EP0629828B1 - Process and apparatus for the production of oxygen and/or nitrogen under pressure in variable quantities - Google Patents

Process and apparatus for the production of oxygen and/or nitrogen under pressure in variable quantities Download PDF

Info

Publication number
EP0629828B1
EP0629828B1 EP94401213A EP94401213A EP0629828B1 EP 0629828 B1 EP0629828 B1 EP 0629828B1 EP 94401213 A EP94401213 A EP 94401213A EP 94401213 A EP94401213 A EP 94401213A EP 0629828 B1 EP0629828 B1 EP 0629828B1
Authority
EP
European Patent Office
Prior art keywords
liquid
pressure
flow rate
vaporization
heating fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94401213A
Other languages
German (de)
French (fr)
Other versions
EP0629828A1 (en
Inventor
Denis Chretien
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP0629828A1 publication Critical patent/EP0629828A1/en
Application granted granted Critical
Publication of EP0629828B1 publication Critical patent/EP0629828B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04103Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression using solely hydrostatic liquid head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04781Pressure changing devices, e.g. for compression, expansion, liquid pumping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • F25J3/04836Variable air feed, i.e. "load" or product demand during specified periods, e.g. during periods with high respectively low power costs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/50Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/50Processes or apparatus involving steps for recycling of process streams the recycled stream being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/10Mathematical formulae, modeling, plot or curves; Design methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/939Partial feed stream expansion, air

Definitions

  • the present invention relates to the production of oxygen and / or nitrogen gas under pressure with variable flow. It primarily concerns a variable gas flow production process of at least one main constituent of pressurized air, of the type in which the component is drawn off in liquid form of an air distillation apparatus, we bring this liquid at spray pressure above the withdrawal pressure, and the liquid is vaporized under vaporization pressure by heat exchange with circulating fluid under high pressure. Such a process is known from document EP-A-0 422 974.
  • the main application of the invention is production of gaseous oxygen under pressure at flow rate variable, and this is why we will explain below the invention with reference to this application.
  • Air distillation devices are usually of the double column type and include a medium pressure column and a low pressure column coupled by a vaporizer-condenser.
  • a medium pressure column and a low pressure column coupled by a vaporizer-condenser.
  • pump liquid oxygen withdrawn from a tank the low pressure column is pumped up to a pressure relatively high, then is vaporized under this pressure, generally in the heat exchange line associated with the double column and by heat exchange with air being liquefied.
  • characteristic curve There are for each component of the installation a relationship between the operating pressure and the flow, called the characteristic curve.
  • the characteristic curve 1 links the compression ratio TC to the actual flow D aspirated ( Figure 2).
  • the characteristic curve 5 is much more simple (Figure 3). It is a pressure P / flow D curve monotonous, increasing, passing through the origin.
  • variable blades we can limit this loss by using a compressor equipped at its inlet with variable blades, which allows you to change characteristics. There is then no need to laminate on suction, and the point changes from A to C when moving to reduced flow.
  • variable blades on an oxygen compressor is delicate and little widespread.
  • US-A-3,214,925 also describes a system in which oxygen pumped liquid is vaporized against a flow of pressurized air, the air flow being thus liquefied.
  • the invention aims to improve the overall performance of installation, both at reduced and nominal flow rates, without having use of variable blades, delicate to implement, for the final compressor.
  • the invention relates to a process of the aforementioned type, characterized in that, when the demand for said gaseous component decreases, its flow rate is adjusted by modifying the flow rate of the liquid to be vaporized and said vaporization pressure and the flow of circulating fluid is reduced so balance the material balance and reduce the high pressure of circulating fluid to maintain the same temperature difference between the circulating fluid and the liquid that vaporizes.
  • the invention also relates to an installation for the implementation work of such a process.
  • This installation of the type known from document EP-A-0 422 974, comprising an apparatus for air distillation, means for withdrawing liquid from this apparatus, means for increasing the pressure of the liquid withdrawn to a pressure of vaporization, circulating fluid compressor, and heat exchanger for vaporizing the liquid under said vaporization pressure by exchange of heat with circulating fluid under high pressure, is characterized in that that it includes means for adjusting the flow rate of the liquid to be vaporized and for said vaporization pressure and means for reducing the flow rate of the fluid circulating in order to balance the material balance and to reduce the high pressure of the circulating fluid to maintain the same temperature difference between the fluid circulating and the fluid which vaporizes, when the demand of said constituent decreases.
  • the installation shown in Figure 1 is intended to provide a flow variable gaseous oxygen under high pressure, for example under about 40 bars, via a product outlet pipe 6. It essentially comprises: an atmospheric air compressor 7; an apparatus 8 for purifying water and carbon dioxide by adsorption; a heat exchange line 9; a air blower 10 with variable blades; an expansion turbine 11; a double distillation column 12 itself comprising a medium column pressure 13 surmounted by a low pressure column 14, the head of the column 13 being coupled to the tank of column 14 by a vaporizer-condenser 15; a sub-cooler 16 a liquid oxygen pump 17 at rotational speed constant; a rolling valve 18 mounted in the discharge line 19 of this pump; and one oxygen compressor 20 without variable blades.
  • the double column is equipped with pipes usual 21 "rich liquid” rise (air enriched in oxygen), 22 for the rise of “poor liquid” (almost pure nitrogen), these two pipes connecting the medium pressure column to the low pressure column and being equipped with respective expansion valves, and 23 exhaust gas W (impure nitrogen) from the top of column 14, the sub-cooling waste gas the rich liquid and the poor liquid in the subcooler 16.
  • atmospheric air compressed in 7 at medium column pressure 13 and refined in 8 is divided into two streams: one first current which is cooled in 9 to the neighborhood from its dew point and introduced into the column tank 13; and a second current which is boosted in 10 to one high pressure adapted to the vaporization pressure of liquid oxygen.
  • the compressed air is cooled in 9 up to an intermediate temperature T, at which it is divided into two fractions: a first fraction which continues to cool and is liquefied, and possibly sub-cooled, until the cold end of the heat exchange line and then is distributed among the columns 13 and 14 after expansion in gates of corresponding triggers; and a second fraction which is outlet of the heat exchange line, expanded at 11 at low pressure and introduced into column 14, this expansion ensuring that the installation is kept cold.
  • the turbine could expand by air at medium pressure, the relaxed air then being introduced in column 13.
  • Liquid oxygen is drawn off in a tank column 14 and brought by pump 17 to a pressure intermediate.
  • the valve 18 is in the open position maximum, so this intermediate pressure is substantially the vaporization pressure of oxygen liquid in the heat exchange line. Oxygen vaporized leaving, near room temperature, the hot end of the heat exchange line is then compressed to production pressure by the compressor 20.
  • the comparison can be done as follows: in the technique anterior, by playing on the variable blades of the booster 10, the operating point changes from A, for the nominal flow, at B, for reduced flow. By laminating the liquid, the operating point at reduced flow changes to C.
  • a throttle valve on the discharge line pump 17 provides both a gain in energy at low flow rates and a gain in efficiency, and therefore in energy, at nominal flow.
  • the oxygen pressure liquid withdrawn from the double column can be increased without the use of a pump, by a hydrostatic height created in a down pipe.
  • the invention applies equally well to air distillers having their own medium pressure air compressor, as described more high, than devices integrated into a gas turbine.
  • the invention also applies for the production of nitrogen under high pressure at flow rate variable. It brings the same advantage vis-à-vis the air blower (or, more generally, compressor cycle of circulating fluid ensuring vaporization), and allows the use of a final nitrogen compressor without variable blades, and therefore more economical.
  • the invention applies also in case the installation does not include final compressor 20.
  • the pressure of the oxygen produced is then a function of the flow rate of vaporized oxygen and is defined by the characteristic curve of the equipment consumer.

Description

La présente invention est relative à la production d'oxygène et/ou d'azote gazeux sous pression à débit variable. Elle concerne en premier lieu un procédé de production à débit gazeux variable d'au moins un constituant principal de l'air sous pression, du type dans lequel on soutire le constituant sous forme liquide d'un appareil de distillation d'air, on amène ce liquide à une pression de vaporisation au dessus de la pression de soutirage, et on vaporise le liquide sous la pression de vaporisation par échange de chaleur avec un fluide calorigène sous haute pression. Un tel procédé est connu par le document EP-A-0 422 974.The present invention relates to the production of oxygen and / or nitrogen gas under pressure with variable flow. It primarily concerns a variable gas flow production process of at least one main constituent of pressurized air, of the type in which the component is drawn off in liquid form of an air distillation apparatus, we bring this liquid at spray pressure above the withdrawal pressure, and the liquid is vaporized under vaporization pressure by heat exchange with circulating fluid under high pressure. Such a process is known from document EP-A-0 422 974.

L'application principale de l'invention est la production d'oxygène gazeux sous pression à débit variable, et c'est pourquoi on expliquera ci-dessous l'invention en référence à cette application.The main application of the invention is production of gaseous oxygen under pressure at flow rate variable, and this is why we will explain below the invention with reference to this application.

Les pressions dont il est question ci-dessous sont des pressions absolues.The pressures discussed below are absolute pressures.

Les appareils de distillation d'air sont généralement du type à double colonne et comprennent une colonne moyenne pression et une colonne basse pression couplées par un vaporiseur-condenseur. Dans les appareils dits "à pompe", de l'oxygène liquide soutiré en cuve de la colonne basse pression est pompé jusqu'à une pression relativement élevée, puis est vaporisé sous cette pression, généralement dans la ligne d'échange thermique associée à la double colonne et par échange de chaleur avec de l'air en cours de liquéfaction.Air distillation devices are usually of the double column type and include a medium pressure column and a low pressure column coupled by a vaporizer-condenser. In devices so-called "pump", liquid oxygen withdrawn from a tank the low pressure column is pumped up to a pressure relatively high, then is vaporized under this pressure, generally in the heat exchange line associated with the double column and by heat exchange with air being liquefied.

Cette technique, qui permet très avantageusement d'économiser un compresseur d'oxygène gazeux, délicat à mettre en oeuvre, est toutefois limitée par le fait que la pression de l'air calorigène augmente rapidement avec la pression de vaporisation de l'oxygène. Ainsi, une pression de vaporisation de 12 bars correspond à une pression d'air de 25 bars environ. On arrive donc rapidement à des pressions d'air voisines de la pression critique (environ 38 bars), pour laquelle le palier de condensation de l'air disparaít. Il faut alors comprimer à la haute pression un débit d'air très important, et la consommation d'énergie devient rédhibitoire.This technique, which very advantageously allows to save a gaseous oxygen compressor, delicate to implement, is however limited by the causes the circulating air pressure to increase rapidly with the vaporization pressure of oxygen. Thus, a vaporization pressure of 12 bars corresponds at an air pressure of around 25 bars. So we are coming quickly at air pressures close to the pressure critical (around 38 bars), for which the level of air condensation disappears. You must then compress at high pressure a very high air flow, and the energy consumption becomes prohibitive.

C'est pourquoi, pour produire l'oxygène sous pression élevée, typiquement de l'ordre de 40 à 50 bars, il est usuel de vaporiser l'oxygène sous une pression intermédiaire, typiquement de l'ordre de 12 bars, et de comprimer l'oxygène gazeux sous cette pression sortant du bout chaud de la ligne d'échange thermique. C'est ce contexte auquel s'intéresse principalement l'invention, qui sera expliquée dans cette application.This is why, to produce oxygen under high pressure, typically of the order of 40 to 50 bars, it is common to vaporize oxygen under pressure intermediate, typically of the order of 12 bars, and compress the gaseous oxygen under this outgoing pressure the hot end of the heat exchange line. It's that context in which the invention is mainly interested, which will be explained in this application.

Lorsque la demande en oxygène sous pression varie, il se produit les phénomènes suivants, qui vont être expliqués en regard des Figures 2 et 3 des dessins annexés.When the oxygen demand under pressure varies, the following phenomena occur, which be explained with reference to Figures 2 and 3 of the drawings attached.

Il existe pour chaque composant de l'installation une relation entre la pression opératoire et le débit, appelée courbe caractéristique. On peut classer les éléments en deux catégories suivant l'allure des courbes caractéristiques :There are for each component of the installation a relationship between the operating pressure and the flow, called the characteristic curve. We can classify elements in two categories according to the appearance of characteristic curves:

(1) Les compresseurs : Pour un compresseur centrifuge, en première approximation, la courbe caractéristique 1 relie le taux de compression TC au débit réel D aspiré (Figure 2).(1) The compressors : For a centrifugal compressor, as a first approximation, the characteristic curve 1 links the compression ratio TC to the actual flow D aspirated (Figure 2).

Lorsque le débit diminue, le taux de compression augmente. En dessous d'un certain débit apparaít le phénomène de pompage, qui est un mode de fonctionnement instable et dangereux pour la machine. Il n'est donc pas possible de diminuer le débit en deçà d'une limite 2, le lieu de ces limites formant une courbe 3 appelée courbe d'anti-pompage. Pour une vitesse de rotation donnée et une géométrie de compresseur donnée, la courbe caractéristique est unique. On peut changer de courbe caractéristique, soit en modifiant la vitesse de de rotation, soit en agissant sur des organes particuliers appelés aubages ou aubes variables (ou mobiles).When the flow decreases, the compression ratio increases. Below a certain flow appears pumping phenomenon, which is a mode of operation unstable and dangerous for the machine. It is therefore not possible to reduce the flow below a limit 2, the place of these limits forming a curve 3 called curve anti-pumping. For a given rotation speed and a given compressor geometry, the characteristic curve is unique. We can change the characteristic curve, either by changing the speed of rotation, or by acting on particular organs called blading or variable (or movable) blades.

Par ailleurs, suivant l'endroit où se trouve le point opératoire sur la courbe caractéristique, le rendement du compresseur est affecté. Les courbes équirendements sont montrées en 4 sur la Figure 2. Les courbes centrales correspondent aux meilleurs rendements pour des points opératoires relativement proches de la courbe d'anti-pompage.Furthermore, depending on where you are the operating point on the characteristic curve, the compressor performance is affected. Squaring curves are shown in 4 in Figure 2. The central curves correspond to the best yields for operating points relatively close to the anti-pumping curve.

(2) Les éléments statiques (appareil d'épuration par adsorption et ligne d'échange thermique) :(2) Static elements (adsorption purification device and heat exchange line):

La courbe caractéristique 5 est beaucoup plus simple (Figure 3). C'est une courbe pression P/débit D monotone, croissante, passant par l'origine.The characteristic curve 5 is much more simple (Figure 3). It is a pressure P / flow D curve monotonous, increasing, passing through the origin.

Lorsque le débit varie, les points opératoires des différents composants se déplacent sur des caractéristiques qui ne sont pas nécessairement compatibles entre elles. Il faut donc ajouter des moyens de réglage, qui sont des vannes ou des aubages.When the flow varies, the operating points different components move on characteristics which are not necessarily compatible between them. We must therefore add means of adjustment, which are valves or vanes.

Lorsque le débit d'oxygène produit diminue, le compresseur d'oxygène suit sa courbe caractéristique, et le taux de compression augmente. Sur un compresseur en ligne classique, à vitesse constante et sans aubage variable, il est usuel d'installer une vanne à l'aspiration du compresseur pour diminuer la pression d'aspiration et permettre ainsi l'augmentation du taux de compression et l'obtention de la pression de production demandée. Le point opératoire se déplace alors de A en B (Figure 2). Ce laminage représente cependant une perte d'énergie à bas débit.When the flow of oxygen produced decreases, the oxygen compressor follows its characteristic curve, and the compression ratio increases. On a compressor classic line, at constant speed and without blading variable, it is usual to install a suction valve the compressor to decrease the suction pressure and thus allow the increase in the rate of compression and obtaining production pressure requested. The operating point then moves from A to B (Figure 2). This rolling however represents a loss low flow energy.

On peut limiter cette perte en utilisant un compresseur équipé à son entrée d'aubages variables, ce qui permet de changer de caractéristique. Il n'y a alors plus besoin de laminer à l'aspiration, et le point opératoire se déplace de A en C lorsque l'on passe au débit réduit. Toutefois, l'utilisation d'aubages variables sur un compresseur d'oxygène est délicate et peu répandue.We can limit this loss by using a compressor equipped at its inlet with variable blades, which allows you to change characteristics. There is then no need to laminate on suction, and the point changes from A to C when moving to reduced flow. However, the use of variable blades on an oxygen compressor is delicate and little widespread.

D'autre part, lorsque le débit d'oxygène diminue, le débit du surpresseur d'air doit diminuer également pour équilibrer le bilan thermique, et le débit d'air entrant doit lui aussi, du moins si l'installation ne produit pas de liquide, être réduit pour équilibrer le bilan matière. La courbe de la Figure 3, applicable à la ligne d'échange thermique, montre que la pression de l'appareil de distillation, et en particulier la moyenne pression, baisse. La haute pression étant constante, le taux de compression du surpresseur augmente donc, et le point opératoire suit sa courbe caractéristique, qui est de nouveau du type représenté sur la Figure 2. Pour ce surpresseur d'air, il est plus facile d'utiliser des compresseurs, dits à multiplicateur intégré, à aubages variables, et l'adaptation de la caractéristique du compresseur à celle de la double colonne se fait aisément. Toutefois, la souplesse demandée affecte le rendement de la façon suivante puisqu'il n'est pas possible que le débit réduit (par exemple le point B sur la Figure 2) soit inférieur à celui du pompage, le point de fonctionnement normal A se trouve rejeté vers la droite, vers les courbes équi-rendement à bas rendement. Il est d'ailleurs à noter que le compresseur d'oxygène est pénalisé de la même manière en fonctionnement à débit normal.On the other hand, when the oxygen flow decreases, the air blower flow must decrease also to balance the heat balance, and the flow incoming air must also, at least if the installation does not produce liquid, be reduced to balance the material balance. The curve of Figure 3, applicable at the heat exchange line, shows that the pressure of the distillation apparatus, and in particular the medium pressure, drop. The high pressure being constant, the compression ratio of the booster increases therefore, and the operating point follows its characteristic curve, which is again of the type shown on the Figure 2. For this air blower, it is easier to use compressors, known as multipliers integrated, with variable blades, and the adaptation of the characteristic of the compressor to that of double column is easily done. However, flexibility requested affects performance as follows since it is not possible that the reduced flow (by example point B in Figure 2) is less than that of pumping, the normal operating point A is found rejected to the right, towards the equi-yield curves low yield. It should also be noted that the oxygen compressor is penalized in the same way in normal flow operation.

En résumé, on voit que la souplesse demandée sur le débit d'oxygène sous pression a des conséquences défavorables sur la consommation d'énergie, d'une part du fait du laminage de l'oxygène gazeux, d'autre part du fait de la nécessité de faire travailler les compresseurs d'oxygène et le surpresseur d'air avec des rendements relativement médiocres.In summary, we see that the flexibility requested on the flow of oxygen under pressure has consequences unfavorable on energy consumption, on the one hand due to the rolling of gaseous oxygen, on the other hand made it necessary to operate the compressors oxygen and air blower with yields relatively poor.

US-A-3 214 925 décrit également un système dans lequel de l'oxygène liquide pompé est vaporisé contre un débit d'air surpressé, le débit d'air étant ainsi liquéfié.US-A-3,214,925 also describes a system in which oxygen pumped liquid is vaporized against a flow of pressurized air, the air flow being thus liquefied.

L'invention a pour but d'améliorer les performances globales de l'installation, tant aux débits réduits qu'au débit nominal, sans pour autant avoir recours à des aubages variables, délicats à mettre en oeuvre, pour le compresseur final.The invention aims to improve the overall performance of installation, both at reduced and nominal flow rates, without having use of variable blades, delicate to implement, for the final compressor.

A cet effet, l'invention a pour objet un procédé du type précité, caractérisé en ce que, lorsque la demande dudit constituant gazeux diminue, l'on règle son débit en modifiant le débit du liquide à vaporiser et ladite pression de vaporisation et on réduit le débit du fluide calorigène afin d'équilibrer le bilan matière et on réduit la haute pression du fluide calorigène pour maintenir le même écart de température entre le fluide calorigène et le liquide qui se vaporise.To this end, the invention relates to a process of the aforementioned type, characterized in that, when the demand for said gaseous component decreases, its flow rate is adjusted by modifying the flow rate of the liquid to be vaporized and said vaporization pressure and the flow of circulating fluid is reduced so balance the material balance and reduce the high pressure of circulating fluid to maintain the same temperature difference between the circulating fluid and the liquid that vaporizes.

Le procédé peut comporter un ou plusieurs des modes particuliers de réalisation de l'invention:

  • la pression de vaporisation est intermédiaire entre la pression de soutirage et la pression de production, et on comprime jusqu'à la pression de production le gaz résultant de la vaporisation;
  • on effectue ladite modification de manière à permettre au compresseur du gaz résultant de suivre sa courbe caractéristique;
  • pour effectuer ladite modification, on lamine de manière variable le liquide à vaporiser;
  • pour effectuer ladite modification, on pompe à vitesse variable le liquide envoyé dans l'échangeur de chaleur de vaporisation;
  • pour effectuer ladite modification, on pompe un débit constant du liquide, et on en renvoie un débit variable vers l'appareil de distillation, le reste du liquide étant vaporisé.
The method may include one or more of the particular embodiments of the invention:
  • the vaporization pressure is intermediate between the withdrawal pressure and the production pressure, and the gas resulting from the vaporization is compressed to the production pressure;
  • said modification is carried out so as to allow the compressor of the resulting gas to follow its characteristic curve;
  • to effect said modification, the liquid to be vaporized is variably laminated;
  • to effect said modification, the liquid sent to the vaporization heat exchanger is pumped at variable speed;
  • to effect said modification, a constant flow rate of the liquid is pumped, and a variable flow rate is returned to the distillation apparatus, the remainder of the liquid being vaporized.

L'invention a également pour objet une installation pour la mise en oeuvre d'un tel procédé. Cette installation, du type connu par le document EP-A-0 422 974, comprenant un appareil de distillation d'air, des moyens pour soutirer un liquide de cet appareil, des moyens pour augmenter la pression du liquide soutiré à une pression de vaporisation, un compresseur de fluide calorigène, et un échangeur de chaleur pour vaporiser le liquide sous ladite pression de vaporisation par échange de chaleur avec le fluide calorigène sous haute pression, est caractérisée en ce qu'elle comprend des moyens de réglage du débit du liquide à vaporiser et de ladite pression de vaporisation et des moyens pour réduire le débit du fluide calorigène afin d'équilibrer le bilan matière et pour réduire la haute pression du fluide calorigène pour maintenir le même écart de température entre le fluide calorigène et le fluide qui se vaporise, lorsque la demande dudit constituant diminue.The invention also relates to an installation for the implementation work of such a process. This installation, of the type known from document EP-A-0 422 974, comprising an apparatus for air distillation, means for withdrawing liquid from this apparatus, means for increasing the pressure of the liquid withdrawn to a pressure of vaporization, circulating fluid compressor, and heat exchanger for vaporizing the liquid under said vaporization pressure by exchange of heat with circulating fluid under high pressure, is characterized in that that it includes means for adjusting the flow rate of the liquid to be vaporized and for said vaporization pressure and means for reducing the flow rate of the fluid circulating in order to balance the material balance and to reduce the high pressure of the circulating fluid to maintain the same temperature difference between the fluid circulating and the fluid which vaporizes, when the demand of said constituent decreases.

Un exemple de mise en oeuvre de l'invention va maintenant être décrit en regard des dessins annexés, sur lesquels :

  • la figure 1 représente schématiquement une installation de production d'oxygène gazeux conforme à l'invention;
  • la figure 2 est une courbe caractéristique du fonctionnement des compresseurs de cette installation;
  • la figure 3 est une courbe caractéristique du fonctionnement des composants passifs de l'installation;
  • la figure 4 illustre les avantages apportés par l'invention; et
  • la figure 5 est une vue schématique partielle d'une variante.
An example of implementation of the invention will now be described with reference to the accompanying drawings, in which:
  • FIG. 1 schematically represents an installation for producing gaseous oxygen in accordance with the invention;
  • Figure 2 is a characteristic curve of the operation of the compressors of this installation;
  • Figure 3 is a characteristic curve of the operation of the passive components of the installation;
  • FIG. 4 illustrates the advantages provided by the invention; and
  • Figure 5 is a partial schematic view of a variant.

L'installation représentée sur la figure 1 est destinée à fournir un débit variable d'oxygène gazeux sous haute pression, par exemple sous environ 40 bars, via une conduite de sortie de produit 6. Elle comprend essentiellement : un compresseur d'air atmosphérique 7; un appareil 8 d'épuration en eau et en anhydride carbonique par adsorption; une ligne d'échange thermique 9; un surpresseur d'air 10 à aubages variables; une turbine de détente 11; une double colonne de distillation 12 comprenant elle-même une colonne moyenne pression 13 surmontée d'une colonne basse pression 14, la tête de la colonne 13 étant couplée à la cuve de la colonne 14 par un vaporiseur-condenseur 15 ; un sous-refroidisseur 16 une pompe d'oxygène liquide 17 à vitesse de rotation constante ; une vanne de laminage 18 montée dans la conduite de refoulement 19 de cette pompe ; et un compresseur d'oxygène 20 dépourvu d'aubages variables.The installation shown in Figure 1 is intended to provide a flow variable gaseous oxygen under high pressure, for example under about 40 bars, via a product outlet pipe 6. It essentially comprises: an atmospheric air compressor 7; an apparatus 8 for purifying water and carbon dioxide by adsorption; a heat exchange line 9; a air blower 10 with variable blades; an expansion turbine 11; a double distillation column 12 itself comprising a medium column pressure 13 surmounted by a low pressure column 14, the head of the column 13 being coupled to the tank of column 14 by a vaporizer-condenser 15; a sub-cooler 16 a liquid oxygen pump 17 at rotational speed constant; a rolling valve 18 mounted in the discharge line 19 of this pump; and one oxygen compressor 20 without variable blades.

La double colonne est équipée des conduites habituelles 21 de remontée de "liquide riche" (air enrichi en oxygène), 22 de remontée de "liquide pauvre" (azote à peu près pur), ces deux conduites reliant la colonne moyenne pression à la colonne basse pression et étant équipées de vannes de détente respectives, et 23 d'évacuation du gaz résiduaire W (azote impur) issue du sommet de la colonne 14, le gaz résiduaire sous-refroidissant le liquide riche et le liquide pauvre dans le sous-refroidisseur 16.The double column is equipped with pipes usual 21 "rich liquid" rise (air enriched in oxygen), 22 for the rise of "poor liquid" (almost pure nitrogen), these two pipes connecting the medium pressure column to the low pressure column and being equipped with respective expansion valves, and 23 exhaust gas W (impure nitrogen) from the top of column 14, the sub-cooling waste gas the rich liquid and the poor liquid in the subcooler 16.

En fonctionnement nominal, l'air atmosphérique, comprimé en 7 à la moyenne pression de la colonne 13 et épuré en 8, est divisé en deux courants : un premier courant qui est refroidi en 9 jusqu'au voisinage de son point de rosée et introduit en cuve de la colonne 13 ; et un second courant qui est surpressé en 10 à une haute pression adaptée à la pression de vaporisation de l'oxygène liquide. L'air surpressé est refroidi en 9 jusqu'à une température intermédiaire T, à laquelle il est divisé en deux fractions : une première fraction qui poursuit son refroidissement et est liquéfiée, et éventuellement sous-refroidie, jusqu'au bout froid de la ligne d'échange thermique, puis est répartie entre les colonnes 13 et 14 après détente dans des vannes de détente correspondantes ; et une seconde fraction qui est sortie de la ligne d'échange thermique, détendue en 11 à la basse pression et introduite dans la colonne 14, cette détente assurant le maintien en froid de l'installation. En variante, la turbine pourrait détendre de l'air à la moyenne pression, l'air détendu étant alors introduit dans la colonne 13.In nominal operation, atmospheric air, compressed in 7 at medium column pressure 13 and refined in 8, is divided into two streams: one first current which is cooled in 9 to the neighborhood from its dew point and introduced into the column tank 13; and a second current which is boosted in 10 to one high pressure adapted to the vaporization pressure of liquid oxygen. The compressed air is cooled in 9 up to an intermediate temperature T, at which it is divided into two fractions: a first fraction which continues to cool and is liquefied, and possibly sub-cooled, until the cold end of the heat exchange line and then is distributed among the columns 13 and 14 after expansion in gates of corresponding triggers; and a second fraction which is outlet of the heat exchange line, expanded at 11 at low pressure and introduced into column 14, this expansion ensuring that the installation is kept cold. Alternatively, the turbine could expand by air at medium pressure, the relaxed air then being introduced in column 13.

De l'oxygène liquide est soutiré en cuve de la colonne 14 et amené par la pompe 17 à une pression intermédiaire. La vanne 18 est en position d'ouverture maximale, de sorte que cette pression intermédiaire est sensiblement la pression de vaporisation de l'oxygène liquide dans la ligne d'échange thermique. L'oxygène vaporisé sortant, au voisinage de la température ambiante, du bout chaud de la ligne d'échange thermique est ensuite comprimé à la pression de production par le compresseur 20.Liquid oxygen is drawn off in a tank column 14 and brought by pump 17 to a pressure intermediate. The valve 18 is in the open position maximum, so this intermediate pressure is substantially the vaporization pressure of oxygen liquid in the heat exchange line. Oxygen vaporized leaving, near room temperature, the hot end of the heat exchange line is then compressed to production pressure by the compressor 20.

Lorsque la demande en oxygène diminue, on étrangle le courant d'oxygène liquide à pression intermédiaire sortant de la pompe 17, au moyen de la vanne 18. La pression de vaporisation de l'oxygène baisse alors en même temps que le débit d'oxygène liquide, et l'étranglement est réglé de façon à permettre au compresseur 20 de suivre sa courbe caractéristique. On réduit en même temps le débit d'air traité, pour équilibrer le bilan matière, et on réduit également la haute pression de l'air, pour maintenir le même écart de température entre l'air à liquéfier et l'oxygène à vaporiser. Ainsi, le taux de compression du surpresseur 10 augmente nettement moins, lorsqu'on passe du débit nominal au débit réduit, que dans la technique antérieure, rappelée plus haut, où l'on lamine le courant d'oxygène gazeux qui alimente le compresseur 20, ce qui correspond à un gain en énergie.When the oxygen demand decreases, we throttles the flow of liquid oxygen at intermediate pressure leaving the pump 17, by means of the valve 18. The oxygen vaporization pressure then drops in same time as the flow of liquid oxygen, and the throttle is set to allow compressor 20 to follow its characteristic curve. We reduce at the same time time the treated air flow, to balance the balance material, and we also reduce the high pressure by air, to maintain the same temperature difference between the air to be liquefied and the oxygen to be vaporized. So the compression ratio of booster 10 increases markedly less, when going from nominal flow to reduced flow, than in the prior art, recalled above, where the gaseous oxygen stream which supplies the compressor 20, which corresponds to an energy gain.

En considérant la Figure 4, la comparaison peut se faire de la manière suivante : dans la technique antérieure, en jouant sur les aubages variables du surpresseur 10, le point opératoire passe de A, pour le débit nominal, à B, pour le débit réduit. En laminant le liquide, le point opératoire à débit réduit passe en C.Considering Figure 4, the comparison can be done as follows: in the technique anterior, by playing on the variable blades of the booster 10, the operating point changes from A, for the nominal flow, at B, for reduced flow. By laminating the liquid, the operating point at reduced flow changes to C.

Par suite, on peut concevoir le surpresseur de manière à décaler vers la droite la courbe d'anti-pompage, qui passe de 3 en 3A. Les courbes d'équi-rendement se décalent d'autant vers la droite, de 4 en 4A, et le fonctionnement à débit nominal s'effectue alors avec un meilleur rendement.As a result, we can design the booster so as to shift the anti-pumping curve to the right, which goes from 3 to 3A. Equi-yield curves shift all the way to the right, 4 in 4A, and operation at nominal flow takes place with better yield.

Ainsi, on voit que la simple installation d'une vanne d'étranglement sur la conduite de refoulement de la pompe 17 permet d'obtenir à la fois un gain en énergie aux faibles débits et un gain en rendement, et donc en énergie, au débit nominal.So we see that the simple installation a throttle valve on the discharge line pump 17 provides both a gain in energy at low flow rates and a gain in efficiency, and therefore in energy, at nominal flow.

Le même principe de variation de la pression de vaporisation de l'oxygène liquide en fonction du débit d'oxygène gazeux à produire peut être mis en oeuvre par d'autres moyens que la vanne 18, tous ces moyens pouvant être utilisés seuls ou en combinaison les uns avec les autres : en entraínant la pompe 17 au moyen d'un moteur à vitesse variable, ou encore, comme représenté sur la Figure 5, en renvoyant un débit variable d'oxygène liquide, commandé par une vanne 24, du refoulement de la pompe vers la cuve de la colonne 14. Il est à noter que sur la Figure 5, les autres parties de l'installation, qui sont identiques à celles de la Figure 1, ont été omises pour plus de clarté.The same principle of pressure variation vaporization of liquid oxygen as a function of flow gaseous oxygen to be produced can be implemented by other means than the valve 18, all these means can be used alone or in combination with each other others: by driving the pump 17 by means of a motor variable speed, or as shown in the Figure 5, returning a variable oxygen flow liquid, controlled by a valve 24, of the discharge of the pump to the tank in column 14. Note that in Figure 5, the other parts of the installation, which are identical to those in Figure 1, have been omitted for clarity.

En variante encore, la pression de l'oxygène liquide soutiré de la double colonne peut être augmentée sans utilisation d'une pompe, par une hauteur hydrostatique créée dans une conduite descendante.In another variant, the oxygen pressure liquid withdrawn from the double column can be increased without the use of a pump, by a hydrostatic height created in a down pipe.

L'invention s'applique aussi bien aux appareils de distillation d'air ayant leur propre compresseur d'air moyenne pression, comme décrit plus haut, qu'aux appareils intégrés à une turbine à gaz.The invention applies equally well to air distillers having their own medium pressure air compressor, as described more high, than devices integrated into a gas turbine.

Par ailleurs, l'invention s'applique également à la production d'azote sous haute pression à débit variable. Elle apporte le même avantage vis-à-vis du surpresseur d'air (ou, plus généralement, du compresseur de cycle du fluide calorigène assurant la vaporisation), et permet d'utiliser un compresseur final d'azote sans aubages variables, et donc plus économique.Furthermore, the invention also applies for the production of nitrogen under high pressure at flow rate variable. It brings the same advantage vis-à-vis the air blower (or, more generally, compressor cycle of circulating fluid ensuring vaporization), and allows the use of a final nitrogen compressor without variable blades, and therefore more economical.

Comme on le comprend, l'invention s'applique également au cas où l'installation ne comporte pas de compresseur final 20. La pression de l'oxygène produit est alors fonction du débit d'oxygène vaporisé et est définie par la courbe caractéristique de l'équipement consommateur.As can be understood, the invention applies also in case the installation does not include final compressor 20. The pressure of the oxygen produced is then a function of the flow rate of vaporized oxygen and is defined by the characteristic curve of the equipment consumer.

Claims (12)

  1. Process for producing at least one main constituent of the air under pressure at a variable gaseous flow rate, of the type in which the constituent is withdrawn in liquid form from an air distillation apparatus (12), this liquid is brought to a vaporization pressure above the pressure at which it is withdrawn, and the liquid is vaporized at the vaporization pressure by heat exchange (in 9) with a heating fluid at a high pressure, characterized in that, when the demand for the said gaseous constituent falls, its flow rate is adjusted by modifying the flow rate of the liquid to be vaporized and the said vaporization pressure and the flow rate of the heating fluid is reduced so as to establish the materials balance and the high pressure of the heating fluid is reduced to maintain the same temperature difference between the heating fluid and the liquid which is vaporizing.
  2. Process according to claim 1, characterized in that the gas resulting from vaporization is compressed to the production pressure (in 20).
  3. Process according to claim 2, characterized in that the said modification is carried out so as to enable the compressor (20) of the resulting gas to follow its characteristic curve (1).
  4. Process according to any one of claims 1 to 3, characterized in that, in order to carry out the said modification, the liquid to be vaporized is throttled in a variable manner (in 18).
  5. Process according to any one of claims 1 to 4, characterized in that, in order to carry out the said modification, the liquid conveyed through the vaporizing heat exchanger (9) is pumped at a variable speed (in 17).
  6. Process according to any one of claims 1 to 4, characterized in that, in order to carry out the said modification, a constant flow of the liquid is pumped and is returned at a variable flow rate (in 24) to the distillation apparatus (12), the remainder of the liquid being vaporized.
  7. Plant for producing at least one main constituent of the air under pressure at a variable flow rate, of the type comprising an air distillation apparatus (12), means for withdrawing a liquid from this apparatus, means (17) for increasing the pressure of the liquid withdrawn to a vaporization pressure, a compressor (10) for heating fluid, and a heat exchanger (9) for vaporizing the liquid at the said vaporization pressure by heat exchange with the heating fluid at high pressure, characterized in that it includes means (18;24) for adjusting the flow rate of the liquid to be vaporized and the said vaporization pressure and means (10) for reducing the flow rate of the heating fluid so as to establish the materials balance and for reducing the high pressure of the heating fluid to maintain the same temperature difference between the heating fluid and the fluid which is vaporizing, when the demand for the said constituent falls.
  8. Plant according to claim 7, characterized in that it includes a compressor (20) for bringing the gas resulting from the said vaporization to the production pressure.
  9. Plant according to claim 8, characterized in that the compressor (20) has no variable turbine blades at its inlet and/or is driven by a constant speed motor.
  10. Plant according to any one of claims 7 to 9, characterized in that it includes a constant speed pump (17) connected upstream from the distillation apparatus (12) and downstream from the passages for vaporizing the liquid of the heat exchanger (9), and in that the means of adjustment include a throttle valve (18) mounted in the delivery pipe from this pump.
  11. Plant according to any one of claims 7 to 9, characterized in that it includes a pump driven by a variable speed motor, connected upstream from the distillation apparatus (12) and downstream from the passages for vaporizing the liquid of the heat exchanger (9) .
  12. Plant according to claim 10 or 11, characterized in that it includes a return pipe, equipped with a flow rate adjusting valve (24), connecting the delivery from the pump (17) to the distillation apparatus (12).
EP94401213A 1993-06-18 1994-06-02 Process and apparatus for the production of oxygen and/or nitrogen under pressure in variable quantities Expired - Lifetime EP0629828B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9307395 1993-06-18
FR9307395A FR2706595B1 (en) 1993-06-18 1993-06-18 Process and installation for producing oxygen and / or nitrogen under pressure with variable flow rate.

Publications (2)

Publication Number Publication Date
EP0629828A1 EP0629828A1 (en) 1994-12-21
EP0629828B1 true EP0629828B1 (en) 1998-04-15

Family

ID=9448298

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94401213A Expired - Lifetime EP0629828B1 (en) 1993-06-18 1994-06-02 Process and apparatus for the production of oxygen and/or nitrogen under pressure in variable quantities

Country Status (6)

Country Link
US (1) US5437161A (en)
EP (1) EP0629828B1 (en)
CA (1) CA2125944C (en)
DE (1) DE69409581T2 (en)
ES (1) ES2117765T3 (en)
FR (1) FR2706595B1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2721383B1 (en) * 1994-06-20 1996-07-19 Maurice Grenier Process and installation for producing gaseous oxygen under pressure.
US5501078A (en) * 1995-04-24 1996-03-26 Praxair Technology, Inc. System and method for operating an integrated gas turbine and cryogenic air separation plant under turndown conditions
US5802873A (en) * 1997-05-08 1998-09-08 Praxair Technology, Inc. Cryogenic rectification system with dual feed air turboexpansion
GB9807833D0 (en) * 1998-04-09 1998-06-10 Boc Group Plc Separation of air
US6000239A (en) * 1998-07-10 1999-12-14 Praxair Technology, Inc. Cryogenic air separation system with high ratio turboexpansion
US8429933B2 (en) * 2007-11-14 2013-04-30 Praxair Technology, Inc. Method for varying liquid production in an air separation plant with use of a variable speed turboexpander
FR2983287B1 (en) * 2011-11-25 2018-03-02 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude METHOD AND INSTALLATION OF AIR SEPARATION BY CRYOGENIC DISTILLATION

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE564694A (en) * 1957-02-13
DE1112997B (en) * 1960-08-13 1961-08-24 Linde Eismasch Ag Process and device for gas separation by rectification at low temperature
FR1479561A (en) * 1966-03-25 1967-05-05 Air Liquide Variable flow rate gas pre-production process
US3760596A (en) * 1968-10-23 1973-09-25 M Lemberg Method of liberation of pure nitrogen and oxygen from air
DE1907525A1 (en) * 1969-02-14 1970-08-20 Vnii Kriogennogo Masinostrojen Process for separating nitrogen and oxygen from the air
JPS5419165B2 (en) * 1973-03-01 1979-07-13
FR2461906A1 (en) * 1979-07-20 1981-02-06 Air Liquide CRYOGENIC AIR SEPARATION METHOD AND INSTALLATION WITH OXYGEN PRODUCTION AT HIGH PRESSURE
GB2061478B (en) * 1979-10-23 1983-06-22 Air Prod & Chem Method and cryogenic plant for producing gaseous oxygen
EP0235295B1 (en) * 1985-08-23 1989-06-14 Daidousanso Co., Ltd. Oxygen gas production unit
FR2610846A1 (en) * 1987-02-17 1988-08-19 Air Liquide FILTER ELEMENT FOR EVENT DEVICE AND DEVICE COMPRISING SUCH A MEMBER
DE3913880A1 (en) * 1989-04-27 1990-10-31 Linde Ag METHOD AND DEVICE FOR DEEP TEMPERATURE DISPOSAL OF AIR
FR2652887B1 (en) * 1989-10-09 1993-12-24 Air Liquide PROCESS AND PLANT FOR THE PRODUCTION OF VARIABLE FLOW GAS OXYGEN BY AIR DISTILLATION.
US5129932A (en) * 1990-06-12 1992-07-14 Air Products And Chemicals, Inc. Cryogenic process for the separation of air to produce moderate pressure nitrogen
US5081845A (en) * 1990-07-02 1992-01-21 Air Products And Chemicals, Inc. Integrated air separation plant - integrated gasification combined cycle power generator
JP2909678B2 (en) * 1991-03-11 1999-06-23 レール・リキード・ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Method and apparatus for producing gaseous oxygen under pressure
DE4126945A1 (en) * 1991-08-14 1993-02-18 Linde Ag METHOD FOR AIR DISASSEMBLY BY RECTIFICATION
FR2681415B1 (en) * 1991-09-18 1999-01-29 Air Liquide PROCESS AND PLANT FOR THE PRODUCTION OF GAS OXYGEN UNDER HIGH PRESSURE BY AIR DISTILLATION.
FR2689224B1 (en) * 1992-03-24 1994-05-06 Lair Liquide PROCESS AND PLANT FOR THE PRODUCTION OF NITROGEN AT HIGH PRESSURE AND OXYGEN.

Also Published As

Publication number Publication date
CA2125944A1 (en) 1994-12-19
DE69409581T2 (en) 1998-12-17
FR2706595B1 (en) 1995-08-18
FR2706595A1 (en) 1994-12-23
ES2117765T3 (en) 1998-08-16
DE69409581D1 (en) 1998-05-20
CA2125944C (en) 2004-10-19
US5437161A (en) 1995-08-01
EP0629828A1 (en) 1994-12-21

Similar Documents

Publication Publication Date Title
EP0504029B1 (en) Process for the production of gaseous pressurised oxygen
EP0422974B1 (en) Process and installation for the production of gaseous oxygen in variable quantities by the distillation of air
AU688218B2 (en) Cooling a fluid stream
EP0848220B1 (en) Method and plant for supplying an air gas at variable quantities
EP0576314B1 (en) Process and installation for the production of gaseous oxygen under pressure
EP0689019B1 (en) Process and apparatus for producing gaseous oxygen under pressure
EP0024962A1 (en) Cryogenic air separation process with production of high-pressure oxygen
EP1447634B1 (en) Process and device for the production of at least one gaseous high pressure fluid such as Oxygen, Nitrogen or Argon by cryogenic separation of air
WO2002050483A1 (en) Method for refrigerating liquefied gas and installation therefor
EP1118827B1 (en) Partial liquifaction process for a hydrocarbon-rich fraction such as natural gas
EP0694746B1 (en) Process for the production of a gas under pressure in variable quantities
EP0629828B1 (en) Process and apparatus for the production of oxygen and/or nitrogen under pressure in variable quantities
EP0618415B1 (en) Process and installation for the production of gaseous oxygen and/or gaseous nitrogen under pressure by distillation of air
FR2805339A1 (en) PROCESS FOR THE PRODUCTION OF OXYGEN BY CRYOGENIC RECTIFICATION
FR2787560A1 (en) PROCESS FOR CRYOGENIC SEPARATION OF AIR GASES
EP0914584B1 (en) Method and plant for producing an air gas with a variable flow rate
EP0677713B1 (en) Process and installation for the production of oxygen by distillation of air
FR2688052A1 (en) Method and installation for producing pressurised gaseous oxygen and/or nitrogen by distillation of air
EP0612967A1 (en) Process and installation for the production of oxygen and/or nitrogen under pressure
FR2943125A1 (en) Liquefied natural gas producing method, involves providing natural gas, recovering part of heat from fumes produced by gas turbine, and producing vapor for vapor turbine by using recovered part of heat
FR2929697A1 (en) PROCESS FOR PRODUCING VARIABLE GASEOUS NITROGEN AND VARIABLE GAS OXYGEN BY AIR DISTILLATION
EP2417411A2 (en) Refrigeration process and system for recovering cold from methane by refrigerants
CA2234435A1 (en) Process and installation of air separation by cryogenic distillation
EP0422973A1 (en) Refrigeration process and apparatus using a refrigerant mixture
WO2019073132A1 (en) Method and device for separating air by cryogenic distillation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940615

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FR IT NL

17Q First examination report despatched

Effective date: 19960306

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES FR IT NL

REF Corresponds to:

Ref document number: 69409581

Country of ref document: DE

Date of ref document: 19980520

ITF It: translation for a ep patent filed

Owner name: ING. A. GIAMBROCONO & C. S.R.L.

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2117765

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060511

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20060515

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060523

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20060531

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20060606

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060630

Year of fee payment: 13

BERE Be: lapsed

Owner name: S.A. L'*AIR LIQUIDE POUR L'ETUDE ET L'EXPLOITATION

Effective date: 20070630

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20080101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20080229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080101

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080101

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20070604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070602