EP0629059A1 - Spread spectrum digital transmission system with low frequency pseudorandom coding of the useful information and method for spectrum spreading and compressing used in such a system - Google Patents

Spread spectrum digital transmission system with low frequency pseudorandom coding of the useful information and method for spectrum spreading and compressing used in such a system Download PDF

Info

Publication number
EP0629059A1
EP0629059A1 EP94401282A EP94401282A EP0629059A1 EP 0629059 A1 EP0629059 A1 EP 0629059A1 EP 94401282 A EP94401282 A EP 94401282A EP 94401282 A EP94401282 A EP 94401282A EP 0629059 A1 EP0629059 A1 EP 0629059A1
Authority
EP
European Patent Office
Prior art keywords
phase
integer
sequences
transmitter
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP94401282A
Other languages
German (de)
French (fr)
Other versions
EP0629059B1 (en
Inventor
Philippe Sehier
Dominique Deprey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Lucent SAS
Original Assignee
Alcatel Telspace SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel Telspace SA filed Critical Alcatel Telspace SA
Publication of EP0629059A1 publication Critical patent/EP0629059A1/en
Application granted granted Critical
Publication of EP0629059B1 publication Critical patent/EP0629059B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K1/00Secret communication
    • H04K1/02Secret communication by adding a second signal to make the desired signal unintelligible

Definitions

  • the field of the invention is that of digital signal transmission modems and in particular that of spread spectrum modems. More specifically, the present invention relates to a spread spectrum transmission system between a transmitter and a receiver of digital signals in which the spread spectrum is obtained by pseudo-random coding of the useful information to be transmitted.
  • the invention is particularly applicable in wireless telecommunications in the military field.
  • ECCM Electronic Counter-CounterMeasures
  • code or sequence of spreading coming from a pseudo generator - random whose frequency of the clock signal is much greater than the maximum frequency of the useful signal.
  • code or sequence of spreading coming from a pseudo generator - random whose frequency of the clock signal is much greater than the maximum frequency of the useful signal. The number of useful information bits transmitted per Hz is therefore very low.
  • FIG. 1 represents a timing diagram making it possible to understand the principle of spectrum spreading by a spreading sequence.
  • a useful signal SAT to be transmitted here coded on two levels +1 and -1 following an NRZ coding, is multiplied by a cyclic spreading sequence SE, also coded on two levels.
  • the signal resulting from the multiplication is the ST signal transmitted from the transmitter to a receiver after modulation.
  • the transmission medium for the modulated ST signal is generally constituted by a radio link.
  • the multiplication of the received signal ST with the same spreading sequence SE (same phase and same frequency) makes it possible to reconstitute the useful signal SAT.
  • Direct sequence spread spectrum transmission is usually used to give the transmitted signal better discretion, resistance to ECM (Electronic CounterMeasures) and resistance to selective fading.
  • ECM Electronic CounterMeasures
  • the spread between the chip time and the bit time is defined by spreading gain, the chip time corresponding to the duration of a bit of the spreading sequence and the bit time to that of the useful signal.
  • This spreading gain the more the transmitted signal is able to be transmitted discreetly and therefore to resist the ECM devices intended to detect it and, possibly, to jam it.
  • An essential step of the ECM analysis consists in determining the spreading hazard of the signal picked up because this step makes it possible to penetrate the information content of the signal picked up, that is to say to reconstruct the useful signal.
  • the main drawback of spread spectrum by direct sequence is that the generator of the direct sequence must operate at the chip transmission frequency, ie at a frequency of the order of several MHz. It is therefore necessary to install this generator in an ASIC, which increases the hardware complexity and the cost of hardware development.
  • the object of the present invention is in particular to overcome this drawback.
  • one of the objectives of the invention is to provide a system for transmitting a digital signal, where spectrum spreading is implemented, this system not requiring a hazard generator operating at the chip frequency. It is therefore simpler to produce and less costly, while allowing significant spreading of the spectrum of the useful signal intended to resist ECM devices.
  • Another objective of the invention is to provide such a system where spectrum spreading is carried out from orthogonal sequences, for example using sequences of M-sequence type (also called sequences of maximum length or of Hadamard ), well known in the field of digital signal transmission.
  • sequences of M-sequence type also called sequences of maximum length or of Hadamard
  • An additional objective is to provide a method for transmitting digital spread spectrum signals in which the spread is carried out at the bit frequency and not at the chip frequency.
  • the M sequences of q integers are preferably made up of Hadamard sequences.
  • the digital signal to be transmitted SN is applied, here via a serial access, to coding means 21 which supply, for each block of k bits of the signal SN, a coded sample E c taking an integer value included in the set ⁇ 0, ..., N-1 ⁇ , each integer value being representative of the k bits of the corresponding block.
  • the coding means 21 can for example be constituted by a simple binary-decimal converter and the bit rate leaving the coding means is then k times lower than the bit rate entering.
  • the coding means 21 can optionally also perform an interleaving of the bits of the signal SN.
  • the coded samples E c are applied to means 22 for combining these samples with samples E a originating from a pseudo-random generator 23, which will subsequently be called phase random generator.
  • the combination means 22 comprise a transformation algorithm which transforms each coded sample E c into an integer s included in the set ⁇ 0, ..., M-1 ⁇ , with M integer greater than N.
  • f is any function taking its values in ⁇ 0, ..., M-1 ⁇ and E has a sample of phase randomness.
  • the combination means 22 can for example be constituted by a simple modulo M adder, as shown and providing: M where e denotes the addition modulo M which can also be written:
  • Each integer is then supplied to means 24 for generating signals providing, for each integer, a corresponding sequence SQ of q samples, each sample q being an integer.
  • the signal generation means 24 transform each integer s into a sequence SQ, this transformation being one-to-one, that is to say that to a given integer s corresponds a single sequence SQ and vice versa.
  • the signal generator can for example be constituted by a transcoding table.
  • CAZAC periodic pseudo-random sequences of complex numbers which have a periodic autocorrelation function of which only the first coefficient is nonzero and of which all complex numbers have a constant amplitude.
  • the generation of such sequences can be generalized to obtain sequences consisting of whole numbers, these sequences being orthogonal to one another, that is to say having optimal autocorrelation properties.
  • sequences of Gold which are quasi-orthogonal, like those of Kasami, or those called polyphases.
  • the means 24 generate sequences SQ which are substantially orthogonal to one another.
  • the signal generation means 24 can transform each integer s into a sequence SQ of q bits (samples each taking a value in ⁇ 0,1 ⁇ ) according to table 1 below.
  • Another class of usable sequences is that constituted by Hadamard sequences.
  • An example of such sequences is illustrated in table 2, for samples also constituted by bits.
  • each block of k bits of the signal SN has been transformed into a corresponding sequence SQ, each sequence SQ comprising a pseudo-random component.
  • Useful information is coded in this SQ sequence and the different sequences are orthogonal or quasi-orthogonal to each other.
  • M and q are large in front of k or in front of N, we understand that this coding operation consisted in significantly increasing the number of samples to be transmitted and that the spectrum of the useful signal SN was therefore spread out using hazards provided at low frequency.
  • the main advantage of the invention lies precisely in this coding which is carried out at the bit frequency and not at the chip frequency (where the spectrum spreading is carried out by direct sequence).
  • the working frequency of the means described so far can thus be very low, of the order of 16 Kbits, to be compared with 10 Mchips in the case of spread spectrum by direct sequence.
  • samples can take larger values, as a function of the modulation used in transmission means 25 to which the suites SQ are supplied.
  • These transmission means 25 supply a signal STR transmitted to the attention of the receiver. They can be of any type, analog or digital.
  • the transmission means 25 are of digital type and include a phase shift modulator 28.
  • This modulator 28 is for example of MPSK (Multiple Phase Shift Keying) type where M corresponds here to the number of values possible samples q of the sequences SQ and therefore the number of phase states of the modulated signal STR. It is for example possible to perform a BPSK modulation if the SQ sequences consist exclusively of bits, a QPSK modulation if the integers of the SQ sequences are each included in the set ⁇ 0, 1, 2, 3 ⁇ , and a modulation 64-PSK if the integers of the SQ suites are each included in the set ⁇ 0, 1, ..., 63 ⁇ .
  • the phase shift modulator 28 can also be of the QAM type. It provides a modulated signal denoted SM.
  • the transmission means 25 may also include means 26 for spreading spectrum by spreading sequence.
  • the spreading sequence SE is generated by a spreading sequence generator 27.
  • the bits of the sequences SQ take their values in ⁇ 0,1 ⁇ and that the chips of the sequence of spreading SE also take their values in ⁇ 0,1 ⁇ .
  • Each sample b s i produced by the signal generation means 24 is added modulo L to G random elements e, belonging to the set ⁇ 0, 1, ..., L-1 ⁇ and coming from the generator 27, where G represents the spread gain by direct sequence.
  • G represents the spread gain by direct sequence.
  • the increase in bit rate caused by this processing is equal to G.
  • SQE the output signal of the means 26, denoted SQE, which is applied to the modulator 28.
  • Each sample has an SQE sequence takes its value in ⁇ 0, 1, ..., L-1 ⁇ .
  • mapping function g of the modulator must respect the relationship: when a spread by direct sequence is implemented (G> 1).
  • the impulse response h e of the emission filter is assumed such that: and for k * - 0 (Nyquist criterion).
  • the means 26 for spreading spectrum by direct sequence are of course optional in the invention and are therefore shown in broken lines.
  • the transmission means 25 can also include frequency escape means 29, 30, also optional and therefore shown in broken lines, capable of modifying the carrier frequency of the signal transmitted to the receiver.
  • Frequency evasion consists of frequently changing the carrier frequency in order to further broaden the spectrum of the signal transmitted to the receiver.
  • the modulated signal SM in baseband or in intermediate frequency, is applied to a multiplier 29 receiving a carrier frequency signal from a generator 30.
  • phase hazard generator 23 allows low-frequency coding of the signal to be transmitted and makes it possible to pseudo-randomly modify the phase of the signal transmitted when the modulation is of MPSK type. It can thus be considered that the generator 23 and the combination means 22 provide a phase escape function performed at low frequency. An amplitude modulation, also pseudo-random, of the signal to be transmitted is combined with this phase escape when the modulation is of the QAM type (modification of the phase and of the amplitude of the transmitted signal). This is how the transmission system of the invention makes it possible to obtain significant resistance to ECM interference.
  • the output signal STR of the transmission means 28 is transmitted over the air to the receiver 31, the block diagram of which is given in FIG. 3.
  • the receiver 31 receives a signal STRr corresponding to the signal STR noisy by the transmission medium. It comprises reception means generally referenced by 40 restoring the sequences SQ of q whole numbers, denoted SQr at the level of the receiver.
  • the reception means 40 here comprise means 32 for suppressing the carrier frequency controlled by a local oscillator 33.
  • the means 32 conventionally comprise two mixers controlled by clock signals in quadrature and two signals are obtained at the output of these means. quadrature.
  • the local oscillator 33 operates in synchronism with that of the transmitter, referenced 30. This synchronization can be obtained by known means.
  • the output signal of the means 32 is noted SMret corresponds to the signal SM of the transmitter.
  • the signal SMr is applied to spectrum compression means 34 intended to suppress spreading by direct sequence possibly carried out at the level of the transmitter 20.
  • Spectrum compression means are notably described in "Digital Communications" by JG PROAKIS, McGraw-Hill TM chapter 8.
  • Those represented in FIG. 3 include a sampler 35 controlled at the frequency chip Fc followed by a module 36 for spectrum compression.
  • the module 36 comprises a complex multiplier 37 followed by an adder 38.
  • the multiplier 37 receives a direct sequence SE from a generator 39, this direct sequence SE being identical to that generated by the generator 27 of the transmitter 20.
  • the setting phase of these two direct sequences is obtained by known means.
  • the summator 38 calculates, for each block of G consecutive samples r k from the multiplier 37, the following sum: where e sk is the value of the chip at time k of the direct sequence SE and * denotes the conjugate complex. This summation eliminates spectral spreading by direct sequence.
  • Each sum U k therefore corresponds to a sample ⁇ i of the signal STR transmitted to the receiver.
  • modules SQr identical to the suites SQ originating from the means 24 for generating signals from the transmitter 20.
  • SQr suites are applied to means 45 for processing that have the function of performing a demodulation of the received signal and removing the random phase E is introduced at the transmitter 20 by the generator 23 hazards.
  • the correlation means 41 receive for this a reference signal SR constituted by the various sequences SQ which can be generated at the level of the transmitter 20, that is to say those for example represented in Tables 1 or 2.
  • SR constituted by the various sequences SQ which can be generated at the level of the transmitter 20, that is to say those for example represented in Tables 1 or 2.
  • the calculated correlations provide sums C 0 to C M-1 which each correspond to one of the integers from the combining means 22 of the transmitter 20. These sums are applied to a demultiplexer 42 receiving from a generator 43 a signal E a identical to that generated by the generator 23 of the transmitter, and in phase with it.
  • the demultiplexer 42 selects N sums C S from M as a function of the value of the hazard E a .
  • the demultiplexer42 performs an inverse function f -1 to suppress the phase hazard introduced at low frequency on transmission.
  • the demultiplexer42 thus selects the samples C S as a function of the hazard E a .
  • Each sample d i therefore corresponds to a sample E c of the emitter.
  • These samples d i are then applied to decoding means 44 performing an inverse operation to that of the coding means 21 of the transmitter 20. They can also carry out a deinterlacing of the decoded samples if the coding means perform an interleaving of the samples coded.
  • the output signal SNr of the decoding means 44 then corresponds to the digital signal SN of the transmitter.
  • the means of treatment 45 then only comprise correlation means such as 41, receiving the signal E a .
  • the present invention applies for example to transmission systems where error correcting codes are used and where an alphabet of orthogonal signals of very large size, greater than the alphabet used by the error correcting code, is available. Elements of the alphabet not used by the code can be used for low-frequency pseudo-random coding of the signal to be transmitted, thus making it possible to improve the robustness of the system with respect to interception at low cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Transmission Systems Not Characterized By The Medium Used For Transmission (AREA)

Abstract

System and method for combining, within a transmitter, each block of a digital signal to be transmitted with a sample originating from a pseudo-random generator operating at low frequency. The results of the various combinations are converted into orthogonal or quasi-orthogonal sequences, modulated and transmitted to the receiver. The receiver performs demodulation of the signal received and combines each sequence with a sample identical to that used for the low-frequency coding within the transmitter in order to reconstitute the various blocks. Makes it possible to carry out low-frequency spectral spreading of a signal to be transmitted. <IMAGE>

Description

Le domaine de l'invention est celui des modems de transmission de signaux numériques et notamment celui des modems à étalement de spectre. Plus précisément, la présente invention concerne un système de transmission à étalement de spectre entre un émetteur et un récepteur de signaux numériques où l'étalement de spectre est obtenu par codage pseudo-aléatoire de l'information utile à transmettre. L'invention s'applique notamment dans les télécommunications hertziennes dans le domaine militaire.The field of the invention is that of digital signal transmission modems and in particular that of spread spectrum modems. More specifically, the present invention relates to a spread spectrum transmission system between a transmitter and a receiver of digital signals in which the spread spectrum is obtained by pseudo-random coding of the useful information to be transmitted. The invention is particularly applicable in wireless telecommunications in the military field.

Dans le domaine militaire, une opération d'étalement de spectre est généralement utilisée en ECCM (Electronic Counter-CounterMeasures) et consiste à multiplier le signal utile à transmettre par un code, appelé code ou séquence d'étalement, issu d'un générateur pseudo-aléatoire dont la fréquence du signal d'horloge est beaucoup plus importante que la fréquence maximale du signal utile. Le nombre de bits d'information utile transmis par Hz est donc très faible.In the military field, a spectrum spreading operation is generally used in ECCM (Electronic Counter-CounterMeasures) and consists in multiplying the useful signal to be transmitted by a code, called code or sequence of spreading, coming from a pseudo generator - random whose frequency of the clock signal is much greater than the maximum frequency of the useful signal. The number of useful information bits transmitted per Hz is therefore very low.

La figure 1 représente un chronogramme permettant de comprendre le principe de l'étalement de spectre par une séquence d'étalement.FIG. 1 represents a timing diagram making it possible to understand the principle of spectrum spreading by a spreading sequence.

Un signal utile SAT à transmettre, ici codé sur deux niveaux +1 et -1 suivant un codage NRZ, est multiplié par une séquence d'étalement cyclique SE, également codée sur deux niveaux. Le signal résultant de la multiplication est le signal ST transmis de l'émetteur vers un récepteur après modulation. Le support de transmission du signal ST modulé est généralement constitué par une liaison hertzienne. A la réception, après démodulation, la multiplication du signal reçu ST avec la même séquence d'étalement SE (même phase et même fréquence) permet de reconstituer le signal utile SAT.A useful signal SAT to be transmitted, here coded on two levels +1 and -1 following an NRZ coding, is multiplied by a cyclic spreading sequence SE, also coded on two levels. The signal resulting from the multiplication is the ST signal transmitted from the transmitter to a receiver after modulation. The transmission medium for the modulated ST signal is generally constituted by a radio link. On reception, after demodulation, the multiplication of the received signal ST with the same spreading sequence SE (same phase and same frequency) makes it possible to reconstitute the useful signal SAT.

La transmission à étalement de spectre par séquence directe est habituellement utilisée pour conférer au signal transmis une meilleure discrétion, une résistance aux brouillages ECM (Electronic CounterMeasures) et une résistance aux évanouissements sélectifs (fading).Direct sequence spread spectrum transmission is usually used to give the transmitted signal better discretion, resistance to ECM (Electronic CounterMeasures) and resistance to selective fading.

On définit par gain d'étalement le rapport entre le temps chip et le temps bit, le temps chip correspondant à la durée d'un bit de la séquence d'étalement et le temps bit à celui du signal utile. Plus ce gain d'étalement est élevé, plus le signal transmis est apte à être transmis discrètement et donc à résister aux dispositifs ECM destinés à le détecter et, éventuellement, à le brouiller. Une étape essentielle de l'analyse ECM consiste à déterminer l'aléa d'étalement du signal capté car cette étape permet de pénétrer le contenu informationnel du signal capté, c'est à dire de reconstituer le signal utile.The spread between the chip time and the bit time is defined by spreading gain, the chip time corresponding to the duration of a bit of the spreading sequence and the bit time to that of the useful signal. The higher this spreading gain, the more the transmitted signal is able to be transmitted discreetly and therefore to resist the ECM devices intended to detect it and, possibly, to jam it. An essential step of the ECM analysis consists in determining the spreading hazard of the signal picked up because this step makes it possible to penetrate the information content of the signal picked up, that is to say to reconstruct the useful signal.

Le principal inconvénient de l'étalement de spectre par séquence directe est que le générateur de la séquence directe doit fonctionner à la fréquence d'émission de chips, soit à une fréquence de l'ordre de plusieurs MHz. Il est donc nécessaire d'implanter ce générateur dans un ASIC, ce qui augmente la complexité hardware et le coût du développement du matériel.The main drawback of spread spectrum by direct sequence is that the generator of the direct sequence must operate at the chip transmission frequency, ie at a frequency of the order of several MHz. It is therefore necessary to install this generator in an ASIC, which increases the hardware complexity and the cost of hardware development.

La présente invention a notamment pour objectif de pallier cet inconvénient.The object of the present invention is in particular to overcome this drawback.

Plus précisément, un des objectifs de l'invention est de fournir un système de transmission d'un signal numérique, où un étalement de spectre est mis en oeuvre, ce système ne nécessitant pas de générateur d'aléa fonctionnant à la fréquence chip. Il est dès lors plus simple à réaliser et moins coûteux, tout en permettant un important étalement du spectre du signal utile destiné à résister aux dispositifs ECM.More specifically, one of the objectives of the invention is to provide a system for transmitting a digital signal, where spectrum spreading is implemented, this system not requiring a hazard generator operating at the chip frequency. It is therefore simpler to produce and less costly, while allowing significant spreading of the spectrum of the useful signal intended to resist ECM devices.

Un autre objectif de l'invention est de fournir un tel système où l'étalement de spectre est réalisé à partir de séquences orthogonales, par exemple à l'aide de séquences de type M-séquences (aussi appelées séquences de longueur maximale ou de Hadamard), bien connues dans le domaine de la transmission de signaux numériques.Another objective of the invention is to provide such a system where spectrum spreading is carried out from orthogonal sequences, for example using sequences of M-sequence type (also called sequences of maximum length or of Hadamard ), well known in the field of digital signal transmission.

Un objectif complémentaire est de fournir un procédé de transmission de signaux numériques à étalement de spectre où l'étalement est réalisé à la fréquence bit et non pas à la fréquence chip.An additional objective is to provide a method for transmitting digital spread spectrum signals in which the spread is carried out at the bit frequency and not at the chip frequency.

Ces objectifs, ainsi que d'autres qui apparaîtront par la suite, sont atteints grâce à un système de transmission d'un signal numérique entre un émetteur et un récepteur, caractérisé en ce que :

  • * l'émetteur comporte successivement :
    • - des moyens de codage recevant ce signal numérique et fournissant, pour chaque bloc de k bits du signal numérique, un échantillon codé prenant une valeur entière comprise dans l'intervalle [0, N-1], chaque valeur entière étant représentative des k bits du bloc dont elle est issue ;
    • - des moyens de combinaison des échantillons codés avec des échantillons issus d'un générateur d'aléas de phase pseudo-aléatoire, les moyens de combinaison fournissant un entier compris dans l'intervalle [0, M-1] pour chaque combinaison d'un échantillon codé et d'un échantillon d'aléa de phase issu du générateur d'aléas de phase, M étant supérieur à N ;
    • - des moyens de génération de signaux fournissant, pour chaque entier compris dans l'intervalle [0, M-1], une suite de q nombres entiers correspondant à cet entier, les différentes suites étant orthogonales ou quasi-orthogonales entre elles ;
    • - des moyens d'émission des suites de q nombres entiers à l'attention du récepteur, les moyens d'émission comprenant un modulateur à décalage de phase dont le nombre d'états est égal à M ;
  • * le récepteur comporte successivement :
    • - des moyens de réception restituant les suites de q nombres entiers ;
    • - des moyens de traitement recevant d'une part les suites de q nombres entiers des moyens de réception et d'autre part des échantillons d'aléas de phase issus d'un générateur d'aléa de phase synchronisé avec le générateur d'aléas de phase de l'émetteur, les moyens de traitement assurant une démodulation des suites de q nombres entiers et effectuant une opération inverse de celle des moyens de combinaison pour restituer les échantillons codés ;
    • - des moyens de décodage restituant le signal numérique à partir des échantillons fournis par les moyens de traitement.
These objectives, as well as others which will appear subsequently, are achieved by means of a system for transmitting a digital signal between a transmitter and a receiver, characterized in that:
  • * the transmitter successively includes:
    • coding means receiving this digital signal and supplying, for each block of k bits of the digital signal, a coded sample taking an integer value included in the interval [0, N-1], each integer value being representative of the k bits the block from which it came;
    • - means for combining the coded samples with samples from a pseudo-random phase generator, the combination means providing an integer in the interval [0, M-1] for each combination of a coded sample and a phase random sample from the phase random generator, M being greater than N;
    • - means for generating signals providing, for each integer included in the interval [0, M-1], a sequence of q integers corresponding to this integer, the different sequences being orthogonal or quasi-orthogonal to each other;
    • - Means for transmitting sequences of q whole numbers for the attention of the receiver, the transmission means comprising a phase shift modulator whose number of states is equal to M;
  • * the receiver successively includes:
    • - reception means restoring the sequences of q whole numbers;
    • processing means receiving on the one hand the sequences of q whole numbers of the reception means and on the other hand samples of phase hazards originating from a phase hazard generator synchronized with the hazard generator phase of the transmitter, the processing means ensuring a demodulation of the sequences of q whole numbers and performing an inverse operation to that of the combining means for restoring the coded samples;
    • - decoding means restoring the digital signal from the samples supplied by the processing means.

Les M suites de q nombres entiers sont préférentiellement constituées de séquences de Hadamard.The M sequences of q integers are preferably made up of Hadamard sequences.

D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description suivante d'un mode de réalisation préférentiel, donné à titre illustratif et non limitatif, et des dessins annexés dans lesquels :

  • - la figure 1 représente un chronogramme permettant de comprendre le principe de l'étalement de spectre par une séquence d'étalement ;
  • - la figure 2 est un schéma synoptique d'un émetteur du système de transmission de la présente invention ;
  • - la figure 3 est un schéma synoptique d'un récepteur des signaux numériques transmis par l'émetteur de la figure 2.
Other characteristics and advantages of the invention will appear on reading the following description of a preferred embodiment, given by way of nonlimiting illustration, and of the appended drawings in which:
  • - Figure 1 shows a timing diagram for understanding the principle of spectrum spreading by a spreading sequence;
  • - Figure 2 is a block diagram of a transmitter of the transmission system of the present invention;
  • - Figure 3 is a block diagram of a receiver of digital signals transmitted by the transmitter of Figure 2.

La figure 1 a été décrite précédemment en référence à l'état de la technique.Figure 1 has been described above with reference to the state of the art.

En se référant à la figure 2, le signal numérique à transmettre SN est appliqué, ici par l'intermédiaire d'un accès série, à des moyens de codage 21 qui fournissent, pour chaque bloc de k bits du signal SN, un échantillon codé Ec prenant une valeur entière comprise dans l'ensemble {0,..., N-1}, chaque valeur entière étant représentative des k bits du bloc correspondant. Les moyens de codage 21 peuvent par exemple être constitués par un simple convertisseur binaire-décimal et le débit sortant des moyens de codage est alors kfois plus faible que le débit entrant.Referring to FIG. 2, the digital signal to be transmitted SN is applied, here via a serial access, to coding means 21 which supply, for each block of k bits of the signal SN, a coded sample E c taking an integer value included in the set {0, ..., N-1}, each integer value being representative of the k bits of the corresponding block. The coding means 21 can for example be constituted by a simple binary-decimal converter and the bit rate leaving the coding means is then k times lower than the bit rate entering.

Les moyens de codage 21 peuvent éventuellement également effectuer un entrelacement des bits du signal SN.The coding means 21 can optionally also perform an interleaving of the bits of the signal SN.

Les échantillons codés Ec sont appliqués à des moyens de combinaison 22 de ces échantillons avec des échantillons Ea issus d'un générateur 23 pseudo-aléatoire, qui sera par la suite appelé générateur d'aléas de phase. De façon générale, les moyens de combinaison 22 comprennent un algorithme de transformation qui transforme chaque échantillon codé Ec en un entier s compris dans l'ensemble {0,..., M-1}, avec M entier supérieur à N. On a :

Figure imgb0001
The coded samples E c are applied to means 22 for combining these samples with samples E a originating from a pseudo-random generator 23, which will subsequently be called phase random generator. In general, the combination means 22 comprise a transformation algorithm which transforms each coded sample E c into an integer s included in the set {0, ..., M-1}, with M integer greater than N. We at :
Figure imgb0001

où f est une fonction quelconque prenant ses valeurs dans {0,..., M-1} et Ea un échantillon d'aléa de phase.where f is any function taking its values in {0, ..., M-1} and E has a sample of phase randomness.

Les moyens de combinaison 22 peuvent par exemple être constitués par un simple additionneur modulo M, tel que représenté et fournissant:

Figure imgb0002

M
e désigne l'addition modulo M pouvant aussi s'écrire :
Figure imgb0003
The combination means 22 can for example be constituted by a simple modulo M adder, as shown and providing:
Figure imgb0002

M
where e denotes the addition modulo M which can also be written:
Figure imgb0003

Cette addition modulo M, mise à part le fait qu'elle peut être mise en oeuvre par un algorithme très simple à implanter, procure des performances optimales de résistance au brouillage ECM.This addition modulo M, apart from the fact that it can be implemented by an algorithm very simple to implement, provides optimum performance of resistance to ECM interference.

Chaque entier s est ensuite fourni à des moyens 24 de génération de signaux fournissant, pour chaque entiers, une suite SQ de q échantillons correspondante, chaque échantillon q étant un entier. Les moyens 24 de génération de signaux transforment chaque entier s en une suite SQ, cette transformation étant bi-univoque, c'est à dire qu'à un entier s donné correspond une seule suite SQ et réciproquement.Each integer is then supplied to means 24 for generating signals providing, for each integer, a corresponding sequence SQ of q samples, each sample q being an integer. The signal generation means 24 transform each integer s into a sequence SQ, this transformation being one-to-one, that is to say that to a given integer s corresponds a single sequence SQ and vice versa.

On peut écrire :

Figure imgb0004

où bs est un entier compris entre 0 et L-1.We can write :
Figure imgb0004

where bs is an integer between 0 and L-1.

Le générateur de signaux peut par exemple être constitué par une table de transcodage. On se reportera utilement au brevet français n°2.337.465 au nom de COMPAGNIE IBM FRANCE TM qui décrit des séquences dites CAZAC qui sont des séquences pseudo-aléatoires périodiques de nombres complexes qui ont une fonction d'autocorrélation périodique dont seul le premier coefficient est non nul et dont tous les nombres complexes ont une amplitude constante. La génération de telles séquences peut être généralisée pour obtenir des séquences constituées de nombres entiers, ces séquences étant orthogonales entre elles, c'est à dire présentant des propriétés d'autocorrélation optimales. On peut également mentionner les séquences de Gold qui sont quasi-orthogonales, comme celles de Kasami, ou celles appelées polyphases.The signal generator can for example be constituted by a transcoding table. We will usefully refer to French patent no. 2,337,465 in the name of COMPAGNIE IBM FRANCE TM which describes sequences called CAZAC which are periodic pseudo-random sequences of complex numbers which have a periodic autocorrelation function of which only the first coefficient is nonzero and of which all complex numbers have a constant amplitude. The generation of such sequences can be generalized to obtain sequences consisting of whole numbers, these sequences being orthogonal to one another, that is to say having optimal autocorrelation properties. We can also mention the sequences of Gold which are quasi-orthogonal, like those of Kasami, or those called polyphases.

Dans un mode de réalisation préférentiel, les moyens 24 génèrent des suites SQ sensiblement orthogonales entre elles. A titre d'exemple, les moyens 24 de génération de signaux peuvent transformer chaque entier s en une suite SQ de q bits (échantillons prenant chacun une valeur dans {0,1}) selon le tableau 1 ci-dessous.

Figure imgb0005
In a preferred embodiment, the means 24 generate sequences SQ which are substantially orthogonal to one another. By way of example, the signal generation means 24 can transform each integer s into a sequence SQ of q bits (samples each taking a value in {0,1}) according to table 1 below.
Figure imgb0005

Dans cette configuration, M=8 et q=7. Chaque suite de q bits est issue par décalages circulaires d'une séquence de longueur maximale de longueur 7, à l'exclusion de la première suite toujours constituée de zéros. Ces suites présentent des propriétés de quasi-orthogonalité, c'est à dire que pour deux suites différentes et quelconques, la somme des OU-EXCLUSIF de chaque terme est égale à 4.In this configuration, M = 8 and q = 7. Each sequence of q bits comes from circular shifts of a sequence of maximum length of length 7, excluding the first sequence always made up of zeros. These sequences have quasi-orthogonality properties, that is to say that for two different and arbitrary sequences, the sum of the EXCLUSIVE OUs of each term is equal to 4.

Il est possible de généraliser ce principe de génération de signaux SQ quasi-orthogonaux pour tout M puissance de 2. Pour cela, après avoir déterminé une séquence de longueur maximale de période M-1 (par une des méthodes bien connues dans le domaine du traitement numérique de signaux), les M suites de M-1 bits sont obtenues par décalages circulaires de la séquence initiale, à l'exception de la première toujours constituée de zéros.It is possible to generalize this principle of generating quasi-orthogonal SQ signals for any M power of 2. For this, after having determined a sequence of maximum length of period M-1 (by one of the methods well known in the field of processing digital signal), the M sequences of M-1 bits are obtained by circular shifts of the initial sequence, with the exception of the first always consisting of zeros.

Une autre classe de suites utilisables, parfaitement orthogonales, est celle constituée par des séquences de Hadamard. Un exemple de telles séquences est illustré dans le tableau 2, pour des échantillons également constitués par des bits.

Figure imgb0006
Another class of usable sequences, perfectly orthogonal, is that constituted by Hadamard sequences. An example of such sequences is illustrated in table 2, for samples also constituted by bits.
Figure imgb0006

La longueur de ces suites ou séquences est de 8.The length of these sequences or sequences is 8.

La description précédente fait apparaître que chaque bloc de k bits du signal SN a été transformé en une suite SQ correspondante, chaque suite SQ comportant une composante pseudo-aléatoire. L'information utile est codée dans cette suite SQ et les différentes suites sont orthogonales ou quasi-orthogonales entre elles. Dès lors que M et q sont grands devant k ou devant N, on comprend que cette opération de codage a consisté à augmenter de façon importante le nombre d'échantillons à transmettre et qu'on a donc réalisé un étalement du spectre du signal utile SN à l'aide d'aléas fournis à basse fréquence.The preceding description shows that each block of k bits of the signal SN has been transformed into a corresponding sequence SQ, each sequence SQ comprising a pseudo-random component. Useful information is coded in this SQ sequence and the different sequences are orthogonal or quasi-orthogonal to each other. As soon as M and q are large in front of k or in front of N, we understand that this coding operation consisted in significantly increasing the number of samples to be transmitted and that the spectrum of the useful signal SN was therefore spread out using hazards provided at low frequency.

Le principal avantage de l'invention réside justement dans ce codage qui est réalisé à la fréquence bit et non pas à la fréquence chip (où l'étalement de spectre est réalisé par séquence directe). La fréquence de travail des moyens décrits jusqu'ici peut ainsi être très faible, de l'ordre de 16 Kbits, à comparer avec 10 Mchips dans le cas d'un étalement de spectre par séquence directe.The main advantage of the invention lies precisely in this coding which is carried out at the bit frequency and not at the chip frequency (where the spectrum spreading is carried out by direct sequence). The working frequency of the means described so far can thus be very low, of the order of 16 Kbits, to be compared with 10 Mchips in the case of spread spectrum by direct sequence.

Il est à signaler que les échantillons peuvent prendre des valeurs plus importantes, en fonction de la modulation utilisée dans des moyens d'émission 25 auxquels sont fournis les suites SQ.It should be noted that the samples can take larger values, as a function of the modulation used in transmission means 25 to which the suites SQ are supplied.

Ces moyens d'émission 25 fournissent un signal STR transmis à l'attention du récepteur. Ils peuvent être de type quelconque, analogique ou numérique.These transmission means 25 supply a signal STR transmitted to the attention of the receiver. They can be of any type, analog or digital.

Dans le mode de réalisation représenté, les moyens d'émission 25 sont de type numérique et comportent un modulateur à décalage de phase 28. Ce modulateur 28 est par exemple de type MPSK (Multiple Phase Shift Keying) où M correspond ici au nombre de valeurs possibles des échantillons q des suites SQ et donc au nombre d'états de phase du signal modulé STR. Il est par exemple possible d'effectuer une modulation BPSK si les suites SQ sont exclusivement constituées de bits, une modulation QPSK si les entiers des suites SQ sont chacun compris dans l'ensemble {0, 1, 2, 3}, et une modulation 64-PSK si les entiers des suites SQ sont chacun compris dans l'ensemble {0, 1, ..., 63}. Le modulateur 28 à décalage de phase peut également être de type QAM. Il fournit un signal modulé noté SM.In the embodiment shown, the transmission means 25 are of digital type and include a phase shift modulator 28. This modulator 28 is for example of MPSK (Multiple Phase Shift Keying) type where M corresponds here to the number of values possible samples q of the sequences SQ and therefore the number of phase states of the modulated signal STR. It is for example possible to perform a BPSK modulation if the SQ sequences consist exclusively of bits, a QPSK modulation if the integers of the SQ sequences are each included in the set {0, 1, 2, 3}, and a modulation 64-PSK if the integers of the SQ suites are each included in the set {0, 1, ..., 63}. The phase shift modulator 28 can also be of the QAM type. It provides a modulated signal denoted SM.

Les moyens d'émission 25 peuvent également comporter des moyens 26 d'étalement de spectre par séquence d'étalement. La séquence d'étalement SE est générée par un générateurde séquence d'étalement 27. Dans le mode de réalisation représenté, on suppose que les bits des suites SQ prennent leurs valeurs dans {0,1} et que les chips de la séquence d'étalement SE prennent également leurs valeurs dans {0,1}. Chaque échantillon bs i produit par les moyens 24 de génération de signaux est additionné modulo L à G aléas e, appartenant à l'ensemble {0, 1, ..., L-1} et issus du générateur 27, où G représente le gain d'étalement par séquence directe. L'augmentation de débit occasionné par ce traitement est égal à G. Dans le cas d'un étalement de spectre par séquence directe, c'est donc le signal de sortie des moyens 26, noté SQE, qui est appliqué au modulateur 28.The transmission means 25 may also include means 26 for spreading spectrum by spreading sequence. The spreading sequence SE is generated by a spreading sequence generator 27. In the embodiment shown, it is assumed that the bits of the sequences SQ take their values in {0,1} and that the chips of the sequence of spreading SE also take their values in {0,1}. Each sample b s i produced by the signal generation means 24 is added modulo L to G random elements e, belonging to the set {0, 1, ..., L-1} and coming from the generator 27, where G represents the spread gain by direct sequence. The increase in bit rate caused by this processing is equal to G. In the case of a spread of spectrum by direct sequence, it is therefore the output signal of the means 26, denoted SQE, which is applied to the modulator 28.

Chaque échantillon a d'une suite SQE prend sa valeur dans {0, 1, ..., L-1}. Dans le cas où aucun étalement par séquence directe est mis en oeuvre, G = 1 et es = 0, c'est à dire que cet opérateur est transparent.Each sample has an SQE sequence takes its value in {0, 1, ..., L-1}. In the case where no spreading by direct sequence is implemented, G = 1 and e s = 0, that is to say that this operator is transparent.

Le signal STR émis à l'attention du récepteur est de la forme:

Figure imgb0007

où g est la fonction de mapping réalisée par le modulateur 28, Ts le temps symbole et he(t-iTs) le filtrage émission. A titre d'exemple:

  • - en modulation BPSK, L = 2 et on a g(0) = -1 et g(1) = 1
The STR signal sent to the receiver is of the form:
Figure imgb0007

where g is the mapping function performed by the modulator 28, Ts the symbol time and h e (t-iTs) the emission filtering. For exemple:
  • - in BPSK modulation, L = 2 and we ag (0) = -1 and g (1) = 1

Dans ce cas la relation 1 s'écrit:

Figure imgb0008

avec ai = 0 ou 1

  • - en modulation QPSK, L = 4 et
    • 9(0) = 1, g(1) =
    • g(2) = -1 et g(3) =
  • - en modulation 8PSK, L = 8 et g(k) = e2jkπ/8
In this case the relation 1 is written:
Figure imgb0008

with a i = 0 or 1
  • - in QPSK modulation, L = 4 and
    • 9 (0) = 1, g (1) =
    • g (2) = -1 and g (3) =
  • - in 8PSK modulation, L = 8 and g (k) = e 2jkπ / 8

De façon générale, en modulation MPSK, L=M et g(k)=2jkπ/M.Generally, in MPSK modulation, L = M and g (k) = 2 jkπ / M.

On notera que la fonction de mapping g du modulateur doit respecter la relation:

Figure imgb0009

lorsqu'un étalement par séquence directe est mis en oeuvre (G > 1).Note that the mapping function g of the modulator must respect the relationship:
Figure imgb0009

when a spread by direct sequence is implemented (G> 1).

La réponse impulsionnelle he du filtre émission est supposée telle que:

Figure imgb0010

et
Figure imgb0011

pour k *- 0 (critère de Nyquist).The impulse response h e of the emission filter is assumed such that:
Figure imgb0010

and
Figure imgb0011

for k * - 0 (Nyquist criterion).

Les moyens 26 d'étalement de spectre par séquence directe sont bien entendu optionnels dans l'invention et sont pour cela représentés en traits discontinus.The means 26 for spreading spectrum by direct sequence are of course optional in the invention and are therefore shown in broken lines.

Les moyens d'émission 25 peuvent également comprendre des moyens 29, 30 d'évasion de fréquence, également optionnels et donc représentés en traits discontinus, aptes à modifier la fréquence porteuse du signal transmis au récepteur. L'évasion de fréquence consiste à changer fréquemment de fréquence porteuse afin d'élargir encore le spectre du signal transmis au récepteur. Le signal modulé SM, en bande de base ou en fréquence intermédiaire, est appliqué à un multiplieur 29 recevant un signal de fréquence porteuse d'un générateur 30.The transmission means 25 can also include frequency escape means 29, 30, also optional and therefore shown in broken lines, capable of modifying the carrier frequency of the signal transmitted to the receiver. Frequency evasion consists of frequently changing the carrier frequency in order to further broaden the spectrum of the signal transmitted to the receiver. The modulated signal SM, in baseband or in intermediate frequency, is applied to a multiplier 29 receiving a carrier frequency signal from a generator 30.

On constate que le générateur d'aléas de phase 23 permet un codage basse-fréquence du signal à transmettre et permet de modifier de manière pseudo-aléatoire la phase du signal transmis lorsque la modulation est de type MPSK. On peut ainsi considérer que le générateur 23 et les moyens de combinaison 22 assurent une fonction d'évasion de phase réalisée en basse-fréquence. Une modulation d'amplitude, également pseudo-aléatoire, du signal à transmettre vient se combiner avec cette évasion de phase lorsque la modulation est de type QAM (modification de la phase et de l'amplitude du signal transmis). C'est ainsi que le système de transmission de l'invention permet d'obtenir une résistance importante aux brouillages ECM.It can be seen that the phase hazard generator 23 allows low-frequency coding of the signal to be transmitted and makes it possible to pseudo-randomly modify the phase of the signal transmitted when the modulation is of MPSK type. It can thus be considered that the generator 23 and the combination means 22 provide a phase escape function performed at low frequency. An amplitude modulation, also pseudo-random, of the signal to be transmitted is combined with this phase escape when the modulation is of the QAM type (modification of the phase and of the amplitude of the transmitted signal). This is how the transmission system of the invention makes it possible to obtain significant resistance to ECM interference.

Le signal de sortie STR des moyens d'émission 28 est transmis par voie hertzienne au récepteur 31 dont le schéma synoptique est donné à la figure 3.The output signal STR of the transmission means 28 is transmitted over the air to the receiver 31, the block diagram of which is given in FIG. 3.

Le récepteur 31 reçoit un signal STRr correspondant au signal STR bruité par le milieu de transmission. Il comporte des moyens de réception généralement référencés par 40 restituant les suites SQ de q nombres entiers, notées SQr au niveau du récepteur. Les moyens de réception 40 comprennent ici des moyens 32 de suppression de la fréquence porteuse pilotés par un oscillateur local 33. Les moyens 32 comprennent classiquement deux mélangeurs commandés par des signaux d'horloge en quadrature et on obtient en sortie de ces moyens deux signaux en quadrature. Lorsqu'une évasion de fréquence est utilisée au niveau de l'émetteur 20, l'oscillateur local 33 fonctionne en synchronisme avec celui de l'émetteur, référencé 30. Cette synchronisation peut être obtenue par des moyens connus. Le signal de sortie des moyens 32 est noté SMret correspond au signal SM de l'émetteur.The receiver 31 receives a signal STRr corresponding to the signal STR noisy by the transmission medium. It comprises reception means generally referenced by 40 restoring the sequences SQ of q whole numbers, denoted SQr at the level of the receiver. The reception means 40 here comprise means 32 for suppressing the carrier frequency controlled by a local oscillator 33. The means 32 conventionally comprise two mixers controlled by clock signals in quadrature and two signals are obtained at the output of these means. quadrature. When a frequency escape is used at the level of the transmitter 20, the local oscillator 33 operates in synchronism with that of the transmitter, referenced 30. This synchronization can be obtained by known means. The output signal of the means 32 is noted SMret corresponds to the signal SM of the transmitter.

Le signal SMr est appliqué à des moyens 34 de compression de spectre destinés à supprimer l'étalement par séquence directe éventuellement effectué au niveau de l'émetteur 20. Des moyens de compression de spectre sont notamment décrits dans "Digital Communications" de J.G. PROAKIS, McGraw-Hill TM chapitre 8. Ceux représentés à la figure 3 comprennent un échantillonneur 35 commandé à la fréquence chip Fc suivi d'un module 36 de compression de spectre. Le module 36 comporte un multiplieur complexe 37 suivi d'un sommateur 38. Le multiplieur 37 reçoit une séquence directe SE d'un générateur 39, cette séquence directe SE étant identique à celle générée par le générateur 27 de l'émetteur 20. Le calage de phase de ces deux séquences directes est obtenu par des moyens connus.The signal SMr is applied to spectrum compression means 34 intended to suppress spreading by direct sequence possibly carried out at the level of the transmitter 20. Spectrum compression means are notably described in "Digital Communications" by JG PROAKIS, McGraw-Hill TM chapter 8. Those represented in FIG. 3 include a sampler 35 controlled at the frequency chip Fc followed by a module 36 for spectrum compression. The module 36 comprises a complex multiplier 37 followed by an adder 38. The multiplier 37 receives a direct sequence SE from a generator 39, this direct sequence SE being identical to that generated by the generator 27 of the transmitter 20. The setting phase of these two direct sequences is obtained by known means.

Le sommateur 38 calcule, pour chaque bloc de G échantillons rk consécutifs issus du multiplieur 37, la somme suivante:

Figure imgb0012
où esk est la valeur du chip à l'instant k de la séquence directe SE et * désigne le complexe conjugué. Cette sommation permet de supprimer l'étalement spectral par séquence directe.The summator 38 calculates, for each block of G consecutive samples r k from the multiplier 37, the following sum:
Figure imgb0012
where e sk is the value of the chip at time k of the direct sequence SE and * denotes the conjugate complex. This summation eliminates spectral spreading by direct sequence.

Chaque somme Uk correspond donc à un échantillon αi du signal STR transmis au récepteur. En sortie du module 36, on dispose donc de suites SQr identiques aux suites SQ issues des moyens 24 de génération de signaux de l'émetteur 20.Each sum U k therefore corresponds to a sample α i of the signal STR transmitted to the receiver. At the output of module 36, there are therefore suites SQr identical to the suites SQ originating from the means 24 for generating signals from the transmitter 20.

Ces suites SQr sont appliquées à des moyens 45 de traitement qui ont pour fonction de réaliser une démodulation du signal reçu et de supprimer l'aléa de phase Ea introduit au niveau de l'émetteur 20 par le générateur d'aléas 23.These SQr suites are applied to means 45 for processing that have the function of performing a demodulation of the received signal and removing the random phase E is introduced at the transmitter 20 by the generator 23 hazards.

Dans le mode de réalisation représenté, les moyens 45 de traitement comprennent des moyens 41 de corrélation qui calculent, pour chaque bloc de Q sommes U successives, la valeur suivante:

Figure imgb0013

pour s = 0 à M-1.In the embodiment shown, the processing means 45 comprise correlation means 41 which calculate, for each block of Q successive sums U, the following value:
Figure imgb0013

for s = 0 to M-1.

Les moyens 41 de corrélation reçoivent pour cela un signal de référence SR constitué par les différentes suites SQ pouvant être générées au niveau de l'émetteur 20, c'est à dire celles par exemple représentées dans les tableaux 1 ou 2. L'intérêt de générer des séquences orthogonales ou quasi-orthogonales à l'aide du générateur 24 de la figure 2 (et non pas des séquences quelconques) est qu'il est aisé de détecter une corrélation de ces signaux.The correlation means 41 receive for this a reference signal SR constituted by the various sequences SQ which can be generated at the level of the transmitter 20, that is to say those for example represented in Tables 1 or 2. The advantage of generating orthogonal or quasi-orthogonal sequences using the generator 24 of FIG. 2 (and not any sequences) is that it is easy to detect a correlation of these signals.

Les corrélations calculées fournissent des sommes C0 à CM-1 qui correspondent chacune à un des entiers issus des moyens de combinaison 22 de l'émetteur 20. Ces sommes sont appliquées à un démultiplexeur 42 recevant d'un générateur 43 un signal Ea identique à celui généré par le générateur 23 de l'émetteur, et en phase avec celui-ci.The calculated correlations provide sums C 0 to C M-1 which each correspond to one of the integers from the combining means 22 of the transmitter 20. These sums are applied to a demultiplexer 42 receiving from a generator 43 a signal E a identical to that generated by the generator 23 of the transmitter, and in phase with it.

Le démultiplexeur 42 sélectionne N sommes CS parmi M en fonction de la valeur de l'aléa Ea. De façon générale, le démultiplexeur42 assure une fonction inverse f-1 pour supprimer l'aléa de phase introduit en basse fréquence à l'émission.The demultiplexer 42 selects N sums C S from M as a function of the value of the hazard E a . In general, the demultiplexer42 performs an inverse function f -1 to suppress the phase hazard introduced at low frequency on transmission.

A titre d'exemple, si les moyens de combinaison 22 produisent:

Figure imgb0014

le démultiplexeur 42 fournit en sortie les signaux:
Figure imgb0015

pour i = 0 à N-1 et Ea appartenant à l'ensemble {0, 1, ..., M-1}. Le démultiplexeur42 sélectionne ainsi les échantillons CS en fonction de l'aléa Ea.By way of example, if the combining means 22 produce:
Figure imgb0014

the demultiplexer 42 outputs the signals:
Figure imgb0015

for i = 0 to N-1 and E a belonging to the set {0, 1, ..., M-1}. The demultiplexer42 thus selects the samples C S as a function of the hazard E a .

Chaque échantillon di correspond donc à un échantillon Ec de l'émetteur. Ces échantillons di sont ensuite appliqués à des moyens 44 de décodage effectuant une opération inverse de celle des moyens de codage 21 de l'émetteur 20. Ils peuvent en outre réaliser un désentrelacement des échantillons décodés si les moyens de codage réalisent un entrelacement des échantillons codés. Le signal de sortie SNr des moyens de décodage 44 correspond alors au signal numérique SN de l'émetteur.Each sample d i therefore corresponds to a sample E c of the emitter. These samples d i are then applied to decoding means 44 performing an inverse operation to that of the coding means 21 of the transmitter 20. They can also carry out a deinterlacing of the decoded samples if the coding means perform an interleaving of the samples coded. The output signal SNr of the decoding means 44 then corresponds to the digital signal SN of the transmitter.

Bien entendu, d'autres modes de réalisation des moyens 45 de traitement sont envisageables. Il est par exemple possible de ne calculer que les échantillons di selon la relation:

Figure imgb0016
Of course, other embodiments of the processing means 45 can be envisaged. It is for example possible to calculate only the samples d i according to the relation:
Figure imgb0016

Ce calcul direct permet de ne pas utiliser d'algorithme de corrélation rapide et donc de simplifier la réalisation pratique du récepteur. Seules les corrélations utiles sont alors calculées. Les moyens de traitement 45 comprennent alors uniquement des moyens de corrélation tels que 41, recevant le signal Ea.This direct calculation makes it possible not to use a fast correlation algorithm and therefore to simplify the practical implementation of the receiver. Only the useful correlations are then calculated. The means of treatment 45 then only comprise correlation means such as 41, receiving the signal E a .

La présente invention s'applique par exemple aux systèmes de transmission où des codes correcteurs d'erreur sont utilisés et où un alphabet de signaux orthogonaux de taille très importante, supérieure à l'alphabet utilisé par le code correcteur d'erreurs, est disponible. Les éléments de l'alphabet non utilisés par le code peuvent être utilisés pour le codage pseudo-aléatoire basse-fréquence du signal à transmettre, permettant ainsi d'améliorer à faible coût la robustesse du système vis à vis de l'interception.The present invention applies for example to transmission systems where error correcting codes are used and where an alphabet of orthogonal signals of very large size, greater than the alphabet used by the error correcting code, is available. Elements of the alphabet not used by the code can be used for low-frequency pseudo-random coding of the signal to be transmitted, thus making it possible to improve the robustness of the system with respect to interception at low cost.

Claims (8)

1. Système de transmission d'un signal numérique (SN) entre un émetteur (20) et un récepteur (31), caractérisé en ce que : * ledit émetteur (20) comporte successivement : - des moyens (21) de codage recevant ledit signal numérique (SN) et fournissant, pour chaque bloc de k bits dudit signal numérique (SN), un échantillon codé (Ec) prenant une valeur entière comprise dans l'intervalle [0, N-1], chaque valeur entière (Ec) étant représentative des k bits du bloc dont elle est issue ; - des moyens (22) de combinaison desdits échantillons codés (Ec) avec des échantillons (Ea) issus d'un générateur (23) d'aléas de phase pseudo-aléatoire, lesdits moyens (22) de combinaison fournissant un entier (s) compris dans l'intervalle [0, M-1] pour chaque combinaison d'un échantillon codé (Ec) et d'un échantillon (Ea) d'aléa de phase issu dudit générateur (23) d'aléas de phase, M étant supérieur à N; - des moyens (24) de génération de signaux fournissant, pour chaque entier (s) compris dans l'intervalle [0, M-1], une suite (SQ) de q nombres entiers correspondant à cet entier (s), les différentes suites (SQ) étant orthogonales ou quasi-orthogonales entre elles ; - des moyens (25) d'émission desdites suites (SQ) de q nombres entiers à l'attention dudit récepteur (31), lesdits moyens (25) d'émission comprenant un modulateur à décalage de phase dont le nombre d'états est égal à M ; * ledit récepteur (31) comporte successivement : - des moyens de réception (40) restituant lesdites suites (SQr) de q nombres entiers ; - des moyens de traitement (45) recevant d'une part lesdites suites (SQr) de q nombres entiers desdits moyens de réception (40) et d'autre part des échantillons (Ea) d'aléas de phase issus d'un générateur (43) d'aléa de phase synchronisé avec ledit générateur (23) d'aléas de phase dudit émetteur (20), lesdits moyens de traitement (45) assurant une démodulation desdites suites (SQr) de q nombres entiers et effectuant une opération inverse de celle desdits moyens (22) de combinaison pour restituer lesdits échantillons codés (di) ; - des moyens (44) de décodage restituant ledit signal numérique (SNr) à partir desdits échantillons fournis par lesdits moyens de traitement (45). 1. System for transmitting a digital signal (SN) between a transmitter (20) and a receiver (31), characterized in that: * said transmitter (20) successively comprises: - coding means (21) receiving said digital signal (SN) and supplying, for each block of k bits of said digital signal (SN), a coded sample (Ec) taking an integer value included in the interval [0, N -1], each integer value (Ec) being representative of the k bits of the block from which it comes; - means (22) for combining said coded samples (Ec) with samples (Ea) coming from a generator (23) of pseudo-random phase hazards, said means (22) for combining providing an integer (s) included in the interval [0, M-1] for each combination of a coded sample (Ec) and a sample (Ea) of phase hazard from said generator (23) of phase hazards, M being greater than N; - means (24) for generating signals providing, for each integer (s) included in the interval [0, M-1], a sequence (SQ) of q integers corresponding to this integer (s), the different sequences (SQ) being orthogonal or quasi-orthogonal to each other; - Means (25) for transmitting said sequences (SQ) of q whole numbers to the attention of said receiver (31), said means (25) for transmitting comprising a phase shift modulator whose number of states is equal to M; * said receiver (31) successively comprises: - reception means (40) restoring said sequences (SQr) of q whole numbers; - processing means (45) receiving on the one hand said sequences (SQr) of q whole numbers of said receiving means (40) and on the other hand samples (Ea) of phase hazards originating from a generator ( 43) of phase hazard synchronized with said generator (23) of phase hazards of said transmitter (20), said processing means (45) ensuring a demodulation of said sequences (SQr) of q whole numbers and performing a reverse operation of that of said means (22) for combining to restore said coded samples (d i ); - decoding means (44) restoring said digital signal (SNr) from said samples supplied by said processing means (45). 2. Système selon la revendication 1, caractérisé en ce que lesdites M suites (SQ) de q nombres entiers sont des séquences de Hadamard.2. System according to claim 1, characterized in that said M sequences (SQ) of q integers are Hadamard sequences. 3. Système selon l'une des revendications 1 et 2, caractérisé en ce que lesdits moyens (25) d'émission comprennent des moyens (26, 27) d'étalement de spectre par séquence d'étalement (SE) et en ce que lesdits moyens de réception (40) comprennent des moyens de compression de spectre (34) fonctionnant en synchronisme avec lesdits moyens (26, 27) d'étalement de spectre desdits moyens d'émission (25).3. System according to one of claims 1 and 2, characterized in that said transmission means (25) comprise means (26, 27) of spread spectrum by spread sequence (SE) and in that said reception means (40) comprise spectrum compression means (34) operating in synchronism with said spectrum spreading means (26, 27) of said transmission means (25). 4. Système selon l'une des revendications 1 à 3, caractérisé en ce que lesdits moyens d'émission (25) comprennent des moyens (29, 30) d'évasion de fréquence aptes à modifier la fréquence porteuse dudit signal transmis audit récepteur (30) et en ce que lesdits moyens de réception (40) comprennent des moyens (32, 33) assurant une fonction inverse de celle desdits moyens (29, 30) d'évasion de fréquence, aptes à supprimer ladite évasion de fréquence introduite audit émetteur (20).4. System according to one of claims 1 to 3, characterized in that said transmission means (25) comprise frequency escape means (29, 30) capable of modifying the carrier frequency of said signal transmitted to said receiver ( 30) and in that said reception means (40) comprise means (32, 33) performing a function opposite to that of said frequency escape means (29, 30), capable of suppressing said frequency escape introduced to said transmitter (20). 5. Système selon l'une des revendications 1 à 4, caractérisé en ce que lesdits moyens de codage (21) effectuent également un entrelacement des bits dudit signal numérique (SN) et en ce que lesdits moyens de décodage (44) effectuent également un désentrelacement des échantillons décodés (di).5. System according to one of claims 1 to 4, characterized in that said coding means (21) also perform an interleaving of the bits of said digital signal (SN) and in that said decoding means (44) also perform a deinterlacing of decoded samples (d i ). 6. Système selon l'une des revendications 1 à 5, caractérisé en ce que lesdits moyens de combinaison (22) dudit émetteur (20) fournissent, pour chaque échantillon codé (Ec), un entier (s) égal à:
Figure imgb0017

où: - s est ledit entier fourni par lesdits moyens de combinaison (22); - Ec est ledit échantillon codé; - Ea est un échantillon d'aléa de phase issu dudit générateur (23) d'aléas de phase dudit émetteur (20); - M ⊕ désigne l'addition modulo M, avec M entier; et en ce que lesdits moyens de suppression dudit aléa de phase dudit récepteur (30) fournissent, pour chaque suite (SQe) de q bits issue desdits moyens de traitement, un entier (d;) égal à :
Figure imgb0018
où Ea est un échantillon d'aléa de phase issu dudit générateur (43) d'aléas de phase dudit récepteur (31).
6. System according to one of claims 1 to 5, characterized in that said combining means (22) of said transmitter (20) provide, for each coded sample (Ec), an integer (s) equal to:
Figure imgb0017

or: - s is said integer supplied by said combining means (22); - E c is said coded sample; - E a is a sample of phase hazards from said generator (23) of phase hazards of said transmitter (20); - M ⊕ denotes the addition modulo M, with integer M; and in that said means for removing said phase hazard from said receiver (30) provides, for each sequence (SQe) of q bits originating from said processing means, an integer (d ; ) equal to:
Figure imgb0018
where E a is a sample of phase hazards from said generator (43) of phase hazards from said receiver (31).
7. Procédé de transmission à étalement de spectre d'un signal numérique entre un émetteur (20) et un récepteur (30), caractérisé en ce qu'il consiste à : * au niveau dudit émetteur (20) : - générer, pour chaque bloc de k bits dudit signal numérique, un échantillon codé (Ec) prenant une valeur entière comprise dans l'intervalle [0, N-1], chaque valeur entière étant représentative des k bits du bloc correspondant ; - combiner lesdits échantillons codés (Ec) avec des échantillons d'aléa de phase (Ea) pour générer un entier (S) compris dans l'intervalle [0, M-1] pour chaque combinaison d'un échantillon codé (Ec) et d'un échantillon d'aléa de phase (Ea), M étant supérieur à N ; - générer pour chaque entier (s) compris dans l'intervalle [0, M-1], une suite (SQ) de q nombres entiers correspondante, selon une transformation univoque, les différentes suites (SQ) étant orthogonales ou quasi-orthogonales entre elles ; - transmettre lesdites suites (SQ) de q nombres entiers audit récepteur (30) ; * au niveau dudit récepteur (30) : - reconstituer lesdites suites (SQr) de q nombres entiers à partir du signal reçu dudit émetteur (20) et générer, pour chaque suite (SQr) de q nombres entiers reconstituée, un entier selon une transformation inverse de celle réalisée au niveau dudit émetteur (20) ; - combiner chaque entier généré avec un échantillon d'aléa de phase (Ea) identique à celui ayant permis d'obtenir cet entier au niveau dudit émetteur (20), de manière à restituer l'échantillon codé (d;) correspondant, ladite combinaison supprimant ainsi ledit aléa de phase (Ea) ; - décoder chaque échantillon codé (d;) de manière à restituer ledit signal numérique (SNr). 7. A spread spectrum transmission method of a digital signal between a transmitter (20) and a receiver (30), characterized in that it consists in: * at said transmitter (20): - generate, for each block of k bits of said digital signal, a coded sample (Ec) taking an integer value included in the interval [0, N-1], each integer value being representative of the k bits of the corresponding block; - combining said coded samples (Ec) with phase random samples (Ea) to generate an integer (S) in the interval [0, M-1] for each combination of a coded sample (Ec) and a phase random sample (Ea), M being greater than N; - generate for each integer (s) in the interval [0, M-1], a sequence (SQ) of q corresponding whole numbers, according to a one-to-one transformation, the different sequences (SQ) being orthogonal or quasi-orthogonal between them; - transmitting said sequences (SQ) of q integers to said receiver (30); * at said receiver (30): - reconstruct said sequences (SQr) of q integers from the signal received from said transmitter (20) and generate, for each sequence (SQr) of q reconstituted whole numbers, an integer according to a reverse transformation from that carried out at said transmitter ( 20); - Combine each integer generated with a phase random sample (Ea) identical to that which made it possible to obtain this integer at the level of said transmitter (20), so as to restore the corresponding coded sample (d ; ), said combination thus eliminating said phase hazard (E a ); - decode each coded sample (d ; ) so as to restore said digital signal (SNr). 8. Procédé selon la revendication 7, caractérisé en ce que lesdites suites (SQ) de q nombres entiers sont des séquences de Hadamard.8. Method according to claim 7, characterized in that said sequences (SQ) of q integers are Hadamard sequences.
EP94401282A 1993-06-09 1994-06-08 Spread spectrum digital transmission system with low frequency pseudorandom coding of the useful information and method for spectrum spreading and compressing used in such a system Expired - Lifetime EP0629059B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9306936 1993-06-09
FR9306936A FR2706704B1 (en) 1993-06-09 1993-06-09 Spread spectrum digital transmission system obtained by low frequency pseudo-random coding of useful information and spread spectrum compression method used in such a system.

Publications (2)

Publication Number Publication Date
EP0629059A1 true EP0629059A1 (en) 1994-12-14
EP0629059B1 EP0629059B1 (en) 2001-09-05

Family

ID=9447937

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94401282A Expired - Lifetime EP0629059B1 (en) 1993-06-09 1994-06-08 Spread spectrum digital transmission system with low frequency pseudorandom coding of the useful information and method for spectrum spreading and compressing used in such a system

Country Status (6)

Country Link
US (1) US5546423A (en)
EP (1) EP0629059B1 (en)
CA (1) CA2125444A1 (en)
DE (1) DE69428155D1 (en)
ES (1) ES2162846T3 (en)
FR (1) FR2706704B1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW330358B (en) * 1996-02-28 1998-04-21 Toshiba Kk Correlator and synchronous tracking apparatus of spectrum expansion receiver thereof
KR100365346B1 (en) * 1997-09-09 2003-04-11 삼성전자 주식회사 Apparatus and method for generating quasi-orthogonal code of mobile communication system and diffusing band by using quasi-orthogonal code
DE69832589T2 (en) 1998-05-15 2006-08-10 Sony Deutschland Gmbh Transmitters and transmission methods that increase the flexibility of assigning codes
KR100318959B1 (en) * 1998-07-07 2002-04-22 윤종용 Apparatus and method for eliminating interference between different codes in a CDMA communication system
EP1012902B1 (en) 1998-07-20 2004-11-24 Samsung Electronics Co., Ltd. Quasi-orthogonal code mask generating device in mobile communication system
JP3815440B2 (en) * 2003-02-03 2006-08-30 ソニー株式会社 Transmission method and transmission apparatus
US8102802B2 (en) 2006-05-08 2012-01-24 Motorola Mobility, Inc. Method and apparatus for providing downlink acknowledgments and transmit indicators in an orthogonal frequency division multiplexing communication system
KR101294781B1 (en) * 2006-08-08 2013-08-09 엘지전자 주식회사 Method for Transmitting Random Access Preamble
US11095391B2 (en) * 2018-12-19 2021-08-17 Nxp Usa, Inc. Secure WiFi communication

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2110468C1 (en) * 1971-03-05 1978-04-27 Siemens Ag Procedure for the transfer of information
US4685132A (en) * 1985-07-30 1987-08-04 Sperry Corporation Bent sequence code generator
US4972474A (en) * 1989-05-01 1990-11-20 Cylink Corporation Integer encryptor
GB2233860A (en) * 1989-07-13 1991-01-16 Stc Plc "Extending the range of radio transmissions"

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5153598A (en) * 1991-09-26 1992-10-06 Alves Jr Daniel F Global Positioning System telecommand link
US5276705A (en) * 1993-01-06 1994-01-04 The Boeing Company CCD demodulator/correlator
US5341396A (en) * 1993-03-02 1994-08-23 The Boeing Company Multi-rate spread system
US5377226A (en) * 1993-10-19 1994-12-27 Hughes Aircraft Company Fractionally-spaced equalizer for a DS-CDMA system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2110468C1 (en) * 1971-03-05 1978-04-27 Siemens Ag Procedure for the transfer of information
US4685132A (en) * 1985-07-30 1987-08-04 Sperry Corporation Bent sequence code generator
US4972474A (en) * 1989-05-01 1990-11-20 Cylink Corporation Integer encryptor
GB2233860A (en) * 1989-07-13 1991-01-16 Stc Plc "Extending the range of radio transmissions"

Also Published As

Publication number Publication date
EP0629059B1 (en) 2001-09-05
FR2706704A1 (en) 1994-12-23
ES2162846T3 (en) 2002-01-16
CA2125444A1 (en) 1994-12-10
FR2706704B1 (en) 1995-07-13
US5546423A (en) 1996-08-13
DE69428155D1 (en) 2001-10-11

Similar Documents

Publication Publication Date Title
EP0709980B1 (en) Frequency synchronisation for OFDM system
EP1878185B1 (en) Method for the coding of an OFDM/OQAM signal using symbols with complex values, and corresponding signal, devices and computer programs
FR2658016A1 (en) METHOD FOR DIFFUSION OF DIGITAL DATA, IN PARTICULAR FOR HIGH-SPEED MOVING BROADCASTING AT MOBILE, TIME-FREQUENCY INTERLACING, AND COHERENT DEMODULATION, AND CORRESPONDING RECEIVER
FR2794915A1 (en) TRANSMITTING METHOD AND DEVICE, RECEIVING METHOD AND DEVICE, AND SYSTEMS USING THE SAME
EP2503750A1 (en) Method for processing a multicarrier signal with arrays of filters for synchronisation by preamble
EP0881804A1 (en) Method and system for the determination of the symbol transmission format in a transmission system
EP3254423A1 (en) Method and device for phase modulation of a carrier wave and application to the detection of multi-level phase-encoded digital signals
EP0629059B1 (en) Spread spectrum digital transmission system with low frequency pseudorandom coding of the useful information and method for spectrum spreading and compressing used in such a system
FR2942576A1 (en) METHOD OF ESTIMATING A CARRIER FREQUENCY OFFSET IN A TELECOMMUNICATION SIGNAL RECEIVER, IN PARTICULAR A MOBILE DEVICE
EP2639967A1 (en) Method for blindly estimating a scrambling code of a CDMA2000 uplink channel
EP2443802B1 (en) Methods for transmitting and receiving a multicarrier signal using prototype filters, and corresponding transmission and reception devices, signal and computer program
EP3202077B1 (en) Method of sending a multicarrier signal, method of reception, devices, and computer programs associated therewith implementing an oqam type modulation
EP0470352B1 (en) Method for direct sequence spread spectrum digital transmission with sequence change during transmission and transmitter and receiver for implementing said method
EP3931991B1 (en) Method and device for modulating with zadoff-chu sequences
EP0820157B1 (en) Method for digital differential demodulation
WO2006117268A1 (en) Method for the iterative decoding of an ofdm/oqam signal using symbols with complex values, and corresponding device and computer program
EP1283605A1 (en) Method for data date increase in a communication system with N transmitters and M receivers
WO2000028662A1 (en) Digital filter with parallel architecture and spread-spectrum signal receiver using same
FR2845842A1 (en) Optimised transmit receive procedure for OFDM systems uses cyclic prefix sign to transmit control signal bit
EP0994580A1 (en) Transmission method in a multiple access radiocommunication system
EP0272956B1 (en) Digital transmission system with a coherent demodulation adapted to the simultaneous transmission of two binary signals
FR2776146A1 (en) METHOD FOR DEMODULATING REPRESENTATIVE SIGNALS OF SEQUENCES TRANSMITTED IN A COMMUNICATION SYSTEM
WO2008009627A1 (en) Device for spread spectrum modulation for discreet submarine transmissions
FR3105903A1 (en) generation of a learning sequence composed of a plurality of OFDM symbols
WO2007068666A1 (en) High rate data transmission system suitable hf channel transmission using standard transceivers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT NL SE

17P Request for examination filed

Effective date: 19950512

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20001211

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCATEL

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010905

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20010905

REF Corresponds to:

Ref document number: 69428155

Country of ref document: DE

Date of ref document: 20011011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011206

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2162846

Country of ref document: ES

Kind code of ref document: T3

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030530

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030611

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20030616

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040609

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050608

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20040609