Das Entladungsgefäß 21 selbst besteht aus einem elektrisch nichtleitenden Keramikmaterial, beispielsweise Al2O3. In der oberen und unteren Wand sind Kühlbohrungen 23 und 23' eingelassen, durch die Kühlwasser gepumpt werden kann. Die Elektroden 24 und 25 bestehen aus einem metallischen Werkstoff wie Aluminium, Kupfer oder Edelstahl. Es ist auch möglich, die katalytische Wirkung metallischer Oberflächen auszunutzen, um die Zusammensetzung des Gasgemisches, die sich durch die Entladung ändert, vorteilhaft zu beeinflussen.FIG. 3 shows a cross section of the high-frequency discharge vessel according to FIG. 2. The discharge vessel 21 itself consists of an electrically non-conductive ceramic material, for example Al 2 O 3 . Cooling bores 23 and 23 'through which cooling water can be pumped are embedded in the upper and lower walls. The electrodes 24 and 25 consist of a metallic material such as aluminum, copper or stainless steel. It is also possible to use the catalytic effect of metallic surfaces in order to advantageously influence the composition of the gas mixture, which changes as a result of the discharge.

In Fig. 4 ist schematisch mit 41 ein Gleichstromentladungsgefäß mit einem Entladungsraum 42 bezeichnet. Eine Elektrode 43 ist als Graphitkörper ausgebildet, der durch einen Wechselstrom auf Weißglut erhitzt werden kann. Mit 45 ist die Zuleitung für den Strom durch die Gasentladung bezeichnet. Der Wechselstrom wird mittels eines Trenntransformators 44 erzeugt und über Zuleitungen 46, 47 der Elektrode 43 zugeführt.In FIG. 4, a DC discharge vessel with a discharge space 42 is schematically designated by 41. An electrode 43 is designed as a graphite body, which by an alternating current can be heated to white heat. 45 is the supply line for the current through the gas discharge. The alternating current is generated by means of an isolating transformer 44 and fed to the electrode 43 via feed lines 46, 47.

In Fig. 5 ist schematisch mit 51 ein Hochfrequenzentladungsgefäß mit einem Entladungsraum 52 dargestellt. Ein kleiner Teil einer Hochfrequenzelektrode 54 ist durch einen länglichen Graphitkörper 53 ersetzt, der durch einen Wechselstrom auf Weißglut erhitzt werden kann. Der Wechselstrom geeigneter Stromstärke und Spannung wird über einen Trenntransformator 55 erzeugt und dem Graphitkörper über entsprechende Zuleitungen 56 und 57 zugeführt.A high-frequency discharge vessel with a discharge space 52 is shown schematically in FIG. 5 at 51. A small part of a high-frequency electrode 54 is replaced by an elongated graphite body 53 which can be heated to white heat by an alternating current. The alternating current of suitable current strength and voltage is generated via an isolating transformer 55 and fed to the graphite body via corresponding supply lines 56 and 57.

Am Beispiel einer mit Hochfrequenz angeregten Glimmentladung wird die Erfindung näher erläutert. Ein 60 cm langes Entladungsgefäß aus Al2O3, das entsprechend Fig. 2 mit Wasser gekühlt wird und das innenliegende Elektroden aus eloxiertem Aluminium hat, wird auf einer Seite an eine Gasflasche mit vorgemischtem Gas aus 50 % Helium und 50 % CO angeschlossen. An der gegenüberliegenden Seite führt eine Gasleitung zu einer Waschflasche mit Toluol. Auf der Austrittsseite der Waschflasche ist eine Pumpe angeschlossen. Im Unterschied zur Fig. 2 wird das Gas nicht im Kreislauf geführt. Das Entladungsgefäß ist an einen Hochfrequenzgenerator der Frequenz 56 MHz angeschlossen, die maximale Leistung beträgt 1000 W. Der Zufluß des Gases und die Pumpleistung werden so eingestellt, daß die Verweilzeit des Gases im Entladungsraum etwa 5 Sekunden beträgt. Während einer Betriebsdauer von 10 Minuten sammelt sich in der Waschflasche Roh-Fulleren an, das hauptsächlich die Atomzahlen 60 und 70 enthält.The invention is explained in more detail using the example of a glow discharge excited with high frequency. A 60 cm long discharge vessel made of Al 2 O 3 , which is cooled with water according to FIG. 2 and has internal electrodes made of anodized aluminum, is connected on one side to a gas bottle with premixed gas made of 50% helium and 50% CO. On the opposite side, a gas line leads to a wash bottle with toluene. A pump is connected to the outlet side of the wash bottle. In contrast to Fig. 2, the gas is not circulated. The discharge vessel is connected to a high-frequency generator with a frequency of 56 MHz, the maximum power is 1000 W. The inflow of the gas and the pump power are set so that the gas remains in the discharge space for about 5 seconds. Raw fullerene, which mainly contains the atomic numbers 60 and 70, accumulates in the wash bottle over an operating period of 10 minutes.

Durch Änderung der Betriebsparameter wie Gaszusammensetzung, Druck, Leistungsdichte und Durchflußgeschwindigkeit kann die Ausbeute optimiert und die Zusammensetzung des Rohfullerens variiert werden. Besonders vorteilhaft ist die Beladung des Gasstromes mit Graphitdampf vor dem Entladungsgefäß oder an der Einströmseite im Entladungsgefäß.By changing the operating parameters such as gas composition, pressure, power density and flow rate, the yield can be optimized and the composition of the raw filler can be varied. The loading of the Gas flow with graphite vapor in front of the discharge vessel or on the inflow side in the discharge vessel.

Ein weiterer Vorteil der Erfindung liegt darin, daß die Bildung der Fullerene im Volumen der Entladung erfolgt. Dadurch ist es ohne weiteres möglich, in großvolumigen Glimmentladungen Fullerene in größerem Maßstab herzustellen. Ähnliche Glimmentladungen werden beispielsweise in CO2-Lasern hoher Leistung für die Materialbearbeitung eingesetzt. Das Verfahren ist also skalierbar bis zu Anlagen zur kommerziellen Herstellung von Fullerenen.Another advantage of the invention is that fullerenes are formed in the volume of the discharge. This makes it possible to produce fullerenes on a larger scale in large-volume glow discharges. Similar glow discharges are used, for example, in high-performance CO 2 lasers for material processing. The process is therefore scalable up to plants for the commercial production of fullerenes.

Claims (15)

  1. Method and apparatus for production of cage molecules of carbon atoms with closed networks, especially of pentagonal and hexagonal rings, called fullerenes, in a reaction chamber device,
    characterized by
    - feeding of a gas mixture, which contains between 10% and 95% carbon monoxide (CO), especially 30% to 60%, and
    - exciting a glow discharge within the reaction chamber device.
  2. Method according to claim 1,
    characterized in that
    - the glow discharge occupies in essence homogenuosly the reaction chamber device.
  3. Method according to claim 1 or 2,
    characterized in that
    - a gas mixture is feeded in, which contains in addition to CO also helium (He) and/or argon (Ar) and/or carbon dioxide (CO2).
  4. Method according to any one or several of the preceding claims,
    characterized in that
    - the glow discharge is excited by direct current (dc).
  5. Method according to any one or several of the preceding claims,
    characterized in that
    - the glow discharge is excited by alternating current of low frequency, especially between 50 Hz and 400 Hz.
  6. Method according to any one or several of the preceding claims,
    characterized in that
    - the glow discharge is excited by high frequency, whereby the frequency can be between 100 kHz and 10 GHz.
  7. Method according to any one or several of the preceding claims,
    characterized in that
    - the energy transmission is supplied with clock pulses, whereby the pulse-duty factor can be between 10% and 90%.
  8. Method according to any one or several of the preceding claims,
    characterized in that
    - in addition carbon vapor of a hot graphite body can diffuse into the volume of the glow discharge.
  9. Method according to any one or several of the preceding claims,
    characterized in that
    - the gas mixture is flowing through the glow discharge chamber and after leaving the glow discharge volume the fullerenes are gained by washing out with an organic solvent.
  10. Method according to claim 9,
    characterized in that
    - the gas mixture is circulated and optionally added fresh gas mixture.
  11. Apparatus for production of cage molecules, especially according to any one or several of the method claims 1 to 10, with
    a reaction chamber device, in which a glow discharge, especially a direct current glow discharge, is exciteable, and
    at least one electrode,
    characterized in that
    - the electrode consists at least in parts of a graphite body, which is heatable up to white heat by an additional current.
  12. Apparatus according to claim 11,
    characterized by
    - a high frequency device, which works especially in a frequency range from 100 kHz to 10 GHz and which excites the glow discharge by capacitiv coupling.
  13. Apparatus according to claim 11 or 12,
    characterized in that
    - an inflow and/or outflow opening for a gas mixture is apparent.
  14. Apparatus according to claim 13
    characterized in that
    - the electrode with the graphite body is arranged near to the inflow opening.
  15. Apparatus according to any one or several of the preceding claims 11 to 14,
    characterized in that
    - the walls of the reaction chamber device can be cooled at least in parts.
EP94115504A 1993-10-02 1994-09-30 Process and apparatus for the preparation of fullerenes Expired - Lifetime EP0646544B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4333683 1993-10-02
DE4333683A DE4333683A1 (en) 1993-10-02 1993-10-02 Process and device for producing fullerenes

Publications (2)

Publication Number Publication Date
EP0646544A1 EP0646544A1 (en) 1995-04-05
EP0646544B1 true EP0646544B1 (en) 1997-08-13

Family

ID=6499299

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94115504A Expired - Lifetime EP0646544B1 (en) 1993-10-02 1994-09-30 Process and apparatus for the preparation of fullerenes

Country Status (3)

Country Link
EP (1) EP0646544B1 (en)
AT (1) ATE156779T1 (en)
DE (2) DE4333683A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998021146A1 (en) * 1996-11-13 1998-05-22 Viktor Ivanovich Petrik Method and device for producing fullerenes
US6156256A (en) * 1998-05-13 2000-12-05 Applied Sciences, Inc. Plasma catalysis of carbon nanofibers
CN103813561A (en) * 2013-04-16 2014-05-21 杜志刚 Plasma radon gas high pressure gas heating device method
CN103813559A (en) * 2013-04-16 2014-05-21 杜志刚 Plasma radon gas high-pressure gas heating device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993001128A1 (en) * 1991-07-10 1993-01-21 Commonwealth Scientific And Industrial Research Organisation Preparation and separation of fullerenes
JPH05124807A (en) * 1991-08-07 1993-05-21 Mitsubishi Kasei Corp Production of fluorenes
DE59201359D1 (en) * 1991-09-06 1995-03-23 Hoechst Ag Process for the production of fullerenes.
DE9314960U1 (en) * 1993-10-02 1994-02-03 Keesmann, Till, 69115 Heidelberg Device for the production of fullerenes

Also Published As

Publication number Publication date
EP0646544A1 (en) 1995-04-05
DE4333683A1 (en) 1995-04-06
DE59403715D1 (en) 1997-09-18
ATE156779T1 (en) 1997-08-15

Similar Documents

Publication Publication Date Title
DE69611100T2 (en) HEAT TREATMENT OF CARBON MATERIALS
EP1227999B1 (en) Method for producing a nanotube layer on a substrate
DE1155759B (en) Device for obtaining the purest crystalline semiconductor material for electrotechnical purposes
EP3710153B1 (en) Method and device for plasma-induced water splitting
DE68902995T2 (en) METHOD FOR HEATING A QUARTZ GLASS TUBE.
EP0646544B1 (en) Process and apparatus for the preparation of fullerenes
DE3424449A1 (en) SOURCE FOR NEGATIVE IONS
DE69628106T2 (en) Method and device for producing ozone
DE602005003659T2 (en) PREPARATION OF CARBONNANE TUBES
WO2019105678A1 (en) Spark emission spectrometer and method for operating same
WO2011050789A2 (en) Small power plant and method and device for obtaining high purity hydrogen
DE2248345C3 (en) Method of heating a gas
DE1764978A1 (en) Induction plasma generator
DE2842407C2 (en) Device for the surface treatment of workpieces by discharging ionized gases and method for operating the device
DE9314960U1 (en) Device for the production of fullerenes
DE2526613A1 (en) METHOD AND DEVICE FOR HEATING GASES
WO2009049981A1 (en) Hollow carbon fibres and method for the production thereof
EP0031588B1 (en) Process for the production of acetylene from coal
DE1464755A1 (en) High frequency arc generator
DE1648863C3 (en) Method and apparatus for atomic absorption spectral analysis
DE2512719A1 (en) PROCESS FOR GAS HEATING AND PLASMACHEMICAL ARC REACTOR FOR THE PERFORMANCE
DE977064C (en) Process for the production of metals with uniform, very small particle sizes by thermal decomposition of metal carbonyls
DE3208086C2 (en) Using a plasma cannon
DE2818037A1 (en) POWERFUL ENERGY TRANSFER
DE3236037A1 (en) METHOD AND DEVICE FOR GENERATING HOT GASES

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB LI

17P Request for examination filed

Effective date: 19950920

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19960926

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB LI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19970813

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19970813

REF Corresponds to:

Ref document number: 156779

Country of ref document: AT

Date of ref document: 19970815

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59403715

Country of ref document: DE

Date of ref document: 19970918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970930

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970930

EN Fr: translation not filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19970813

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080918

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100401