EP0638365A2 - Method and device for separating fine-grained solids into two grain size fractions - Google Patents

Method and device for separating fine-grained solids into two grain size fractions Download PDF

Info

Publication number
EP0638365A2
EP0638365A2 EP94112005A EP94112005A EP0638365A2 EP 0638365 A2 EP0638365 A2 EP 0638365A2 EP 94112005 A EP94112005 A EP 94112005A EP 94112005 A EP94112005 A EP 94112005A EP 0638365 A2 EP0638365 A2 EP 0638365A2
Authority
EP
European Patent Office
Prior art keywords
deflector wheel
flow
fine
dispersion
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP94112005A
Other languages
German (de)
French (fr)
Other versions
EP0638365B2 (en
EP0638365A3 (en
EP0638365B1 (en
Inventor
Jürgen Dr.-Ing. Stein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hosokawa Alpine AG
Original Assignee
Hosokawa Alpine AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6494711&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0638365(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hosokawa Alpine AG filed Critical Hosokawa Alpine AG
Publication of EP0638365A2 publication Critical patent/EP0638365A2/en
Publication of EP0638365A3 publication Critical patent/EP0638365A3/en
Application granted granted Critical
Publication of EP0638365B1 publication Critical patent/EP0638365B1/en
Publication of EP0638365B2 publication Critical patent/EP0638365B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/14Construction of the underflow ducting; Apex constructions; Discharge arrangements ; discharge through sidewall provided with a few slits or perforations
    • B04C5/18Construction of the underflow ducting; Apex constructions; Discharge arrangements ; discharge through sidewall provided with a few slits or perforations with auxiliary fluid assisting discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B5/00Washing granular, powdered or lumpy materials; Wet separating
    • B03B5/28Washing granular, powdered or lumpy materials; Wet separating by sink-float separation
    • B03B5/30Washing granular, powdered or lumpy materials; Wet separating by sink-float separation using heavy liquids or suspensions
    • B03B5/32Washing granular, powdered or lumpy materials; Wet separating by sink-float separation using heavy liquids or suspensions using centrifugal force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B5/00Washing granular, powdered or lumpy materials; Wet separating
    • B03B5/60Washing granular, powdered or lumpy materials; Wet separating by non-mechanical classifiers, e.g. slime tanks 
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B3/00Centrifuges with rotary bowls in which solid particles or bodies become separated by centrifugal force and simultaneous sifting or filtering
    • B04B3/04Centrifuges with rotary bowls in which solid particles or bodies become separated by centrifugal force and simultaneous sifting or filtering discharging solid particles from the bowl by a conveying screw coaxial with the bowl axis and rotating relatively to the bowl
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B7/00Selective separation of solid materials carried by, or dispersed in, gas currents
    • B07B7/08Selective separation of solid materials carried by, or dispersed in, gas currents using centrifugal force
    • B07B7/083Selective separation of solid materials carried by, or dispersed in, gas currents using centrifugal force generated by rotating vanes, discs, drums, or brushes

Definitions

  • the invention relates to the separation of a fine-grained solid dispersed in a liquid into a fine material and a coarse material. It relates to a method and a device for carrying out this separation in the grain size range below approximately 50 ⁇ m, preferably below approximately 10 ⁇ m.
  • hydrocyclones are preferably used, in which by the action of centrifugal force, wall friction and drag force a liquid on the solid particles this separation is achieved. Due to the systemic entangled flow conditions in a hydrocyclone, however, a sharp separation is not possible with a certain grain size, so that the overlap area, i.e. the grain size range, which is contained both in the fine material and in the coarse material, is usually undesirably large.
  • the invention is therefore based on the object of specifying a method and a device for separating a fine-grained solid into a fine material and a coarse material, which economically enable a sharp separation, in particular in the grain size range below approximately 10 ⁇ m.
  • the fine-grained solid is dispersed in a drippable liquid and the dispersion is forced into a defined sink flow with a superimposed rotation flow generated independently of the sink flow.
  • the ratio of the independently adjustable velocities of the sink and rotational flow determines the size of the separation grain or the separation limit between fine and coarse material, i.e. the particle size for which the centrifugal force generated by the rotation and the drag force of the liquid generated by the sink flow are in equilibrium that is, it has the same probability of entering the fine or coarse material.
  • the method according to the invention can be implemented particularly simply by producing sink and rotational flow in a rotatingly driven deflector wheel, through which flow flows from the outside inwards, with blades running parallel to its axis of rotation and forming flow channels, the solid dispersion being given to the deflector wheel on the outer circumference.
  • the device suitable for carrying out the method according to the invention essentially consists of a pressure-resistant housing with connections for introducing the feed material dispersion and the discharge of fine and coarse material dispersion, at least one deflector wheel rotatably mounted and driven in the housing and a feed pump for introducing the feed material dispersion.
  • Advantageous embodiments of this device are shown in claims 5 to 12.
  • the deflector wheel is arranged in a closed housing into which the solid to be classified and dispersed in a liquid - the feed dispersion - is conveyed with a feed pump via an inlet connection.
  • the dispersion flows through the rotating deflector wheel from the outside in, whereby the solid is separated into fine and coarse material. Particles in which the drag force exerted by the flowing liquid is smaller than the centrifugal force induced by the rotation of the deflector wheel cannot get inside the wheel and are rejected. Particles where the drag force is greater than the centrifugal force enter the inside of the wheel with the liquid.
  • This part of the dispersion thus contains the fine material fraction and leaves the housing of the separating device through a discharge connection which connects to the interior of the deflector wheel.
  • the rejected particles leave the housing with the remaining part of the liquid as coarse material dispersion through a second discharge connection.
  • the fine material dispersion Due to the rotation of the deflector wheel, the fine material dispersion has to overcome a relatively high pressure when flowing through the wheel against the centrifugal force.
  • This pressure which is in the order of 3 to 20 bar depending on the operating state, is applied by the feed pump.
  • This load must correspond to the housing of the separating device and the bearing of the drive shaft for the deflector wheel; for the latter, the use of a mechanical seal is required in most cases.
  • the operating parameters that determine the size of the separating grain are the peripheral speed of the deflector wheel and the radial flow speed in its flow channels formed by blades.
  • the peripheral speed can be set solely via its speed; the radial flow velocity results from the free flow cross section of the deflector wheel and the volume flow of the fine material dispersion.
  • This together with the volume flow of the coarse material dispersion are determined by the feed quantity of the feed material dispersion, which is set via the delivery rate of the feed pump. Since the fine material dispersion should usually flow freely, its volume flow is set indirectly via the feed quantity and the division ratio of the volume flows of fine and coarse material dispersion. This division ratio is changed by changing the volume flow of the coarse material dispersion, e.g. by changing the discharge cross-section or by metering the coarse material dispersion.
  • the axis of rotation of the deflector wheel lies in the axis of a rotationally symmetrical, for example cylindrical, housing, in which the liquid and the solid dispersed therein also rotate with the deflector wheel without special measures. If the radial distance between the inner wall of the container and the circumference of the deflector wheel is kept small, in particular in the case of a cylindrical container, a uniform flow against the deflector wheel is achieved over its entire length. Short-circuit currents and backflow effects can thus be effectively avoided. Optimal flow conditions are achieved if the radial distance between the inner wall and the wheel circumference is less than 10% of the diameter of the deflector wheel.
  • deflector wheels In more difficult cases or when using several deflector wheels in the same housing, if very fine separations and high throughput rates are required, it can be advantageous to provide the deflector wheels with special devices, e.g. with rotating ring disks, which ensure even pre-acceleration of liquid and solid in the outer area of the deflector wheels.
  • the closure for the feed material dispersion can be attached to the housing above, below or in the area of the deflector wheel, a tangential junction with inflow in the direction of rotation of the deflector wheel promoting the pre-acceleration of liquid and solid.
  • An additional pre-classification effect can be achieved if the connection for the feed dispersion with inflow in the axial direction is arranged at the lower end of the housing and centrally to it. Coarse particles are thereby carried close to the housing wall, so that they no longer burden the deflector wheel, but are discharged directly.
  • a longer flow path e.g. a conical housing part that widens from the connection cross section to the housing cross section can further improve the pre-classification effect.
  • the deflector wheel can be designed in a known manner as a cylindrical paddle wheel with a free interior.
  • the potential vortex flow that forms in this interior creates a high pressure loss, so that the use of such a deflector wheel only makes sense at low speeds, ie for relatively coarse separations at low throughputs.
  • a suitable pre-acceleration is usually achieved by a suitable arrangement of the connection for the feed material dispersion.
  • ring disks which are fixedly connected to the deflector wheel and which extend radially outward from the peripheral region of the deflector wheel and are arranged at an axial distance from one another and coaxially to the axis of rotation of the deflector wheel. Due to their entrainment effect, these ring discs cause a uniform and complete pre-acceleration until they enter the blade channels.
  • a uniform flow through the deflector wheel is also decisive for an optimal separation effect.
  • the flow can be improved through shaped bodies which are rotationally symmetrical and arranged coaxially with the deflector wheel, the radially oriented blades of the deflector wheel extending from its circumference to the shaped body.
  • the shaped body can be designed, for example, as a cylinder, cone or truncated cone.
  • Fig. 1 shows a schematic representation of a device designed according to the invention with a cylindrical housing 1, to which the bearing 8 for receiving the deflector wheel 3 is flanged directly.
  • the vertical-axis de-icing wheel 3 is driven by the pulley 12 and hollow shaft 9, the bearings of which are sealed with a shaft seal 6 against the interior of the housing 1.
  • the feed material to be separated, dispersed in a liquid is pumped through connection 2 into the housing 1, from where it reaches the deflector wheel 3.
  • the fine material separated by the separating action of the deflector wheel 3 is discharged together with part of the liquid as a fine material dispersion through the hollow shaft 9 into the fixed fine material collector 10 and flows out through connection 4 for further use.
  • the coarse material rejected by the deflector wheel 3 flows with the remaining liquid through the opening 11 arranged centrally in the bottom of the housing 1 into the coarse material collector 13, which it leaves through connection 5 as coarse material dispersion.
  • the amount of coarse material dispersion flowing off can be controlled by changing the cross section of the opening 11; the axially adjustable slide 7 is used for this purpose.
  • Fig. 2 shows a variant with several, horizontal-axis deflector wheels 3, which are arranged in a common housing 1.
  • Each deflector wheel 3 is driven by its own motor (not shown here) via pulley 12. This makes it possible to set the speed of each deflector wheel 3 individually, so that a plurality of differently composed fine material dispersions can also be subtracted from a feed material dispersion.
  • This variant is preferably used to achieve high throughputs with a low separation limit and the same separation limit for all deflector wheels.
  • a funnel-shaped, tapering component 14 is attached, at the lowest point of which the port 2 for the feed of the feed dispersion opens. 1, the connections 2 and 5 are interchanged in their position.
  • This design serves to achieve a pre-classification of the feed material, such that the rotating deflector wheel 3 causes the introduced dispersion to rotate, by means of which coarse particles are carried to the interior walls of component 14 and housing 1 before entering the deflector wheel 3 and are braked there so that they can no longer enter the deflector wheel 3, but are immediately discharged through the connection 5.
  • the quantity setting for the coarse material dispersion is made here by the slide 7 inserted directly into the connection 5.
  • the deflector wheels 3 in FIGS. 1 to 3 essentially consist of two limiting disks 15, 16 which are connected to one another at an axial distance, between which blades 17 which run parallel to the axis of rotation and form flow channels are evenly distributed over the circumference of the disks, being vertical or below can be aligned at an angle to the circumference.
  • the fine material dispersion is discharged into the hollow shaft 9 through a central bore in the one limiting disk 15.
  • the peripheral surface determined by the outer edges of the blades 17 is a cylindrical surface. But it can also as in Fig. 4 as a conical surface with the largest diameter on the Limiting plate 15 may be formed with the central bore in order to achieve a more uniform flow through the deflector wheel 3, especially in the free interior.
  • the deflector wheels 3 of FIGS. 6 and 7 in turn have a cylindrical circumferential surface, the blades 17, which are oriented radially here, however, extending up to the axis of rotation of the deflector wheel 3. In this version, there is no potential vortex, but one Solid-state vortex flow in deflector wheel 3.
  • flat annular disks 19 are also attached at the same mutual spacing, which extend radially outward from the outer circumference of the deflector wheel 3 and serve to pre-accelerate the feed material dispersion flowing in from the outside of the deflector wheel 3.
  • FIGS. 8 and 9 show in longitudinal and cross section a deflector wheel 3 with a coaxial molded body in the form of a cylinder, which is designed as part of the hollow shaft 9.
  • the shaped body has a gap opening 20 in the length of the axial extension of the blades 17, through which the fine material dispersion can enter the hollow shaft 9, from where it passes through the fine material collector 10 and connection 4 (FIGS. 1 to 3 ) is removed from the separation device.

Abstract

Method and device for separating a fine-grained solid into a fine material and a coarse material at a separating grain size below 50 mu m, preferably below approximately 10 mu m. The aim of the invention is to indicate a method and a device which, in an economical manner, make possible a clear separation in particular in the grain size range below approximately 10 mu m. To achieve this aim, the fine-grained solid is dispersed in a liquid which can form drops and the dispersion is forced into a defined sink flow with a superimposed rotation flow generated independently of the sink flow. The ratio of the speeds of the sink flow and the rotation flow determines the separating grain size. Serving as the device is a rotary-driven deflector wheel with blades running parallel to its axis of rotation and forming flow ducts, which is flowed through from the outside to the inside and to which the solid dispersion is fed at the external circumference. <IMAGE>

Description

Die Erfindung bezieht sich auf die Trennung eines feinkörnig in einer Flüssigkeit dispergierten Feststoffs in ein Feingut und ein Grobgut. Sie betrifft ein Verfahren und eine Vorrichtung zur Durchfuhrung dieser Trennung im Korngrößenbereich unterhalb von etwa 50 µm, vorzugsweise unterhalb von etwa 10 µm.The invention relates to the separation of a fine-grained solid dispersed in a liquid into a fine material and a coarse material. It relates to a method and a device for carrying out this separation in the grain size range below approximately 50 μm, preferably below approximately 10 μm.

Zur Lösung der Aufgabe, einen feinkörnigen Feststoff mit einer Kornverteilung von 0 bis maximal 50 µm in ein Feingut und ein Grobgut bei einer Trenngrenze unterhalb von etwa 10 µm zu trennen, werden bevorzugt Hydrozyklone eingesetzt, in denen durch die Einwirkung von Fliehkraft, Wandreibung und Schleppkraft einer Flüssigkeit auf die Feststoffpartikel diese Trennung erzielt wird. Infolge der systembedingten verwickelten Strömungsverhältnisse in einem Hydrozyklon ist jedoch eine scharfe Trennung bei einer bestimmten Korngröße nicht möglich, so daß der Überschneidungsbereich, d.h. der Korngrößenbereich, der sowohl im Feingut als auch im Grobgut enthalten ist, meist unerwünscht groß ist.To solve the task of separating a fine-grained solid with a grain size distribution of 0 to a maximum of 50 µm into a fine material and a coarse material with a separation limit below about 10 µm, hydrocyclones are preferably used, in which by the action of centrifugal force, wall friction and drag force a liquid on the solid particles this separation is achieved. Due to the systemic entangled flow conditions in a hydrocyclone, however, a sharp separation is not possible with a certain grain size, so that the overlap area, i.e. the grain size range, which is contained both in the fine material and in the coarse material, is usually undesirably large.

Der Erfindung liegt daher die Aufgabe zugrunde, ein verfahren und eine Vorrichtung zur Trennung eines feinkörnigen Feststoffes in ein Feingut und ein Grobgut anzugeben, die in wirtschaftlicher Weise eine scharfe Trennung insbesondere im Korngrößenbereich unterhalb von etwa 10 µm ermöglichen. Zur Lösung dieser Aufgabe wird der feinkörnige Feststoff in einer tropfbaren Flüssigkeit dispergiert und die Dispersion in eine definierte Senkenströmung mit überlagerter, unabhängig von der Senkenströmung erzeugter Rotationsströmung gezwungen. Das Verhältnis der dabei unabhängig voneinander einstellbaren Geschwindigkeiten von Senken- und Rotationsströmung bestimmt die Trennkorngröße bzw. Trenngrenze zwischen Feingut und Grobgut, d.h. die Partikelgröße, für die die durch die Rotation erzeugte Fliehkraft und die durch die Senkenströmung erzeugte Schleppkraft der Flüssigkeit im Gleichgewicht sind, die also mit gleicher Wahrscheinlichkeit in das Feingut oder das Grobgut gelangt.The invention is therefore based on the object of specifying a method and a device for separating a fine-grained solid into a fine material and a coarse material, which economically enable a sharp separation, in particular in the grain size range below approximately 10 μm. To solve this problem, the fine-grained solid is dispersed in a drippable liquid and the dispersion is forced into a defined sink flow with a superimposed rotation flow generated independently of the sink flow. The ratio of the independently adjustable velocities of the sink and rotational flow determines the size of the separation grain or the separation limit between fine and coarse material, i.e. the particle size for which the centrifugal force generated by the rotation and the drag force of the liquid generated by the sink flow are in equilibrium that is, it has the same probability of entering the fine or coarse material.

Besonders einfach läßt sich das erfindungsgemäße Verfahren dadurch realisieren, daß Senken- und Rotationsströmung in einem rotierend angetriebenen, von außen nach innen durchströmten Abweiserad mit parallel zu seiner Drehachse verlaufenden und Strömungskanäle bildenden Schaufeln erzeugt werden, wobei die Feststoffdispersion dem Abweiserad am Außenumfang aufgegeben wird.The method according to the invention can be implemented particularly simply by producing sink and rotational flow in a rotatingly driven deflector wheel, through which flow flows from the outside inwards, with blades running parallel to its axis of rotation and forming flow channels, the solid dispersion being given to the deflector wheel on the outer circumference.

Die zur Durchführung des erfindungsgemäßen Verfahrens geeignete Vorrichtung besteht im wesentlichen aus einem druckfesten Gehäuse mit Anschlüssen für das Einbringen der Aufgabegutdispersion und das Austragen von Feingut- und Grobgutdispersion, mindestens einem im Gehäuse drehbar gelagerten und angetriebenen Abweiserad und einer Speisepumpe für das Einbringen der Aufgabegutdispersion. Vorteilhafte Ausgestaltungen dieser Vorrichtung sind in den Ansprüchen 5 bis 12 dargestellt.The device suitable for carrying out the method according to the invention essentially consists of a pressure-resistant housing with connections for introducing the feed material dispersion and the discharge of fine and coarse material dispersion, at least one deflector wheel rotatably mounted and driven in the housing and a feed pump for introducing the feed material dispersion. Advantageous embodiments of this device are shown in claims 5 to 12.

Die folgenden Ausführungen beschreiben die Erfindung im einzelnen:
Das Abweiserad ist in einem geschlossenen Gehäuse angeordnet, in das der zu klassierende, in einer Flüssigkeit dispergierte Feststoff - die Aufgabegutdispersion - mit einer Speisepumpe über einen Zulaufanschluß gefördert wird. Die Dispersion durchströmt das rotierende Abweiserad von außen nach innen, wobei die Trennung des Feststoffs in Feingut und Grobgut stattfindet. Partikel, bei denen die durch die strömende Flüssigkeit ausgeübte Schleppkraft kleiner ist als die durch die Rotation des Abweiserades induzierte Fliehkraft, können nicht in das Innere des Rades gelangen und werden abgewiesen. Partikel, bei denen die Schleppkraft größer ist als die Fliehkraft, gelangen mit der Flüssigkeit in das Innere des Rades. Dieser Teil der Dispersion enthält somit die Feingutfraktion und verläßt das Gehäuse der Trennvorrichtung durch einen Austragsanschluß, der sich an den Innenraum des Abweiserades anschließt. Durch einen zweiten Austragsanschluß verlassen die abgewiesenen Partikel mit dem restlichen Teil der Flüssigkeit als Grobgutdispersion das Gehäuse.
The following statements describe the invention in detail:
The deflector wheel is arranged in a closed housing into which the solid to be classified and dispersed in a liquid - the feed dispersion - is conveyed with a feed pump via an inlet connection. The dispersion flows through the rotating deflector wheel from the outside in, whereby the solid is separated into fine and coarse material. Particles in which the drag force exerted by the flowing liquid is smaller than the centrifugal force induced by the rotation of the deflector wheel cannot get inside the wheel and are rejected. Particles where the drag force is greater than the centrifugal force enter the inside of the wheel with the liquid. This part of the dispersion thus contains the fine material fraction and leaves the housing of the separating device through a discharge connection which connects to the interior of the deflector wheel. The rejected particles leave the housing with the remaining part of the liquid as coarse material dispersion through a second discharge connection.

Durch die Rotation des Abweiserades muß die Feingutdispersion beim Durchströmen des Rades entgegen der Fliehkraft einen relativ hohen Druck überwinden. Dieser Druck, der je nach Betriebszustand in der Größenordnung von 3 bis 20 bar liegt, wird durch die Speisepumpe aufgebracht. Dieser Belastung entsprechend muß das Gehäuse der Trennvorrichtung und ebenso die Lagerung der Antriebswelle für das Abweiserad druckfest ausgeführt sein; für letztere ist dabei in den meisten Fällen die Verwendung einer Gleitringdichtung erforderlich.Due to the rotation of the deflector wheel, the fine material dispersion has to overcome a relatively high pressure when flowing through the wheel against the centrifugal force. This pressure, which is in the order of 3 to 20 bar depending on the operating state, is applied by the feed pump. This load must correspond to the housing of the separating device and the bearing of the drive shaft for the deflector wheel; for the latter, the use of a mechanical seal is required in most cases.

Die die Trennkorngröße bestimmenden Betriebsgrößen sind die Umfangsgeschwindigkeit des Abweiserades und die radiale Strömungsgeschwindigkeit in dessen durch Schaufeln gebildeten Strömungskanälen. Die Umfangsgeschwindigkeit kann bei gegebenem Außendurchmesser des Abweiserades allein über seine Drehzahl eingestellt werden; die radiale Strömungsgeschwindigkeit ergibt sich aus dem freien Strömungsquerschnitt des Abweiserades und dem Volumenstrom der Feingutdispersion. Dieser zusammen mit dem Volumenstrom der Grobgutdispersion werden durch die Zulaufmenge der Aufgabegutdispersion bestimmt, die über die Förderleistung der Speisepumpe eingestellt wird. Da die Feingutdispersion für gewöhnlich frei auslaufen soll, erfolgt die Einstellung ihres Volumenstroms indirekt über die Zulaufmenge und das Teilungsverhältnis der Volumenströme von Feingut- und Grobgutdispersion. Die Änderung dieses Teilungsverhältnisses erfolgt dadurch, daß der Volumenstrom der Grobgutdispersion verändert wird, z.B. durch Ändern des Austragsquerschnittes oder durch dosiertes Abpumpen der Grobgutdispersion.The operating parameters that determine the size of the separating grain are the peripheral speed of the deflector wheel and the radial flow speed in its flow channels formed by blades. For a given outer diameter of the deflector wheel, the peripheral speed can be set solely via its speed; the radial flow velocity results from the free flow cross section of the deflector wheel and the volume flow of the fine material dispersion. This together with the volume flow of the coarse material dispersion are determined by the feed quantity of the feed material dispersion, which is set via the delivery rate of the feed pump. Since the fine material dispersion should usually flow freely, its volume flow is set indirectly via the feed quantity and the division ratio of the volume flows of fine and coarse material dispersion. This division ratio is changed by changing the volume flow of the coarse material dispersion, e.g. by changing the discharge cross-section or by metering the coarse material dispersion.

Die Drehachse des Abweiserades liegt im einfachsten Fall in der Achse eines rotationssymmetrischen, z.B. zylindrischen Gehäuses, in dem die Flüssigkeit und der darin dispergierte Feststoff ohne besondere Maßnahmen gleichmäßig mit dem Abweiserad mitrotiert. Wird insbesondre bei einem zylindrischen Behälter der radiale Abstand zwischen der Innenwand des Behälters und dem Umfang des Abweiserades klein gehalten, erreicht man eine gleichmäßige Anströmung des Abweiserades über dessen gesamte Länge. Kurzschlußströmungen und Rückströmeffekte können so wirkungsvoll vermieden werden. Optimale Strömungsverhältnisse werden erreicht, wenn der radiale Abstand zwischen Innenwand und Radumfang weniger als 10 % des Durchmessers des Abweiserades beträgt.In the simplest case, the axis of rotation of the deflector wheel lies in the axis of a rotationally symmetrical, for example cylindrical, housing, in which the liquid and the solid dispersed therein also rotate with the deflector wheel without special measures. If the radial distance between the inner wall of the container and the circumference of the deflector wheel is kept small, in particular in the case of a cylindrical container, a uniform flow against the deflector wheel is achieved over its entire length. Short-circuit currents and backflow effects can thus be effectively avoided. Optimal flow conditions are achieved if the radial distance between the inner wall and the wheel circumference is less than 10% of the diameter of the deflector wheel.

In schwierigeren Fällen oder bei Einsatz mehrerer Abweiseräder im gemeinsamen Gehäuse, wenn sehr feine Trennungen und hohe Durchsatzleistungen gefordert werden, kann es von Vorteil sein, die Abweiseräder mit besonderen Einrichtungen zu versehen, z.B. mit rotierenden Ringscheiben, die eine gleichmäßige Vorbeschleunigung von Flüssigkeit und Feststoff bereits im Außenbereich der Abweiseräder bewirken.In more difficult cases or when using several deflector wheels in the same housing, if very fine separations and high throughput rates are required, it can be advantageous to provide the deflector wheels with special devices, e.g. with rotating ring disks, which ensure even pre-acceleration of liquid and solid in the outer area of the deflector wheels.

Der Abschluß für die Aufgabegutdispersion kann oberhalb, unterhalb oder im Bereich des Abweiserades am Gehäuse angebracht sein, wobei eine tangentiale Einmündung mit Einströmung in Drehrichtung des Abweiserades die Vorbeschleunigung von Flüssigkeit und Feststoff begünstigt. Ein zusätzlicher Vorklassiereffekt läßt sich erreichen, wenn der Anschluß für die Aufgabegutdispersion mit Einströmung in axialer Richtung am unteren Ende des Gehäuses und zentral dazu angeordnet wird. Grobe Partikel werden dadurch in die Nähe der Gehäusewand getragen, so daß sie das Abweiserad nicht mehr belasten, sondern direkt ausgetragen werden. Ein längerer Strömungsweg, z.B. durch ein sich vom Anschlußquerschnitt auf den Gehäusequerschnitt erweiterndes, konisches Gehäuseteil, kann den Vorklassiereffekt noch verbessern.The closure for the feed material dispersion can be attached to the housing above, below or in the area of the deflector wheel, a tangential junction with inflow in the direction of rotation of the deflector wheel promoting the pre-acceleration of liquid and solid. An additional pre-classification effect can be achieved if the connection for the feed dispersion with inflow in the axial direction is arranged at the lower end of the housing and centrally to it. Coarse particles are thereby carried close to the housing wall, so that they no longer burden the deflector wheel, but are discharged directly. A longer flow path, e.g. a conical housing part that widens from the connection cross section to the housing cross section can further improve the pre-classification effect.

Das Abweiserad kann in bekannter Weise als zylindrisches Schaufelrad mit freiem Innenraum ausgeführt sein. Die sich in diesem Innenraum ausbildende Potentialwirbelströmung erzeugt jedoch einen hohen Druckverlust, so daß der Einsatz eines solchen Abweiserades nur bei niedrigen Drehzahlen sinnvoll ist, d.h. für relativ grobe Trennungen bei kleinen Durchsätzen.The deflector wheel can be designed in a known manner as a cylindrical paddle wheel with a free interior. However, the potential vortex flow that forms in this interior creates a high pressure loss, so that the use of such a deflector wheel only makes sense at low speeds, ie for relatively coarse separations at low throughputs.

Mit einem Abweiserad, bei dem sich radial ausgerichtete Schaufeln vom Umfang bis in den Bereich der Drehachse des Abweiserades erstrecken, kann die Ausbildung der Potentialwirbelströmung verhindert werden. Der Trennvorgang erfolgt nun in einem sogenannten Festkörperwirbel, dessen höchste Umfangsgeschwindigkeit im Gegensatz zur Potentialwirbelströmung an der Außenkante der Schaufeln liegt. Der Druckverlust ist erheblich geringer, dabei unabhängig vom Volumenstrom und ausschließlich von der Drehzahl des Abweiserades abhängig. In überraschender Weise wurde gefunden, daß mit einem Abweiserad mit Festkörperwirbel feinere Trennungen mit höherem Feingutauszug bei gleichzeitig größeren Durchsatzleistungen als bei einem Abweiserad mit Potentialwirbel erreicht werden können.With a deflector wheel, in which radially aligned blades extend from the circumference to the region of the axis of rotation of the deflector wheel, the formation of the potential vortex flow can be prevented. The separation process now takes place in a so-called solid vortex, the highest peripheral speed of which, in contrast to the potential vortex flow, lies on the outer edge of the blades. The pressure loss is considerably lower, regardless of the volume flow and solely dependent on the speed of the deflector wheel. Surprisingly, it was found that finer separations with a higher fines extraction and at the same time greater throughput rates can be achieved with a deflector wheel with solid-state vortex than with a deflector wheel with potential vortex.

Für eine optimale Trennwirkung eines Abweiserades ist eine möglichst vollständige Vorbeschleunigung von Flüssigkeit und Feststoff vor dem Eintritt in die Schaufelkanäle des Abweiserades erforderlich; dies gilt insbesondere bei Anwendung eines Abweiserades mit Festkörperwirbel. In der Regel wird durch eine geeignete Anordnung des Anschlusses für die Aufgabegutdispersion eine meist ausreichende Vorbeschleunigung erreicht. Wo dies nicht der Fall ist, helfen z.B. fest mit dem Abweiserad verbundene, sich vom Umfangsbereich des Abweiserades radial nach außen erstreckende Ringscheiben, die mit axialem Abstand zueinander und koaxial zur Drehachse des Abweiserades angeordnet sind. Diese Ringscheiben bewirken durch ihren Mitnahmeeffekt eine gleichmäßige und vollständige Vorbeschleunigung bis zum Eintritt in die Schaufelkanäle.For an optimal separating effect of a deflector wheel, the most complete possible pre-acceleration of liquid and solid is necessary before entering the blade channels of the deflector wheel; this applies in particular when using a deflector wheel with solid-state swivel. As a rule, a suitable pre-acceleration is usually achieved by a suitable arrangement of the connection for the feed material dispersion. Where this is not the case, e.g. ring disks which are fixedly connected to the deflector wheel and which extend radially outward from the peripheral region of the deflector wheel and are arranged at an axial distance from one another and coaxially to the axis of rotation of the deflector wheel. Due to their entrainment effect, these ring discs cause a uniform and complete pre-acceleration until they enter the blade channels.

Neben der Vorbeschleunigung ist auch eine gleichmäßige Durchströmung des Abweiserades für eine optimale Trennwirkung bestimmend. Vor allem bei einem Abweiserad mit Festkörperwirbel läßt sich die Durchströmung durch rotationssymmetrisch ausgebildete und koaxial zum Abweiserad angeordnete Formkörper verbessern, wobei sich die radial ausgerichteten Schaufeln des Abweiserades von dessen Umfang bis zu dem Formkörper erstrecken. Der Formkörper kann z.B. als Zylinder, Kegel oder Kegelstumpf ausgebildet sein.In addition to the pre-acceleration, a uniform flow through the deflector wheel is also decisive for an optimal separation effect. Especially in the case of a deflector wheel with a solid-state vortex, the flow can be improved through shaped bodies which are rotationally symmetrical and arranged coaxially with the deflector wheel, the radially oriented blades of the deflector wheel extending from its circumference to the shaped body. The shaped body can be designed, for example, as a cylinder, cone or truncated cone.

Bei der Klassierung eines in einer Flüssigkeit dispergierten Feststoffes besteht in den meisten Fällen keine Gefahr, daß sich der Feststoff an den von der Dispersion berührten Flächen ansetzt. Daher ist es möglich, bei fliegender Lagerung des Abweiserades die Antriebswelle, bei zweiseitiger Lagerung eine Achse für den Feingutaustrag rohrförmig auszubilden. Eine aufwendige Abdichtung des Feingutaustrittes gegen den Innenraum des Gehäuses kann dann entfallen. Die ausgetragene Feingutdispersion wird in einem Sammler aufgefangen und kann dann frei abfließen. Eine vorteilhafte Ausbildung ergibt sich dabei, wenn der oben erwähnte Formkörper als Teil der hohlen Antriebswelle oder Achse ausgebildet ist und für jeden von den Schaufeln des Abweiserades gebildeten Strömungskanal zumindest eine Öffnung aufweist, durch die Flüssigkeit und Feingut in die hohle Welle oder Achse eintreten kann.When classifying a solid dispersed in a liquid, in most cases there is no danger that the solid will adhere to the surfaces touched by the dispersion. It is therefore possible to design the drive shaft with the bearing wheel on the fly, and with an axle for the fine material discharge in the case of bilateral storage. A complex sealing of the fine material outlet against the interior of the housing can then be omitted. The fine material dispersion is collected in a collector and can then flow freely. An advantageous embodiment results if the above-mentioned shaped body is designed as part of the hollow drive shaft or axis and has at least one opening for each flow channel formed by the blades of the deflector wheel, through which liquid and fine material can enter the hollow shaft or axis.

Ausführungsbeispiele sind in den Zeichnungen dargestellt. Funktionell gleiche Bauelemente haben in allen Zeichnungen die gleiche Positionsnummer.Exemplary embodiments are shown in the drawings. Functionally identical components have the same position number in all drawings.

Fig. 1 zeigt in schematischer Darstellung eine erfindungsgemäß ausgebildete Vorrichtung mit zylindrischem Gehäuse 1, an das die Lagerung 8 zur Aufnahme des Abweiserades 3 direkt angeflanscht ist. Das vertikalachsige Abeiserad 3 wird der Riemenscheibe 12 und Hohlwelle 9 angetrieben deren Lager mit einer Wellendichtung 6 gegen den Innenraum des Gehäuses 1 abgedichtet sind. Das zu trennende, in einer Flüssigkeit dispergierte Aufgabegut wird durch Anschluß 2 in das Gehäuse 1 gepumpt, von wo es in das Abweiserad 3 gelangt. Das durch die Trennwirkung des Abweiserades 3 abgetrennte Feingut wird zusammen mit einem Teil der Flüssigkeit als Feingutdispersion durch die Hohlwelle 9 in den feststehenden Feingutsammler 10 ausgetragen und fließt durch Anschluß 4 zur Weiterverwendung ab. Das vom Abweiserad 3 abgewiesene Grobgut strömt mit der restlichen Flüssigkeit durch die im Boden des Gehäuses 1 zentral angeordnete Öffnung 11 in den Grobgutsammler 13 ab, den es durch Anschluß 5 als Grobgutdispersion verläßt. Die Menge der abfließenden Grobgutdispersion kann durch Ändern des Querschnitts der Öffnung 11 gesteuert werden; dazu dient hier der axial verstellbare Schieber 7.Fig. 1 shows a schematic representation of a device designed according to the invention with a cylindrical housing 1, to which the bearing 8 for receiving the deflector wheel 3 is flanged directly. The vertical-axis de-icing wheel 3 is driven by the pulley 12 and hollow shaft 9, the bearings of which are sealed with a shaft seal 6 against the interior of the housing 1. The feed material to be separated, dispersed in a liquid, is pumped through connection 2 into the housing 1, from where it reaches the deflector wheel 3. The fine material separated by the separating action of the deflector wheel 3 is discharged together with part of the liquid as a fine material dispersion through the hollow shaft 9 into the fixed fine material collector 10 and flows out through connection 4 for further use. The coarse material rejected by the deflector wheel 3 flows with the remaining liquid through the opening 11 arranged centrally in the bottom of the housing 1 into the coarse material collector 13, which it leaves through connection 5 as coarse material dispersion. The amount of coarse material dispersion flowing off can be controlled by changing the cross section of the opening 11; the axially adjustable slide 7 is used for this purpose.

Fig. 2 zeigt eine Variante mit mehreren, horizontalachsigen Abweiserädern 3, die in einem gemeinsamen Gehäuse 1 angeordnet sind. Jedes Abweiserad 3 wird durch einen eigenen (hier nicht dargestellten) Motor über Riemenscheibe 12 angetrieben. Damit ist es möglich, die Drehzahl eines jeden Abweiserades 3 individuell einzustellen, so daß aus einer Aufgabegutdispersion gleichzeitig auch mehrere unterschiedlich zusammengesetzte Feingutdispersionen abgezogen werden können. Vorzugsweise wird diese Variante dazu verwendet, hohe Durchsätze bei niedriger und bei allen Abweiserädern gleicher Trenngrenze zu erreichen.Fig. 2 shows a variant with several, horizontal-axis deflector wheels 3, which are arranged in a common housing 1. Each deflector wheel 3 is driven by its own motor (not shown here) via pulley 12. This makes it possible to set the speed of each deflector wheel 3 individually, so that a plurality of differently composed fine material dispersions can also be subtracted from a feed material dispersion. This variant is preferably used to achieve high throughputs with a low separation limit and the same separation limit for all deflector wheels.

In Fig. 3 ist anstelle des geraden Bodens von Gehäuse 1 (Fig. 1) ein trichterförmiges, sich nach unten verjüngendes Bauteil 14 befestigt, an dessen tiefster Stelle der Anschluß 2 für den Zulauf der Aufgabegutdispersion mündet. Gegenüber Fig. 1 sind die Anschlüsse 2 und 5 in ihrer Lage vertauscht. Diese Ausbildung dient dazu, eine Vorklassierung des Aufgabegutes zu erreichen, derart, daß das drehende Abweiserad 3 eine Rotation der eingebrachten Dispersion bewirkt, durch die grobe Partikel noch vor Eintritt in das Abweiserad 3 an die den Innenraum begrenzenden Wände von Bauteil 14 und Gehäuse 1 getragen und dort abgebremst werden, so daß sie nicht mehr in das Abweiserad 3 eintreten können, sondern gleich durch den Anschluß 5 ausgetragen werden. Die Mengeneinstellung für die Grobgutdispersion erfolgt hier durch den direkt in den Anschluß 5 eingesetzten Schieber 7.In Fig. 3, instead of the straight bottom of the housing 1 (Fig. 1), a funnel-shaped, tapering component 14 is attached, at the lowest point of which the port 2 for the feed of the feed dispersion opens. 1, the connections 2 and 5 are interchanged in their position. This design serves to achieve a pre-classification of the feed material, such that the rotating deflector wheel 3 causes the introduced dispersion to rotate, by means of which coarse particles are carried to the interior walls of component 14 and housing 1 before entering the deflector wheel 3 and are braked there so that they can no longer enter the deflector wheel 3, but are immediately discharged through the connection 5. The quantity setting for the coarse material dispersion is made here by the slide 7 inserted directly into the connection 5.

Die Abweiseräder 3 in den Figuren 1 bis 3 bestehen im wesentlichen aus zwei, mit axialem Abstand miteinander verbundenen Begrenzungsscheiben 15, 16, zwischen denen parallel zur Drehachse verlaufende und Strömungskanäle bildende Schaufeln 17 über den Umfang der Scheiben gleichmäßig verteilt sind, wobei sie senkrecht oder unter einem Winkel zum Umfang ausgerichtet sein können. Durch eine zentrale Bohrung in der einen Begrenzungsscheibe 15 wird die Feingutdispersion in die Hohlwelle 9 ausgetragen. Die durch die Außenkanten der Schaufeln 17 bestimmte Umfangsfläche ist eine Zylinderfläche. Sie kann aber auch wie in Fig. 4 als Kegelfläche mit größtem Durchmesser an der Begrenzungsscheibe 15 mit der zentralen Bohrung ausgebildet sein, um eine gleichmäßigere Durchströmung des Abweiserades 3 vor allem im freien Innenraum zu erreichen.The deflector wheels 3 in FIGS. 1 to 3 essentially consist of two limiting disks 15, 16 which are connected to one another at an axial distance, between which blades 17 which run parallel to the axis of rotation and form flow channels are evenly distributed over the circumference of the disks, being vertical or below can be aligned at an angle to the circumference. The fine material dispersion is discharged into the hollow shaft 9 through a central bore in the one limiting disk 15. The peripheral surface determined by the outer edges of the blades 17 is a cylindrical surface. But it can also as in Fig. 4 as a conical surface with the largest diameter on the Limiting plate 15 may be formed with the central bore in order to achieve a more uniform flow through the deflector wheel 3, especially in the free interior.

Die gleiche Aufgabe erfüllt in Fig. 5 der konzentrisch in das Abweiserad 3 eingesetzte und an der Begrenzungsscheibe 16 befestigte kegelförmige Formkörper 18.The same task is performed in FIG. 5 by the conical shaped body 18 inserted concentrically into the deflector wheel 3 and fastened to the limiting disk 16.

Die Abweiseräder 3 der Figuren 6 und 7 haben wiederum eine zylindrische Umfangsfläche, wobei sich die hier radial ausgerichteten Schaufeln 17 jedoch bis zur Drehachse des Abweiserades 3 erstrecken. Bei dieser Ausführung bildet sich keine Potentialwirbel-, sondern eine
Festkörperwirbelströmung im Abweiserad 3 aus. Am Abweiserad 3 der Fig. 7 sind außerdem noch ebene Ringscheiben 19 mit gleichem gegenseitigen Abstand befestigt, die sich vom Außenumfang des Abweiserades 3 radial nach außen erstrecken und zur Vorbeschleunigung der von außen dem Abweiserad 3 zuströmenden Aufgabegutdispersion dienen.
The deflector wheels 3 of FIGS. 6 and 7 in turn have a cylindrical circumferential surface, the blades 17, which are oriented radially here, however, extending up to the axis of rotation of the deflector wheel 3. In this version, there is no potential vortex, but one
Solid-state vortex flow in deflector wheel 3. On the deflector wheel 3 in FIG. 7, flat annular disks 19 are also attached at the same mutual spacing, which extend radially outward from the outer circumference of the deflector wheel 3 and serve to pre-accelerate the feed material dispersion flowing in from the outside of the deflector wheel 3.

Die Figuren 8 und 9 zeigen in Längs- und Ouerschnitt ein Abweiserad 3 mit koaxialem Formkörper in Form eines Zylinders, der als Teil der Hohlwelle 9 ausgebildet ist. Für jeden von zwei benachbarten Schaufeln 17 gebildeten Strömungskanal weist der Formkörper eine Spaltöffnung 20 in Länge der axialen Erstreckung der Schaufeln 17, durch die die Feingutdispersion in die Hohlwelle 9 eintreten kann, von wo sie über den Feingutsammler 10 und Anschluß 4 (Figuren 1 bis 3) aus der Trennvorrichtung abgeführt wird.FIGS. 8 and 9 show in longitudinal and cross section a deflector wheel 3 with a coaxial molded body in the form of a cylinder, which is designed as part of the hollow shaft 9. For each flow channel formed by two adjacent blades 17, the shaped body has a gap opening 20 in the length of the axial extension of the blades 17, through which the fine material dispersion can enter the hollow shaft 9, from where it passes through the fine material collector 10 and connection 4 (FIGS. 1 to 3 ) is removed from the separation device.

Claims (13)

Verfahren zur Trennung eines feinkörnigen Feststoffes in ein Feingut und ein Grobgut, dadurch gekennzeichnet, daß der feinkörnige Feststoff in einer tropfbaren Flüssigkeit dispergiert und die Dispersion in eine definierte Senkenströmung mit überlagerter, unabhängig von der Senkenströmung erzeugter Rotationsströmung gezwungen wird.Process for separating a fine-grained solid into a fine and a coarse material, characterized in that the fine-grained solid is dispersed in a drippable liquid and the dispersion is forced into a defined sink flow with a superimposed rotation flow generated independently of the sink flow. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Trennkorngröße zwischen Feingut und Grobgut des feinkörnigen Feststoffs durch Wahl des Verhältnisses der Geschwindigkeiten von Senken- und Rotationsströmung eingestellt wird.A method according to claim 1, characterized in that the size of the separating grains between the fine and coarse material of the fine-grained solid is adjusted by choosing the ratio of the velocities of the sink and rotational flow. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß zur Erzeugung der Senkenströmung die Dispersion durch ein Abweiserad mit parallel zu seiner Drehachse verlaufenden und Strömungskanäle bildenden Schaufeln vom Außenumfang zum Zentrum strömend gepumpt wird und zur Erzeugung der Rotationsströmung das Abweiserad rotierend angetrieben wird.A method according to claim 1 or 2, characterized in that the dispersion is pumped flowing from the outer circumference to the center by a deflector wheel with blades running parallel to its axis of rotation and forming flow channels, in order to generate the sink flow, and the deflector wheel is driven in rotation to generate the rotational flow. Vorrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 3, bestehend aus einem druckfesten Gehäuse (1) mit Anschlüssen für das Einbringen der Aufgabegutdispersion (2) und das Austragen von Feingut- (4) und Grobgutdispersion (5), mindestens einem im Gehäuse (1) drehbar angeordneten und antreibbaren Abweiserad (3) und einer Speisepumpe für das Einbringen der Aufgabegutdispersion (2).Device for carrying out the method according to one of claims 1 to 3, consisting of a pressure-resistant housing (1) with connections for introducing the feed material dispersion (2) and the discharge of fine material (4) and coarse material dispersion (5), at least one in the housing (1) rotatably arranged and driven deflector wheel (3) and a feed pump for introducing the feed dispersion (2). Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, daß das Gehäuse (1) im wesentlichen als rotationssymmetrischer Behälter ausgebildet ist.Apparatus according to claim 4, characterized in that the housing (1) is essentially designed as a rotationally symmetrical container. Vorrichtung nach Anspruch 4 mit einem zylindrischen Behälter, dadurch gekennzeichnet, daß der radiale Abstand zwischen der Innenwand des Behälters und dem Umfang des Abweiserades weniger als 10 % des Durchmessers des Abweiserades beträgt.Device according to claim 4 with a cylindrical container, characterized in that the radial distance between the inner wall of the container and the circumference of the deflector wheel is less than 10% of the diameter of the deflector wheel. Vorrichtung nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß der Anschluß für die Grobgutdispersion (5) am unteren Ende des Gehäuses (1) und zentral dazu angeordnet ist.Device according to claim 5 or 6, characterized in that the connection for the coarse material dispersion (5) is arranged at the lower end of the housing (1) and centrally to it. Vorrichtung nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß der Anschluß für die Aufgabegutdispersion (2) am unteren Ende des Gehäuses (1) und zentral dazu angeordnet ist.Apparatus according to claim 5 or 6, characterized in that the connection for the feed material dispersion (2) is arranged at the lower end of the housing (1) and centrally to it. Vorrichtung nach einem der Ansprüche 4 bis 8, dadurch gekennzeichnet, daß der Austrittsquerschnitt des Anschlusses für die Grobgutdispersion (5) in der Größe einstellbar ist.Device according to one of claims 4 to 8, characterized in that the size of the outlet cross section of the connection for the coarse material dispersion (5) is adjustable. Vorrichtung nach einem der Ansprüche 4 bis 8, dadurch gekennzeichnet, daß am Anschluß für die Grobgutdispersion (5) eine Saugpumpe mit einstellbarer Förderleistung angeordnet ist.Device according to one of claims 4 to 8, characterized in that a suction pump with adjustable delivery rate is arranged at the connection for the coarse material dispersion (5). Vorrichtung nach einem der Ansprüche 4 bis 8, dadurch gekennzeichnet, daß die Schaufeln (17) des Abweiserades (3) radial ausgerichtet sind und sich vom Umfang bis in den Bereich der Drehachse des Abweiserades (3) erstrecken.Device according to one of claims 4 to 8, characterized in that the blades (17) of the deflector wheel (3) are radially aligned and extend from the circumference to the region of the axis of rotation of the deflector wheel (3). Vorrichtung nach einem der Ansprüche 4 bis 8, dadurch gekennzeichnet, daß die Schaufeln (17) des Abweiserades (3) radial ausgerichtet sind und sich von dessen Umfang bis zu einem rotationssymmetrisch ausgebildeten und koaxial zum Abweiserad (3) angeordneten Formkörper (18) erstrecken.Device according to one of claims 4 to 8, characterized in that the blades (17) of the deflector wheel (3) are aligned radially and extend from the periphery thereof to a rotationally symmetrical shaped body (18) which is arranged coaxially to the deflector wheel (3). Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, daß der Formkörper (18) ein Teil der als Hohlwelle ausgebildeten Antriebswelle (9) des Abweiserades (3) ist, der für jeden von den Schaufeln (17) gebildeten Strömungskanal zumindest eine Öffnung (20) für den Feingutaustritt aufweist.Apparatus according to claim 12, characterized in that the shaped body (18) is part of the drive shaft (9) of the deflector wheel (3) which is designed as a hollow shaft and which has at least one opening (20) for the flow channel formed by the blades (17) Fines exit.
EP94112005A 1993-08-07 1994-08-01 Method and device for separating fine-grained solids into two grain size fractions Expired - Lifetime EP0638365B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4326605A DE4326605A1 (en) 1993-08-07 1993-08-07 Method and device for separating a fine-grained solid into two grain fractions
DE4326605 1993-08-07

Publications (4)

Publication Number Publication Date
EP0638365A2 true EP0638365A2 (en) 1995-02-15
EP0638365A3 EP0638365A3 (en) 1995-09-13
EP0638365B1 EP0638365B1 (en) 1999-05-26
EP0638365B2 EP0638365B2 (en) 2003-11-26

Family

ID=6494711

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94112005A Expired - Lifetime EP0638365B2 (en) 1993-08-07 1994-08-01 Method and device for separating fine-grained solids into two grain size fractions

Country Status (9)

Country Link
US (1) US5894935A (en)
EP (1) EP0638365B2 (en)
JP (1) JP2752585B2 (en)
KR (1) KR0148400B1 (en)
CN (1) CN1056787C (en)
AT (1) ATE180420T1 (en)
DE (2) DE4326605A1 (en)
ES (1) ES2134296T3 (en)
TW (1) TW259722B (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10106638A1 (en) * 2001-02-12 2002-09-05 Tuhh Tech Gmbh Continuous wet centrifuge for classification and counter-flow washing, includes fluidized bed zone and internal chambers with coarse and fine materials extraction
US6811031B1 (en) * 2002-05-02 2004-11-02 E. Verl Adams Method and device for separating ore
US7488448B2 (en) * 2004-03-01 2009-02-10 Indian Wells Medical, Inc. Method and apparatus for removal of gas bubbles from blood
KR100590848B1 (en) * 2004-11-29 2006-06-19 한국기계연구원 Method for separating particle using rotation-type screen and equipment thereof
US8070965B2 (en) * 2007-04-18 2011-12-06 Tarves Robert J Jun Dual walled dynamic phase separator
WO2010036984A1 (en) * 2008-09-28 2010-04-01 Langenbeck Keith A Multiple flat disc type pump and hydrocyclone
JP5519982B2 (en) * 2009-09-17 2014-06-11 正裕 岩永 Two-phase fluid separation apparatus and method
JP5999682B2 (en) * 2012-03-23 2016-09-28 学校法人幾徳学園 Apparatus and method for recovering fluid with low concentration of particle component from solid-liquid two-phase fluid
RU2535322C1 (en) * 2013-08-13 2014-12-10 Федеральное Государственное Бюджетное Учреждение Науки Институт Химии И Химической Технологии Сибирского Отделения Российской Академии Наук (Иххт Со Ран) Hydraulic separator
DE102014117191B3 (en) * 2014-11-24 2016-05-12 Netzsch-Feinmahltechnik Gmbh Method for regulating the separating action of a separating device and separating device
DE102015115822A1 (en) * 2015-09-18 2017-03-23 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Method and device for separating particles of a certain size from a suspension
CN107123354B (en) * 2017-05-21 2019-03-19 谭淞文 Sort inhalator, respiratory tract and the lung model integration of equipments of flower-shape particulate carrier
CN109056464A (en) * 2018-07-10 2018-12-21 黄山路之梦交通工程有限责任公司 A kind of pretreatment mechanism of bitumen recovery
DE102018132155B3 (en) * 2018-12-13 2019-12-12 Netzsch-Feinmahltechnik Gmbh FLOWERS WITH SPECIAL FAN WHEEL
FI128719B (en) * 2019-05-02 2020-10-30 Andritz Oy A reject chamber of a centrifugal cleaner and a centrifugal cleaner

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1036543A (en) *
US1664769A (en) 1925-07-29 1928-04-03 Henry M Chance Method and apparatus for centrifugal thickening of mixtures and clarifying of liquids
US2255807A (en) * 1940-01-26 1941-09-16 Carl H Plumlee Desilting machine
US3089595A (en) * 1960-08-06 1963-05-14 Alpine Ag Maschinenfabrik Und Flow apparatus for separating granular particles
EP0115057A2 (en) * 1983-01-29 1984-08-08 Alpine Aktiengesellschaft Pneumatic separator in the field of fine material
DE3390449C2 (en) 1983-01-28 1987-06-11 Bruss Vni Skogo I Pi Galurgii Turbo cyclone to separate trays
EP0355285A2 (en) * 1988-08-13 1990-02-28 FRYMA-Maschinen AG Suspension separator
DE4214771A1 (en) * 1992-05-04 1993-11-11 Netzsch Erich Holding Rotary wet classification process for fine materials - comprising rotating bladed wheel arranged in rotating flow field which has outer region and inner region, useful in wet grinding circuits

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2996187A (en) * 1961-08-15 payne
NL264186A (en) * 1960-05-02
US3152078A (en) * 1963-03-14 1964-10-06 Pennsalt Chemicals Corp Stationary-walled centrifuge
SU1005929A1 (en) * 1981-12-31 1983-03-23 Кузнецкий научно-исследовательский и проектно-конструкторский институт углеобогащения Hydraulic cyclone for classifying minerals
IL73329A (en) * 1984-10-26 1987-10-20 Amiad Cyclonic separator
FI71671C (en) * 1985-05-20 1987-02-09 Ahlstroem Oy FOERFARANDE OCH APPARAT FOER AVVATTNING AV EN SUSPENSION.
DE3721401A1 (en) * 1987-06-29 1989-01-12 Voith Gmbh J M HYDROCYCLONE
DE8916267U1 (en) * 1989-02-20 1996-08-08 Kloeckner Humboldt Deutz Ag Sifter for sifting granular material and grinding system with the activation of such a sifter
SU1646610A1 (en) * 1989-03-09 1991-05-07 Petrov Aleksandr T Centrifugal filter thickener
JPH03151067A (en) * 1989-11-06 1991-06-27 Machiko Nonaka Method for classifying slurry or the like
JPH0462785A (en) * 1990-06-29 1992-02-27 Toshiba Corp Electric power supply for magnetron drive
DE4040890C2 (en) * 1990-12-20 1995-03-23 Krupp Foerdertechnik Gmbh Air classifier
US5284250A (en) * 1991-09-13 1994-02-08 Stepenhoff Gary F Particle separation apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1036543A (en) *
US1664769A (en) 1925-07-29 1928-04-03 Henry M Chance Method and apparatus for centrifugal thickening of mixtures and clarifying of liquids
US2255807A (en) * 1940-01-26 1941-09-16 Carl H Plumlee Desilting machine
US3089595A (en) * 1960-08-06 1963-05-14 Alpine Ag Maschinenfabrik Und Flow apparatus for separating granular particles
DE3390449C2 (en) 1983-01-28 1987-06-11 Bruss Vni Skogo I Pi Galurgii Turbo cyclone to separate trays
EP0115057A2 (en) * 1983-01-29 1984-08-08 Alpine Aktiengesellschaft Pneumatic separator in the field of fine material
EP0355285A2 (en) * 1988-08-13 1990-02-28 FRYMA-Maschinen AG Suspension separator
DE4214771A1 (en) * 1992-05-04 1993-11-11 Netzsch Erich Holding Rotary wet classification process for fine materials - comprising rotating bladed wheel arranged in rotating flow field which has outer region and inner region, useful in wet grinding circuits

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Aufbereitungs-Technik", Nr. 4, 1965, Seiten 213,214
"IFPRI-Report" on Classification of particles in gases, Prof. Dr. Ing. K. Leschonski, Clausthal, Mai 1981, Seiten 1.1, 1.2. 4.63 bis 4.66
Kellerwessel, Hans, Lehrbuch "Aufbereitung disperser Feststoffe: mineralische Rohstoffe, Sekund{rrohstoffe, Abf{lle", VDI-Verlag D}sseldorf, 1991, Seiten 78-79

Also Published As

Publication number Publication date
KR950005382A (en) 1995-03-20
JP2752585B2 (en) 1998-05-18
JPH07155638A (en) 1995-06-20
EP0638365B2 (en) 2003-11-26
DE59408302D1 (en) 1999-07-01
EP0638365A3 (en) 1995-09-13
KR0148400B1 (en) 1998-11-16
CN1122262A (en) 1996-05-15
TW259722B (en) 1995-10-11
US5894935A (en) 1999-04-20
ES2134296T3 (en) 1999-10-01
ATE180420T1 (en) 1999-06-15
CN1056787C (en) 2000-09-27
EP0638365B1 (en) 1999-05-26
DE4326605A1 (en) 1995-02-09

Similar Documents

Publication Publication Date Title
DE4447321C2 (en) Agitator mill for wet comminution, with separator to retain grinding beads
EP0638365B1 (en) Method and device for separating fine-grained solids into two grain size fractions
DE8425837U1 (en) Roller mill
DE1782775C3 (en)
AT401741B (en) WINDSIGHTER
DE102016121927B3 (en) Sifter and mill with a sifter
EP1080786B1 (en) Method, device and system for fluidised-bed jet mill
DE4214771C2 (en) Wet grading method and apparatus
DE19840344C2 (en) Classifying wheel for a centrifugal air classifier
EP0484758B1 (en) Apparatus for dispersing materials
EP1027161B1 (en) Method and device for wet-grinding and dispersing solids in fluids
DE3418634C2 (en)
DE3418635C2 (en)
DE4326604C2 (en) classifier
DE19726303A1 (en) Powder particle size sorting machine
EP0672455B1 (en) Device for wet classifying
DE8017600U1 (en) WINDSCREEN DEVICE
DD241869A1 (en) DEVICE FOR SEEING FINEST COMBINATIONS
DE4416034A1 (en) Sifting method for fine-grain material
DE102008029737B4 (en) Apparatus and method for classifying solids and conditioning system
DE3028343C2 (en)
DE1507706A1 (en) Spreader sifter with circulating air fan
DE60028188T2 (en) screening device
DE4132339C2 (en) Turbo centrifugal classifier
DE1203734B (en) Plant for the extraction of soluble substances from solid vegetable, animal or inorganic substances in countercurrent

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19960308

17Q First examination report despatched

Effective date: 19980313

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990526

REF Corresponds to:

Ref document number: 180420

Country of ref document: AT

Date of ref document: 19990615

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59408302

Country of ref document: DE

Date of ref document: 19990701

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Free format text: HOSOKAWA ALPINE AKTIENGESELLSCHAFT TRANSFER- HOSOKAWA ALPINE AKTIENGESELLSCHAFT & CO. OHG

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCHMAUDER & PARTNER AG PATENTANWALTSBUERO

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990728

ET Fr: translation filed
RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: HOSOKAWA ALPINE AKTIENGESELLSCHAFT & CO. OHG

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2134296

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: HOSOKAWA ALPINE AKTIENGESELLSCHAFT & CO. OHG

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: HOSOKAWA ALPINE AKTIENGESELLSCHAFT & CO. OHG

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: OMYA GMBH

Effective date: 20000225

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

NLR1 Nl: opposition has been filed with the epo

Opponent name: OMYA GMBH

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PLBO Opposition rejected

Free format text: ORIGINAL CODE: EPIDOS REJO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20020715

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020717

Year of fee payment: 9

Ref country code: BE

Payment date: 20020717

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020723

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20020730

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20020830

Year of fee payment: 9

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030831

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20031126

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

Free format text: AUFRECHTERHALTUNG DES PATENTES IN GEAENDERTER FORM

NLR2 Nl: decision of opposition

Effective date: 20031126

BERE Be: lapsed

Owner name: *HOSOKAWA ALPINE A.G. & CO. K.G.

Effective date: 20030831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040309

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030801

EUG Se: european patent has lapsed
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20040301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EN Fr: translation not filed
APAA Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOS REFN

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: HOSOKAWA ALPINE AKTIENGESELLSCHAFT

Free format text: HOSOKAWA ALPINE AKTIENGESELLSCHAFT & CO. OHG#PETER-DOERFLER-STRASSE 13-25#86199 AUGSBURG (DE) -TRANSFER TO- HOSOKAWA ALPINE AKTIENGESELLSCHAFT#PETER-DOERFLER-STRASSE 13-25#86199 AUGSBURG (DE)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050801

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20080821

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20080820

Year of fee payment: 15

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SCHMAUDER & PARTNER AG PATENT- UND MARKENANWAELTE VSP;ZWAENGIWEG 7;8038 ZUERICH (CH)

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090801

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120831

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140301

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59408302

Country of ref document: DE

Effective date: 20140301