EP0629006A1 - Interrupteur supraconducteur et application à un chargeur de bobine supraconductrice - Google Patents

Interrupteur supraconducteur et application à un chargeur de bobine supraconductrice Download PDF

Info

Publication number
EP0629006A1
EP0629006A1 EP94400947A EP94400947A EP0629006A1 EP 0629006 A1 EP0629006 A1 EP 0629006A1 EP 94400947 A EP94400947 A EP 94400947A EP 94400947 A EP94400947 A EP 94400947A EP 0629006 A1 EP0629006 A1 EP 0629006A1
Authority
EP
European Patent Office
Prior art keywords
superconductive
switch
cable
coil
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP94400947A
Other languages
German (de)
English (en)
Other versions
EP0629006B1 (fr
Inventor
Pascal Estop
Serge Poullain
Thierry Verhaege
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alstom SA
Original Assignee
GEC Alsthom Electromecanique SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GEC Alsthom Electromecanique SA filed Critical GEC Alsthom Electromecanique SA
Publication of EP0629006A1 publication Critical patent/EP0629006A1/fr
Application granted granted Critical
Publication of EP0629006B1 publication Critical patent/EP0629006B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/30Devices switchable between superconducting and normal states
    • H10N60/35Cryotrons
    • H10N60/355Power cryotrons

Definitions

  • the present invention relates to a superconductive switch.
  • a full-wave rectifier device comprising a primary winding and two secondary windings arranged in parallel and wound in opposite directions from each other and connected to a superconducting coil to charge it.
  • the secondary windings each consist of 1610 superconducting wires connected in parallel, organized into 230 strips of 7 wires.
  • the strips are brought together in groups of 10, thus making 23 groups put in parallel with 7 X 10 wires in parallel, thus constituting a single superconductive conductor.
  • this conductor is wound on the external surface of a cylinder, helically, on 11 è 23 in turn and for the other, in reverse, on 12 è 23 of turn on the internal surface of the cylinder inside which is the primary winding.
  • Each of the secondary windings is equipped with two heating elements, over a small width, 5 mm, of the conductor forming this winding: one on each face of the conductor.
  • a heating element consists of a plurality of turns of a manganin wire.
  • These heating elements serve to alternate the two superconductive conductors constituting the two secondary windings supplying the superconductive coil to be charged.
  • the invention aims to overcome these drawbacks and relates to a superconductive switch composed of a portion of cable comprising a resistive central strand, non-superconductive around which are stranded a plurality of superconductive strands, or superconductive conductors, separate of said central strand by an electrical insulator, the assembly being isolated from the outside, cooling medium, by a thermal insulator, at each end of said cable portion, said central strand being electrically connected to said superconductive strands or to superconductive conductors, characterized in that, at a point along the length of said cable portion, a length portion of said resistive central strand exits from said cable and is coupled to a control device located outside of said cooling medium, said control device consisting of means to inject an electric current into the circuit formed by the central strand resi stif connected at its ends to the superconductive strands or to the superconductive conductors.
  • said length portion of said resistive central strand leaving said cable is cut, thus forming two ends which are connected to said control device which comprises a capacitor in series with a discharge switch, a voltage source being connected to the terminals of said capacitor via a load resistor and a load switch.
  • a subject of the invention is also a charger for a superconductive coil comprising, in an environment at ambient temperature, an alternating voltage source connected to a full-wave rectifier circuit supplying the superconductive coil, the rectifier and the coil being located in a refrigerating medium.
  • the rectifier circuit comprising a transformer comprising a primary winding and a secondary winding in two parts, each part being connected in parallel to the coil and supplying it alternately by means of a control means ensuring half-alternation in two the transition from the superconductive state to the normal state of the connection of the considered part of said secondary winding with the coil, characterized in that said control means comprises a superconducting switch as defined above.
  • Figure 1, 2 and 3 show in section, three examples of cables that can be used to make a superconducting switch according to the invention.
  • FIG. 4 shows a superconductive switch according to the invention.
  • FIG. 5 is an electrical diagram symbolizing a superconductive switch according to the invention inserted in a superconductive line and showing a particular control device.
  • Figure 6 is an electrical diagram similar to Figure 5 showing another arrangement for the control device.
  • FIG. 7 is an electrical diagram representing a coil charger with superconductive switches controlled in accordance with FIG. 5.
  • FIG. 1 we can see the cross section of a cable as it can be used to make a superconductive switch according to the invention and represented in FIGS. 4, 5 and 6.
  • the cable shown is composed of six superconductive strands 1, each consisting of filaments of titanium Niobium (NbTi) embedded in a Cupro Nickel (CuNi) matrix, stranded around a central resistive strand, not superconductive.
  • This central strand can be made either of CuNi, or of CuNi containing copper (Cu) filaments, it is separated from the six superconductive strands 1 by an electrical insulator 3.
  • This insulator 3 is preferably a good thermal conductor in order to allow the heat given off in the central strand 2 by the Joule effect of rapidly diffusing into the superconductive strands 1.
  • a material that meets these conditions well: electrical insulation and good thermal conduction is Aluminum Nitride or any similar material.
  • the insulator 3 is for example made of a resin loaded with aluminum nitride.
  • the entire cable is insulated by a thermal insulator 4.
  • the length portion of such a cable, used as a superconductive switch is located, in operation, in a cooling medium such as liquid helium at 4, 2 ° K.
  • This thermal insulation 4 must be sufficient to limit the power necessary for heating the superconducting strands 1 by the power dissipated in the central strand 2 but must also be minimized so as to allow recovery of the superconductive state (by cooling the superconductive strands). in times compatible with high frequency operations such as 50 Hz.
  • Figure 2 shows another example of a cable that can be used to make a superconducting switch.
  • the cable consists of six superconductive conductors 5 assembled in a strand around a central resistive strand 2 non-superconductive and separated from the latter by an electrical insulator 3, the assembly being insulated by a thermal insulator 4.
  • An example of a conductor superconductor as 5 is described in patent document FR-A-2674671.
  • FIG. 3 shows yet another example of cable which can be used to make a superconductive switch according to the invention.
  • the cable consists, as in FIG. 2, of six superconductive conductors 6 assembled in a strand around a central resistive strand 2, non-superconductive, and separated from the latter by an electrical insulator 3, the assembly being insulated by an insulator thermal 4.
  • superconductive strands 7 and central strand 8 have a circular section.
  • FIG. 4 represents a superconductive switch according to the invention:
  • Such a switch consists of a length portion of a cable 30 of the type as described with reference to FIGS. 1, 2 or 3.
  • the superconductive strands 1, in the case of the cable of FIG. 1, or the superconductive conductors 5 or 6 in the case of the cable of FIGS. 2 or 3, are connected in parallel to the central strand resistive 2.
  • the resistive central strand 2 is separated from the superconductive strands 1, or the superconductive conductors 5 or 6, and exits outside the cable 30 and, after crossing the refrigerating medium at 4.2 ° K where the cable is located, is coupled to a control device 12 located in the ambient environment around 300 ° K.
  • the role of this control device is to inject an electric current into the circuit formed by the central resistive strand 2 in parallel with the superconductive strands 1 (or the superconductive conductors 5 or 6).
  • FIG. 5 is an electrical diagram which represents the switch of FIG. 4 inserted in a current line 13 and in which a particular control device 12 is shown.
  • the switch is represented by a parallel circuit comprising the superconductive strands 1 (or the superconductive conductors 5, 6) represented by a single wire and the central resistive strand 2 represented by a wire comprising a resistor R.
  • the resistive strand 2 is cut and its ends 14, 15 are connected to the control device 12 located at an ambient temperature of 300 ° K.
  • This device comprises a capacitor 16 arranged in series with a discharge switch 17. At the terminals of the capacitor 16 is located a voltage source 18 in series with a load resistor 19 and a charge switch 20.
  • the capacitor 16 In the first operating phase, the capacitor 16 is charged by closing the switch 20, the switch 17 being open. The capacitor is then charged through the resistor 19 to the charge voltage of the source 18 thus storing energy. Switch 20 is then open and the circuit is in the waiting phase.
  • the switch 17 When ordering for circuit switching or "closing the switch", the switch 17 is closed, the capacitor 16 then discharges into the circuit formed by the resistive central strand 2 and the superconductive strands 1 (or superconductive conductors 5 or 6).
  • the passage of the current in the resistive strand 2 assimilated to the resistance R, gives off heat by Joule effect which diffuses in the superconductive strands 1, (5 or 6) causing their transition to the normal non-superconductive state.
  • the switches 17 and 20 can, of course, be switches controlled by thyristors, or by transistors, allowing the device to operate at the desired frequency.
  • the covering in the superconductive state of the strands 1 is done by itself by cooling these strands by the refrigerating medium to 4.2 ° K in which the circuit is located, as soon as the discharge current of the capacitor 17 has ceased.
  • FIG. 6 shows another control device 12 which generates, by appropriate control 21 of the primary of a transformer 22, a voltage slot at the terminals of the secondary of said transformer 22 connected to the ends 14 and 15.
  • FIG. 7 shows an application of the switch device, it is a charger for a superconductive coil 23.
  • the direct charge of a superconducting coil under large currents generates cryogenic losses which can become very large with strong currents through the current leads.
  • the role of the current leads is to convey the current, from the source, which is at ambient temperature of approximately 300 ° K, to the superconductive coil which is at the temperature of liquid helium: 4.2 ° K.
  • This coil charger comprises an alternating voltage source 24, located at ambient temperature of approximately 300 ° K, connected to a full-wave rectifier circuit comprising a transformer whose primary winding 25 has a large number of turns N1 and whose secondary is in two parts 26 and 26A which have a number of turns N2 much lower than that of the primary winding.
  • Each secondary winding 26 and 26A is connected in parallel to the coil 23 by means of a control means, consisting of a switch and its control device conforming to that of FIG. 5, ensuring half of two alternations , the transition from the superconductive state to the normal state of the superconductive strands 1 (or of the superconductive conductors 5 or 6).
  • the references of the control means located on the side of the secondary winding 26A have been assigned an index A.
  • one alternation in two is the coil 26 which supplies the coil 23, the corresponding "switch” being closed and the other, that with the indices A, open, and the other alternation, it is the coil 26A which supplies the coil 23, the corresponding "switch” being closed and the other, the one without indices, open.
  • the switches 17, 20, 17A and 20A are controlled electronic switches, for example with thyristors.
  • the primary current in the winding 25 is much lower than that of the secondary windings 26 and 26A which is equal to the load current of the coil 23.
  • the coil is supplied either by the coil 26 or by the coil 26A and the current in the coil increases by a certain value. In fact, at each alternation, a certain amount of energy is transferred from the primary circuit to the coil 23.
  • a superconductive switch 27 is closed bypassing the two ends of the coil which thus stores a certain energy.
  • the device described in the present invention allows operation at 50 Hz and is therefore particularly advantageous in the case of an application to a coil charger.
  • a switch such as that shown in FIG. 5 with its control, must have an opening time (passage of the strands 1, or of the conductors 5 or 6, from the superconductive state to the normal state) of the order 1 ms and a closing time (recovery of the superconducting state) of 2 to 3 ms.

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Resistance Heating (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

Interrupteur supraconducteur composé d'une portion de câble (30) comportant un brin central résistif (2), non supraconducteur autour duquel sont assemblés en toron une pluralité de brins supraconducteurs, ou de conducteurs supraconducteurs, séparés dudit brin central par un isolant électrique, l'ensemble étant isolé de l'extérieur, milieu réfrigérant, par un isolant thermique. A chaque extrémité (31, 32) de ladite portion de câble (30), ledit brin central (2) est relié électriquement auxdits brins supraconducteurs, ou aux conducteurs. L'interrupteur est caractérisé en ce que, en un point de la longueur de ladite portion de câble, une portion de longueur dudit brin central résistif sort dudit câble et est couplée à un dispositif de commande (12) situé hors dudit milieu réfrigérant, ledit dispositif de commande consistant dans un moyen pour injecter un courant électrique dans le circuit formé par le brin central résistif (2) relié à ses extrémités aux brins supraconducteurs ou aux conducteurs supraconducteurs.

Description

  • La présente invention concerne un interrupteur supraconducteur.
  • On connaît par la revue IEEE Transactions on Magnetics volume 27 n°2 de mars 1991 pages 2333-2336, un dispositif redresseur double alternance comportant un bobinage primaire et deux bobinages secondaires disposés en parallèle et enroulés en sens inverse l'un de l'autre et reliés à une bobine supraconductrice pour la charger. Les bobinages secondaires sont chacun constitués de 1610 fils supraconducteurs reliés en parallèle, organisés en 230 bandes de 7 fils.
  • Les bandes sont réunies par groupe de 10 réalisant ainsi 23 groupes mis en parallèle de 7 X 10 fils en parallèles, constituant ainsi un conducteur supraconducteur unique.
  • Pour l'un des bobinages secondaire, ce conducteur est enroulé sur la surface externe d'un cylindre, en hélice, sur 11 è 23
    Figure imgb0001
    de tour et pour l'autre, en sens inverse, sur 12 è 23
    Figure imgb0002
    de tour sur la surface interne du cylindre à l'intérieur duquel se trouve le bobinage primaire.
  • Chacun des bobinages secondaires est équipé de deux éléments chauffants, sur une petite largeur, 5 mm, du conducteur formant ce bobinage : un sur chaque face du conducteur. Un élément chauffant est constitué par une pluralité de spires d'un fil de manganin.
  • Ces éléments chauffants servent à faire transiter alternativement les deux conducteurs supraconducteurs constituant les deux bobinages secondaires alimentant la bobine supraconductrice à charger.
  • On a ainsi un exemple d'un interrupteur supraconducteur. Cependant une telle disposition présente quelques inconvénients :
    • la nécessité de placer des éléments chauffants alentour du conducteur rendent la mise en oeuvre des interrupteurs compliqués.
    • les éléments chauffants et le conducteur supraconducteur n'étant pas au même potentiel électrique, une bonne isolation électrique entre ces organes est nécessaire.
    • la nécessité d'avoir une bonne isolation thermique entre "l'interrupteur" et l'hélium, augmente le temps de recouvrement et donc, dans le cas de l'article ci-dessus où il s'agit d'un redresseur pour charger une bobine supraconductrice, diminue la fréquence possible de fonctionnement du redresseur. Ainsi, dans l'article cité, cette fréquence n'est que de 0,5 Hz.
  • L'invention a pour but de pallier ces inconvénients et a pour objet un interrupteur supraconducteur composé d'une portion de câble comportant un brin central résistif, non supraconducteur autour duquel sont assemblés en toron une pluralité de brins supraconducteurs, ou de conducteurs supraconducteurs, séparés dudit brin central par un isolant électrique, l'ensemble étant isolé de l'extérieur, milieu réfrigérant, par un isolant thermique, à chaque extrémité de ladite portion de câble, ledit brin central étant relié électriquement aux dits brins supraconducteurs ou aux conducteurs supraconducteurs, caractérisé en ce que, en un point de la longueur de ladite portion de câble, une portion de longueur dudit brin central résistif sort dudit câble et est couplé à un dispositif de commande situé hors dudit milieu réfrigérant, ledit dispositif de commande consistant dans un moyen pour injecter un courant électrique dans le circuit formé par le brin central résistif relié à ses extrémités aux brins supraconducteurs ou aux conducteurs supraconducteurs.
  • Selon une réalisation particulière, ladite portion de longueur dudit brin central résistif sortie dudit câble est coupé, formant ainsi deux extrémités qui sont reliés audit dispositif de commande qui comprend un condensateur en série avec un interrupteur de décharge, une source de tension étant reliée aux bornes dudit condensateur par l'intermédiaire d'une résistance de charge et d'un interrupteur de charge.
  • L'invention a également pour objet un chargeur de bobine supraconductrice comportant, dans un milieu à température ambiante, une source de tension alternative reliée à un circuit redresseur à double alternance alimentant la bobine supraconductrice, le redresseur et la bobine étant situés dans un milieu réfrigérant, le circuit redresseur comportant un transformateur comprenant un bobinage primaire et un bobinage secondaire en deux parties, chaque partie étant reliée en parallèle à la bobine et l'alimentant alternativement par l'intermédiaire d'un moyen de commande assurant une demi-alternance sur deux la transition de l'état supraconducteur à l'état normal de la liaison de la partie considérée dudit bobinage secondaire avec la bobine, caractérisé en ce que ledit moyen de commande comprend un interrupteur surpaconducteur tel que définit ci-dessus.
  • La figure 1, 2 et 3 représentent en section, trois exemples de câbles pouvant être utilisés pour réaliser un interrupteur surpaconducteur selon l'invention.
  • La figure 4 montre un interrupteur supraconducteur selon l'invention.
  • La figure 5 est un schéma électrique symbolisant un interrupteur supraconducteur selon l'invention inséré dans une ligne supraconductrice et montrant un dispositif particulier de commande.
  • La figure 6 est un schéma électrique semblable à la figure 5 montrant une autre disposition pour le dispositif de commande.
  • La figure 7 est un schéma électrique représentant un chargeur de bobine avec des interrupteurs supraconducteurs commandés conformément à la figure 5.
  • En se reportant à la figure 1, on voit la section d'un câble tel qu'il peut être utilisé pour réaliser un interrupteur supraconducteur conforme à l'invention et représenté sur les figures 4, 5 et 6.
  • Le câble représenté est composé de six brins supraconducteurs 1, constitués chacun de filaments de Niobium titane (NbTi) noyés dans une matrice en Cupro Nickel (CuNi), assemblés en toron autour d'un brin central résistif, non supraconducteur.
  • Ce brin central peut être constitué soit de CuNi, soit de CuNi contenant des filaments de cuivre (Cu), il est séparé des six brins supraconducteurs 1 par un isolant électrique 3. Cet isolant 3 est de préférence un bon conducteur thermique afin de permettre à la chaleur dégagée dans le brin central 2 par effet Joule de diffuser rapidement dans les brins supraconducteurs 1. Un matériau répondant bien à ces conditions : isolation électrique et bonne conduction thermique est le Nitrure d'Aluminium ou tout matériau analogue.
  • Ainsi, l'isolant 3 est par exemple constitué d'une résine chargée en Nitrure d'Aluminium. L'ensemble du câble est isolé par un isolant thermique 4. En effet la portion de longueur d'un tel câble, utilisé comme interrupteur supraconducteur, est situé, en fonctionnement, dans un milieu réfrigérant tel que de l'hélium liquide à 4,2 °K. Cette isolation thermique 4 doit être suffisante pour limiter la puissance nécessaire au réchauffement des brins supraconducteurs 1 par la puissance dissipée dans le brin central 2 mais doit également être minimisée de façon à permettre une récupération de l'état supraconducteur (par refroidissement des brins supraconducteurs) en des temps compatibles avec des fonctionnements à fréquences élevées telles que 50 Hz.
  • Dans le cas de fonctionnement à des fréquences plus faibles, cette isolation 4 peut être plus forte.
  • La figure 2 montre un autre exemple d'un câble pouvant être utilisé pour faire un interrupteur supraconducteur.
  • Ici, le câble est constitué de six conducteurs supraconducteurs 5 assemblés en toron autour d'un brin central résistif 2 non supraconducteur et séparés de ce dernier par un isolant électrique 3, l'ensemble étant isolé par un isolant thermique 4. Un exemple de conducteur supraconducteur tel que 5 est décrit dans le document de brevet FR-A-2674671.
  • La figure 3 montre encore un autre exemple de câble utilisable pour faire un interrupteur supraconducteur selon l'invention.
  • Le câble est constitué, comme dans la figure 2, de six conducteurs supraconducteurs 6 assemblés en toron autour d'un brin central résistif 2, non supraconducteur, et séparés de ce dernier par un isolant électrique 3, l'ensemble étant isolé par un isolant thermique 4.
  • Dans cette figure, les divers composants des conducteurs 6 : brins supraconducteurs 7 et brin central 8 ont une section circulaire.
  • La figure 4 représente un interrupteur supraconducteur selon l'invention :
  • Un tel interrupteur se compose d'une portion de longueur d'un câble 30 du type tel que décrit en référence aux figures 1, 2 ou 3.
  • A chaque extrémité 31, 32 du câble 1, les brins supraconducteurs 1, dans le cas du câble de la figure 1, ou les conducteurs supraconducteurs 5 ou 6 dans le cas du câble des figures 2 ou 3, sont connectés en parallèle au brin central résistif 2.
  • Cette connexion peut être effectuée par exemple par soudure 10, 11.
  • En outre, en un point de la longueur de la portion de câble 30, le brin central résistif 2 est désolidarisé des brins supraconducteurs 1, ou des conducteurs supraconducteurs 5 ou 6, et sort à l'extérieur du câble 30 et, après traversée du milieu réfrigérant à 4,2°K où se trouve le câble, est couplé à un dispositif de commande 12 situé en milieu ambiant aux environs de 300°K. Le rôle de ce dispositif de commande est d'injecter un courant électrique dans le circuit formé par le brin central résistif 2 en parallèle avec les brins supraconducteurs 1 (ou les conducteurs supraconducteurs 5 ou 6).
  • Le passage de ce courant dans le brin central résisitif 2 produit un échauffement de ce dernier par effet Joule sur toute la longueur de la portion de câble 30. La chaleur ainsi dégagée diffuse ensuite dans les brins supraconducteurs 1 (ou les conducteurs supraconducteurs 5 ou 6), provoquant leur passage à l'état normal lorsque la température critique est atteinte : 10 à 11° K.
  • La figure 5 est un schéma électrique qui représente l'interrupteur de la figure 4 inséré dans une ligne de courant 13 et dans laquelle un dispositif de commande 12, particulier, est représenté.
  • L'interrupteur est représenté par un circuit en parallèle comportant les brins supraconducteurs 1 (ou les conducteurs supraconducteurs 5, 6) figurés par un fil unique et le brin central résistif 2 figuré par un fil comportant une résistance R.
  • Le brin résistif 2 est coupé et ses extrémités 14, 15 sont reliées au dispositif de commande 12 situé à la température ambiante de 300°K. Ce dispositif comprend un condensateur 16 disposé en série avec un interrupteur de décharge 17. Aux bornes du condensateur 16, est situé une source de tension 18 en série avec une résistance de charge 19 et un interrupteur de charge 20.
  • Le fonctionnement est le suivant : Dans la première phase de fonctionnement, le condensateur 16 est chargé par la fermeture de l'interrupteur 20, l'interrupteur 17 étant ouvert. Le condensateur se charge alors à travers la résistance 19 jusqu'à la tension de charge de la source 18 stockant ainsi de l'énergie. L'interrupteur 20 est alors ouvert et le circuit est en phase d'attente. Lors de la commande pour la commutation du circuit ou "fermeture de l'interrupteur", l'interrupteur 17 est fermé, le condensateur 16 se décharge alors dans le circuit formé du brin central résistif 2 et des brins supraconducteurs 1 (ou des conducteurs supraconducteurs 5 ou 6). Le passage du courant dans le brin résistif 2, assimilé à la résistance R, dégage de la chaleur par effet Joule qui diffuse dans les brins supraconducteurs 1, (5 ou 6) provoquant leur transition vers l'état normal non supraconducteur.
  • Les interrupteurs 17 et 20 peuvent, bien entendu, être des interrupteurs commandés à thyristors, ou à transistors, permettant un fonctionnement du dispositif à la fréquence désirée.
  • Le recouvrement à l'état supraconducteur des brins 1 (ou 5 ou 6) se fait tout seul par refroidissement de ces brins par le milieu réfrigérant à 4,2°K dans lequel se trouve le circuit, dès que le courant de décharge du condensateur 17 à cessé.
  • La figure 6 montre un autre dispositif de commande 12 qui génère par une commande appropriée 21 du primaire d'un transformateur 22, un créneau de tension aux bornes du secondaire dudit transformateur 22 reliées aux extrémités 14 et 15.
  • Enfin, la figure 7 montre une application du dispositif interrupteur, il s'agit d'un chargeur d'une bobine supraconductrice 23.
  • En effet, la charge directe d'une bobine supraconductrice sous des courants importants génère des pertes cryogéniques qui peuvent devenir très importantes avec des forts courants à travers les amenées de courant. Le rôle des amenées de courant est de véhiculer le courant, depuis la source, qui est à température ambiante d'environ 300°K, à la bobine supraconductrice qui est à la température de l'hélium liquide : 4,2°K.
  • L'utilisation d'un chargeur de bobine permet une réduction considérable de ces pertes.
  • Ce chargeur de bobine comprend une source de tension alternative 24, située à température ambiante d'environ 300°K, reliée à un circuit redresseur à double alternance comportant un transformateur dont le bobinage primaire 25 a un grand nombre de spires N₁ et dont le secondaire est en deux parties 26 et 26A qui ont un nombre de spires N2 très inférieur à celui du bobinage primaire. Chaque enroulement secondaire 26 et 26A est relié en parallèle à la bobine 23 par l'intermédiaire d'un moyen de commande, consistant en un interrupteur et son dispositif de commande conforme à celui de la figure 5, assurant, une demi-alternance sur deux, la transition de l'état supraconducteur à l'état normal des brins supraconducteurs 1 (ou des conducteurs supraconducteurs 5 ou 6). Dans la figure, on a affecté d'un indice A les références du moyen de commande situées du côté du bobinage secondaire 26A.
  • Bien entendu, une alternance sur deux c'est le bobinage 26 qui alimente la bobine 23, "l'interrupteur" correspondant étant fermé et l'autre, celui avec les indices A, ouvert, et l'autre alternance, c'est le bobinage 26A qui alimente la bobine 23, "l'interrupteur" correspondant étant fermé et l'autre, celui sans indices, ouvert.
  • Les interrupteurs 17, 20, 17A et 20A sont des interrupteurs électroniques commandés, par exemple à thyristors.
  • Comme le rapport du nombre de spires N₁ N₂
    Figure imgb0003
    est élevée, le courant primaire dans le bobinage 25 est très inférieur à celui des bobinages secondaires 26 et 26A qui lui est égal au courant de charge de la bobine 23.
  • Ainsi, les amenées de courant provenant de l'extérieur et qui traversent le milieu cryogénique à 4,2°K véhiculant un courant très inférieur au courant de charge, il en résulte que les pertes engendrées dans ces amenées sont fortement réduites.
  • A chaque alternance, la bobine est alimentée soit par le bobinage 26 soit par le bobinage 26A et le courant dans la bobine augmente d'une certaine valeur. En fait, à chaque alternance, une certaine quantité d'énergie est transférée du circuit primaire vers la bobine 23.
  • Une fois la bobine chargée, un interrupteur supraconducteur 27 est fermé court-circuitant les deux extrémités de la bobine qui stocke ainsi une certaine énergie.
  • Le dispositif décrit dans la présente invention permet un fonctionnement à 50 Hz et est donc particulièrement intéressant dans le cas d'une application à un chargeur de bobine.
  • Pour cela, un interrupteur tel que celui représenté figure 5 avec sa commande, doit avoir un temps d'ouverture (passage des brins 1, ou des conducteurs 5 ou 6, de l'état supraconducteur à l'état normal) de l'ordre 1ms et un temps de fermeture (recouvrement de l'état supraconducteur) de 2 à 3 ms.
  • Le tableau ci-après donne quelques exemples de câbles, du type décrit figure 1 avec une isolation du brin central par émaillage, permettant ces caractéristiques :
    Diamètre d'un brin supraconducteur 1 Diamètre du brin central 2 Epaisseur de l'isolation 3 du brin central 2 Epaisseur de l'isolation 4
    0,3 mm 0,25 mm 0,025 mm 0,05mm
    0,2 mm 0,15 mm 0,025 mm 0,1 mm
    0,2 m 0,15 mm 0,025 mm 0,05 mm

Claims (5)

1) Interrupteur supraconducteur composé d'une portion de câble (30) comportant un brin central résistif (2), non supraconducteur autour duquel sont assemblés en toron une pluralité de brins supraconducteurs (1), ou de conducteurs supraconducteurs (5, 6), séparés dudit brin central par un isolant électrique (3), l'ensemble étant isolé de l'extérieur, milieu réfrigérant, par un isolant thermique (4), à chaque extrémité (31, 32) de ladite portion de câble (30), ledit brin central (2) étant relié électriquement auxdits brins supraconducteurs, ou aux conducteurs, caractérisé en ce que, en un point de la longueur de ladite portion de câble, une portion de longueur dudit brin central résistif sort dudit câble et est couplée à un dispositif de commande (12) situé hors dudit milieu réfrigérant, ledit dispositif de commande consistant dans un moyen pour injecter un courant électrique dans le circuit formé par le brin central résistif (2) relié à ses extrémités aux brins supraconducteurs (1) ou aux conducteurs supraconducteurs (5, 6).
2) Interrupteur supraconducteur selon la revendication 1 caractérisé en ce que ladite portion de longueur dudit brin central résistif (2) sortie dudit câble est coupée, formant ainsi deux extrémités (14, 15) qui sont reliées audit dispositif de commande (12) qui comprend un condensateur (16) en série avec un interrupteur de décharge (17), une source de tension (18) étant reliée aux bornes dudit condensateur (16) par l'intermédiaire d'une résistance de charge (19) et d'un interrupteur de charge (20).
3) Interrupteur supraconducteur selon la revendication 2, caractérisé en ce que ledit interrupteur de charge (20) et ledit interrupteur de décharge (17) sont des interrupteurs électroniques commandés.
4) Interrupteur supraconducteur selon la revendication 1 caractérisé en ce que ladite portion de longueur dudit brin central résistif sortie est coupée, formant ainsi deux extrémités (14, 15) qui sont reliées audit dispositif de commande (12) générant, par une commande (21) du primaire d'un transformateur (22), un créneau de tension aux bornes du secondaire dudit transformateur reliés aux dites extrémités (14, 15).
5) Chargeur de bobine supraconductrice (23) comportant, dans un milieu à température ambiante, une source de tension alternative (24) reliée à un circuit redresseur à double alternance alimentant la bobine supraconductrice (23), le redresseur et la bobine (23) étant situés dans un milieu réfrigérant, le circuit redresseur comportant un transformateur comprenant un bobinage primaire (25) et un bobinage secondaire en deux parties (26, 26A) chaque partie étant reliée en parallèle à la bobine (23) et l'alimentant alternativement par l'intermédiaire d'un moyens de commande assurant une demi-alternance sur deux la transition de l'état supraconducteur à l'état normal de la liaison de la partie considérée dudit bobinage secondaire avec la bobine, caractérisé en ce que ledit moyen de commande comprend un interrupteur supraconducteur (1, 2, 1A, 2A) selon l'une des revendications 1, 3 ou 4.
EP94400947A 1993-05-05 1994-05-02 Interrupteur supraconducteur et application à un chargeur de bobine supraconductrice Expired - Lifetime EP0629006B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9305367 1993-05-05
FR9305367A FR2704980B1 (fr) 1993-05-05 1993-05-05 Interrupteur supraconducteur et application à un chargeur de bobine supraconductrice.

Publications (2)

Publication Number Publication Date
EP0629006A1 true EP0629006A1 (fr) 1994-12-14
EP0629006B1 EP0629006B1 (fr) 1997-04-16

Family

ID=9446787

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94400947A Expired - Lifetime EP0629006B1 (fr) 1993-05-05 1994-05-02 Interrupteur supraconducteur et application à un chargeur de bobine supraconductrice

Country Status (7)

Country Link
US (1) US5545932A (fr)
EP (1) EP0629006B1 (fr)
AT (1) ATE151918T1 (fr)
DE (1) DE69402610T2 (fr)
DK (1) DK0629006T3 (fr)
ES (1) ES2100025T3 (fr)
FR (1) FR2704980B1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6110606A (en) 1996-08-30 2000-08-29 American Superconductor Corporation Cryogen protected superconducting ceramic tape
US6444917B1 (en) * 1999-07-23 2002-09-03 American Superconductor Corporation Encapsulated ceramic superconductors
US7168165B2 (en) * 2005-03-07 2007-01-30 Medtronic, Inc. Fabrication of electrical medical leads employing multi-filar wire conductors
US8049470B2 (en) * 2007-06-11 2011-11-01 Smartsynch, Inc. Apparatus and method for charging super capacitors at limited voltage and/or current values irrespective of temperature
US20150255200A1 (en) * 2012-10-12 2015-09-10 Brookhaven Science Associates/Brookhaven National Laboratory Fast Superconducting Switch for Superconducting Power Devices
GB2525218B (en) * 2014-04-16 2016-08-03 Siemens Healthcare Ltd High di/dt superconductive switch
GB2544052B (en) * 2015-11-03 2020-01-15 Rolls Royce Plc Cooling system for electrical equipment
US20180122544A1 (en) * 2016-11-03 2018-05-03 Mevion Medical Systems, Inc. Superconducting coil configuration
US10971291B2 (en) * 2017-06-30 2021-04-06 The Boeing Company System and method for operating a bulk superconductor device
US11070123B2 (en) 2017-07-07 2021-07-20 The Boeing Compan Energy storage and energy storage device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3444307A (en) * 1966-03-23 1969-05-13 Siemens Ag Cooling system for superconductive or cryogenic structures
JPS62214680A (ja) * 1986-03-14 1987-09-21 Hitachi Cable Ltd 熱式永久電流スイツチ用超電導々体
JPH01136317A (ja) * 1987-11-24 1989-05-29 Hitachi Cable Ltd 永久電流スイッチ用超電導線およびその製造方法
US4906861A (en) * 1988-09-30 1990-03-06 Cryomagnetics, Inc. Superconducting current reversing switch
FR2674671A1 (fr) * 1991-03-28 1992-10-02 Alsthom Gec Conducteur supraconducteur possedant une protection amelioree contre les transitions partielles.
WO1994003955A1 (fr) * 1992-07-31 1994-02-17 Arch Development Corporation Limiteur de courant de defaut supraconducteur a haute temperature

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3848162A (en) * 1972-07-11 1974-11-12 President Of The Agency Of Ind Method and apparatus for charging a superconductive coil
NL8501762A (nl) * 1985-06-19 1987-01-16 Holec Syst & Componenten Supergeleidende gelijkrichter voor het omzetten van een relatief lage wisselstroom in een relatief hoge gelijkstroom.
US5227669A (en) * 1991-03-19 1993-07-13 American Electronic Laboratories, Inc. Superconducting non-linear device
DE69308737T2 (de) * 1992-11-05 1997-06-19 Gec Alsthom Electromec Supraleitende Wicklung, insbesondere für Strombegrenzer und Strombegrenzer mit einer solchen Wicklung

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3444307A (en) * 1966-03-23 1969-05-13 Siemens Ag Cooling system for superconductive or cryogenic structures
JPS62214680A (ja) * 1986-03-14 1987-09-21 Hitachi Cable Ltd 熱式永久電流スイツチ用超電導々体
JPH01136317A (ja) * 1987-11-24 1989-05-29 Hitachi Cable Ltd 永久電流スイッチ用超電導線およびその製造方法
US4906861A (en) * 1988-09-30 1990-03-06 Cryomagnetics, Inc. Superconducting current reversing switch
FR2674671A1 (fr) * 1991-03-28 1992-10-02 Alsthom Gec Conducteur supraconducteur possedant une protection amelioree contre les transitions partielles.
WO1994003955A1 (fr) * 1992-07-31 1994-02-17 Arch Development Corporation Limiteur de courant de defaut supraconducteur a haute temperature

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
G. B. J. MULDER ET AL, IEEE TRANSACTIONS ON MAGNETICS., vol. 27, no. 2, March 1991 (1991-03-01), NEW YORK US, pages 2333 - 2336 *
PATENT ABSTRACTS OF JAPAN vol. 012, no. 072 (E - 588) 5 March 1988 (1988-03-05) *
PATENT ABSTRACTS OF JAPAN vol. 013, no. 386 (E - 812) 25 August 1989 (1989-08-25) *

Also Published As

Publication number Publication date
EP0629006B1 (fr) 1997-04-16
DK0629006T3 (fr) 1997-05-26
ATE151918T1 (de) 1997-05-15
FR2704980B1 (fr) 1995-06-09
DE69402610D1 (de) 1997-05-22
DE69402610T2 (de) 1997-07-17
FR2704980A1 (fr) 1994-11-10
US5545932A (en) 1996-08-13
ES2100025T3 (es) 1997-06-01

Similar Documents

Publication Publication Date Title
FR2677503A1 (fr) Limiteur de courant.
EP0629006B1 (fr) Interrupteur supraconducteur et application à un chargeur de bobine supraconductrice
US6583351B1 (en) Superconducting cable-in-conduit low resistance splice
FR2629956A1 (fr) Limiteur de courant
EP2146395B1 (fr) Manchon de connexion d'un câble supraconducteur et terminaison de connexion au moyen de ce manchon
EP2105994A1 (fr) Dispositif de connexion de deux cables supraconducteurs
FR2616005A1 (fr) Bobinage supraconducteur a gabarits concentriques d'enroulement portant chacun un fil supraconducteur en helice
FR2660482A1 (fr) Toron supraconducteur pour courant alternatif.
EP2852001B1 (fr) Jonction de câbles supraconducteurs
FR2666912A1 (fr) Dispositif limiteur de courant a supraconducteur.
CA2040983A1 (fr) Limiteur de courant hybride
FR2930378A1 (fr) Agencement de connexion de deux cables supraconducteurs
EP0610131B1 (fr) Liaison d'alimentation pour bobine supraconductrice
US4169964A (en) Electrical superconductor
CA2035113C (fr) Conducteur supraconducteur protege des transitions partielles
EP0130923A1 (fr) Procédé pour réaliser une connexion entre fils supraconducteurs
CA2282869C (fr) Transformateur de courant electrique a bobinages supraconducteurs
EP2375504B1 (fr) Dispositif de connexion de deux câbles supraconducteurs
CH621653A5 (fr)
FR2621734A1 (fr) Disjoncteur a haute tension a courant continu
FR2659805A1 (fr) Limiteur de courant a bobine supraconductrice.
EP0667628B1 (fr) Bobine supraconductrice à transition générale
EP0803881B1 (fr) Limiteur de courant à polymère à haute tension
EP0660426A1 (fr) Limiteur de courant
EP1667283A1 (fr) Agencement de connexion d'un élément supraconducteur avec un conducteur électrique résistif

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IE IT LI LU NL PT SE

17P Request for examination filed

Effective date: 19950515

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19960808

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RHK1 Main classification (correction)

Ipc: H01L 39/20

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970411

Year of fee payment: 4

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB IE IT LI LU NL PT SE

REF Corresponds to:

Ref document number: 151918

Country of ref document: AT

Date of ref document: 19970515

Kind code of ref document: T

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 19970417

Year of fee payment: 4

Ref country code: BE

Payment date: 19970417

Year of fee payment: 4

ITF It: translation for a ep patent filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19970422

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19970423

Year of fee payment: 4

Ref country code: DK

Payment date: 19970423

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19970428

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19970430

Year of fee payment: 4

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: GEC ALSTHOM (SUISSE) S.A. DEPARTEMENT DES BREVETS

Ref country code: CH

Ref legal event code: EP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970510

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19970519

Year of fee payment: 4

REF Corresponds to:

Ref document number: 69402610

Country of ref document: DE

Date of ref document: 19970522

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 19970528

Year of fee payment: 4

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2100025

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: 73357

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 19970418

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970710

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980502

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980502

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980502

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980502

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980531

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980531

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980531

BERE Be: lapsed

Owner name: S.A. GEC ALSTHOM ELECTROMECANIQUE

Effective date: 19980531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980502

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed

Ref document number: 94400947.1

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19981201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990302

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 19981130

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20010503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050502