EP0624885B1 - Cable usable within the telecommunications field - Google Patents
Cable usable within the telecommunications field Download PDFInfo
- Publication number
- EP0624885B1 EP0624885B1 EP94400998A EP94400998A EP0624885B1 EP 0624885 B1 EP0624885 B1 EP 0624885B1 EP 94400998 A EP94400998 A EP 94400998A EP 94400998 A EP94400998 A EP 94400998A EP 0624885 B1 EP0624885 B1 EP 0624885B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cable
- composite material
- cable according
- conductive polymer
- polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002131 composite material Substances 0.000 claims description 38
- 229920000642 polymer Polymers 0.000 claims description 18
- 229920001940 conductive polymer Polymers 0.000 claims description 17
- 239000011159 matrix material Substances 0.000 claims description 15
- 239000003989 dielectric material Substances 0.000 claims description 13
- 229920001577 copolymer Polymers 0.000 claims description 9
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 claims description 8
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 claims description 6
- 229910003472 fullerene Inorganic materials 0.000 claims description 6
- 239000004065 semiconductor Substances 0.000 claims description 5
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 239000006229 carbon black Substances 0.000 claims description 3
- 230000005294 ferromagnetic effect Effects 0.000 claims description 3
- 238000001914 filtration Methods 0.000 claims description 3
- 239000000654 additive Substances 0.000 claims description 2
- 230000000996 additive effect Effects 0.000 claims description 2
- KMAWVRYYKYVCNR-UHFFFAOYSA-N benzo[b][1]benzothiepine Chemical compound C1=CC2=CC=CC=C2SC2=CC=CC=C21 KMAWVRYYKYVCNR-UHFFFAOYSA-N 0.000 claims description 2
- 239000002482 conductive additive Substances 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 229930192474 thiophene Natural products 0.000 claims description 2
- IZWSFJTYBVKZNK-UHFFFAOYSA-O N-dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonic acid Chemical compound CCCCCCCCCCCC[N+](C)(C)CCCS(O)(=O)=O IZWSFJTYBVKZNK-UHFFFAOYSA-O 0.000 claims 1
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 claims 1
- 239000010410 layer Substances 0.000 description 29
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 10
- 238000005259 measurement Methods 0.000 description 9
- 229920000123 polythiophene Polymers 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- -1 pyrolle Chemical compound 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 2
- 244000045947 parasite Species 0.000 description 2
- 238000005325 percolation Methods 0.000 description 2
- PSBDWGZCVUAZQS-UHFFFAOYSA-N (dimethylsulfonio)acetate Chemical compound C[S+](C)CC([O-])=O PSBDWGZCVUAZQS-UHFFFAOYSA-N 0.000 description 1
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 229920003345 Elvax® Polymers 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 229920000092 linear low density polyethylene Polymers 0.000 description 1
- 239000004707 linear low-density polyethylene Substances 0.000 description 1
- 229920001684 low density polyethylene Polymers 0.000 description 1
- 239000004702 low-density polyethylene Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 150000002832 nitroso derivatives Chemical class 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 229910001414 potassium ion Inorganic materials 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229940117986 sulfobetaine Drugs 0.000 description 1
- 125000006839 xylylene group Chemical group 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B11/00—Communication cables or conductors
- H01B11/02—Cables with twisted pairs or quads
- H01B11/12—Arrangements for exhibiting specific transmission characteristics
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B11/00—Communication cables or conductors
- H01B11/18—Coaxial cables; Analogous cables having more than one inner conductor within a common outer conductor
- H01B11/1808—Construction of the conductors
Definitions
- the present invention relates to a cable more particularly intended for use in the field of telecommunications where the useful signal transported is of low energy.
- the cables ensuring the connection between the various systems carry a useful signal which can be continuous or alternating, but also conduct electromagnetic disturbances of variable frequencies, frequencies which are higher and higher with the increase in information rates.
- the main solution adopted is the filtering of these disturbances by localized elements; these are placed at the entry of each system to be protected or at the exit of the systems generating the disturbances.
- this method has the drawback of increasing the cost of the systems, of increasing the size of the system, and does not prevent the cables from serving as antennas.
- the object of the present invention is to provide a link having intrinsically the property of absorbing electromagnetic disturbances generated by electronic components or links in telecommunication systems.
- the object of the present invention is a cable intended for use in the field of telecommunications, of coaxial structure, consisting of a metallic core surrounded at least two layers, one of which is a layer of dielectric material, characterized in that the other layer, placed between said core and said layer of dielectric material over at least part of the length of the cable, is a layer of semiconductor composite material comprising an insulating matrix and a non-doped conductive polymer with conjugate connections, said cable thus becoming a cable intrinsically filtering the electromagnetic disturbances which it conducts in the frequency range below 1 GHz.
- the composite material has the property of absorbing the electromagnetic disturbances conducted by the metallic core of the cable. This property is nonlinear as a function of the frequency of the disturbance.
- the electromagnetic disturbances are not attenuated for certain frequency values which correspond to the bandwidth of the layer of composite material.
- the layer of composite material is arranged over at least part of the length of the cable. It can be arranged over the entire length of the cable or only on certain sections.
- the dielectric material and the insulating matrix of the layer of composite material are preferably chosen to be different in order to limit the diffusion of the polymer in the dielectric material.
- the undoped conductive polymer is chosen from an electronic conductive polymer, an ionic conductive polymer, a zwitterionic conductive polymer, and a ferro-magnetic polymer such as, for example, a copolymer of aniline and naphthalene.
- the electronic conductive polymer is chosen from polymers and copolymers based on aniline, thiophene, pyrolle, fullerene (zero-dimensional crystallized carbon), phenylene-vinylene, phenylene sulfide, isothionaphthene , and their derivatives.
- the zwitterionic conductive polymer is chosen from polymers and copolymers based on sulfobetaine and its derivatives.
- the proportion of the polymer is greater than 5% by volume of the composite material.
- the optimum level of charge of the polymer in the matrix is located near the percolation threshold. This threshold depends on the nature of the polymer used; in most cases it is greater than 20%. When the charge rate increases until reaching the percolation threshold, the attenuation of disturbances is more and more effective. Beyond this threshold, the gain in attenuation is much lower.
- the composite material also contains a conductive additive chosen from a doped or self-doped polymer, a filler of carbon black, and a metallic filler.
- the additive is introduced at a rate of less than 10% by volume of composite material.
- the thickness of the layer of composite material is 0.1 to 2 times the thickness of the layer of dielectric material. Below this value the absorption is insufficient, beyond this any increase in thickness has no effect. The higher this thickness ratio, the better the attenuation.
- the metallic core of the cable is surrounded by several layers of composite materials of different composition and / or thickness, and these layers of composite material are covered with at least one layer of dielectric material.
- each of the layers of composite material can be arranged over the entire length of the cable or else only on certain sections.
- the thickness of each of the layers can be identical or different over the length of the cable.
- the electromagnetic disturbances are absorbed in a frequency range which depends on the nature of the polymer and the thickness of the layer of material. composite.
- the variation in thickness makes it possible to act on the relaxation phenomena (modification of the resistance and the linear capacity of the layer) and therefore to move the passband of the filter cable.
- each of the layers of composite material being defined by its thickness, by the nature and the proportion of the polymer which composes it, the superposition of several layers of different characteristics makes it possible to adjust the bandwidth of the cable to requirements.
- Such a cable is intended to be used in the field of telecommunications.
- This type of cable is more particularly advantageous in applications of low or medium voltages (less than 100 Volts), where the frequency of the electromagnetic disturbances conducted varies between 100 kHz and 1 GHz.
- FIG. 1 shows an example of the structure of a cable according to the invention: a layer of semiconductor composite material 1, of thickness 0.6 mm, and a layer of dielectric material 2, of thickness 2 mm, surround concentrically with the central metal core 3 of the cable, with an external diameter of 1.38 mm.
- the mass return of the coaxial structure is ensured by a metal braid 4.
- the cable is produced by coextrusion. Cable protection and structure cohesion are provided by a heat-shrinkable sheath 5.
- the dielectric material is conventionally a low density polyethylene ("LLDPE ATO5600” from ATOCHEM) without peroxide. This material behaves in the frequency range considered (100 kHz to 1 GHz) as a perfect dielectric.
- a cable with a structure similar to that shown in FIG. 1 is produced using a conventional semiconductor layer based on carbon black as composite material.
- the material consists of an insulating matrix based on a copolymer of ethylene and acrylate. butyl EBA and a charge of acetylene black in a proportion of 25% by volume.
- a cable is produced according to the invention with a structure similar to that shown in FIG. 1.
- the composite material comprises an insulating matrix which is a copolymer of ethylene and vinyl acetate EVA ("ELVAX 260"), containing 26% vinyl acetate which promotes the sealing strength, and a load of dedicated polythiophene in a proportion of 30% by volume.
- the EVA matrix different from the dielectric material, was chosen because it has a high admissible charge rate and an extrusion temperature compatible with the charges envisaged.
- a cable is produced according to the invention with a structure similar to that shown in FIG. 1.
- the composite material similar to that described in Example 2, comprises an EVA insulating matrix and a deduced polyaniline filler in a proportion of 30% in volume.
- the measurement of the signal attenuation as a function of the frequency is given on curve 3 of FIG. 2.
- the attenuation is -3dB at a frequency of 30MHz and -10dB at a frequency of 100MHz
- a cable is produced according to the invention with a structure similar to that shown in FIG. 1.
- the composite material similar to that described in Example 2, comprises an EVA insulating matrix and a charge of ferro-magnetic copolymer of aniline and naphthalene in a proportion of 30% by volume.
- the measurement of the signal attenuation as a function of the frequency is given on curve 4 in FIG. 2.
- the attenuation is -3dB at a frequency of 10MHz.
- a cable is produced according to the invention with a structure similar to that shown in FIG. 1.
- the composite material similar to that described in Example 2, comprises an EVA insulating matrix and a charge of non-doped ionic conductive polymer in a proportion 20% by volume.
- This polymer is obtained by mixing a solution based on alkaline cation K + and polyoxyethylene (-CH 2 -CH 2 -O-) n . Polyoxyethylene complexes the K + ion which ensures the conductivity of the polymer obtained.
- the measurement of the signal attenuation as a function of the frequency is given on curve 5 of FIG. 3.
- the attenuation is -3dB at a frequency of 30MHz.
- a cable is produced according to the invention of structure similar to that shown in Figure 1.
- the composite material similar to that described in Example 2, comprises an EVA insulating matrix and a charge of conductive polymer dedoped in a proportion of 30 % by volume and 5% of zwitterions in molecular state.
- the measurement of the signal attenuation as a function of the frequency is given on curve 6 of FIG. 3.
- the attenuation is -3dB at a frequency of 20MHz.
- a cable is produced according to the invention of structure similar to that shown in Figure 1.
- the composite material similar to that described in Example 2, comprises an EVA insulating matrix and a charge of conductive polymer dedoped in a proportion of 30 % by volume and 10% PVDF.
- the measurement of the signal attenuation as a function of the frequency is given on curve 7 of FIG. 3.
- the attenuation is -3dB at a frequency of 7MHz.
- a cable is produced according to the invention with a structure similar to that shown in FIG. 1.
- the composite material similar to that described in Example 2, comprises an EVA insulating matrix and a fullerene charge in a proportion of 25% in volume.
- grafted fullerenes for example bromophenylfulleroids, nitroso compounds of fullerenes, copolymers of fullerenes (in particular xylylene), and metallofullerenes.
- a cable is produced according to the invention with a structure similar to that shown in FIG. 1.
- the composite material similar to that described in Example 2, comprises an EVA insulating matrix and a load of deduced polythiophene in a proportion of 30% by volume and 5% of doped polythiophene.
- the measurement of the attenuation of the signal as a function of the frequency is given on curve 8 of FIG. 4.
- the attenuation is -3dB at a frequency of 50 MHz.
- a cable is produced according to the invention with a structure similar to that shown in FIG. 1.
- the composite material similar to that described in Example 2, comprises an EVA insulating matrix and a load of deduced polythiophene in a proportion of 30% by volume and 10% of doped polythiophene.
- the measurement of the signal attenuation as a function of the frequency is given on curve 9 of FIG. 4.
- the attenuation is -3dB at a frequency of 40MHz.
- the cable can be coated externally with one or more additional layers such as an electromagnetic shielding layer, a layer of colored material intended for identification, a flame-retardant protective layer, etc.
- additional layers such as an electromagnetic shielding layer, a layer of colored material intended for identification, a flame-retardant protective layer, etc.
Landscapes
- Insulated Conductors (AREA)
- Communication Cables (AREA)
- Conductive Materials (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
La présente invention concerne un câble plus particulièrement destiné à être utilisé dans le domaine des télécommunications où le signal utile transporté est de faible énergie.The present invention relates to a cable more particularly intended for use in the field of telecommunications where the useful signal transported is of low energy.
Les câbles assurant la liaison entre les différents systèmes véhiculent un signal utile pouvant être continu ou alternatif, mais conduisent également des perturbations électromagnétiques de fréquences variables, fréquences de plus en plus élevées avec l'augmentation des débits d'information.The cables ensuring the connection between the various systems carry a useful signal which can be continuous or alternating, but also conduct electromagnetic disturbances of variable frequencies, frequencies which are higher and higher with the increase in information rates.
La protection des systèmes électroniques vis à vis des perturbations électromagnétiques conduites par les liaisons est devenue indispensable pour assurer un bon fonctionnement dans un environnement électromagnétique pollué, voire pour éviter des destructions car les composants électroniques travaillent avec des niveaux de tension de plus en plus faibles (par exemple, EP-A-0 190 939).The protection of electronic systems against electromagnetic disturbances conducted by links has become essential to ensure proper operation in a polluted electromagnetic environment, or even to avoid destruction because electronic components work with increasingly low voltage levels ( for example, EP-A-0 190 939).
Dans l'état actuel de la situation, la principale solution retenue est le filtrage de ces perturbations par des éléments localisés; ceux-ci sont placés à l'entrée de chaque système à protéger ou bien à la sortie des systèmes générant les perturbations. Mais cette méthode a pour inconvénient d'augmenter le coût des systèmes, d'accroître l'encombrement du système, et ne permet pas d'éviter que les câbles servent d'antennes.In the current state of the situation, the main solution adopted is the filtering of these disturbances by localized elements; these are placed at the entry of each system to be protected or at the exit of the systems generating the disturbances. However, this method has the drawback of increasing the cost of the systems, of increasing the size of the system, and does not prevent the cables from serving as antennas.
La présente invention a pour but de procurer une liaison possédant intrinsèquement la propriété d'absorber les perturbations électromagnétiques générées par les composants électroniques ou les liaisons dans les systèmes de télécommunication.The object of the present invention is to provide a link having intrinsically the property of absorbing electromagnetic disturbances generated by electronic components or links in telecommunication systems.
L'objet de la présente invention est un câble destiné à être utilisé dans le domaine des télécommunications, de structure coaxiale, constitué d'une âme métallique entourée d'au moins deux couches dont l'une est une couche de matériau diélectrique, caractérisé par le fait que l'autre couche, placée entre ladite âme et ladite couche de matériau diélectrique sur au moins une partie de la longueur du câble, est une couche de matériau composite semi-conducteur comprenant une matrice isolante et un polymère conducteur non dopé à liaisons conjuguées, ledit câble devenant ainsi un câble filtrant intrinsèquement les perturbations électromagnétiques qu'il conduit dans la gamme de fréquences inférieures à 1GHZ.The object of the present invention is a cable intended for use in the field of telecommunications, of coaxial structure, consisting of a metallic core surrounded at least two layers, one of which is a layer of dielectric material, characterized in that the other layer, placed between said core and said layer of dielectric material over at least part of the length of the cable, is a layer of semiconductor composite material comprising an insulating matrix and a non-doped conductive polymer with conjugate connections, said cable thus becoming a cable intrinsically filtering the electromagnetic disturbances which it conducts in the frequency range below 1 GHz.
Le matériau composite a la propriété d'absorber les perturbations électromagnétiques conduites par l'âme métallique du câble. Cette propriété est non linéaire en fonction de la fréquence de la perturbation. Les perturbations électromagnétiques ne sont pas atténuées pour certaines valeurs de fréquence qui correspondent à la bande passante de la couche de matériau composite.The composite material has the property of absorbing the electromagnetic disturbances conducted by the metallic core of the cable. This property is nonlinear as a function of the frequency of the disturbance. The electromagnetic disturbances are not attenuated for certain frequency values which correspond to the bandwidth of the layer of composite material.
La couche de matériau composite est disposée sur au moins une partie de la longueur du câble. Elle peut être disposée sur toute la longueur du câble ou bien seulement sur certains tronçons.The layer of composite material is arranged over at least part of the length of the cable. It can be arranged over the entire length of the cable or only on certain sections.
Le matériau diélectrique et la matrice isolante de la couche de matériau composite sont de préférence choisis de nature différente afin de limiter la diffusion du polymère dans le matériau diélectriqueThe dielectric material and the insulating matrix of the layer of composite material are preferably chosen to be different in order to limit the diffusion of the polymer in the dielectric material.
Le polymère conducteur non dopé est choisi parmi un polymère conducteur électronique, un polymère conducteur ionique, un polymère conducteur zwitterionique, et un polymère ferro-magnétique comme par exemple un copolymère de l'aniline et du naphtalène.The undoped conductive polymer is chosen from an electronic conductive polymer, an ionic conductive polymer, a zwitterionic conductive polymer, and a ferro-magnetic polymer such as, for example, a copolymer of aniline and naphthalene.
De préférence, le polymère conducteur électronique est choisi parmi les polymères et les copolymères à base d'aniline, de thiophène, de pyrolle, de fullérène (carbone cristallisé de zéro dimension), de phénylène-vinylène, de phénylène-sulfide, d'isothionaphtène, et de leurs dérivés.Preferably, the electronic conductive polymer is chosen from polymers and copolymers based on aniline, thiophene, pyrolle, fullerene (zero-dimensional crystallized carbon), phenylene-vinylene, phenylene sulfide, isothionaphthene , and their derivatives.
De préférence, le polymère conducteur zwitterionique est choisi parmi les polymères et les copolymères à base de sulfobêtaïne et de ses dérivés.Preferably, the zwitterionic conductive polymer is chosen from polymers and copolymers based on sulfobetaine and its derivatives.
La proportion du polymère est supérieure à 5% en volume du matériau composite. L'optimum du taux de charge du polymère dans la matrice se situe au voisinage du seuil de percolation. Ce seuil dépend de la nature du polymère utilisé; dans la plupart des cas, il est supérieur 20%. Lorsque le taux de charge augmente jusqu'à atteindre le seuil de percolation, l'atténuation des perturbations est de plus en plus efficace. Au-delà de ce seuil, le gain en atténuation beaucoup plus faible.The proportion of the polymer is greater than 5% by volume of the composite material. The optimum level of charge of the polymer in the matrix is located near the percolation threshold. This threshold depends on the nature of the polymer used; in most cases it is greater than 20%. When the charge rate increases until reaching the percolation threshold, the attenuation of disturbances is more and more effective. Beyond this threshold, the gain in attenuation is much lower.
Selon une variante, le matériau composite contient en outre un additif conducteur choisi parmi un polymère dopé ou autodopé, une charge de noir de carbone, et une charge métallique. L'additif est introduit à un taux inférieur à 10% en volume de matériau composite.According to a variant, the composite material also contains a conductive additive chosen from a doped or self-doped polymer, a filler of carbon black, and a metallic filler. The additive is introduced at a rate of less than 10% by volume of composite material.
L'épaisseur de la couche de matériau composite est de 0,1 à 2 fois l'épaisseur de la couche de matériau diélectrique. En dessous de cette valeur l'absorption est insuffisante, au-delà tout accroissement d'épaisseur est sans effet. Plus ce rapport des épaisseurs est élevé, meilleure sera l'atténuation.The thickness of the layer of composite material is 0.1 to 2 times the thickness of the layer of dielectric material. Below this value the absorption is insufficient, beyond this any increase in thickness has no effect. The higher this thickness ratio, the better the attenuation.
Selon une variante de réalisation, l'âme métallique du câble est entourée de plusieurs couches de matériaux composites de composition et/ou d'épaisseur différente, et ces couches de matériau composite sont recouvertes d'au moins une couche de matériau diélectrique.According to an alternative embodiment, the metallic core of the cable is surrounded by several layers of composite materials of different composition and / or thickness, and these layers of composite material are covered with at least one layer of dielectric material.
Indépendamment, chacune des couches de matériau composite peut être disposée sur toute la longueur du câble ou bien seulement sur certains tronçons. L'épaisseur de chacune des couches peut être identique ou différente sur la longueur du câble.Independently, each of the layers of composite material can be arranged over the entire length of the cable or else only on certain sections. The thickness of each of the layers can be identical or different over the length of the cable.
Les perturbations électromagnétiques sont absorbées dans un domaine de fréquences qui dépend de la nature du polymère et de l'épaisseur de la couche de matériau composite. La variation d'épaisseur permet d'agir sur les phénomènes de relaxation (modification de la résistance et de la capacité linéique de la couche) et donc de déplacer la bande passante du câble filtrant.The electromagnetic disturbances are absorbed in a frequency range which depends on the nature of the polymer and the thickness of the layer of material. composite. The variation in thickness makes it possible to act on the relaxation phenomena (modification of the resistance and the linear capacity of the layer) and therefore to move the passband of the filter cable.
Les conditions d'absorption de chacune des couches de matériau composite étant définies par son épaisseur, par la nature et la proportion du polymère qui la compose, la superposition de plusieurs couches de caractéristiques différentes permet d'ajuster aux besoins la bande passante du câble.The absorption conditions of each of the layers of composite material being defined by its thickness, by the nature and the proportion of the polymer which composes it, the superposition of several layers of different characteristics makes it possible to adjust the bandwidth of the cable to requirements.
Un tel câble est destiné à être utilisé dans le domaine des télécommunications. Ce type de câble est plus particulièrement avantageux dans des applications de faibles ou moyennes tensions (inférieures à 100 Volts), où la fréquence des perturbations électromagnétiques conduites varie entre 100kHz et 1GHz.Such a cable is intended to be used in the field of telecommunications. This type of cable is more particularly advantageous in applications of low or medium voltages (less than 100 Volts), where the frequency of the electromagnetic disturbances conducted varies between 100 kHz and 1 GHz.
Les câbles filtrants selon l'invention possèdent en outre d'autres avantages en terme de compatibilité électromagnétique:
- ils réduisent les couplages entre câbles en absorbant les tensions parasites,
- ils possèdent un meilleur comportement en émission de perturbations rayonnées puisqu'ils filtrent les courants parasites haute fréquence.
- they reduce coupling between cables by absorbing stray voltages,
- they have better behavior in emitting radiated disturbances since they filter high frequency parasitic currents.
L'invention sera mieux comprise et d'autres avantages et particularités apparaîtront à la lecture des exemples qui vont suivre, donnés à titre illustratif et non limitatif, accompagnés des dessins annexés parmi lesquels:
- la figure 1 représente un exemple de structure d'un câble selon l'invention,
- la figure 2 montre l'atténuation des perturbations électromagnétiques en fonction de la fréquence pour différents matériaux composites,
- la figure 3 est analogue à la figure 2 pour d'autres matériaux,
- la figure 4 est analogue à la figure 2 pour des matériaux contenant du polythiophène dédopé et dopé.
- FIG. 1 represents an example of the structure of a cable according to the invention,
- FIG. 2 shows the attenuation of the electromagnetic disturbances as a function of the frequency for different composite materials,
- FIG. 3 is similar to FIG. 2 for other materials,
- Figure 4 is similar to Figure 2 for materials containing doped and doped polythiophene.
Sur les figures 2 à 4, l'atténuation a en décibels (dB) est donnée en ordonné, et en abcisse la fréquence F en Hertz (Hz).In FIGS. 2 to 4, the attenuation a in decibels (dB) is given on the ordinate, and the frequency F in Hertz (Hz) is abcised.
Sur la figure 1 est représenté un exemple de structure d'un câble selon l'invention: une couche de matériau composite semi-conducteur 1, d'épaisseur 0,6mm, et une couche de matériau diélectrique 2, d'épaisseur 2mm, entourent de façon concentrique l'âme centrale métallique 3 du câble, de diamètre externe 1,38mm. Le retour de masse de la structure coaxiale est assuré par une tresse métallique 4.FIG. 1 shows an example of the structure of a cable according to the invention: a layer of semiconductor composite material 1, of thickness 0.6 mm, and a layer of
La couche de matériau composite 1 n'est pas reliée à la masse ce qui empêche toute circulation de courant perturbateur dans cette couche. Par ailleurs, l'épaisseur de peau dans la gamme de fréquences considérée (δ=1,6.10-2m à 200MHz) est largement supérieure à l'épaisseur de la couche de matériau composite, ce qui réduit le phénomène d'absorption de perturbations extérieures. Par conséquent en terme d'efficacité de blindage, l'action de la couche de matériau composite semi-conducteur est inefficace.The layer of composite material 1 is not connected to ground, which prevents any circulation of disturbing current in this layer. Furthermore, the thickness of the skin in the frequency range considered (δ = 1.6.10 -2 m at 200 MHz) is much greater than the thickness of the layer of composite material, which reduces the phenomenon of absorption of disturbances outside. Consequently in terms of shielding efficiency, the action of the layer of semiconductor composite material is ineffective.
La réalisation du câble est faite par coextrusion. La protection du câble et la cohésion de la structure sont assurées par une gaine thermorétractable 5.The cable is produced by coextrusion. Cable protection and structure cohesion are provided by a heat-
Le matériau diélectrique est classiquement un polyéthylène basse densité ("LLDPE ATO5600" de ATOCHEM) sans peroxyde. Ce matériau se comporte dans la gamme de fréquence considérées (100kHz à 1GHz) comme un diélectrique parfait.The dielectric material is conventionally a low density polyethylene ("LLDPE ATO5600" from ATOCHEM) without peroxide. This material behaves in the frequency range considered (100 kHz to 1 GHz) as a perfect dielectric.
On réalise un câble de structure analogue à celle montrée par la figure 1 en utilisant comme matériau composite une couche semi-conductrice classique à base de noir de carbone. Le matériau se compose d'une matrice isolante à base d'un copolymère d'éthylène et d'acrylate de butyl EBA et d'une charge de noir d'acétylène dans une proportion de 25% en volume.A cable with a structure similar to that shown in FIG. 1 is produced using a conventional semiconductor layer based on carbon black as composite material. The material consists of an insulating matrix based on a copolymer of ethylene and acrylate. butyl EBA and a charge of acetylene black in a proportion of 25% by volume.
La mesure de l'atténuation du signal en fonction de la fréquence est donnée sur la courbe 1 de la figure 2. Pour une fréquence de 100MHz, l'atténuation est extrêmement faible.The measurement of the signal attenuation as a function of the frequency is given on curve 1 of FIG. 2. For a frequency of 100 MHz, the attenuation is extremely low.
On réalise un câble selon l'invention de structure analogue à celle montrée par la figure 1. Le matériau composite comprend une matrice isolante qui est un copolymère d'éthylène et d'acétate de vinyl EVA ("ELVAX 260"), contenant 26% d'acétate de vinyl ce qui favorise la force de scellage, et une charge de polythiophène dédopé dans une proportion de 30% en volume.A cable is produced according to the invention with a structure similar to that shown in FIG. 1. The composite material comprises an insulating matrix which is a copolymer of ethylene and vinyl acetate EVA ("ELVAX 260"), containing 26% vinyl acetate which promotes the sealing strength, and a load of dedicated polythiophene in a proportion of 30% by volume.
La matrice EVA, différente du matériau diélectrique, a été choisie car elle possède un taux de charge admissible élevé et une température d'extrusion compatible avec les charges envisagées.The EVA matrix, different from the dielectric material, was chosen because it has a high admissible charge rate and an extrusion temperature compatible with the charges envisaged.
La mesure de l'atténuation du signal en fonction de la fréquence est donnée sur la courbe 2 de la figure 2. Pour un câble de 3,7m de long, l'atténuation est de -3dB pour 50MHz et de -5dB pour 100MHz.The measurement of the signal attenuation as a function of the frequency is given on
On réalise un câble selon l'invention de structure analogue à celle montrée par la figure 1. Le matériau composite, analogue à celui décrit dans l'exemple 2, comprend une matrice isolante EVA et une charge de polyaniline dédopée dans une proportion de 30% en volume.A cable is produced according to the invention with a structure similar to that shown in FIG. 1. The composite material, similar to that described in Example 2, comprises an EVA insulating matrix and a deduced polyaniline filler in a proportion of 30% in volume.
La mesure de l'atténuation du signal en fonction de la fréquence est donnée sur la courbe 3 de la figure 2. L'atténuation est de -3dB à une fréquence de 30MHz et de -10dB à une fréquence de 100MHzThe measurement of the signal attenuation as a function of the frequency is given on curve 3 of FIG. 2. The attenuation is -3dB at a frequency of 30MHz and -10dB at a frequency of 100MHz
On réalise un câble selon l'invention de structure analogue à celle montrée par la figure 1. Le matériau composite, analogue à celui décrit dans l'exemple 2, comprend une matrice isolante EVA et une charge de copolymère ferro-magnétique de l'aniline et du naphtalène dans une proportion de 30% en volume.A cable is produced according to the invention with a structure similar to that shown in FIG. 1. The composite material, similar to that described in Example 2, comprises an EVA insulating matrix and a charge of ferro-magnetic copolymer of aniline and naphthalene in a proportion of 30% by volume.
La mesure de l'atténuation du signal en fonction de la fréquence est donnée sur la courbe 4 de la figure 2. L'atténuation est de -3dB à une fréquence de 10MHz.The measurement of the signal attenuation as a function of the frequency is given on
On réalise un câble selon l'invention de structure analogue à celle montrée par la figure 1. Le matériau composite, analogue à celui décrit dans l'exemple 2, comprend une matrice isolante EVA et une charge de polymère conducteur ionique non dopé dans une proportion de 20% en volume. Ce polymère est obtenu en mélangeant une solution à base de cation alcalin K+ et le polyoxyéthylène (-CH2-CH2-O-)n. Le polyoxyéthylène complexe l'ion K+ qui assure la conductivité du polymère obtenu.A cable is produced according to the invention with a structure similar to that shown in FIG. 1. The composite material, similar to that described in Example 2, comprises an EVA insulating matrix and a charge of non-doped ionic conductive polymer in a proportion 20% by volume. This polymer is obtained by mixing a solution based on alkaline cation K + and polyoxyethylene (-CH 2 -CH 2 -O-) n . Polyoxyethylene complexes the K + ion which ensures the conductivity of the polymer obtained.
La mesure de l'atténuation du signal en fonction de la fréquence est donnée sur la courbe 5 de la figure 3. L'atténuation est de -3dB à une fréquence de 30MHz.The measurement of the signal attenuation as a function of the frequency is given on
On réalise un câble selon l'invention de structure analogue à celle montrée par la figure 1. Le matériau composite, analogue à celui décrit dans l'exemple 2, comprend une matrice isolante EVA et une charge de polymère conducteur dédopé dans une proportion de 30% en volume et de 5% de zwitterions à l'état moléculaire.A cable is produced according to the invention of structure similar to that shown in Figure 1. The composite material, similar to that described in Example 2, comprises an EVA insulating matrix and a charge of conductive polymer dedoped in a proportion of 30 % by volume and 5% of zwitterions in molecular state.
La mesure de l'atténuation du signal en fonction de la fréquence est donnée sur la courbe 6 de la figure 3. L'atténuation est de -3dB à une fréquence de 20MHz.The measurement of the signal attenuation as a function of the frequency is given on
On réalise un câble selon l'invention de structure analogue à celle montrée par la figure 1. Le matériau composite, analogue à celui décrit dans l'exemple 2, comprend une matrice isolante EVA et une charge de polymère conducteur dédopé dans une proportion de 30% en volume et de 10% de PVDF.A cable is produced according to the invention of structure similar to that shown in Figure 1. The composite material, similar to that described in Example 2, comprises an EVA insulating matrix and a charge of conductive polymer dedoped in a proportion of 30 % by volume and 10% PVDF.
La mesure de l'atténuation du signal en fonction de la fréquence est donnée sur la courbe 7 de la figure 3. L'atténuation est de -3dB à une fréquence de 7MHz.The measurement of the signal attenuation as a function of the frequency is given on curve 7 of FIG. 3. The attenuation is -3dB at a frequency of 7MHz.
On réalise un câble selon l'invention de structure analogue à celle montrée par la figure 1. Le matériau composite, analogue à celui décrit dans l'exemple 2, comprend une matrice isolante EVA et une charge de fullérènes dans une proportion de 25% en volume.A cable is produced according to the invention with a structure similar to that shown in FIG. 1. The composite material, similar to that described in Example 2, comprises an EVA insulating matrix and a fullerene charge in a proportion of 25% in volume.
L'atténuation observée est identique à celle obtenue dans l'exemple 2 pour le polythiophène (courbe 2 de la figure 2).The attenuation observed is identical to that obtained in Example 2 for the polythiophene (
On pourrait tout aussi bien utiliser des fullérènes greffés, par exemple les bromophénylfulléroides, les composés nitrosés des fullérènes, les copolymères des fullérènes (en particulier le xylylène), et les métallofullérènes.One could just as well use grafted fullerenes, for example bromophenylfulleroids, nitroso compounds of fullerenes, copolymers of fullerenes (in particular xylylene), and metallofullerenes.
On réalise un câble selon l'invention de structure analogue à celle montrée par la figure 1. Le matériau composite, analogue à celui décrit dans l'exemple 2, comprend une matrice isolante EVA et une charge de polythiophène dédopé dans une proportion de 30% en volume et de 5% de polythiophène dopé.A cable is produced according to the invention with a structure similar to that shown in FIG. 1. The composite material, similar to that described in Example 2, comprises an EVA insulating matrix and a load of deduced polythiophene in a proportion of 30% by volume and 5% of doped polythiophene.
La mesure de l'atténuation du signal en fonction de la fréquence est donnée sur la courbe 8 de la figure 4. L'atténuation est de -3dB à une fréquence de 50MHz.The measurement of the attenuation of the signal as a function of the frequency is given on
On réalise un câble selon l'invention de structure analogue à celle montrée par la figure 1. Le matériau composite, analogue à celui décrit dans l'exemple 2, comprend une matrice isolante EVA et une charge de polythiophène dédopé dans une proportion de 30% en volume et de 10% de polythiophène dopé.A cable is produced according to the invention with a structure similar to that shown in FIG. 1. The composite material, similar to that described in Example 2, comprises an EVA insulating matrix and a load of deduced polythiophene in a proportion of 30% by volume and 10% of doped polythiophene.
La mesure de l'atténuation du signal en fonction de la fréquence est donnée sur la courbe 9 de la figure 4. L'atténuation est de -3dB à une fréquence de 40MHz.The measurement of the signal attenuation as a function of the frequency is given on
Le câble peut être revêtu extérieurement d'une ou plusieurs couches supplémentaires telles que couche de blindage électromagnétique, couche de matériau coloré destinée à l'identification, couche de protection ignifuge, etc...The cable can be coated externally with one or more additional layers such as an electromagnetic shielding layer, a layer of colored material intended for identification, a flame-retardant protective layer, etc.
Claims (11)
- Coaxial telecommunications cable comprising a metal core surrounded by at least two layers one of which is a dielectric material layer, characterised in that the other layer, disposed between said core and said dielectric material layer over at least part of the length of the cable, is a semiconductor composite material layer comprising an insulative matrix and an undoped conductive polymer containing conjugated bonds, said cable thereby constituting a cable with intrinsic filtering of electromagnetic interference conducted by the cable at frequencies below 1 GHz.
- Cable according to claim 1 characterised in that said polymer is selected from an electronic conductive polymer, an ionic conductive polymer, a zwitterionic conductive polymer and a ferromagnetic polymer.
- Cable according to claim 2 characterised in that said electronic conductive polymer is selected from polymers and copolymers based on aniline, thiophene, pyrole, fullerene, phenylene-vinylene, phenylene-sulphide, isothionaphthene and derivatives thereof.
- Cable according to claim 2 characterised in that said zwitterionic conductive polymer is selected from polymers and copolymers based on sulphobetaine and its derivatives.
- Cable according to any one of the preceding claims characterised in that the proportion of said polymer exceeds 5% by volume of the composite material.
- Cable according to any one of the preceding claims characterised in that said composite material further contains a conductive additive selected from a doped or self-doped conductive polymer, a carbon black loading and a metal loading, said additive being present in proportions of less than 10% by volume of said composite material.
- Cable according to any one of the preceding claims characterised in that the thickness of said composite material layer is between 0.1 times and twice the thickness of said dielectric material layer.
- Cable according to any one of the preceding claims characterised in that said core is surrounded by a plurality of layers of composite materials having different composition and/or thickness, said composite material layers being covered with at least one dielectric material layer.
- Cable according to any one of the preceding claims characterised in that said electromagnetic interference is absorbed in a frequency band which depends on the nature of said polymer.
- Cable according to any one of the preceding claims characterised in that said electromagnetic interference is absorbed in a frequency band which depends on the thickness of said composite material layer.
- Application to the field of telecommunications of a cable as claimed in any one of the preceding claims.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9305582A FR2705161B1 (en) | 1993-05-10 | 1993-05-10 | Cable usable in the field of telecommunications. |
FR9305582 | 1993-05-10 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0624885A1 EP0624885A1 (en) | 1994-11-17 |
EP0624885B1 true EP0624885B1 (en) | 1996-10-23 |
Family
ID=9446955
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP94400998A Expired - Lifetime EP0624885B1 (en) | 1993-05-10 | 1994-05-06 | Cable usable within the telecommunications field |
Country Status (5)
Country | Link |
---|---|
US (1) | US5530206A (en) |
EP (1) | EP0624885B1 (en) |
DE (1) | DE69400777T2 (en) |
ES (1) | ES2093495T3 (en) |
FR (1) | FR2705161B1 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2723245B1 (en) * | 1994-08-01 | 1996-09-13 | Cortaillod Cables Sa | ELECTRIC POWER OR TELECOMMUNICATION CABLE AND METHOD FOR MANUFACTURING SUCH A CABLE |
FR2753300B1 (en) * | 1996-09-09 | 1998-10-09 | Alcatel Cable | ELECTRIC CONDUCTOR PROTECTED AGAINST ELECTROMAGNETIC INTERFERENCE EXCEEDING A THRESHOLD |
SE0001123L (en) * | 2000-03-30 | 2001-10-01 | Abb Ab | Power cable |
SE0001748D0 (en) * | 2000-03-30 | 2000-05-12 | Abb Ab | Induction Winding |
US6621970B2 (en) | 2001-03-28 | 2003-09-16 | Alcatel | UV-curable optical fiber coating composition including fullerenes |
US20060022789A1 (en) * | 2004-05-26 | 2006-02-02 | Kolasinski John R | Charge dissipative electrical interconnect |
KR100725287B1 (en) * | 2005-07-28 | 2007-06-07 | 엘에스전선 주식회사 | UTP cable for transmitting high frequency signal |
WO2008127082A2 (en) * | 2007-04-13 | 2008-10-23 | Magnekon, S. A. De C. V. | Magnet wire with corona resistant coating |
JP5516456B2 (en) * | 2011-02-24 | 2014-06-11 | 日立金属株式会社 | Shielded electrically insulated cable |
US10147523B2 (en) | 2014-09-09 | 2018-12-04 | Panasonic Avionics Corporation | Cable, method of manufacture, and cable assembly |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3749817A (en) * | 1970-12-28 | 1973-07-31 | Sumitomo Electric Industries | Insulated cable having strand shielding semi-conductive layer |
FR2233685B1 (en) * | 1973-06-12 | 1977-05-06 | Josse Bernard | |
FR2437686A1 (en) * | 1978-09-29 | 1980-04-25 | Mayer Ferdy | LOSS ELECTRIC ELEMENT, SUCH AS WIRE, CABLE AND SCREEN, RESISTANT AND ABSORBENT |
US4487996A (en) * | 1982-12-02 | 1984-12-11 | Electric Power Research Institute, Inc. | Shielded electrical cable |
US4556860A (en) * | 1984-01-19 | 1985-12-03 | Owens-Corning Fiberglas Corporation | Conductive polymers |
DE3538527A1 (en) * | 1984-11-27 | 1986-06-05 | Showa Electric Wire & Cable Co., Ltd., Kawasaki, Kanagawa | METHOD FOR PRODUCING A CABLE INSULATED WITH CROSSLINKED POLYOLEFINES |
AU5323586A (en) * | 1985-02-06 | 1986-08-14 | Raychem Corporation | High frequency attenuation cable |
AU5323686A (en) * | 1985-02-06 | 1986-08-14 | Raychem Corporation | High frequency attenuation cable |
US4988949A (en) * | 1989-05-15 | 1991-01-29 | Westinghouse Electric Corp. | Apparatus for detecting excessive chafing of a cable arrangement against an electrically grounded structure |
US5132490A (en) * | 1991-05-03 | 1992-07-21 | Champlain Cable Corporation | Conductive polymer shielded wire and cable |
-
1993
- 1993-05-10 FR FR9305582A patent/FR2705161B1/en not_active Expired - Fee Related
-
1994
- 1994-05-06 EP EP94400998A patent/EP0624885B1/en not_active Expired - Lifetime
- 1994-05-06 DE DE69400777T patent/DE69400777T2/en not_active Expired - Fee Related
- 1994-05-06 ES ES94400998T patent/ES2093495T3/en not_active Expired - Lifetime
- 1994-05-09 US US08/239,554 patent/US5530206A/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
DE69400777T2 (en) | 1997-02-27 |
FR2705161B1 (en) | 1995-06-30 |
ES2093495T3 (en) | 1996-12-16 |
EP0624885A1 (en) | 1994-11-17 |
FR2705161A1 (en) | 1994-11-18 |
DE69400777D1 (en) | 1996-11-28 |
US5530206A (en) | 1996-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0624885B1 (en) | Cable usable within the telecommunications field | |
EP0264315B1 (en) | Wave propagation structures for the suppression of over-voltages and the absorption of transitory waves | |
US6642297B1 (en) | Polymer composite materials for electrostatic discharge protection | |
EP1128395B1 (en) | High and extra-high voltage d.c. power cable | |
EP2859633B1 (en) | Device with a charge sealing layer | |
WO2001022551A1 (en) | Device protecting against voltage surges | |
EP2765581B1 (en) | Electric cable resistant to partial discharges | |
FR2555190A1 (en) | COMPOSITION FOR PROTECTING ELECTRONIC DEVICES AGAINST HIGH-FREQUENCY ELECTROMAGNETIC INTERFERENCE | |
FR2714543A1 (en) | Device for joining power cables. | |
FR2753301A1 (en) | DEVICE FOR TRANSPORTING AN ELECTRIC SIGNAL PROTECTED AGAINST ELECTROMAGNETIC DISTURBANCES | |
CA2214024C (en) | Electrical conductor protected against electromagnetic interference exceeding a certain threshold | |
EP0645781B1 (en) | Power cable with improved dielectric strength | |
EP3422366A1 (en) | Cable comprising an electrically conductive element comprising metallised carbon fibres | |
EP0833421B1 (en) | Fitting for cable end and material constituting the fitting | |
EP2148336B1 (en) | Power cable specifically designed for high-speed data transmission | |
EP0644558B2 (en) | Câble insulative structure | |
FR2920918A1 (en) | Radiating cable i.e. coaxial cable, for radio communication system in e.g. building, has sheath made of insulating material that is obtained by composition comprising polymer and iron oxide so that material has permittivity equal to six | |
FR2710184A1 (en) | Power cable with improved dielectric strength | |
EP2498264B1 (en) | Medium- or high-voltage electrical cable | |
EP1462837A1 (en) | Optical fibre cable comprising an isolationg layer on the basis of polymers | |
EP3965123A1 (en) | Electric cable for the aeronautical domain | |
BE1011412A4 (en) | Polymer material for absorbing electromagnetic waves. | |
FR3075455A1 (en) | CABLE COMPRISING AT LEAST ONE METALLIC LAYER OF A CARBON MATERIAL | |
FR3090988A1 (en) | Electric cable resistant to water trees | |
FR2784538A1 (en) | Protection of objects e.g. antenna radomes against transitory strong electromagnetic fields uses mixture of metal oxide powder and polymer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE ES FR GB IT LI |
|
17P | Request for examination filed |
Effective date: 19950303 |
|
17Q | First examination report despatched |
Effective date: 19951117 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE ES FR GB IT LI |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: GEC ALSTHOM (SUISSE) S.A. DEPARTEMENT DES BREVETS |
|
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19961024 |
|
REF | Corresponds to: |
Ref document number: 69400777 Country of ref document: DE Date of ref document: 19961128 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2093495 Country of ref document: ES Kind code of ref document: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19980417 Year of fee payment: 5 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP Ref country code: FR Ref legal event code: CD Ref country code: FR Ref legal event code: CA |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PUE Owner name: ALCATEL CABLE TRANSFER- ARELEC (SOCIETE ANONYME) * Ref country code: CH Ref legal event code: PFA Free format text: ALCATEL TELSPACE TRANSFER- ALCATEL CIT * ARELEC (SOCIETE ANONYME) TRANSFER- ALCATEL CABLE FRANCE Ref country code: CH Ref legal event code: NV Representative=s name: CABINET ROLAND NITHARDT CONSEILS EN PROPRIETE INDU |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19990412 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19990417 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19990421 Year of fee payment: 6 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 19990524 Year of fee payment: 6 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: PC2A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000131 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000506 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 20000508 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000531 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000531 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20000506 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010301 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20020204 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050506 |