EP0635813A1 - Procédé d'évaluation par voie acoustique de l'écoulement du trafic de véhicules routiers - Google Patents

Procédé d'évaluation par voie acoustique de l'écoulement du trafic de véhicules routiers Download PDF

Info

Publication number
EP0635813A1
EP0635813A1 EP94420208A EP94420208A EP0635813A1 EP 0635813 A1 EP0635813 A1 EP 0635813A1 EP 94420208 A EP94420208 A EP 94420208A EP 94420208 A EP94420208 A EP 94420208A EP 0635813 A1 EP0635813 A1 EP 0635813A1
Authority
EP
European Patent Office
Prior art keywords
traffic
indicator
acoustic
sound signal
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP94420208A
Other languages
German (de)
English (en)
Inventor
Pierre Jean-Paul Gaetan Charlet
Jean-Luc Gorand
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Laboratoire Central des Ponts et Chaussees
Original Assignee
Laboratoire Central des Ponts et Chaussees
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Laboratoire Central des Ponts et Chaussees filed Critical Laboratoire Central des Ponts et Chaussees
Publication of EP0635813A1 publication Critical patent/EP0635813A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled

Definitions

  • the present invention relates to the technical field of controlling or evaluating the flow of traffic from road vehicles establishing themselves on a traffic lane in the general sense.
  • a traffic lane of a road or motorway nature comprises a determined number of traffic queues, so that the saturation level is only reached in a very exceptional manner.
  • the speed of the flow of vehicles decreases, causing local saturation of the traffic lane, it not only results in an inconvenience for the movement of users, but also an attack on their safety.
  • Numerous systems are known in the state of the art suitable for collecting information along a road axis to be monitored and transmitting this information in real time to a central station, from which it can be taken. intervention and / or prevention measures.
  • patent application FR-2 675 610 has proposed an installation for evaluating a traffic flow of road vehicles providing for placing at regular intervals, in edge of the lane, microphones which transform the acoustic information emitted by road traffic into an electrical signal intended to be transmitted to a central station.
  • the installation makes it possible to determine the state of traffic. It must be considered that this frequency band corresponds to the emission of the pneumatic-road contact. This acoustic emission is a function among other things, of the speed of the vehicles, but also of the nature of the coating placed at the right of the receiving point.
  • Such a solution therefore has the drawback of requiring a calibration of the installation at each detection point.
  • the present invention therefore aims to remedy the drawbacks set out above by proposing a method designed to ensure almost uninterrupted, even permanent, monitoring of the flow of road traffic and making it possible to detect different traffic conditions, with a view to evaluating at best the intervention measures to be taken.
  • Another object of the invention is to propose a method for evaluating road traffic over a non-negligible length of the traffic lane, while offering the advantage of having a low cost of installation, operation and maintenance.
  • Fig. 1 is a schematic plan view of a section of taxiway equipped with an installation implementing the evaluation method according to the invention.
  • Fig. 2 illustrates the evolution curves of the sound signal in dB, as a function of time in seconds, making it possible to highlight a characteristic of the invention.
  • Figs. 3A to 3C are curves showing a characteristic of the process according to the invention.
  • Fig. 4 is a diagram showing the evolution between the two acoustic indicators determined by the method according to the invention.
  • the method according to the invention is designed to acoustically control or evaluate the flow of traffic from established road vehicles, as illustrated in FIG. 1 , on a traffic lane 1 comprising at least one, and in the example illustrated, three traffic lanes 11 to 13 .
  • queue 11 is said to be slow, while queue 13 is considered to be fast queue, insofar as the direction of traffic is established from left to right.
  • the method according to the invention could be applied to assess the traffic flow establishing on track 2 in the opposite direction.
  • the method according to the invention aims to have at the edge of the traffic queue, called the slowest 11 , one or more microphones 3 distributed along the section of the traffic lane 1 to be monitored.
  • the microphones 3 are placed inside the emergency stop terminals which are generally located at the edge of the traffic lanes.
  • Each microphone 3 for example of the electret type, is connected to a processing device 4 which is connected to a central control station 5 via a communication link 6 ensuring for example the power supply to the detectors 3 and the transmission of information from devices 4 .
  • each processing device 4 comprises a stage 7 for amplifying and filtering the signal delivered by the associated microphone 3 .
  • Stage 7 is followed by a circuit 8 for converting the amplified signal into a logarithmic value, in order to obtain a linear scale in decibels.
  • the conversion circuit 8 is connected to a management module 9 managed by a microprocessor which is responsible, in particular, for sampling the signal, for example at the rate of 32 samples per second, and for digitizing them.
  • This module 9 which performs other functions explained in the description of the process which follows, is connected to a communication module 10 capable of transmitting the information to the central station 5 .
  • the method according to the invention aims to determine the characteristics of road traffic from the sound waves collected by the microphones 3 .
  • These sound waves originate, in particular, from the powerplant of vehicles and from the acoustic emission due to the contact of tires on the road. It should be noted that due to the sharp decrease in the acoustic level received, as a function of the distance from the microphone to the traffic lanes, the traffic noise from the distant lanes, namely 12 , 13 in the example illustrated, are masked by those of the nearest queue 1 file.
  • the sound signal S collected is divided into analysis intervals each having a duration T1 , T2, ... T i , for example equal to 6 minutes.
  • the analysis intervals are chosen to be consecutive over time.
  • the method according to the invention aims to determine two acoustic indicators making it possible to assess the state traffic flow.
  • the method according to the invention aims to define, in each interval T i , the difference between the maximum level Lmax and the minimum level Lmin of the sound signal S appearing in the corresponding analysis interval T i .
  • the sound signal received by each microphone comprises a succession of maxima and minima corresponding to the successive passages of vehicles in front of the microphone, at the right of which the acoustic power is maximum.
  • the instantaneous sound power is a function of the distance between the vehicles, the position of the vehicle closest to the microphone and the distance between the traffic axis and the microphone.
  • the difference between the maximum Lmax and minimum Lmin levels makes it possible to determine a first acoustic indicator P1 corresponding to the dynamics of the acoustic signal.
  • the dynamic indicator P1 is equal to 3.7 dB in the interval T1 , to 8.6 dB in the interval T2 and to 14.2 dB in the interval T i .
  • the difference between the maximum and minimum values depends only on the distance between the vehicles, as long as the microphones are installed in a fixed manner. It should be considered that the distance between vehicles is an increasing function with the speed of traffic. Indeed, for safety reasons, the speed of traffic determines the distance between vehicles.
  • the dynamics P1 of the signal therefore constitutes an acoustic indicator making it possible to distinguish either a concentration of vehicles around the microphone, if the value of the dynamics is low, or a relatively fluid circulation, if its value is high.
  • the indicators P1 detected during the intervals T1, T2, T i make it possible to observe respectively a strong slowdown, dense traffic or fluid traffic.
  • the method according to the invention aims to determine a second acoustic indicator P2 which makes it possible to know whether there is absence or presence of traffic on the monitored lane. Indeed, knowledge of the indicator P1 alone does not make it possible to know whether there is traffic. An absence of traffic could lead to a low value of the dynamics, which would be interpreted as a strong slowdown, when there is no traffic.
  • the presence indicator P2 corresponds to at least one given level L P of the sound signal which is reached during a predetermined fraction of the duration of the interval considered T i .
  • This acoustic indicator also makes it possible to assess the state of traffic, insofar as the sound energy emitted increases as a function of speed.
  • the values of the indicator P2 increase with the speed of the flow of vehicles due to the noise of the engines and the noise of tire-road contact.
  • the P2 indicator offers the advantage of overcoming differences in noise levels emitted by vehicles depending on their nature (heavy goods vehicles or passenger cars), while making it possible to assess the presence of vehicles according to a level acoustics reached or exceeded during a given time compared to the analysis time. It should be understood that the indicator P2 is not expressed as a function of absolute values recorded in a given time space, but is based on the percentage of appearance of one or more noise levels in a time interval predetermined.
  • the acoustic indicators P1 and P2 previously defined are compared with setpoints making it possible to assess the state of traffic flow. Indeed, the comparison with a set level of the acoustic indicator P1 makes it possible to detect traffic disturbances, while that carried out with the indicator P2 makes it possible to confirm the presence of a traffic flow. Knowledge of the two acoustic indicators P1, P2 is necessary and sufficient to assess the state of saturation or fluidity of a stream of vehicles.
  • this figure is called a histogram of cumulative values, and includes a GAUSS scale along the ordinate axis graduated as a percentage of the duration T i of the analysis, while the levels in decibels of the acoustic signal appear on the axis. of abscissa.
  • Acoustic indices L1, L2 , ..., Li , ..., L99 are thus obtained whose noise level is reached or exceeded during a corresponding fraction of the duration of the analysis.
  • the index L1 has a noise level which is reached or exceeded during 1% of the duration of analysis
  • the index L99 has a noise level which is reached or exceeded during 99% of the duration d 'analysis.
  • the L1 index therefore corresponds to the index evaluating nuisance noise
  • the L99 index evaluates the level of ambient noise on the site.
  • Figs. 3A to 3C illustrate three families of curves recorded at different times of the day and making it possible to highlight different traffic conditions.
  • Each curve corresponds to an analysis time T i , for example equal to 6 minutes.
  • the slope of each curve corresponds to the dynamics of the acoustic signal.
  • the dynamic indicator P1 is determined by making the difference between two acoustic indices L i , namely L99 and L1 and, preferably, between the indices L84 and L16 . Indeed, it was found that there is a good correlation with the speed for the closest indices surrounding the index L50 .
  • the choice of space L84-L16 makes it possible to increase the precision of the measurements.
  • the average acoustic index P1 is equal to 16 dB, 4dB and 7 dB respectively for the families of curves illustrated in Figs. 3A to 3C .
  • This method of determining the acoustic indicator P1 constitutes an improvement of the method consisting in determining the dynamics of the signal by the difference between the values Lmax and Lmin , due to the very different acoustic powers. issued by the various categories of vehicles.
  • the presence indicator P2 is obtained by taking an acoustic index substantially close to the index L50 .
  • the average presence index P2 is equal to 73 dB, 86 dB and 85 dB respectively for the families of curves illustrated in FIGS. 3A to 3C .
  • curves illustrated in FIG. 3A correspond to traffic recorded between 2 and 3 am.
  • the statistical distributions are random and the dynamic P1 (16 dB) is high, which indicates low traffic.
  • the curves which are shown in Fig. 3B corresponds to a traffic flow recorded between 7 a.m. and 7:30 a.m.
  • the low value of the dynamic index P1 (4 dB) indicates a saturation of the taxiway.
  • Fig. 3C which shows curves corresponding to a traffic recorded between 10 and 11 am, shows that the acoustic indicator P1 has a value (7 dB) slightly higher than that of the index determined in FIG. 3B .
  • the corresponding circulation is considered dense but more fluid than in the example illustrated in FIG. 3B .
  • the saturation of the traffic lane is characterized by a decrease in the value of the dynamic index P1 and by a change to a minimum value for the presence index P2 .
  • Fig. 4 illustrates, by way of example, the evolution of the presence indicator L50 as a function of the dynamic indicator L16 - L84 .
  • the existing relationship between the presence indicator P2 and the dynamic P1 makes it possible to detect critical traffic periods from a single noise measurement.
  • the following description gives an example of a method for determining the set points corresponding to significant traffic conditions.
  • the analysis of critical traffic conditions consists in analyzing the data recorded during periods of heavy traffic corresponding to a low value of the dynamic indicator P1 . In the example illustrated, it is chosen to analyze only the data when the dynamic indicator P1 has a value less than 7 dB (point M1 ).
  • the noise samples recorded, during the time when the dynamic indicator P1 is less than 7 dB, are accumulated in order to determine their distribution.
  • An acoustic index is then chosen, the noise level of which is reached or exceeded during a corresponding fraction of the analysis time.
  • the noise level chosen for the determination of the set point corresponds to the noise level which is reached or exceeded during 50% of the duration of analysis.
  • the setpoint value, for such a noise level is equal to 82.5 dB (point M2 ).
  • the dynamic indicator P1 unambiguously allows the detection of a concentration of vehicles near the monitoring point.
  • strong traffic disruptions corresponding to a dynamic indicator P1 ⁇ 7 dB in the example illustrated, the possibility of detecting different states of the traffic speed is given by the presence indicator P2 .
  • a decrease in the values of the presence indicator P2 indicates the increase in traffic blocking, while an increase in the level of the indicator P2 means an increase in the traffic flow.
  • FIG. 4 Such a principle appears clearly in FIG. 4 on which are placed the set points M1, M2 of the indicators P1 and P2 , namely 7 and 82.5 dB.
  • the set points M1, M2 define the coordinates of a point of rotation of a circle C centered on this point and divided, for example, into sectors numbered from 1 to 8 making it possible to detect different states of saturation of the channel.
  • the statistical study of the noise samples thus allows an evaluation of the state of the traffic flow based solely on the acoustic signal emitted by the flow of vehicles.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

- L'invention concerne un procédé d'évaluation par voie acoustique de l'écoulement du trafic de véhicules routiers. Le procédé consiste : à définir des intervalles d'analyse de durée prédéterminée (Ti) au cours desquels le signal sonore est recueilli, à déterminer pour chacun des intervalles d'analyse, d'une part, la différence entre les niveaux maximum (Lmax) et minimum (Lmin) du signal sonore afin de déterminer un premier indicateur acoustique (P1) correspondant à la dynamique du signal et, d'autre part, un niveau (LP) du signal sonore qui est atteint pendant une fraction prédéterminée de la durée (Ti) de l'intervalle considéré, en vue de définir un second indicateur acoustique (P2) correspondant à la présence de véhicules sur la voie, et à comparer les indicateurs acoustiques (P1, P2) précédemment définis à des valeurs de consigne, afin d'évaluer l'état de l'écoulement du trafic. <IMAGE>

Description

  • La présente invention concerne le domaine technique du contrôle ou de l'évaluation de l'écoulement d'un trafic de véhicules routiers s'établissant sur une voie de circulation au sens général.
  • D'une manière classique, une voie de circulation à caractère routier ou autoroutier comporte un nombre déterminé de files de circulation, de manière que le niveau de saturation ne soit atteint que de façon très exceptionnelle. Lorsque pour une raison quelconque la vitesse du flot de véhicules diminue, entraînant une saturation locale de la voie de circulation, il s'ensuit non seulement une gêne pour la circulation des usagers, mais également une atteinte à leur sécurité. Il apparaît donc le besoin, tant pour détecter les accidents ou les prévenir que pour faciliter les conditions de circulation des usagers, d'évaluer le trafic de circulation afin de pouvoir le contrôler ou le réguler. Pour satisfaire ce besoin, il importe de pouvoir disposer à un poste central, des caractéristiques du trafic existant à tout instant sur une longueur aussi grande que possible de la voie de la circulation, de manière à faciliter les opérations de prévention, d'intervention ou de déviation de la voie saturée.
  • Il est connu dans l'état de la technique de nombreux systèmes adaptés pour assurer la collecte d'informations le long d'un axe routier à surveiller et la transmission en temps réel de ces informations à un poste central, à partir duquel peuvent être prises des mesures d'intervention et/ou de prévention.
  • Ainsi, il est connu d'implanter directement dans la chaussée, à intervalles réguliers le long de la voie de circulation, des détecteurs à boucle d'induction, permettant d'assurer le comptage du trafic. Une telle solution technique ne donne pas satisfaction en raison principalement des coûts élevés d'installation, d'exploitation et de maintenance qu'implique la mise en oeuvre de détecteurs à boucle d'induction implantés directement dans la chaussée.
  • Pour tenter de remédier aux inconvénients de cette technique, la demande de brevet FR-2 675 610 a proposé une installation d'évaluation d'un flux de circulation de véhicules routiers prévoyant de placer à intervalles réguliers, en bordure de la voie, des microphones qui transforment l'information acoustique émise par le trafic routier en un signal électrique destiné à être transmis à un poste central. En fonction du niveau de bruit obtenu dans une bande de fréquence précise, l'installation permet de déterminer l'état de la circulation. Il doit être considéré que cette bande de fréquence correspond à l'émission du contact pneumatique-chaussée. Cette émission acoustique est une fonction entre autres, de la vitesse des véhicules, mais également de la nature du revêtement placé au droit du point récepteur. Une telle solution présente donc l'inconvénient de nécessiter un étalonnage de l'installation en chaque point de détection. Par ailleurs, le principe de traitement du signal préconisé par ce document autorise uniquement de déterminer si le trafic est fluide ou saturé, ce qui interdit la prise de mesures d'intervention adéquates en fonction de l'état de saturation du trafic. De plus, il apparaît qu'un tel système n'est pas en mesure de prévenir les périodes de perturbation qui peuvent survenir sur la file dite lente de la voie de la circulation, dans la mesure où cette technique analyse le bruit émis par la file dite rapide.
  • La présente invention vise donc à remédier aux inconvénients énoncés ci-dessus en proposant un procédé conçu pour assurer une surveillance quasi-ininterrompue, voire permanente, de l'écoulement du trafic routier et permettant de détecter différents états du trafic, en vue d'évaluer au mieux les mesures d'intervention à prendre.
  • Un autre objet de l'invention vise à proposer un procédé permettant d'évaluer le trafic routier sur une longueur non négligeable de la voie de circulation, tout en offrant l'avantage de présenter un faible coût d'installation, d'exploitation et de maintenance.
  • Pour atteindre ces objectifs, le procédé d'évaluation selon l'invention consiste :
    • à définir des intervalles d'analyse de durée prédéterminée au cours desquels le signal sonore est recueilli,
    • à déterminer pour chacun des intervalles d'analyse, d'une part, la différence entre les niveaux maximum et minimum du signal sonore afin de déterminer un premier indicateur acoustique correspondant à la dynamique du signal et, d'autre part, un niveau du signal sonore qui est atteint pendant une fraction prédéterminée de la durée de l'intervalle considéré, en vue de définir un second indicateur acoustique correspondant à la présence de véhicules sur la voie,
    • et à comparer les indicateurs acoustiques précédemment définis à des valeurs de consigne, afin d'évaluer l'état de l'écoulement du trafic.
  • Diverses autres caractéristiques ressortent de la description faite ci-dessous en référence aux dessins annexés qui montrent, à titre d'exemples non limitatifs, des formes de réalisation et de mise en oeuvre de l'objet de l'invention.
  • La Fig. 1 est une vue schématique en plan d'un tronçon de voie de circulation équipé d'une installation mettant en oeuvre le procédé d'évaluation selon l'invention.
  • La Fig. 2 illustre des courbes d'évolution du signal sonore en dB, en fonction du temps en secondes, permettant de mettre en évidence une caractéristique de l'invention.
  • Les Fig. 3A à 3C sont des courbes montrant une caractéristique du procédé selon l'invention.
  • La Fig. 4 est un schéma montrant l'évolution entre les deux indicateurs acoustiques déterminés par le procédé selon l'invention.
  • Le procédé selon l'invention est conçu pour contrôler ou évaluer par voie acoustique l'écoulement d'un trafic de véhicules routiers s'établissant, comme illustré à la Fig. 1, sur une voie de circulation 1 comportant au moins une, et dans l'exemple illustré, trois files de circulation 1₁ à 1₃. Tel que cela apparaît sur la figure, la file 1₁ est dite lente, tandis que la file 1₃ est considérée comme la file rapide, dans la mesure où le sens de circulation s'établit de gauche à droite. Bien entendu, il pourrait être envisagé que le procédé selon l'invention puisse être appliqué pour évaluer le flux de circulation s'établissant sur la voie 2 de sens opposé.
  • Le procédé selon l'invention vise à disposer en bordure de la file de circulation, dite la plus lente 1₁, un ou plusieurs microphones 3 répartis le long du tronçon de la voie de circulation 1 à surveiller. Selon une variante préférée de réalisation, les microphones 3 sont placés à l'intérieur des bornes d'arrêt d'urgence qui se trouvent, généralement, implantées en bordure des voies de circulation.
  • Chaque microphone 3, par exemple du type à électret, est connecté à un appareil de traitement 4 qui se trouve relié à un poste central de contrôle 5 par l'intermédiaire d'une liaison de communication 6 assurant par exemple l'alimentation en énergie des détecteurs 3 et la transmission de l'information issue des appareils 4.
  • Dans l'exemple illustré, chaque appareil de traitement 4 comporte un étage 7 d'amplification et de filtrage du signal délivré par le microphone 3 associé. L'étage 7 est suivi par un circuit 8 de conversion du signal amplifié en valeur logarithmique, afin d'obtenir une échelle linéaire en décibels. Le circuit de conversion 8 est connecté à un module de gestion 9 géré par un microprocesseur qui est chargé, notamment, d'échantillonner le signal, par exemple à raison de 32 échantillons par seconde, et de les numériser. Ce module 9, qui assure d'autres fonctions explicitées dans la description du procédé qui suit, est relié à un module de communication 10 apte à transmettre les informations au poste central 5.
  • Le procédé selon l'invention vise à déterminer les caractéristiques du trafic routier à partir des ondes sonores recueillies par les microphones 3. Ces ondes sonores tirent leur origine, notamment, du groupe moto-propulseur des véhicules et de l'émission acoustique due au contact des pneumatiques sur la chaussée. Il est à noter qu'en raison de la forte décroissance du niveau acoustique reçu, en fonction de la distance du microphone aux files de circulation, les bruits du trafic des voies lointaines, à savoir 1₂, 1₃ dans l'exemple illustré, sont masqués par ceux de la file 1₁ la plus proche.
  • Afin d'étudier le signal acoustique issu de chaque microphone 3, il est prévu de recueillir un tel signal S pendant des intervalles d'analyse de durée T i prédéterminée. Ainsi, tel que cela apparaît à la Fig. 2, le signal sonore S recueilli est découpé en intervalles d'analyse présentant chacun une durée T₁, T₂,... T i , par exemple égale à 6 minutes. De préférence, les intervalles d'analyse sont choisis pour être consécutifs dans le temps.
  • Pour chacun des intervalles d'analyse T i , le procédé selon l'invention a pour objet de déterminer deux indicateurs acoustiques permettant d'apprécier l'état d'écoulement du trafic. A cet effet, le procédé selon l'invention vise à définir, dans chaque intervalle T i , la différence entre le niveau maximum Lmax et le niveau minimum Lmin du signal sonore S apparaissant dans l'intervalle d'analyse T i correspondant. En effet, tel que cela ressort clairement de la Fig. 2, le signal sonore reçu par chaque microphone comporte une succession de maxima et de minima correspondant aux passages successifs des véhicules devant le microphone, au droit duquel la puissance acoustique est maximum. La puissance acoustique instantanée est fonction de la distance entre les véhicules, de la position du véhicule le plus proche du microphone et de la distance entre l'axe de circulation et le microphone.
  • La différence entre les niveaux maximum Lmax et minimum Lmin permet de déterminer un premier indicateur acoustique P₁ correspondant à la dynamique du signal acoustique. Dans les exemples illustrés à la Fig. 2, l'indicateur dynamique P₁ est égal à 3,7 dB dans l'intervalle T₁, à 8,6 dB dans l'intervalle T₂ et à 14,2 dB dans l'intervalle T i . L'écart entre les valeurs maximale et minimale est fonction uniquement de la distance entre les véhicules, dans la mesure où les microphones sont implantés d'une manière fixe. Il doit être considéré que la distance entre les véhicules est une fonction croissante avec la vitesse du trafic. En effet, pour des raisons de sécurité, la vitesse du trafic détermine la distance entre les véhicules. La dynamique P₁ du signal constitue donc un indicateur acoustique permettant de distinguer soit une concentration de véhicules autour du microphone, si la valeur de la dynamique est faible, soit une circulation relativement fluide, si sa valeur est élevée. Ainsi, les indicateurs P₁ décelés pendant les intervalles T₁, T₂, T i permettent de constater respectivement un fort ralentissement, un trafic dense ou une circulation fluide.
  • Le procédé selon l'invention vise à déterminer un second indicateur acoustique P₂ qui permet de savoir s'il y a absence ou présence de trafic sur la voie surveillée. En effet, la seule connaissance de l'indicateur P₁ ne permet pas de savoir s'il y a présence d'un trafic. Une absence de trafic pourrait conduire à une valeur faible de la dynamique, ce qui serait interprété comme un fort ralentissement, alors qu'il n'y a pas de trafic.
  • L'indicateur de présence P₂ correspond à au moins un niveau donné L P du signal sonore qui est atteint pendant une fraction prédéterminée de la durée de l'intervalle considéré T i . Cet indicateur acoustique permet également d'apprécier l'état du trafic, dans la mesure où l'énergie sonore émise augmente en fonction de la vitesse. Les valeurs de l'indicateur P₂ augmentent avec la vitesse du flot de véhicules en raison du bruit des moteurs et du bruit de contact pneumatique-chaussée.
  • L'indicateur P₂ offre l'avantage de s'affranchir des différences de niveaux sonores émis par les véhicules en fonction de leur nature (poids lourds ou voitures particulières), tout en permettant d'évaluer la présence de véhicules en fonction d'un niveau acoustique atteint ou dépassé pendant une durée donnée par rapport au temps d'analyse. Il doit être compris que l'indicateur P₂ ne s'exprime pas en fonction de valeurs absolues enregistrées dans un espace de temps donné, mais est fondé sur le pourcentage d'apparition d'un ou de plusieurs niveaux de bruit dans un intervalle de temps prédéterminé.
  • Les indicateurs acoustiques P₁ et P₂ précédemment définis sont comparés à des valeurs de consigne permettant d'évaluer l'état de l'écoulement du trafic. En effet, la comparaison avec un niveau de consigne de l'indicateur acoustique P₁ permet de détecter les perturbations du trafic, tandis que celle réalisée avec l'indicateur P₂ permet de confirmer la présence d'un flux de circulation. La connaissance des deux indicateurs acoustiques P₁, P₂ est nécessaire et suffisante pour apprécier l'état de saturation ou de fluidité d'un flot de véhicules.
  • Selon une forme de réalisation préférée de l'invention, il est prévu de déterminer les indicateurs acoustiques P₁ et P₂ en procédant, pour chaque intervalle d'analyse, à un échantillonnage du signal sonore, puis à un classement des échantillons obtenus en fonction de leur niveau de bruit. Les échantillons mesurés sont ensuite cumulés, afin de déterminer leur distribution statistique. A cet effet, il est prévu de déterminer la droite, dite de Henry, de distribution cumulée des échantillons, comme cela apparaît par exemple à la Fig. 3A. Classiquement, cette figure est appelée histogramme des valeurs cumulées, et comporte une échelle de GAUSS selon l'axe des ordonnées gradué en pourcentage de la durée T i de l'analyse, tandis que les niveaux en décibels du signal acoustique apparaissent sur l'axe des abscisses. Il est ainsi obtenu des indices acoustiques L₁, L₂, ..., Li, ..., L₉₉ dont le niveau de bruit est atteint ou dépassé lors d'une fraction correspondante de la durée de l'analyse. Par exemple, l'indice L₁ a un niveau de bruit qui est atteint ou dépassé pendant 1 % de la durée d'analyse, tandis que l'indice L₉₉ possède un niveau de bruit qui est atteint ou dépassé pendant 99 % de la durée d'analyse. L'indice L₁ correspond donc à l'indice évaluant les bruits intempestifs, tandis que l'indice L₉₉ évalue le niveau de bruit ambiant sur le site.
  • Les Fig. 3A à 3C illustrent trois familles de courbes enregistrées à des heures différentes de la journée et permettant de mettre en évidence des conditions de trafic distinctes. Chaque courbe correspond à une durée d'analyse T i , par exemple égale à 6 minutes. Il est à noter que la pente de chaque courbe correspond à la dynamique du signal acoustique. Aussi, d'une manière avantageuse, l'indicateur dynamique P₁ est déterminé en effectuant la différence entre deux indices acoustiques L i , à savoir L₉₉ et L₁ et, de préférence, entre les indices L₈₄ et L₁₆. En effet, il a été constaté qu'il existe une bonne corrélation avec la vitesse pour les indices les plus proches entourant l'indice L₅₀. Le choix de l'espace L₈₄-L₁₆ permet d'augmenter la précision des mesures. L'indice acoustique moyen P₁ est égal à 16 dB, 4dB et 7 dB respectivement pour les familles de courbes illustrées aux Fig. 3A à 3C. Cette méthode de détermination de l'indicateur acoustique P₁, à l'aide d'une distribution statistique, constitue une amélioration du procédé consistant à déterminer la dynamique du signal par la différence entre les valeurs Lmax et Lmin, en raison des puissances acoustiques très différentes émises par les diverses catégories de véhicules.
  • De préférence, l'indicateur de présence P₂ est obtenu en prenant un indice acoustique sensiblement voisin de l'indice L₅₀. Pour cet indice, il apparaît, en effet, une bonne corrélation avec la vitesse des véhicules. Dans l'exemple illustré, l'indice de présence moyen P₂ est égal à 73 dB, 86 dB et 85 dB respectivement pour les familles de courbe illustrées aux Fig. 3A à 3C.
  • Il est à noter que les courbes illustrées à la Fig. 3A correspondent à un trafic relevé entre 2 et 3 heures du matin. Les distributions statistiques sont aléatoires et la dynamique P₁ (16 dB) est importante, ce qui indique un trafic faible.
  • Les courbes qui sont montrées à la Fig. 3B correspondent à un flot de circulation relevé entre 7 heures et 7 h 30 du matin. La faible valeur de l'indice dynamique P₁ (4 dB) indique une saturation de la voie de circulation.
  • La Fig. 3C, qui montre des courbes correspondant à un trafic relevé entre 10 et 11 heures du matin, permet de constater que l'indicateur acoustique P₁ présente une valeur (7 dB) légèrement supérieure à celle de l'indice déterminé à la Fig. 3B. La circulation correspondante est considérée dense mais plus fluide que dans l'exemple illustré à la Fig. 3B.
  • Il s'ensuit que la saturation de la voie de circulation se caractérise par une diminution de la valeur de l'indice dynamique P₁ et par un passage à une valeur minimum pour l'indice de présence P₂.
  • Afin de distinguer des états plus ou moins critiques de la circulation routière, il est prévu d'analyser les évolutions de l'indicateur de présence P₂ en fonction de l'indicateur dynamique P₁. La Fig. 4 illustre, à titre d'exemple, l'évolution de l'indicateur de présence L₅₀ en fonction de l'indicateur dynamique L₁₆-L₈₄. La relation existante entre l'indicateur de présence P₂ et la dynamique P₁ permet de détecter les périodes de circulation critiques à partir d'une seule mesure de bruit. La description qui suit donne un exemple de méthode pour déterminer les points de consigne correspondant à des états significatifs du trafic.
  • L'analyse des états critiques de la circulation consiste à analyser les données enregistrées pendant les périodes de circulation intense correspondant à une valeur faible de l'indicateur dynamique P₁. Dans l'exemple illustré, il est choisi d'analyser uniquement les données lorsque l'indicateur dynamique P₁ présente une valeur inférieure à 7 dB (point M₁).
  • Les échantillons de bruit enregistrés, pendant le temps où l'indicateur dynamique P₁ est inférieur à 7 dB, sont cumulés afin de déterminer leur distribution. Il est choisi ensuite un indice acoustique dont le niveau de bruit est atteint ou dépassé lors d'une fraction correspondante de la durée d'analyse.
  • D'une manière préférée, mais non exclusive, le niveau de bruit choisi pour la détermination du point de consigne correspond au niveau de bruit qui est atteint ou dépassé pendant 50 % de la durée d'analyse. Dans l'exemple illustré, la valeur du point de consigne, pour un tel niveau de bruit, est égale à 82,5 dB (point M₂).
  • Ainsi, il peut être déterminé :
    • une période de blocage lorsque P₁ < 7 dB et P₂ < 82,5 dB,
    • une période de ralentissement lorsque P₁ < 7 dB et P₂ > 82,5 dB,
    • et une période de trafic fluide pour P₁ > 7 dB.
  • Ainsi, l'indicateur dynamique P₁ permet sans ambiguïté la détection d'une concentration de véhicules à proximité du point de surveillance. Dans ce domaine, de fortes perturbations du trafic, correspondant à un indicateur dynamique P₁ < 7 dB dans l'exemple illustré, la possibilité de détecter différents états de la vitesse du trafic est donnée par l'indicateur de présence P₂. Dans le domaine des valeurs choisies de l'indicateur dynamique P₁, une diminution des valeurs de l'indicateur de présence P₂ indique l'accroissement du blocage du trafic, tandis qu'une augmentation du niveau de l'indicateur P₂ signifie une augmentation de la fluidité du trafic.
  • Il est à noter qu'une étude affinée de l'indicateur dynamique P₁, dans son domaine de fortes perturbations, permet, en liaison avec l'indicateur de présence P₂, de détecter des stades intermédiaires de saturation. Ainsi, dans l'exemple illustré, il est possible de décomposer la période de ralentissement en une période de fort ralentissement pour P₁ compris entre 2 et 5 dB et P₂ > 82,5 dB et en une période de prélude aux ralentissements pour P₁ compris entre 5 et 7 dB et P₂ > 82,5 dB.
  • Un tel principe apparaît clairement à la Fig. 4 sur laquelle sont placés les points de consigne M₁, M₂ des indicateurs P₁ et P₂, à savoir 7 et 82,5 dB. Les points de consigne M₁, M₂ définissent les coordonnées d'un point de rotation d'un cercle C centré sur ce point et divisé, par exemple, en secteurs numérotés de 1 à 8 permettant de détecter différents états de saturation de la voie.
  • Il est ainsi déterminé :
    • une période de blocage pour P₁ < 7 dB et pour P₂ < 82,5 dB (secteurs 1 et 2),
    • une période de fort ralentissement pour P₁ compris entre 2 et 5 dB et P₂ > 82,5 dB (secteur 3),
    • une période de prélude aux ralentissements pour P₁ compris entre 5 et 7 dB et P₂ >82,5 dB (secteur 4),
    • et une période de trafic fluide pour P₁ > 7 dB (secteurs 5 à 8).
  • L'étude statistique des échantillons de bruit permet ainsi une évaluation de l'état de l'écoulement du trafic à partir uniquement du signal acoustique émis par le flux de véhicules.
  • L'invention n'est pas limitée aux exemples décrits et représentés, car diverses modifications peuvent y être apportées sans sortir de son cadre.

Claims (8)

1 - Procédé d'évaluation par voie acoustique de l'écoulement du trafic de véhicules routiers, du type consistant à placer au moins un microphone (3) en bordure d'une voie de circulation (1, 2) et à recueillir le signal sonore (S) issu du microphone, en vue de déterminer les caractéristiques de l'écoulement du trafic, caractérisé en ce qu'il consiste :
- à définir des intervalles d'analyse de durée prédéterminée (T i ) au cours desquels le signal sonore est recueilli,
- à déterminer pour chacun des intervalles d'analyse, d'une part, la différence entre les niveaux maximum (Lmax) et minimum (Lmin) du signal sonore afin de déterminer un premier indicateur acoustique (P₁) correspondant à la dynamique du signal et, d'autre part, un niveau (L P ) du signal sonore qui est atteint pendant une fraction prédéterminée de la durée (T i ) de l'intervalle considéré, en vue de définir un second indicateur acoustique (P₂) correspondant à la présence de véhicules sur la voie,
- et à comparer les indicateurs acoustiques (P₁, P₂) précédemment définis à des valeurs de consigne, afin d'évaluer l'état de l'écoulement du trafic.
2 - Procédé selon la revendication 1, caractérisé en ce qu'il consiste à déterminer les indicateurs acoustiques (P₁, P₂) en procédant, pour chaque intervalle d'analyse (T i ) :
- à un échantillonnage du signal sonore,
- à un classement des échantillons en fonction de leur niveau de bruit,
- et au cumul des échantillons pour déterminer leur distribution statistique (L₁, L₂..., L₉₉) dont leur niveau de bruit est atteint ou dépassé pendant une fraction déterminée de l'intervalle d'analyse.
3 - Procédé selon la revendication 2, caractérisé en ce qu'il consiste à déterminer l'indicateur dynamique (P₁) en effectuant la différence entre deux indices acoustiques, à savoir (L₉₉-L₁) et, de préférence, (L₁₆-L₈₄).
4 - Procédé selon la revendication 2, caractérisé en ce qu'il consiste à déterminer l'indicateur de présence (P₂) en prenant un indice acoustique sensiblement voisin à l'indice (L₅₀).
5 - Procédé selon des revendications précédentes, caractérisé en ce qu'il consiste à analyser les évolutions de l'indicateur de présence (P₂) en fonction de l'indicateur dynamique (P₁), afin de déterminer différentes phases d'écoulement du trafic.
6 - Procédé selon la revendication 5, caractérisé en ce qu'il consiste à analyser les évolutions des indicateurs (P₁) et (P₂):
- en choisissant une valeur faible pour l'indicateur dynamique (P₁) correspondant aux périodes de circulation intense,
- en cumulant les échantillons de bruit enregistrés pendant le temps où l'indicateur dynamique (P₁) est inférieur à la valeur déterminée,
- et en choisissant un niveau de bruit pour l'indicateur (P₂) qui est atteint ou dépassé pendant une fraction prédéterminée de la durée d'analyse.
7 - Procédé selon la revendication 6, caractérisé en ce qu'il consiste à choisir, pour l'indicateur dynamique (P₁), une valeur voisine de 7 dB et, pour l'indicateur de présence (P₂), le niveau de bruit atteint ou dépassé pendant 50 % de la durée d'analyse.
8 - Procédé selon la revendication 1, caractérisé en ce qu'il consiste à recueillir le signal sonore provenant d'au moins un microphone (3) placé en bordure de la file de circulation dite la plus lente de la voie.
EP94420208A 1993-07-21 1994-07-18 Procédé d'évaluation par voie acoustique de l'écoulement du trafic de véhicules routiers Withdrawn EP0635813A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9309197A FR2708123B1 (fr) 1993-07-21 1993-07-21 Procédé d'évaluation par voie acoustique de l'écoulement du trafic de véhicules routiers.
FR9309197 1993-07-21

Publications (1)

Publication Number Publication Date
EP0635813A1 true EP0635813A1 (fr) 1995-01-25

Family

ID=9449651

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94420208A Withdrawn EP0635813A1 (fr) 1993-07-21 1994-07-18 Procédé d'évaluation par voie acoustique de l'écoulement du trafic de véhicules routiers

Country Status (2)

Country Link
EP (1) EP0635813A1 (fr)
FR (1) FR2708123B1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2864626A1 (fr) * 2003-12-30 2005-07-01 W2I Procede et systeme de mesure de la vitesse d'un vehicule, et support d'enregistrement pour leurs mises en oeuvre

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3573724A (en) * 1966-07-15 1971-04-06 Matsushita Electric Ind Co Ltd Traffic flow detecting apparatus
FR2675610A1 (fr) * 1991-04-18 1992-10-23 Alcuri Gustavo Procede et installation d'evaluation d'un flux de circulation de vehicules routiers.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3573724A (en) * 1966-07-15 1971-04-06 Matsushita Electric Ind Co Ltd Traffic flow detecting apparatus
FR2675610A1 (fr) * 1991-04-18 1992-10-23 Alcuri Gustavo Procede et installation d'evaluation d'un flux de circulation de vehicules routiers.
WO1992018962A1 (fr) * 1991-04-18 1992-10-29 Gustavo Alcuri Procede et installation d'evaluation d'un flux de circulation de vehicules routiers

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2864626A1 (fr) * 2003-12-30 2005-07-01 W2I Procede et systeme de mesure de la vitesse d'un vehicule, et support d'enregistrement pour leurs mises en oeuvre
WO2005073736A2 (fr) * 2003-12-30 2005-08-11 Neavia Technologies Procede et systeme de mesure de la vitesse d'un vehicule
WO2005073736A3 (fr) * 2003-12-30 2006-03-30 Neavia Technologies Procede et systeme de mesure de la vitesse d'un vehicule

Also Published As

Publication number Publication date
FR2708123B1 (fr) 1995-10-20
FR2708123A1 (fr) 1995-01-27

Similar Documents

Publication Publication Date Title
US8704662B2 (en) Method and apparatus for monitoring a structure
US5878367A (en) Passive acoustic traffic monitoring system
KR20080023483A (ko) 교통사고 상황 관리 시스템 및 방법
JP3467991B2 (ja) 路面状態判別装置およびこの装置が搭載された車輌、ならびにこの装置を用いた路面情報管理システム
EP0635813A1 (fr) Procédé d&#39;évaluation par voie acoustique de l&#39;écoulement du trafic de véhicules routiers
FR2675610A1 (fr) Procede et installation d&#39;evaluation d&#39;un flux de circulation de vehicules routiers.
WO2000066412A1 (fr) Procede de mesure de la vitesse d&#39;un vehicule sur rails et installation destinee a cet effet
KR100378956B1 (ko) 음향을 이용한 교통 감지 장치
WO2021152824A1 (fr) Système de surveillance de véhicule, procédé de surveillance de véhicule et dispositif de surveillance de véhicule
FR2721717A1 (fr) Dispositif de sécurité pour routes.
KR20080006500U (ko) 교차로사고음 자동감지시스템
KR100517129B1 (ko) 교통사고 녹화시스템
FR3065526B1 (fr) Systeme de detection d&#39;un etat ou d&#39;un dysfonctionnement par analyse vibratoire
FR2514047A1 (fr) Procede et dispositif de detection automatique d&#39;accidents routiers
Ambraziūnas et al. Application of Accelerometer for Vehicle Parameterization
Kowarik et al. Train monitoring using distributed fiber optic acoustic sensing
JP3427246B2 (ja) 路面状態判別装置およびこの装置が搭載された車輌
Marciniuk et al. Acoustic Road Monitoring
JP6343184B2 (ja) 装着判定装置、装着判定方法および装着判定プログラム
EP1347308B1 (fr) Dispositif de surveillance routière embarqué
Shiroto et al. Roadway Water-Splash Detection Method Using Acoustic Sensing
EP1347307B1 (fr) Procédé de surveillance routière pour véhicule routier s&#39;adaptant à l&#39;état et à la nature du revêtement
FR3116037A1 (fr) Dispositif de détection de déraillement d’un véhicule ferroviaire
CN118016100A (zh) 一种基于胎路摩擦声纹的路面结冰状况判断方法
JP3358104B2 (ja) 路面状態判別装置およびこの装置が搭載された車輌

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES GB IT LU NL

17P Request for examination filed

Effective date: 19950704

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19971105

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19980608