EP0629059B1 - Système de transmission numérique à étalement de spectre obtenu par codage pseudo-aléatoire basse fréquence de l'information utile et procédé d'étalement et de compression de spectre utilisé un tel système - Google Patents

Système de transmission numérique à étalement de spectre obtenu par codage pseudo-aléatoire basse fréquence de l'information utile et procédé d'étalement et de compression de spectre utilisé un tel système Download PDF

Info

Publication number
EP0629059B1
EP0629059B1 EP94401282A EP94401282A EP0629059B1 EP 0629059 B1 EP0629059 B1 EP 0629059B1 EP 94401282 A EP94401282 A EP 94401282A EP 94401282 A EP94401282 A EP 94401282A EP 0629059 B1 EP0629059 B1 EP 0629059B1
Authority
EP
European Patent Office
Prior art keywords
integer
sequences
transmitter
random phase
integers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94401282A
Other languages
German (de)
English (en)
Other versions
EP0629059A1 (fr
Inventor
Philippe Sehier
Dominique Deprey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Lucent SAS
Original Assignee
Alcatel CIT SA
Alcatel SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel CIT SA, Alcatel SA filed Critical Alcatel CIT SA
Publication of EP0629059A1 publication Critical patent/EP0629059A1/fr
Application granted granted Critical
Publication of EP0629059B1 publication Critical patent/EP0629059B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K1/00Secret communication
    • H04K1/02Secret communication by adding a second signal to make the desired signal unintelligible

Definitions

  • the field of the invention is that of modem transmission of digital signals and in particular that of spread spectrum modems. More specifically, the The present invention relates to a transmission system with spread of spectrum between a transmitter and a receiver digital signals where spread spectrum is obtained by pseudo-random coding of information useful to transmit.
  • the invention is particularly applicable in wireless telecommunications in the military field.
  • ECCM Electronic Counter-CounterMeasures
  • code or sequence spreading the signal useful to transmit by a code, called code or sequence spreading, from a pseudo-random generator whose clock signal frequency is much higher than the maximum frequency of the wanted signal. Number of bits of useful information transmitted by Hz is therefore very low.
  • Figure 1 shows a timing diagram for understand the principle of spectrum spreading by a spreading sequence.
  • a useful SAT signal to be transmitted here coded in two +1 and -1 levels following NRZ coding, is multiplied by a SE cyclic spreading sequence, also coded on two levels.
  • the signal resulting from the multiplication is the ST signal transmitted from the transmitter to a receiver after modulation.
  • the modulated ST signal transmission medium generally consists of a radio link.
  • signal multiplication received ST with the same spreading sequence SE (same phase and same frequency) makes it possible to reconstitute the useful signal SAT.
  • Sequence spread spectrum transmission direct is usually used to give the signal transmitted better discretion, resistance to ECM (Electronic CounterMeasures) interference and a resistance to selective fading.
  • ECM Electronic CounterMeasures
  • the ratio between the chip time and bit time, the chip time corresponding to the duration of a bit of the spreading sequence and the time bit to that of the wanted signal is greater than this spreading gain higher, the more the transmitted signal is able to be transmitted discreetly and therefore resist ECM devices intended to detect it and, possibly, to jam it.
  • An essential step in ECM analysis is to determine the spreading hazard of the signal received because this step allows you to penetrate the information content of the signal received, ie to reconstitute the useful signal.
  • sequence generator direct must operate at the transmission frequency of chips, or at a frequency of the order of several MHz. he it is therefore necessary to install this generator in an ASIC, which increases the hardware complexity and the cost of hardware development.
  • the present invention aims in particular to overcome this drawback.
  • one of the objectives of the invention is to provide a signal transmission system digital, where spread spectrum is implemented, this system that does not require a hazard generator operating at the chip frequency. It is therefore more simple to make and less expensive, while allowing large spread of the useful signal spectrum intended for resist ECM devices.
  • Another object of the invention is to provide a such a system where spectrum spreading is carried out from orthogonal sequences, for example using M-type sequences (also known as maximum length or Hadamard), well known in the art field of digital signal transmission.
  • M-type sequences also known as maximum length or Hadamard
  • An additional objective is to provide a process transmission of spread digital signals spectrum where the spreading is carried out at the bit frequency and not at the chip frequency.
  • the M sequences of q integers are preferably made up of Hadamard sequences.
  • the digital signal to be transmitted SN is applied, here via a serial access, to coding means 21 which supply, for each block of k bits of the signal SN, a coded sample E c taking an integer value included in the set ⁇ 0, ..., N-1 ⁇ , each integer value being representative of the k bits of the corresponding block.
  • the coding means 21 can for example be constituted by a simple binary-decimal converter and the bit rate leaving the coding means is then k times lower than the bit rate entering.
  • the coding means 21 can optionally also interleave the bits of the SN signal.
  • the coded samples E c are applied to means 22 for combining these samples with samples E a originating from a pseudo-random generator 23, which will subsequently be called phase random generator.
  • the combination means 22 comprise a transformation algorithm which transforms each coded sample E c into an integer s included in the set ⁇ 0, ..., M-1 ⁇ , with M integer greater than N.
  • s f (E vs , E at ) where f is any function taking its values in ⁇ 0, ..., M-1 ⁇ and E has a sample of phase randomness.
  • This modulo M addition apart from the fact that it can be implemented by a very simple algorithm to implant, provides optimal resistance performance at ECM interference.
  • Each integer is then supplied to means 24 of generation of signals providing, for each integer s, a corresponding SQ sequence of q samples, each sample q being an integer.
  • 24 generation means of signals transform each integer s into a SQ sequence, this transformation being bi-unequivocal, that is to say that a given integer s corresponds to a single sequence SQ and reciprocally.
  • the signal generator can for example be consisting of a transcoding table.
  • a transcoding table We will refer usefully to French patent n ° 2,337,465 in the name of COMPAGNIE IBM FRANCE TM which describes sequences called CAZAC which are periodic pseudo-random sequences of complex numbers that have an autocorrelation function periodic whose only the first coefficient is not zero and of which all complex numbers have an amplitude constant.
  • CAZAC periodic pseudo-random sequences of complex numbers that have an autocorrelation function periodic whose only the first coefficient is not zero and of which all complex numbers have an amplitude constant.
  • the generation of such sequences can be generalized to obtain sequences made up of whole numbers, these sequences being orthogonal between them, that is to say having properties optimal autocorrelation.
  • Gold sequences which are quasi-orthogonal, like those of Kasami, or those called polyphases.
  • the means 24 generate sequences SQ which are substantially orthogonal to one another.
  • the signal generation means 24 can transform each integer s into a sequence SQ of q bits (samples each taking a value in ⁇ 0,1 ⁇ ) according to table 1 below.
  • Input value s SQ Suite generated 0 0000000 1 1110100 2 0111010 3 0011101 4 1001110 5 0100111 6 1010011 7 1101001
  • Each suite of q bits is produced by circular shifts of a sequence of maximum length of length 7, excluding the first suite always consisting of zeros.
  • These suites have quasi-orthogonality properties, say that for two different and arbitrary sequences, the sum of the EXCLUSIVE OUs of each term is equal to 4.
  • each block of k bits of signal SN has been transformed into a sequence Corresponding SQ, each SQ suite comprising a pseudo-random component.
  • Useful information is coded in this SQ suite and the different suites are orthogonal or quasi-orthogonal to each other. Since then that M and q are large before k or before N, we understand that this coding operation consisted in increasing by importantly the number of samples to be transmitted and that we have therefore spread the signal spectrum useful SN using hazards provided at low frequency.
  • the main advantage of the invention lies precisely in this coding which is carried out at the bit frequency and not not at the chip frequency (where the spectrum spread is performed by direct sequence).
  • the working frequency of means described so far can be very weak, around 16 Kbits, compare with 10 Mchips in the case spread spectrum by direct sequence.
  • samples may take larger values, depending on the modulation used in transmission means 25 to which SQ suites are provided.
  • These transmission means 25 supply a signal STR transmitted to the attention of the receiver. They can be from any type, analog or digital.
  • the means 25 are digital and have a phase shift modulator 28.
  • This modulator 28 is by example of type MPSK (Multiple Phase Shift Keying) where M corresponds here to the number of possible values of samples q of the sequences SQ and therefore the number of states of phase of the modulated signal STR. It is for example possible to perform a BPSK modulation if the SQ suites are exclusively made up of bits, QPSK modulation if the integers of the SQ suites are each included in the set ⁇ 0, 1, 2, 3 ⁇ , and a 64-PSK modulation if the whole SQ suites are each included in the set ⁇ 0, 1, ..., 63 ⁇ .
  • the phase shift modulator 28 can also be of the QAM type. It provides a modulated signal noted SM.
  • the transmission means 25 may also include means 26 for spreading spectrum by spreading sequence.
  • the spreading sequence SE is generated by a spreading sequence generator 27.
  • the bits of the sequences SQ take their values in ⁇ 0,1 ⁇ and that the chips of the sequence d spreading SE also take their values in ⁇ 0,1 ⁇ .
  • Each sample bs / i produced by the signal generation means 24 is added modulo L to G hazards e s belonging to the set ⁇ 0, 1, ..., L-1 ⁇ and coming from the generator 27, where G represents the spread gain by direct sequence.
  • G represents the spread gain by direct sequence.
  • the increase in bit rate caused by this processing is equal to G.
  • SQE the output signal of the means 26, denoted SQE, which is applied to the modulator 28.
  • Each sample a i of an SQE sequence takes its value in ⁇ 0, 1, ..., L-1 ⁇ .
  • mapping function g of the modulator must respect the relationship: when a spread by direct sequence is implemented (G> 1).
  • the impulse response h e of the emission filter is assumed such that:
  • the means 26 of spectrum spreading by sequence direct are of course optional in the invention and are therefore shown in broken lines.
  • the transmission means 25 can also include frequency escape means 29, 30, also optional and therefore shown in broken lines, suitable to modify the carrier frequency of the signal transmitted to the receiver.
  • the frequency escape is to change frequently of carrier frequency in order to further broaden the spectrum of the signal transmitted to the receiver.
  • the modulated signal SM in baseband or in intermediate frequency, is applied to a multiplier 29 receiving a signal from carrier frequency of a generator 30.
  • phase 23 generator allows low-frequency coding of the signal to be transmitted and allows to modify in a pseudo-random way the phase of the signal transmitted when the modulation is of MPSK type.
  • generator 23 and the means of combination 22 provide a phase escape function performed at low frequency. Amplitude modulation, also pseudo-random, the signal to be transmitted comes combine with this phase escape when the modulation is of the QAM type (modification of the phase and the amplitude of the transmitted signal). This is how the system transmission of the invention provides a high resistance to ECM interference.
  • the output signal STR of the transmission means 28 is transmitted over the air to receiver 31 whose diagram synoptic is given in figure 3.
  • the receiver 31 receives a corresponding signal STRr to the STR signal noisy by the transmission medium. he includes reception means generally referenced by 40 restoring the sequences SQ of q whole numbers, noted SQr at the receiver.
  • Means of reception 40 here include means 32 for removing the carrier frequency controlled by a local oscillator 33.
  • the means 32 conventionally comprise two mixers controlled by quadrature clock signals and we obtains at the output of these means two quadrature signals.
  • the local oscillator 33 operates in synchronism with that of the transmitter, referenced 30. This synchronization can be obtained by known means.
  • the output signal of the means 32 is noted SMr and corresponds to the transmitter SM signal.
  • the signal SMr is applied to means 34 of spectrum compression to suppress spreading by direct sequence possibly performed at the transmitter 20.
  • Spectrum compression means are notably described in "Digital Communications" by J.G. PROAKIS, McGraw-Hill TM, Chapter 8.
  • Those depicted in the Figure 3 include a sampler 35 controlled at the frequency chip Fc followed by a module 36 for compression of spectrum.
  • Module 36 includes a complex multiplier 37 followed by a summator 38.
  • the multiplier 37 receives a direct sequence SE of a generator 39, this sequence direct SE being identical to that generated by the generator 27 of the transmitter 20.
  • the phase timing of these two direct sequences is obtained by known means.
  • the summator 38 calculates, for each block of G consecutive samples r k from the multiplier 37, the following sum: where e sk is the value of the chip at time k of the direct sequence SE and * denotes the conjugate complex. This summation eliminates spectral spreading by direct sequence.
  • Each sum U k therefore corresponds to a sample ⁇ i of the signal STR transmitted to the receiver.
  • modules SQr identical to the suites SQ originating from the means 24 for generating signals from the transmitter 20.
  • SQr suites are applied to means 45 for processing that have the function of performing a demodulation of the received signal and removing the random phase E is introduced at the transmitter 20 by the generator 23 hazards.
  • the correlation means 41 therefore receive a SR reference signal consisting of the different sequences SQ can be generated at transmitter 20, this is to say those for example represented in tables 1 or 2.
  • the advantage of generating orthogonal sequences or quasi-orthogonal using the generator 24 of Figure 2 (and not any sequences) is that it is easy to detect a correlation of these signals.
  • the calculated correlations provide sums C 0 to C M-1 which each correspond to one of the integers from the combining means 22 of the transmitter 20. These sums are applied to a demultiplexer 42 receiving from a generator 43 a signal E a identical to that generated by the generator 23 of the transmitter, and in phase with it.
  • the demultiplexer 42 selects N sums C S from M as a function of the value of the hazard E a .
  • the demultiplexer 42 performs an inverse function f -1 to remove the phase hazard introduced at low frequency on transmission.
  • the demultiplexer 42 thus selects the samples C s as a function of the hazard E a .
  • Each sample d i therefore corresponds to a sample E c of the emitter.
  • These samples d i are then applied to decoding means 44 performing an inverse operation to that of the coding means 21 of the transmitter 20. They can also carry out a deinterlacing of the decoded samples if the coding means perform an interleaving of the samples coded.
  • the output signal SNr of the decoding means 44 then corresponds to the digital signal SN of the transmitter.
  • the processing means 45 then only comprise correlation means such as 41, receiving the signal E a .
  • the present invention applies for example to transmission systems where error correcting codes are used and where an alphabet of orthogonal signals of very large size, larger than the alphabet used by the error correction code is available.
  • the elements of the alphabet not used by the code can be used for low-frequency pseudo-random coding of signal to be transmitted, thereby improving low cost the robustness of the system with regard to interception.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Transmission Systems Not Characterized By The Medium Used For Transmission (AREA)

Description

Le domaine de l'invention est celui des modems de transmission de signaux numériques et notamment celui des modems à étalement de spectre. Plus précisément, la présente invention concerne un système de transmission à étalement de spectre entre un émetteur et un récepteur de signaux numériques où l'étalement de spectre est obtenu par codage pseudo-aléatoire de l'information utile à transmettre. L'invention s'applique notamment dans les télécommunications hertziennes dans le domaine militaire.
Dans le domaine militaire, une opération d'étalement de spectre est généralement utilisée en ECCM (Electronic Counter-CounterMeasures) et consiste à multiplier le signal utile à transmettre par un code, appelé code ou séquence d'étalement, issu d'un générateur pseudo-aléatoire dont la fréquence du signal d'horloge est beaucoup plus importante que la fréquence maximale du signal utile. Le nombre de bits d'information utile transmis par Hz est donc très faible.
La figure 1 représente un chronogramme permettant de comprendre le principe de l'étalement de spectre par une séquence d'étalement.
Un signal utile SAT à transmettre, ici codé sur deux niveaux +1 et -1 suivant un codage NRZ, est multiplié par une séquence d'étalement cyclique SE, également codée sur deux niveaux. Le signal résultant de la multiplication est le signal ST transmis de l'émetteur vers un récepteur après modulation. Le support de transmission du signal ST modulé est généralement constitué par une liaison hertzienne. A la réception, après démodulation, la multiplication du signal reçu ST avec la même séquence d'étalement SE (même phase et même fréquence) permet de reconstituer le signal utile SAT.
La transmission à étalement de spectre par séquence directe est habituellement utilisée pour conférer au signal transmis une meilleure discrétion, une résistance aux brouillages ECM (Electronic CounterMeasures) et une résistance aux évanouissements sélectifs (fading).
On définit par gain d'étalement le rapport entre le temps chip et le temps bit, le temps chip correspondant à la durée d'un bit de la séquence d'étalement et le temps bit à celui du signal utile. Plus ce gain d'étalement est élevé, plus le signal transmis est apte à être transmis discrètement et donc à résister aux dispositifs ECM destinés à le détecter et, éventuellement, à le brouiller. Une étape essentielle de l'analyse ECM consiste à déterminer l'aléa d'étalement du signal capté car cette étape permet de pénétrer le contenu informationnel du signal capté, c'est à dire de reconstituer le signal utile.
Le principal inconvénient de l'étalement de spectre par séquence directe est que le générateur de la séquence directe doit fonctionner à la fréquence d'émission de chips, soit à une fréquence de l'ordre de plusieurs MHz. Il est donc nécessaire d'implanter ce générateur dans un ASIC, ce qui augmente la complexité hardware et le coût du développement du matériel.
La présente invention a notamment pour objectif de pallier cet inconvénient.
Plus précisément, un des objectifs de l'invention est de fournir un système de transmission d'un signal numérique, où un étalement de spectre est mis en oeuvre, ce système ne nécessitant pas de générateur d'aléa fonctionnant à la fréquence chip. Il est dès lors plus simple à réaliser et moins coûteux, tout en permettant un important étalement du spectre du signal utile destiné à résister aux dispositifs ECM.
Un autre objectif de l'invention est de fournir un tel système où l'étalement de spectre est réalisé à partir de séquences orthogonales, par exemple à l'aide de séquences de type M-séquences (aussi appelées séquences de longueur maximale ou de Hadamard), bien connues dans le domaine de la transmission de signaux numériques.
Un objectif complémentaire est de fournir un procédé de transmission de signaux numériques à étalement de spectre où l'étalement est réalisé à la fréquence bit et non pas à la fréquence chip.
Ces objectifs, ainsi que d'autres qui apparaítront par la suite, sont atteints grâce à un système de transmission d'un signal numérique entre un émetteur et un récepteur, caractérisé en ce que :
  • l'émetteur comporte successivement :
    • des moyens de codage recevant ce signal numérique et fournissant, pour chaque bloc de k bits du signal numérique, un échantillon codé prenant une valeur entière comprise dans l'intervalle [0, N-1], chaque valeur entière étant représentative des k bits du bloc dont elle est issue ;
    • des moyens de combinaison des échantillons codés avec des échantillons issus d'un générateur d'aléas de phase pseudo-aléatoire, les moyens de combinaison fournissant un entier compris dans l'intervalle [0, M-1] pour chaque combinaison d'un échantillon codé et d'un échantillon d'aléa de phase issu du générateur d'aléas de phase, M étant supérieur à N ;
    • des moyens de génération de signaux fournissant, pour chaque entier compris dans l'intervalle [0, M-1], une suite de q nombres entiers correspondant à cet entier, les différentes suites étant orthogonales ou quasi-orthogonales entre elles ;
    • des moyens d'émission des suites de q nombres entiers à l'attention du récepteur, les moyens d'émission comprenant un modulateur à décalage de phase dont le nombre d'états est égal à M ;
  • le récepteur comporte successivement :
    • des moyens de réception restituant les suites de q nombres entiers ;
    • des moyens de traitement recevant d'une part les suites de q nombres entiers des moyens de réception et d'autre part des échantillons d'aléas de phase issus d'un générateur d'aléa de phase synchronisé avec le générateur d'aléas de phase de l'émetteur, les moyens de traitement assurant une démodulation des suites de q nombres entiers et effectuant une opération inverse de celle des moyens de combinaison pour restituer les échantillons codés ;
    • des moyens de décodage restituant le signal numérique à partir des échantillons fournis par les moyens de traitement.
Les M suites de q nombres entiers sont préférentiellement constituées de séquences de Hadamard.
D'autres caractéristiques et avantages de l'invention apparaítront à la lecture de la description suivante d'un mode de réalisation préférentiel, donné à titre illustratif et non limitatif, et des dessins annexés dans lesquels :
  • la figure 1 représente un chronogramme permettant de comprendre le principe de l'étalement de spectre par une séquence d'étalement ;
  • la figure 2 est un schéma synoptique d'un émetteur du système de transmission de la présente invention ;
  • la figure 3 est un schéma synoptique d'un récepteur des signaux numériques transmis par l'émetteur de la figure 2.
La figure 1 a été décrite précédemment en référence à l'état de la technique.
En se référant à la figure 2, le signal numérique à transmettre SN est appliqué, ici par l'intermédiaire d'un accès série, à des moyens de codage 21 qui fournissent, pour chaque bloc de k bits du signal SN, un échantillon codé Ec prenant une valeur entière comprise dans l'ensemble {0,..., N-1}, chaque valeur entière étant représentative des k bits du bloc correspondant. Les moyens de codage 21 peuvent par exemple être constitués par un simple convertisseur binaire-décimal et le débit sortant des moyens de codage est alors k fois plus faible que le débit entrant.
Les moyens de codage 21 peuvent éventuellement également effectuer un entrelacement des bits du signal SN.
Les échantillons codés Ec sont appliqués à des moyens de combinaison 22 de ces échantillons avec des échantillons Ea issus d'un générateur 23 pseudo-aléatoire, qui sera par la suite appelé générateur d'aléas de phase. De façon générale, les moyens de combinaison 22 comprennent un algorithme de transformation qui transforme chaque échantillon codé Ec en un entier s compris dans l'ensemble {0,..., M-1}, avec M entier supérieur à N. On a : s = f(Ec, Ea) où f est une fonction quelconque prenant ses valeurs dans {0,..., M-1} et Ea un échantillon d'aléa de phase.
Les moyens de combinaison 22 peuvent par exemple être constitués par un simple additionneur modulo M, tel que représenté et fournissant:
Figure 00050001
Figure 00050002
désigne l'addition modulo M pouvant aussi s'écrire : s = (Ec + Ea) mod M
Cette addition modulo M, mise à part le fait qu'elle peut être mise en oeuvre par un algorithme très simple à implanter, procure des performances optimales de résistance au brouillage ECM.
Chaque entier s est ensuite fourni à des moyens 24 de génération de signaux fournissant, pour chaque entier s, une suite SQ de q échantillons correspondante, chaque échantillon q étant un entier. Les moyens 24 de génération de signaux transforment chaque entier s en une suite SQ, cette transformation étant bi-univoque, c'est à dire qu'à un entier s donné correspond une seule suite SQ et réciproquement.
On peut écrire : SQ = bs 0 bs 1 bs 2 ....bs q-1 où b s / i est un entier compris entre 0 et L-1.
Le générateur de signaux peut par exemple être constitué par une table de transcodage. On se reportera utilement au brevet français n°2.337.465 au nom de COMPAGNIE IBM FRANCE ™ qui décrit des séquences dites CAZAC qui sont des séquences pseudo-aléatoires périodiques de nombres complexes qui ont une fonction d'autocorrélation périodique dont seul le premier coefficient est non nul et dont tous les nombres complexes ont une amplitude constante. La génération de telles séquences peut être généralisée pour obtenir des séquences constituées de nombres entiers, ces séquences étant orthogonales entre elles, c'est à dire présentant des propriétés d'autocorrélation optimales. On peut également mentionner les séquences de Gold qui sont quasi-orthogonales, comme celles de Kasami, ou celles appelées polyphases.
Dans un mode de réalisation préférentiel, les moyens 24 génèrent des suites SQ sensiblement orthogonales entre elles. A titre d'exemple, les moyens 24 de génération de signaux peuvent transformer chaque entier s en une suite SQ de q bits (échantillons prenant chacun une valeur dans {0,1}) selon le tableau 1 ci-dessous.
Valeur de l'entrée s Suite SQ générée
0 0000000
1 1110100
2 0111010
3 0011101
4 1001110
5 0100111
6 1010011
7 1101001
Dans cette configuration, M=8 et q=7. Chaque suite de q bits est issue par décalages circulaires d'une séquence de longueur maximale de longueur 7, à l'exclusion de la première suite toujours constituée de zéros. Ces suites présentent des propriétés de quasi-orthogonalité, c'est à dire que pour deux suites différentes et quelconques, la somme des OU-EXCLUSIF de chaque terme est égale à 4.
Il est possible de généraliser ce principe de génération de signaux SQ quasi-orthogonaux pour tout M puissance de 2. Pour cela, après avoir déterminé une séquence de longueur maximale de période M-1 (par une des méthodes bien connues dans le domaine du traitement numérique de signaux), les M suites de M-1 bits sont obtenues par décalages circulaires de la séquence initiale, à l'exception de la première toujours constituée de zéros.
Une autre classe de suites utilisables, parfaitement orthogonales, est celle constituée par des séquences de Hadamard. Un exemple de telles séquences est illustré dans le tableau 2, pour des échantillons également constitués par des bits.
Valeur de l'entrée s Suite SQ générée
0 11111111
1 10101010
2 11001100
3 10011001
4 11110000
5 10100101
6 11000011
7 10010110
La longueur de ces suites ou séquences est de 8.
La description précédente fait apparaítre que chaque bloc de k bits du signal SN a été transformé en une suite SQ correspondante, chaque suite SQ comportant une composante pseudo-aléatoire. L'information utile est codée dans cette suite SQ et les différentes suites sont orthogonales ou quasi-orthogonales entre elles. Dès lors que M et q sont grands devant k ou devant N, on comprend que cette opération de codage a consisté à augmenter de façon importante le nombre d'échantillons à transmettre et qu'on a donc réalisé un étalement du spectre du signal utile SN à l'aide d'aléas fournis à basse fréquence.
Le principal avantage de l'invention réside justement dans ce codage qui est réalisé à la fréquence bit et non pas à la fréquence chip (où l'étalement de spectre est réalisé par séquence directe). La fréquence de travail des moyens décrits jusqu'ici peut ainsi être très faible, de l'ordre de 16 Kbits, à comparer avec 10 Mchips dans le cas d'un étalement de spectre par séquence directe.
Il est à signaler que les échantillons peuvent prendre des valeurs plus importantes, en fonction de la modulation utilisée dans des moyens d'émission 25 auxquels sont fournis les suites SQ.
Ces moyens d'émission 25 fournissent un signal STR transmis à l'attention du récepteur. Ils peuvent être de type quelconque, analogique ou numérique.
Dans le mode de réalisation représenté, les moyens d'émission 25 sont de type numérique et comportent un modulateur à décalage de phase 28. Ce modulateur 28 est par exemple de type MPSK (Multiple Phase Shift Keying) où M correspond ici au nombre de valeurs possibles des échantillons q des suites SQ et donc au nombre d'états de phase du signal modulé STR. Il est par exemple possible d'effectuer une modulation BPSK si les suites SQ sont exclusivement constituées de bits, une modulation QPSK si les entiers des suites SQ sont chacun compris dans l'ensemble {0, 1, 2, 3}, et une modulation 64-PSK si les entiers des suites SQ sont chacun compris dans l'ensemble {0, 1, ..., 63}. Le modulateur 28 à décalage de phase peut également être de type QAM. Il fournit un signal modulé noté SM.
Les moyens d'émission 25 peuvent également comporter des moyens 26 d'étalement de spectre par séquence d'étalement. La séquence d'étalement SE est générée par un générateur de séquence d'étalement 27. Dans le mode de réalisation représenté, on suppose que les bits des suites SQ prennent leurs valeurs dans {0,1} et que les chips de la séquence d'étalement SE prennent également leurs valeurs dans {0,1}. Chaque échantillon b s / i produit par les moyens 24 de génération de signaux est additionné modulo L à G aléas es appartenant à l'ensemble {0, 1, ..., L-1} et issus du générateur 27, où G représente le gain d'étalement par séquence directe. L'augmentation de débit occasionné par ce traitement est égal à G. Dans le cas d'un étalement de spectre par séquence directe, c'est donc le signal de sortie des moyens 26, noté SQE, qui est appliqué au modulateur 28.
Chaque échantillon ai d'une suite SQE prend sa valeur dans {0, 1, ..., L-1}. Dans le cas où aucun étalement par séquence directe est mis en oeuvre, G = 1 et es = 0, c'est à dire que cet opérateur est transparent.
Le signal STR émis à l'attention du récepteur est de la forme:
Figure 00090001
où g est la fonction de mapping réalisée par le modulateur 28, Ts le temps symbole et he(t-iTs) le filtrage émission. A titre d'exemple:
  • en modulation BPSK, L = 2 et on a g(0) = -1 et g(1) = 1
Dans ce cas la relation 1 s'écrit:
Figure 00090002
avec αi = 0 ou 1
  • en modulation QPSK, L = 4 et g(0) = 1, g(1) = j,
       g(2) = -1 et g(3) = -j
  • en modulation 8PSK, L = 8 et g(k) = e2jkπ/8
De façon générale, en modulation MPSK, L=M et g(k)=2jkπ/M.
On notera que la fonction de mapping g du modulateur doit respecter la relation:
Figure 00090003
lorsqu'un étalement par séquence directe est mis en oeuvre (G > 1).
La réponse impulsionnelle he du filtre émission est supposée telle que:
Figure 00100001
et
Figure 00100002
Les moyens 26 d'étalement de spectre par séquence directe sont bien entendu optionnels dans l'invention et sont pour cela représentés en traits discontinus.
Les moyens d'émission 25 peuvent également comprendre des moyens 29, 30 d'évasion de fréquence, également optionnels et donc représentés en traits discontinus, aptes à modifier la fréquence porteuse du signal transmis au récepteur. L'évasion de fréquence consiste à changer fréquemment de fréquence porteuse afin d'élargir encore le spectre du signal transmis au récepteur. Le signal modulé SM, en bande de base ou en fréquence intermédiaire, est appliqué à un multiplieur 29 recevant un signal de fréquence porteuse d'un générateur 30.
On constate que le générateur d'aléas de phase 23 permet un codage basse-fréquence du signal à transmettre et permet de modifier de manière pseudo-aléatoire la phase du signal transmis lorsque la modulation est de type MPSK. On peut ainsi considérer que le générateur 23 et les moyens de combinaison 22 assurent une fonction d'évasion de phase réalisée en basse-fréquence. Une modulation d'amplitude, également pseudo-aléatoire, du signal à transmettre vient se combiner avec cette évasion de phase lorsque la modulation est de type QAM (modification de la phase et de l'amplitude du signal transmis). C'est ainsi que le système de transmission de l'invention permet d'obtenir une résistance importante aux brouillages ECM.
Le signal de sortie STR des moyens d'émission 28 est transmis par voie hertzienne au récepteur 31 dont le schéma synoptique est donné à la figure 3.
Le récepteur 31 reçoit un signal STRr correspondant au signal STR bruité par le milieu de transmission. Il comporte des moyens de réception généralement référencés par 40 restituant les suites SQ de q nombres entiers, notées SQr au niveau du récepteur. Les moyens de réception 40 comprennent ici des moyens 32 de suppression de la fréquence porteuse pilotés par un oscillateur local 33. Les moyens 32 comprennent classiquement deux mélangeurs commandés par des signaux d'horloge en quadrature et on obtient en sortie de ces moyens deux signaux en quadrature. Lorsqu'une évasion de fréquence est utilisée au niveau de l'émetteur 20, l'oscillateur local 33 fonctionne en synchronisme avec celui de l'émetteur, référencé 30. Cette synchronisation peut être obtenue par des moyens connus. Le signal de sortie des moyens 32 est noté SMr et correspond au signal SM de l'émetteur.
Le signal SMr est appliqué à des moyens 34 de compression de spectre destinés à supprimer l'étalement par séquence directe éventuellement effectué au niveau de l'émetteur 20. Des moyens de compression de spectre sont notamment décrits dans "Digital Communications" de J.G. PROAKIS, McGraw-Hill ™, chapitre 8. Ceux représentés à la figure 3 comprennent un échantillonneur 35 commandé à la fréquence chip Fc suivi d'un module 36 de compression de spectre. Le module 36 comporte un multiplieur complexe 37 suivi d'un sommateur 38. Le multiplieur 37 reçoit une séquence directe SE d'un générateur 39, cette séquence directe SE étant identique à celle générée par le générateur 27 de l'émetteur 20. Le calage de phase de ces deux séquences directes est obtenu par des moyens connus.
Le sommateur 38 calcule, pour chaque bloc de G échantillons rk consécutifs issus du multiplieur 37, la somme suivante:
Figure 00110001
où esk est la valeur du chip à l'instant k de la séquence directe SE et * désigne le complexe conjugué. Cette sommation permet de supprimer l'étalement spectral par séquence directe.
Chaque somme Uk correspond donc à un échantillon αi du signal STR transmis au récepteur. En sortie du module 36, on dispose donc de suites SQr identiques aux suites SQ issues des moyens 24 de génération de signaux de l'émetteur 20.
Ces suites SQr sont appliquées à des moyens 45 de traitement qui ont pour fonction de réaliser une démodulation du signal reçu et de supprimer l'aléa de phase Ea introduit au niveau de l'émetteur 20 par le générateur d'aléas 23.
Dans le mode de réalisation représenté, les moyens 45 de traitement comprennent des moyens 41 de corrélation qui calculent, pour chaque bloc de Q sommes U successives, la valeur suivante:
Figure 00120001
pour s = 0 à M-1.
Les moyens 41 de corrélation reçoivent pour cela un signal de référence SR constitué par les différentes suites SQ pouvant être générées au niveau de l'émetteur 20, c'est à dire celles par exemple représentées dans les tableaux 1 ou 2. L'intérêt de générer des séquences orthogonales ou quasi-orthogonales à l'aide du générateur 24 de la figure 2 (et non pas des séquences quelconques) est qu'il est aisé de détecter une corrélation de ces signaux.
Les corrélations calculées fournissent des sommes C0 à CM-1 qui correspondent chacune à un des entiers issus des moyens de combinaison 22 de l'émetteur 20. Ces sommes sont appliquées à un démultiplexeur 42 recevant d'un générateur 43 un signal Ea identique à celui généré par le générateur 23 de l'émetteur, et en phase avec celui-ci.
Le démultiplexeur 42 sélectionne N sommes CS parmi M en fonction de la valeur de l'aléa Ea. De façon générale, le démultiplexeur 42 assure une fonction inverse f-1 pour supprimer l'aléa de phase introduit en basse fréquence à l'émission.
A titre d'exemple, si les moyens de combinaison 22 produisent:
Figure 00130001
le démultiplexeur 42 fournit en sortie les signaux:
Figure 00130002
pour i = 0 à N-1 et Ea appartenant à l'ensemble {0, 1, ..., M-1}. Le démultiplexeur 42 sélectionne ainsi les échantillons Cs en fonction de l'aléa Ea.
Chaque échantillon di correspond donc à un échantillon Ec de l'émetteur. Ces échantillons di sont ensuite appliqués à des moyens 44 de décodage effectuant une opération inverse de celle des moyens de codage 21 de l'émetteur 20. Ils peuvent en outre réaliser un désentrelacement des échantillons décodés si les moyens de codage réalisent un entrelacement des échantillons codés. Le signal de sortie SNr des moyens de décodage 44 correspond alors au signal numérique SN de l'émetteur.
Bien entendu, d'autres modes de réalisation des moyens 45 de traitement sont envisageables. Il est par exemple possible de ne calculer que les échantillons di selon la relation:
Figure 00130003
Ce calcul direct permet de ne pas utiliser d'algorithme de corrélation rapide et donc de simplifier la réalisation pratique du récepteur. Seules les corrélations utiles sont alors calculées. Les moyens de traitement 45 comprennent alors uniquement des moyens de corrélation tels que 41, recevant le signal Ea.
La présente invention s'applique par exemple aux systèmes de transmission où des codes correcteurs d'erreur sont utilisés et où un alphabet de signaux orthogonaux de taille très importante, supérieure à l'alphabet utilisé par le code correcteur d'erreurs, est disponible. Les éléments de l'alphabet non utilisés par le code peuvent être utilisés pour le codage pseudo-aléatoire basse-fréquence du signal à transmettre, permettant ainsi d'améliorer à faible coût la robustesse du système vis à vis de l'interception.

Claims (8)

  1. Système de transmission d'un signal numérique (SN) entre un émetteur (20) et un récepteur (31), caractérisé en ce que :
    ledit émetteur (20) comporte successivement :
    des moyens (21) de codage recevant ledit signal numérique (SN) et fournissant, pour chaque bloc de k bits dudit signal numérique (SN), un échantillon codé (Ec) prenant une valeur entière comprise dans l'intervalle [0, N-1], chaque valeur entière (Ec) étant représentative des k bits du bloc dont elle est issue ;
    des moyens (22) de combinaison desdits échantillons codés (Ec) avec des échantillons (Ea) issus d'un générateur (23) d'aléas de phase pseudo-aléatoire, lesdits moyens (22) de combinaison fournissant un entier (s) compris dans l'intervalle [0, M-1] pour chaque combinaison d'un échantillon codé (Ec) et d'un échantillon (Ea) d'aléa de phase issu dudit générateur (23) d'aléas de phase, M étant supérieur à N ;
    des moyens (24) de génération de signaux fournissant, pour chaque entier (s) compris dans l'intervalle [0, M-1], une suite (SQ) de q nombres entiers correspondant à cet entier (s), les différentes suites (SQ) étant orthogonales ou quasi-orthogonales entre elles ;
    des moyens (25) d'émission desdites suites (SQ) de q nombres entiers à l'attention dudit récepteur (31), lesdits moyens (25) d'émission comprenant un modulateur à décalage de phase dont le nombre d'états est égal à M ;
    ledit récepteur (31) comporte successivement :
    des moyens de réception (40) restituant lesdites suites (SQr) de q nombres entiers ;
    des moyens de traitement (45) recevant d'une part lesdites suites (SQr) de q nombres entiers desdits moyens de réception (40) et d'autre part des échantillons (Ea) d'aléas de phase issus d'un générateur (43) d'aléa de phase synchronisé avec ledit générateur (23) d'aléas de phase dudit émetteur (20), lesdits moyens de traitement (45) assurant une démodulation desdites suites (SQr) de q nombres entiers et effectuant une opération inverse de celle desdits moyens (22) de combinaison pour restituer lesdits échantillons codés (di) ;
    des moyens (44) de décodage restituant ledit signal numérique (SNr) à partir desdits échantillons fournis par lesdits moyens de traitement (45).
  2. Système selon la revendication 1, caractérisé en ce que lesdites M suites (SQ) de q nombres entiers sont des séquences de Hadamard.
  3. Système selon l'une des revendications 1 et 2, caractérisé en ce que lesdits moyens (25) d'émission comprennent des moyens (26, 27) d'étalement de spectre par séquence d'étalement (SE) et en ce que lesdits moyens de réception (40) comprennent des moyens de compression de spectre (34) fonctionnant en synchronisme avec lesdits moyens (26, 27) d'étalement de spectre desdits moyens d'émission (25).
  4. Système selon l'une des revendications 1 à 3, caractérisé en ce que lesdits moyens d'émission (25) comprennent des moyens (29, 30) d'évasion de fréquence aptes à modifier la fréquence porteuse dudit signal transmis audit récepteur (30) et en ce que lesdits moyens de réception (40) comprennent des moyens (32, 33) assurant une fonction inverse de celle desdits moyens (29, 30) d'évasion de fréquence, aptes à supprimer ladite évasion de fréquence introduite audit émetteur (20).
  5. Système selon l'une des revendications 1 à 4, caractérisé en ce que lesdits moyens de codage (21) effectuent également un entrelacement des bits dudit signal numérique (SN) et en ce que lesdits moyens de décodage (44) effectuent également un désentrelacement des échantillons décodés (di).
  6. Système selon l'une des revendications 1 à 5, caractérisé en ce que lesdits moyens de combinaison (22) dudit émetteur (20) fournissent, pour chaque échantillon codé (Ec), un entier (s) égal à:
    Figure 00170001
    où:
    s est ledit entier fourni par lesdits moyens de combinaison (22);
    Ec est ledit échantillon codé;
    Ea est un échantillon d'aléa de phase issu dudit générateur (23) d'aléas de phase dudit émetteur (20);
    Figure 00170002
    désigne l'addition modulo M, avec M entier;
    et en ce que lesdits moyens de suppression dudit aléa de phase dudit récepteur (30) fournissent, pour chaque suite (SQe) de q bits issue desdits moyens de traitement, un entier (di) égal à :
    Figure 00170003
    où Ea est un échantillon d'aléa de phase issu dudit générateur (43) d'aléas de phase dudit récepteur (31).
  7. Procédé de transmission à étalement de spectre d'un signal numérique entre un émetteur (20) et un récepteur (30), caractérisé en ce qu'il consiste à :
    au niveau dudit émetteur (20) :
    générer, pour chaque bloc de k bits dudit signal numérique, un échantillon codé (Ec) prenant une valeur entière comprise dans l'intervalle [0, N-1], chaque valeur entière étant représentative des k bits du bloc correspondant ;
    combiner lesdits échantillons codés (Ec) avec des échantillons d'aléa de phase (Ea) pour générer un entier (S) compris dans l'intervalle [0, M-1] pour chaque combinaison d'un échantillon codé (Ec) et d'un échantillon d'aléa de phase (Ea), M étant supérieur à N ;
    générer pour chaque entier (s) compris dans l'intervalle [0, M-1], une suite (SQ) de q nombres entiers correspondante, selon une transformation univoque, les différentes suites (SQ) étant orthogonales ou quasi-orthogonales entre elles ;
    transmettre lesdites suites (SQ) de q nombres entiers audit récepteur (30) ;
    au niveau dudit récepteur (30) :
    reconstituer lesdites suites (SQr) de q nombres entiers à partir du signal reçu dudit émetteur (20) et générer, pour chaque suite (SQr) de q nombres entiers reconstituée, un entier selon une transformation inverse de celle réalisée au niveau dudit émetteur (20) ;
    combiner chaque entier généré avec un échantillon d'aléa de phase (Ea) identique à celui ayant permis d'obtenir cet entier au niveau dudit émetteur (20), de manière à restituer l'échantillon codé (di) correspondant, ladite combinaison supprimant ainsi ledit aléa de phase (Ea) ;
    décoder chaque échantillon codé (di) de manière à restituer ledit signal numérique (SNr).
  8. Procédé selon la revendication 7, caractérisé en ce que lesdites suites (SQ) de q nombres entiers sont des séquences de Hadamard.
EP94401282A 1993-06-09 1994-06-08 Système de transmission numérique à étalement de spectre obtenu par codage pseudo-aléatoire basse fréquence de l'information utile et procédé d'étalement et de compression de spectre utilisé un tel système Expired - Lifetime EP0629059B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9306936 1993-06-09
FR9306936A FR2706704B1 (fr) 1993-06-09 1993-06-09 Système de transmission numérique à étalement de spectre obtenu par codage pseudo-aléatoire basse fréquence de l'information utile et procédé d'étalement et de compression de spectre utilisé dans un tel système.

Publications (2)

Publication Number Publication Date
EP0629059A1 EP0629059A1 (fr) 1994-12-14
EP0629059B1 true EP0629059B1 (fr) 2001-09-05

Family

ID=9447937

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94401282A Expired - Lifetime EP0629059B1 (fr) 1993-06-09 1994-06-08 Système de transmission numérique à étalement de spectre obtenu par codage pseudo-aléatoire basse fréquence de l'information utile et procédé d'étalement et de compression de spectre utilisé un tel système

Country Status (6)

Country Link
US (1) US5546423A (fr)
EP (1) EP0629059B1 (fr)
CA (1) CA2125444A1 (fr)
DE (1) DE69428155D1 (fr)
ES (1) ES2162846T3 (fr)
FR (1) FR2706704B1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW330358B (en) * 1996-02-28 1998-04-21 Toshiba Kk Correlator and synchronous tracking apparatus of spectrum expansion receiver thereof
KR100365346B1 (ko) * 1997-09-09 2003-04-11 삼성전자 주식회사 이동통신시스템의쿼시직교부호생성및쿼시직교부호를이용한대역확산장치및방법
EP0957604B1 (fr) 1998-05-15 2005-11-30 Sony Deutschland Gmbh Emetteur et méthode de transmission augmentant la flexibilité de l'allocation de codes
KR100318959B1 (ko) * 1998-07-07 2002-04-22 윤종용 부호분할다중접속통신시스템의서로다른부호간의간섭을제거하는장치및방법
RU2200366C2 (ru) * 1998-07-20 2003-03-10 Самсунг Электроникс Ко., Лтд. Устройство для генерирования маски квазиортогонального кода в системе мобильной связи
JP3815440B2 (ja) * 2003-02-03 2006-08-30 ソニー株式会社 送信方法及び送信装置
US8102802B2 (en) * 2006-05-08 2012-01-24 Motorola Mobility, Inc. Method and apparatus for providing downlink acknowledgments and transmit indicators in an orthogonal frequency division multiplexing communication system
KR101294781B1 (ko) * 2006-08-08 2013-08-09 엘지전자 주식회사 랜덤 액세스 프리앰블 전송 방법
US11095391B2 (en) * 2018-12-19 2021-08-17 Nxp Usa, Inc. Secure WiFi communication

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2110468C1 (de) * 1971-03-05 1978-04-27 Siemens Ag Verfahren zur Informationsuebertragung
US4685132A (en) * 1985-07-30 1987-08-04 Sperry Corporation Bent sequence code generator
US4972474A (en) * 1989-05-01 1990-11-20 Cylink Corporation Integer encryptor
GB2233860B (en) * 1989-07-13 1993-10-27 Stc Plc Communications systems
US5153598A (en) * 1991-09-26 1992-10-06 Alves Jr Daniel F Global Positioning System telecommand link
US5276705A (en) * 1993-01-06 1994-01-04 The Boeing Company CCD demodulator/correlator
US5341396A (en) * 1993-03-02 1994-08-23 The Boeing Company Multi-rate spread system
US5377226A (en) * 1993-10-19 1994-12-27 Hughes Aircraft Company Fractionally-spaced equalizer for a DS-CDMA system

Also Published As

Publication number Publication date
US5546423A (en) 1996-08-13
FR2706704B1 (fr) 1995-07-13
EP0629059A1 (fr) 1994-12-14
FR2706704A1 (fr) 1994-12-23
DE69428155D1 (de) 2001-10-11
ES2162846T3 (es) 2002-01-16
CA2125444A1 (fr) 1994-12-10

Similar Documents

Publication Publication Date Title
EP0709980B1 (fr) Sychronisation de fréquence pour système MDFO
EP0441730A1 (fr) Procédé de diffusion de données à entrelacement temps-fréquence utilisant des signaux de référence de fréquence
FR2973187A1 (fr) Procede de traitement d'un signal multiporteuses a bancs de filtre pour la synchronisation par preambule
FR2658016A1 (fr) Procede de diffusion de donnees numeriques, notamment pour la radiodiffusion a haut debit vers des mobiles, a entrelacement temps-frequence et demodulation coherente, et recepteur correspondant.
EP0349064A1 (fr) Procédé de démodulation cohérente d'un signal modulé numériquement en phase continue et à enveloppe constante
WO2016124841A1 (fr) Procédé et dispositif de modulation de phase d'une onde porteuse et application à la détection de signaux numériques multi-niveaux codés en phase
EP0629059B1 (fr) Système de transmission numérique à étalement de spectre obtenu par codage pseudo-aléatoire basse fréquence de l'information utile et procédé d'étalement et de compression de spectre utilisé un tel système
FR2942576A1 (fr) Procede d'estimation d'un decalage de frequence porteuse dans un recepteur de signaux de telecommunication, notamment un dispositif mobile.
EP3202077B1 (fr) Procédé d'émission d'un signal multi-porteuses, procédé de réception, dispositifs, et programmes d'ordinateurs associés mettant en oeuvre une modulation de type oqam
EP3931991B1 (fr) Méthode et dispositif de modulation par séquences de zadoff-chu
EP0820157B1 (fr) Procédé de démodulation différentielle numérique
WO2001010051A1 (fr) Procede de transmission de donnees utilisant des jeux repetitifs de sequences d'etalement, emetteur et recepteur correspondants
EP3840233B1 (fr) Circuit de détection d'enveloppe et récepteur incorporant ce circuit
EP1135855A1 (fr) Filtre numerique a architecture parallele et recepteur de signaux a etalement de spectre utilisant un tel filtre
FR2826208A1 (fr) Systeme et procede de transmission d'un signal audio ou phonie
EP1065849B1 (fr) Procédé de transmission à modulation/démodulation multi-MOK
FR2776146A1 (fr) Procede de demodulation de signaux representatifs de sequences emises dans un systeme de communications
FR2845842A1 (fr) Procedes et dispositifs d'emission et de reception optimisee
FR2712129A1 (fr) Procédé de transmission à modulation de phase synchrone et à étalement de spectre par séquence directe, émetteur et récepteur correspondants et composant pour ce récepteur.
EP0272956B1 (fr) Système de transmission numérique à démodulation cohérente aménagé pour la transmission simultanée de deux messages binaires
EP1252722B1 (fr) Procede de radiocommunications amrc avec codes d'acces et recepteur correspondant
WO2008009627A1 (fr) Dispositif de modulation a etalement de spectre pour transmissions sous-marines discretes
FR3105903A1 (fr) génération d’une séquence d’apprentissage composée d’une pluralité de symboles OFDM
WO1999063678A1 (fr) Recepteur pour systeme amrc
WO2007068666A1 (fr) Systeme de transmission de donnees a haut debit adapte a la transmission sur voie hf utilisant des emetteurs-recepteurs standard

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT NL SE

17P Request for examination filed

Effective date: 19950512

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20001211

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCATEL

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010905

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20010905

REF Corresponds to:

Ref document number: 69428155

Country of ref document: DE

Date of ref document: 20011011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011206

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2162846

Country of ref document: ES

Kind code of ref document: T3

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030530

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030611

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20030616

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040609

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050608

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20040609