EP0623070A4 - Recyclable polymeric synthetic paper and method for its manufacture. - Google Patents
Recyclable polymeric synthetic paper and method for its manufacture.Info
- Publication number
- EP0623070A4 EP0623070A4 EP19930903587 EP93903587A EP0623070A4 EP 0623070 A4 EP0623070 A4 EP 0623070A4 EP 19930903587 EP19930903587 EP 19930903587 EP 93903587 A EP93903587 A EP 93903587A EP 0623070 A4 EP0623070 A4 EP 0623070A4
- Authority
- EP
- European Patent Office
- Prior art keywords
- fibers
- web
- synthetic paper
- binder
- pulp
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 32
- 238000004519 manufacturing process Methods 0.000 title claims description 21
- 239000000835 fiber Substances 0.000 claims abstract description 186
- 239000011230 binding agent Substances 0.000 claims abstract description 88
- 239000000463 material Substances 0.000 claims abstract description 46
- 239000011248 coating agent Substances 0.000 claims abstract description 31
- 238000000576 coating method Methods 0.000 claims abstract description 31
- 238000002844 melting Methods 0.000 claims abstract description 15
- 230000008018 melting Effects 0.000 claims abstract description 15
- 229920001169 thermoplastic Polymers 0.000 claims abstract description 14
- 239000004416 thermosoftening plastic Substances 0.000 claims abstract description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 14
- 238000001035 drying Methods 0.000 claims abstract description 12
- 229920006395 saturated elastomer Polymers 0.000 claims abstract description 3
- -1 polyethylene Polymers 0.000 claims description 76
- 229920000728 polyester Polymers 0.000 claims description 67
- 239000004698 Polyethylene Substances 0.000 claims description 57
- 229920000573 polyethylene Polymers 0.000 claims description 57
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 48
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 48
- 239000004816 latex Substances 0.000 claims description 27
- 229920000126 latex Polymers 0.000 claims description 27
- 239000000203 mixture Substances 0.000 claims description 23
- 229920001155 polypropylene Polymers 0.000 claims description 20
- 239000004743 Polypropylene Substances 0.000 claims description 18
- 239000005038 ethylene vinyl acetate Substances 0.000 claims description 18
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 claims description 18
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 claims description 17
- 239000000049 pigment Substances 0.000 claims description 14
- 239000002131 composite material Substances 0.000 claims description 13
- 229920002994 synthetic fiber Polymers 0.000 claims description 10
- 239000006185 dispersion Substances 0.000 claims description 9
- 239000012209 synthetic fiber Substances 0.000 claims description 8
- 230000004927 fusion Effects 0.000 claims description 5
- 229920000098 polyolefin Polymers 0.000 claims description 3
- 238000009738 saturating Methods 0.000 claims 3
- 238000003490 calendering Methods 0.000 claims 2
- 239000012815 thermoplastic material Substances 0.000 claims 1
- 239000000123 paper Substances 0.000 description 65
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical group [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 28
- 239000010410 layer Substances 0.000 description 24
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical group O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 14
- 229910000019 calcium carbonate Inorganic materials 0.000 description 14
- 238000002372 labelling Methods 0.000 description 11
- 239000007787 solid Substances 0.000 description 10
- 229920003023 plastic Polymers 0.000 description 9
- 239000004033 plastic Substances 0.000 description 9
- 230000000694 effects Effects 0.000 description 7
- 238000007639 printing Methods 0.000 description 7
- 239000004408 titanium dioxide Substances 0.000 description 7
- 239000000853 adhesive Substances 0.000 description 6
- 230000001070 adhesive effect Effects 0.000 description 6
- 239000000945 filler Substances 0.000 description 6
- 238000000071 blow moulding Methods 0.000 description 5
- 239000002991 molded plastic Substances 0.000 description 5
- 230000000704 physical effect Effects 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 239000002657 fibrous material Substances 0.000 description 4
- 230000009477 glass transition Effects 0.000 description 4
- 238000004064 recycling Methods 0.000 description 4
- 239000004927 clay Substances 0.000 description 3
- 229910052570 clay Inorganic materials 0.000 description 3
- 239000001023 inorganic pigment Substances 0.000 description 3
- 229920005670 poly(ethylene-vinyl chloride) Polymers 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000000454 talc Substances 0.000 description 3
- 229910052623 talc Inorganic materials 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 2
- 244000010375 Talinum crassifolium Species 0.000 description 2
- 235000015055 Talinum crassifolium Nutrition 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000008240 homogeneous mixture Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- 229920003043 Cellulose fiber Polymers 0.000 description 1
- 241000905957 Channa melasoma Species 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007844 bleaching agent Substances 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000004751 flashspun nonwoven Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 229940063583 high-density polyethylene Drugs 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000002655 kraft paper Substances 0.000 description 1
- 229920001684 low density polyethylene Polymers 0.000 description 1
- 239000004702 low-density polyethylene Substances 0.000 description 1
- 229940099514 low-density polyethylene Drugs 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4382—Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
- D04H1/43835—Mixed fibres, e.g. at least two chemically different fibres or fibre blends
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F3/00—Labels, tag tickets, or similar identification or indication means; Seals; Postage or like stamps
- G09F3/04—Labels, tag tickets, or similar identification or indication means; Seals; Postage or like stamps to be fastened or secured by the material of the label itself, e.g. by thermo-adhesion
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C23/00—Auxiliary devices or arrangements for constructing, repairing, reconditioning, or taking-up road or like surfaces
- E01C23/06—Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4282—Addition polymers
- D04H1/4291—Olefin series
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4282—Addition polymers
- D04H1/4309—Polyvinyl alcohol
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4326—Condensation or reaction polymers
- D04H1/435—Polyesters
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4382—Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
- D04H1/43825—Composite fibres
- D04H1/43828—Composite fibres sheath-core
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/54—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H13/00—Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
- D21H13/10—Organic non-cellulose fibres
- D21H13/12—Organic non-cellulose fibres from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D21H13/14—Polyalkenes, e.g. polystyrene polyethylene
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H13/00—Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
- D21H13/10—Organic non-cellulose fibres
- D21H13/12—Organic non-cellulose fibres from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D21H13/16—Polyalkenylalcohols; Polyalkenylethers; Polyalkenylesters
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H13/00—Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
- D21H13/10—Organic non-cellulose fibres
- D21H13/20—Organic non-cellulose fibres from macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D21H13/24—Polyesters
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H15/00—Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution
- D21H15/02—Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution characterised by configuration
- D21H15/10—Composite fibres
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H19/00—Coated paper; Coating material
- D21H19/10—Coatings without pigments
- D21H19/14—Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12
- D21H19/16—Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12 comprising curable or polymerisable compounds
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H25/00—After-treatment of paper not provided for in groups D21H17/00 - D21H23/00
- D21H25/04—Physical treatment, e.g. heating, irradiating
- D21H25/06—Physical treatment, e.g. heating, irradiating of impregnated or coated paper
Definitions
- This invention generally relates to synthetic paper made on conventional continuous wet-lay papermaking equipment.
- the invention relates to recyclable polymeric synthetic paper made of 100% polymeric material.
- the invention also relates to labels, especially to labels adapted for use in labeling of blow-molded plastic containers.
- the label comprises a coated 100% synthetic web prepared by a wet-lay process.
- the label may be applied either in- old or post-mold to a blow-molded container made of the same synthetic material as the main synthetic fiber component
- U.S. Patent No. 5,047,121 to Kochar discloses a process for making synthetic paper containing at least 97 wt.% polyethylene on conventional continuous wet-lay papermaking equipment.
- the process includes the steps of: (1) preparing a pulp furnish comprising 97-99.5 wt.% polyethylene fibers and 0.5-3.0 wt.% polyvinyl alcohol binder fibers; (2) depositing the pulp furnish ' on the screen of a wet-lay papermaking machine to form a waterleaf sheet; (3) drying the resulting waterleaf sheet on heated drying cans having a drying profile wherein an initial drying phase is provided at a temperature between 200°F and 270°F to melt the polyvinyl alcohol fibers and a second drying phase is provided at a temperature between 190°F and 240°F to control stretch and elongation of the sheets; and (4) thermally bonding the dried sheet at a temperature between 250°F and 315°F to provide polyethylene paper.
- the thermal bonding can be accomplished with a calendar roll.
- the Kochar patent teaches that: (1) the strength of the synthetic paper can be tailored by varying * the amount of polyvinyl alcohol fibers mixed into the polyethylene pulp; and (2) the porosity of the synthetic paper can be tailored by varying the bonding temperature.
- the polyethylene pulp is fused to a degree dependent on the thermal bonding temperature.
- the low opacity of the resulting paper makes it unsuitable for use in high-quality printing. This is because the application of too much heat for a long duration causes the polyethylene pulp to flow to such a degree that it becomes increasingly translucent as it approaches a polyethylene film in structure.
- Paper made of 100% synthetic fibers is useful as label paper.
- the in-mold labeling of blow- molded plastic containers is less costly than conventional labeling methods in which labels with adhesive backing are adhered to the container in a separate step subsequent to blow molding. In-mold labeling eliminates this separate step, thereby reducing labor costs associated with handling of the adhesive- backed labels and capital costs associated with the equipment used to handle and apply adhesive-backed labels.
- labels are sequentially supplied from a magazine and positioned inside the mold by, for example, a vacuum-operated device. Plastic material is then extruded from a die to form a parison as depicted in Fig. 6 of U.S. Patent No.
- the labeling of blow-molded containers be conducted continuously and rapidly.
- the labels to be applied during in-mold labeling should be sufficiently stiff that the automatic equipment used to handle the labels does not cause wrinkling or folding thereof.
- the labels must be sufficiently elastic that they neither tear nor separate from the plastic container during flexing or squeezing of the latter.
- a further disadvantage of conventional in-mold labels prepared from paper is that prior to recycling of the plastic container, the paper label must be removed using either solvent or mechanical means to avoid contamination of the recycled plastic material by small pieces of paper.
- U.S. Patent No. 4,837,075 to Dudley which teaches a coextruded plastic film label for in-mold labeling of blow-molded polyethylene containers.
- the label comprises a heat- activatable ethylene polymer adhesive layer and a surface printable layer comprising polystyrene.
- the heat activatable adhesive substrate layer comprises a polyethylene polymer.
- Pigment or fillers are incorporated in the polystyrene layer to provide a suitable background for printing.
- An example of a suitable pigment is titanium dioxide and an example of a suitable filler is calcium carbonate.
- a layer is interposed between the adhesive substrate and the surface printable layer that comprises reground and recycled thermoplastic .material used to prepare such labels.
- the label stock is prepared by coextrusion of the various label layers utilizing conventional coextrusion techniques. Separately applied adhesive is not employed.
- the aforementioned patent to Ohba et al. teaches a synthetic label for in-mold labeling of blow-molded resin containers comprising a thermoplastic resin film base layer and a heat-sealable resin layer having a melting point lower than that of the thermoplastic resin base layer.
- the base layer has an inorganic filler,' such as titanium dioxide or calcium carbonate, incorporated therein or incorporated in a latex coating thereon.
- the base layer may, for example, be high- density polyethylene or polyethylene terephthalate.
- the heat-sealable resin layer may, for example, be low- density polyethylene.
- the heat-sealable resin layer serves to firmly adhere the label to a resin container.
- four separate layers are joined together by coextrusion.
- U.S. Patent No. 5,006,394 to Baird teaches a polymeric film structure having a high percentage of fillers, for example, opacifying or whitening agents such as titanium dioxide and calcium carbonate.
- the fillers are concentrated in a separate filler containing layer coextruded with a base layer.
- the base layer may comprise polyolefins (for example, polyethylenes) , polyesters or nylons.
- the filler-containing layer may comprise any of the same polymeric materials, but preferably comprises ethylene vinyl acetate coploymer.
- this film material is intended for use in disposable consumer products such as diapers.
- U.S. Patent No. 4,941,947 to Guckert et al. discloses a thermally bonded composite sheet comprising a layer of flash-spun polyethylene plexifilamentary film-fibril strand sheet in face-to- face contact with a layer of polyethylene synthetic pulp suitable for use in bar code printing.
- the layer of polyethylene synthetic pulp is formed by conventional wet-lay papermaking techniques.
- the present invention improves upon the prior art by providing a flexible polymeric synthetic nonwoven substrate which is suitable for use as lint-free writing paper, labels on plastic bottles, release liner, specialty packaging paper or filter paper.
- a flexible polymeric synthetic nonwoven substrate which is suitable for use as lint-free writing paper, labels on plastic bottles, release liner, specialty packaging paper or filter paper.
- one preferred embodiment of the invention is a high-opacity polymeric synthetic nonwoven substrate suitable for use in high-quality printing applications.
- the polymeric synthetic paper of the invention contains no cellulosic fibers and therefore can be easily recycled without costly procedures for separating polymeric and cellulosic materials.
- the synthetic paper in accordance with the invention can be used as labels on polymeric containers, for example, labels for blow-molded polymeric containers, which need not be removed prior to recycling of the polymeric containers. Such labels sufficiently elastic to withstand flexing and squeezing of the plastic container without tearing or separating therefrom.
- the nonwoven label of the invention is more porous than film labels, which enhances the printability of the label, and is cheaper to manu acture.
- the synthetic paper comprises a nonwoven web of fibers, at least one side of which has a pigmented coating, e.g., a pigment- containing latex.
- the paper is manufactured from commercially available fibers. The components may be combined in water into a homogeneous mixture and then formed into a web employing a wet-lay process.
- the fiber composition of the web is 88-100% polyethylene pulp and 0-12% polyvinyl alcohol binder fibers.
- the web comprises 70-100% polyethylene pulp, 0-12% polyvinyl alcohol binder fibers and 0-30% polypropylene fibers.
- Polypropylene pulp can be substituted for all or any portion of the polyethy- lene pulp.
- the fiber composition of the web is 50-90% chopped polyester staple fibers, 10-40% bicomponent polyester/co-polyester core/sheath binder fibers and 0- 10% polyvinyl alcohol binder fibers bonded together.
- Each bicomponent binder fiber comprises a core of polyester surrounded by a co-polyester sheath.
- the nonwoven web of fibers is made more printable by saturation with a binder material, for example, with an ethylene vinyl acetate latex or other suitable latex having a glass transition temperature (T g ) of 0-30°C.
- the latex is preferably compounded to contain pigment such as calcium carbonate, titanium dioxide or both at pigment/binder ratios of 0.5/1 to 8/1, resulting in a synthetic paper having a surface suitable for high-quality printing thereon.
- a latex binder as opposed to other conventional binders, is not required to practice the invention.
- FIG. 1 is a diagram showing the production line for making up the stock for use in manufacturing the synthetic paper in accordance with the invention
- FIG. 2 is a diagram showing the production line for making synthetic paper in accordance with the invention from the stock make-up output by the apparatus of FIG.l.
- synthetic paper is formed from a web of synthetic fibers with no cellulosic fibers.
- the synthetic fibers may be made of polyethylene, polyester, polypropylene or any other polymeric material suitable for use in high-opacity paper.
- the web comprises 88-100% polyethylene fibers and 0-12% polyvinyl alcohol fibers and is coated with an ethylene vinyl acetate latex or other suitable latex having a glass transition temperature (T ) of 0-30°C and compounded to contain pigment such as calcium carbonate, titanium dioxide, clay, talc or other inorganic pigments as known to those skilled in the art.
- T glass transition temperature
- the coating may contain any conventional binder other than latex.
- the synthetic paper in accordance with the invention is manufactured from commercially available fibers such as polyethylene pulp, polypropylene pulp, chopped polyester staple fibers and polyvinyl alcohol binder fibers.
- the components may be combined in water into a homogeneous mixture and then formed into a mat employing a wet-lay process.
- the starting fiber materials consist of 90 wt.% Mitsui 9400 FybrelTM polyethylene pulp commercially available in the United States from Minifibers, Route 14, Box 11, Johnson City, Tennessee 37615 and 10 wt.% Kuraray 105-2 polyvinyl alcohol (PVA) binder fibers commercially available in the United States from Itochu Corp. , 335 Madison Avenue, New York, New York 10017.
- Mitsui 9400 FybrelTM polyethylene pulp the polyethylene fibers have an average length of 0.90 mm and a diameter of 15 microns.
- Kuraray 105-2 PVA binder fibers have an average length of 5 mm and a denier of 2.0.
- the starting fiber material may be 100 wt.% Mitsui 9400 FybrelTM polyethylene pulp, that is, PVA binder fibers are not essential to practice of the invention.
- the polyethylene pulp is entangled during the wet lay process to form the base sheet.
- the base sheet may thereafter be coated with the pigmented binder — avoiding thermal fusion of the polyethylene pulp — to produce a high-opacity synthetic paper having excellent printability.
- polyethylene-based synthetic paper some of the Kuraray 105-2 PVA binder fibers are replaced by 10 mm X 2.2 denier Hercules HerculonTM polypropylene staple fibers. These polypropylene staple fibers are commercially available in the United States from Hercules, Inc., 3169 Holco b Bridge Road, Suite 301, Norcros ⁇ , Georgia 30071.
- the web is comprised of 70-100% polyethylene fibers, 0-12% PVA fibers and 0-30% polypropylene fibers.
- One example of this variation successfully made by the inventors had 85% polyethylene fibers, 7.5% PVA fibers and 7.5% polypropylene fibers.
- polypropylene pulp can be substituted for the polyethylene pulp.
- the base mat After the base mat has been dried, it is preferably treated with a coating comprised of a binder, e.g., latex, pigmented with calcium carbonate, titanium dioxide, clay, talc or other inorganic pigment to enhance the printability of the paper.
- the surface treatment may be applied with any commercially available coater, treater or size press. Thereafter the web can be machine calendared to give the coating a predetermined surface smoothness.
- the starting coating materials are 50 wt.% Vinac 884 ethylene vinyl acetate latex and 50 wt.% Albagloss calcium carbonate.
- Airflex 4514 ethylene vinyl acetate/ethylene vinyl chloride copolymer latex can be used in place of the Vinac 884 ethylene vinyl acetate latex, although the latter is preferred.
- the Vinac 884 and Airflex 4514 latexes are commercially available in the United States from Air Products and Chemicals, Polymers and Chemicals Division, 5100 Tilghman Street, Allentown, Pennsylvania 18104.
- the Albagloss calcium carbonate is commercially available in the United States from Pfizer, Inc.
- the range of calcium carbonate incorporated in the coating can be varied from a pigment/binder ratio of 0.5/1 to 8/1, although the preferred ratio is 1/1.
- the synthetic paper in accordance with the invention can be made on standard papermaking equipment.
- the process for making label paper prepared from a web of polyethylene pulp, PVA binder fibers and polypro ⁇ pylene staple fibers is described hereinafter with reference to FIGS. 1 and 2, which show the stock make-up equipment 8 and the papermaking equipment 10, respectively.
- the FybrelTM 9400 polyethylene pulp is loaded in a fiber opening chest 12 at consistencies between 2% and 5% solids. The pulp is agitated until it is completely dispersed in water and no fiber bundles are apparent. This mixture is then pumped to a blend chest 18 via a deflaker 16.
- the fibers are subjected to fiber-to-fiber agitation which removes any fiber bundles or unopened clumps.
- the deflaker is preferable to a disk refiner in that no cutting or shortening of the fibers occurs.
- a predetermined amount of Kuraray 105-2 PVA binder fibers and, optionally, a predetermined amount of polypropylene staple fibers are loaded in a fiber opening chest 14 at consistencies between 0.5% and 5% solids in hot water.
- the PVA binder fibers become gelatinous in hot water.
- the dispersion is agitated until the staple fibers are completely dispersed in water and no fiber bundles are apparent.
- This mixture is then pumped into blend chest 18. Alternatively, no pump is needed if the mixture is dropped by gravity into blend chest 18.
- the binder and staple fiber dispersion is added to the furnish so that the PVA binder fibers and the staple fibers make up 0-12 wt.% and 0-30 wt.% of the furnish solids, respectively.
- the mixture is agitated to achieve a uniform dispersion of the polyethylene pulp, staple fibers and gelatinous PVA having a consistency between 1% and 5% solids.
- the furnish is then pumped by pump 20 to the refiner 22, which beats the fibers as needed to reduce their average length.
- the refined furnish then enters a surge chest 24, where it is mixed with the broke furnish from broke pulper 26.
- Broke is synthetic paper that has be ren rejected during the process of manufacture. Broke may take the form of either "wet” broke or “dry” broke. Wet broke is synthetic paper taken off the wet press of the paper machine. Dry broke is paper spoiled when passing through the dryers or the calendar, trimmed off in the rewinding of rolls, trimmed from sheet being prepared for shipping or rejected for manufacturing defects.
- the broke is loaded in the broke pulper 26 at consisten- cies between 1% and 5% solids.
- the broke furnish is agitated by high-shear agitator 28 until the broke fibers are completely dispersed in water and no fiber bundles are apparent.
- the broke furnish is then pumped to surge chest 24 via a deflaker 30 in a controlled manner to maintain consistency and limit the percent of broke addition to not exceed 20% of the total volume.
- the refined furnish and the broke furnish are mixed in surge chest 24 until a uniform dispersion is achieved.
- the furnish in surge chest 24 is then pumped via pump 32 into machine chest 34, which feeds its contents into the forming section while maintaining a constant level in the chest to reduce variation in product weight.
- the final stock is pumped to the papermaking machine (see FIG. 2) by pump 36.
- large contaminants such as dirt, gravel, pieces of kraft bags, sand and grit
- fiber bundles are removed from the stock by screening in primary and secondary cleaners 38 and 40.
- Material containing rejected debris is fed to the secondary cleaners from the primary stage. Rejects from the secondary stage are sewered while accepts are sent back to the main feed stream. This is a way to concentrate the rejects and save fiber.
- the furnish is supplied to the headbox 42 at consistencies between 0.1% and 1% solids.
- a web of synthetic fibers is then formed on standard wet-lay papermaking equipment by forming wire 44. Excess water is removed by gravity and vacuum devices.
- the formed web is wet-pressed in press section 46 and then dried in the first dryer section 48 at a temperature in the range of 140°F to 260°F to remove more water.
- the polymeric fibers are not fused, but rather the gelatinous PVA becomes a glue which pre- bonds the polyethylene pulp and staple fibers into a web. (For applications where high strength is not a requirement, PVA is unnecessary.
- 100% polyethylene pulp entangled by the wet-lay process has adequate strength to be fed to the saturator/coater.
- care must be taken to ensure that the web and dryer can temperatures remain below the melting point of the polyethylene fibers, that is, below 269°F (132°C). Otherwise the opacity of the synthetic paper will be degraded.
- release coating on the dryer cans was found to be beneficial in preventing buildup or sticking that will eventually cause web defects and/or breaks.
- the dried web is saturated with ethylene vinyl acetate latex solution containing calcium carbonate pigment.
- This treatment may be performed on a paper machine size press or any type of off-line coater or treater 50 which is supplied with saturant from mixing chest 52.
- the coating is applied to the web in an amount that achieves a 10 wt.% add-on of dried coating solids, that is, 200 lbs/ton, although it will be recognized by the person skilled in the art that the weight percentage of dried coating solids can be varied over a wide range.
- the coating is then dried in the second dryer section 54, again at a temperature in the range of 140°F to 260°F, whereby the ethylene vinyl acetate bonds the fibers to each other and bonds the pigment to the fibers.
- the web comprises chopped polyester staple fibers, bicomponent polyester/co-polyester core/sheath binder fibers and PVA binder fibers.
- Each bicomponent binder fiber comprises a core of polyester surrounded by a co-polyester sheath.
- the sheet is then coated with an ethylene vinyl acetate latex having a glass transition temperature (T ) of 0-30°C.
- T glass transition temperature
- the latex may be compounded to contain pigment such as calcium carbonate, titanium dioxide, clay, talc or other inorganic pigments at pigment/binder ratios of 0.5/1 to 8/1. Because synthetic paper in accordance with these embodiments has no cellulosic fibers, the synthetic paper may be recycled without going through a separation process.
- the starting fiber materials are 77 wt.% Kuraray polyester chopped strand, 19 wt.% Kuraray N-720 polyester/co- polyester core/sheath binder fibers and 4 wt.% Kuraray 105-2 PVA binder fibers. All of these fibers are commercially available in the United States from Itochu Corp., 335 Madison Avenue, New York, New York 10017.
- the Kuraray chopped polyester staple fibers have an average length of 10 mm and a denier of 0.4.
- Kuraray N-720 polyester/co-polyester core/sheath binder fibers have an average length of 10 mm and a denier of 2.0.
- Kuraray 105-2 PVA binder fibers have an average length of 5 mm and a denier of 2.0.
- the starting fiber materials are 80 wt.% Kuraray polyester chopped strand and 20 wt.% Kuraray N-720 polyester/co- polyester core/sheath binder fibers. No Kuraray 105-2 PVA binder fibers are used.
- an equal weight percent of Teijin polyester staple fibers having an average length of 5 mm and a denier of 0.5 can be substituted for the Kuraray chopped polyester staple fibers in the polyester-based synthetic paper.
- an equal weight percent of polyethylene pulp can be substituted for the PVA binder fibers.
- the polyester chopped staple fibers can be combined with either PVA binder fibers or polyester/co-polyester core/sheath binder fibers or with both, but only in an amount sufficient to hold the web together as it is fed to a thermal calendar.
- the thermal calendar then fuses the polyester chopped staple fibers using rolls heated to temperatures of 360-410°F (preferably 390°F) and nip pressures of 40 psi or greater (preferably 50 psi) .
- the resulting base sheet may be optionally coated with pigmented binder as disclosed above.
- the fiber composition of the polyester-based synthetic paper is not limited to the specific weight percentages of the examples described above.
- the amount of PVA binder fibers may be varied from 0 to 10 wt.%; the amount of co-polyester/polyester sheath/core binder fibers may be varied from 0 to 40 wt.%; and the amount of polyester staple fibers may be varied from 50 to 90 wt.%.
- the average length and the denier of the chopped polyester staple fibers may vary from 5 to 12 mm and from 0.4 to 1.5 denier respectively; and the average length and the denier of the co-polyester/ polyester sheath/core binder fibers may vary from 5 to 12 mm and from 2.0 to 6.0 denier respectively.
- the starting coating materials are 50 wt.% Vinac 884 ethylene vinyl acetate latex and 50 wt.% Albagloss calcium carbonate.
- Airflex 4514 ethylene vinyl acetate/ ethylene vinyl chloride copolymer latex can be used in place of the Vinac 884 ethylene vinyl acetate latex, although the latter is preferred.
- the range of calcium carbonate incorporated in the coating can be varied from a pigment/binder ratio of 0.5/1 to 8/1, although the preferre ratio is 1/1.
- the glass transition tempera ⁇ ture T of the ethylene vinyl acetate latex may vary from 0°C to 30°C.
- the web material in accordance with the second preferred embodiment can be made on standard papermaking or nonwoven fabric equipment.
- the polyester cut staple fibers, the polyester/co-polyester core/sheath binder fibers and the polyvinyl alcohol binder fibers are added to water undergoing agitation and containing a predis- solved surfactant material, such as Milease T, at a level of 0.5% based on polyester fiber weight.
- Milease T is commercially available from I.C.I. Americas, Inc.
- the foregoing fiber components should be added to the blend chest in the following sequence: (1) polyvinyl alcohol binder fibers, (2) polyester/co-polyester core/sheath binder fibers and (3) chopped polyester staple fibers.
- the consistency of the mixture in the blend chest should be between 0.5 and 2.5% solids.
- An anionic polyacrylamide such as 87P061 may be added at levels in the range 0.5-8.0 lbs/ton based on fiber weight to aid in fiber dispersion. 87P061 is commercially available from Nalco Chemical.
- the mixture is then agitated to attain a uniform dispersion of all materials. The refining step and broke recovery can be bypassed for the second preferred embodiment.
- the resulting furnish is then formed on standard wet-lay papermaking equipment at headbox consistencies of 0.7-0.01%.
- the wet-laid material is then dried in- the dryer section.
- the dried web is calendared between smooth metal rolls heated to a temperature of 196°C.
- the web is calendared at minimal pressure, that is, 50-150 PLI, to achieve bonding of the surface fibers while maintaining the degree of opacity of the original sheet.
- This material is then ready to be treated with the ethylene vinyl acetate latex solution pigmented with calcium carbonate.
- the treatment may be applied on a paper machine size press or any type of off-line coater or saturator.
- the coating is applied in a manner that results in a 10 wt.% add-on of dried coating solids, that is, 200 lbs/ton.
- the coating is then dried. After the coating is dried, the coated web is supercalendared to attain a surface smoothness (Sheffield) of 125-250 units.
- Table II The physical properties of the label paper in accordance with the first example of the second preferred embodiment of the invention are listed in Table II.
- Table IV shows the effect of adding a 10-mm-long polypropylene staple fiber to the furnish.
- the three samples tested had the following compositions: (A) 90%
- Table V shows the effect of coating or size press applications of a binder.
- the main effect being designed to is the surface strength so that the web can be printed on without the surface being damaged from the tacky ink on the printing plate.
- the IGT number shows the improvement when a coating is applied. (IGT is a standard laboratory printing test wherein if the material is weak in the direction perpendicular to the sheet, it will pull apart or large sections of the surface will be pulled out.)
- a carefully formulated coating can also decrease porosity. Stiffness can be increased or left unchanged by careful selection of the binder.
- the porosity of the synthetic paper can be controlled by carefully adjusting the coating formulation and by adjusting the amount of staple fibers.
- the synthetic paper of the invention can be used in labeling of blow-molded plastic containers.
- the label may be applied either in-mold or- post-mold to a blow-molded container made of the same synthetic material as the main synthetic fiber component (for example, polyethylene, polyester or polypropylene) of the label with or without the use of an adhesive material andmay be recycled alongwith the container.
- the main synthetic fiber component for example, polyethylene, polyester or polypropylene
- labels are sequentially supplied from a magazine and positioned inside the mold by, for example, a vacuum-operated device.
- Plastic material is then extruded from a die to form a parison as depicted in Fig. 6 of U.S. Patent No. 4,986,866 to Ohba et al. , the description of which is specifically incorporated by reference herein.
- the mold is locked to seal the parison and then compressed air is fed from a nozzle to the inside of the parison to perform blow molding wherein the parison is expanded to conform to the inner surface of the mold.
- the heat-sealable layer of the label of Ohba et al. is pressed by the outer side of the parison and fused thereto. Finally, the mold is cooled to solidify the molded container and opened to obtain a labeled hollow container.
- a disadvantage of conventional in-mold labels prepared from paper is that prior to recycling of the plastic container, the paper label must be removed using either solvent or mechanical means to avoid contamina ⁇ tion of the recycled plastic material by small pieces of paper.
- fibers other than polyethylene pulp and polyester chopped staple fibers can be used as the main fiber component.
- polyester pulp could be used in place of polyester chopped staple fibers in the event that polyester pulp becomes commercially available.
- suitable polymeric fibers having a melting point lower than that of the main fiber component can be substituted for PVA binder fibers.
- polyethylene pulp could be used in place of PVA binder fibers in the polyester-based synthetic paper.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Architecture (AREA)
- Structural Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Civil Engineering (AREA)
- Mining & Mineral Resources (AREA)
- Paper (AREA)
- Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
Abstract
Description
Claims
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US82352592A | 1992-01-21 | 1992-01-21 | |
US823525 | 1992-01-21 | ||
US07/916,819 US5403444A (en) | 1990-03-05 | 1992-07-20 | Printable, high-strength, tear-resistant nonwoven material and related method of manufacture |
US916819 | 1992-07-20 | ||
US488193A | 1993-01-19 | 1993-01-19 | |
US4881 | 1993-01-19 | ||
PCT/US1993/000482 WO1993013940A1 (en) | 1992-01-21 | 1993-01-21 | Recyclable polymeric synthetic paper and method for its manufacture |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0623070A1 EP0623070A1 (en) | 1994-11-09 |
EP0623070A4 true EP0623070A4 (en) | 1994-11-17 |
EP0623070B1 EP0623070B1 (en) | 1999-09-15 |
Family
ID=27357725
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP93903587A Expired - Lifetime EP0623070B1 (en) | 1992-01-21 | 1993-01-21 | Recyclable polymeric synthetic paper and method for its manufacture |
Country Status (8)
Country | Link |
---|---|
EP (1) | EP0623070B1 (en) |
JP (1) | JPH07502578A (en) |
KR (1) | KR950700463A (en) |
AT (1) | ATE184542T1 (en) |
CA (1) | CA2128102C (en) |
DE (1) | DE69326443T2 (en) |
MX (1) | MX9300297A (en) |
WO (1) | WO1993013940A1 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6229096B1 (en) | 1997-10-07 | 2001-05-08 | Mitsubishi Gas Chemical Company, Inc. | Nonwoven reinforcement for printed wiring base board and process for producing the same |
JP2004536921A (en) | 2001-07-25 | 2004-12-09 | エーブリー デニソン コーポレイション | Synthetic paper skin and methods for producing them |
DE102004041577B4 (en) * | 2004-08-26 | 2010-10-07 | Carl Freudenberg Kg | Nonwoven fabric and electrochemical cell |
EP2103024B1 (en) | 2006-12-14 | 2018-04-25 | Thomson Licensing | Modulation indication method for communication systems |
JP4790762B2 (en) * | 2008-06-18 | 2011-10-12 | 大王製紙株式会社 | Food packaging material using sheets |
CN102817281B (en) * | 2012-07-25 | 2014-12-31 | 广东冠豪高新技术股份有限公司 | Plastic-free environment-friendly isolation paper, plastic-free environment-friendly release paper as well as preparation method of plastic-free environment-friendly isolation paper and plastic-free environment-friendly release paper |
CN106999945B (en) | 2014-08-19 | 2019-03-12 | 吉欧科技聚合物有限责任公司 | Coating removal system |
CA3002815A1 (en) | 2015-10-20 | 2017-04-27 | Geo-Tech Polymers, Llc | Recycling of fibrous surface coverings |
CN109476959A (en) * | 2015-10-23 | 2019-03-15 | 吉欧科技聚合物有限责任公司 | The recycling of contact adhesive laminate |
EP3429451B1 (en) * | 2016-03-17 | 2020-02-26 | Eurofilters N.V. | Vacuum-cleaner filter bag made from recycled plastic |
CN115646066A (en) * | 2018-04-16 | 2023-01-31 | 奥斯龙-明士克公司 | High burst strength wet laid nonwoven filter media and method of producing same |
CN110735360B (en) * | 2019-10-09 | 2021-11-16 | 浙江超凡科技股份有限公司 | Production process of degradable paper bag |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4501641A (en) * | 1981-02-18 | 1985-02-26 | Teijin Limited | Process for producing paper or non-woven fabric |
EP0193798A1 (en) * | 1985-02-26 | 1986-09-10 | Teijin Limited | Paper-like polyester fiber sheet |
US5047121A (en) * | 1990-09-20 | 1991-09-10 | E. I. Du Pont De Nemours And Company | High grade polyethylene paper |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3674621A (en) * | 1969-02-25 | 1972-07-04 | Mitsubishi Rayon Co | Process of making a sheet paper |
DE2655136B2 (en) * | 1976-12-04 | 1978-12-07 | Fa. Carl Freudenberg, 6940 Weinheim | Process for the production of a nonwoven fabric containing binding fibers |
JPS6012385B2 (en) * | 1977-06-08 | 1985-04-01 | 株式会社東芝 | Method for producing calcium tungstate phosphor |
JPS54101919A (en) * | 1978-01-23 | 1979-08-10 | Toray Ind Inc | Production of microfiber |
EP0043555A1 (en) * | 1980-07-07 | 1982-01-13 | Teijin Limited | Paper-like polyester fiber sheet and process for producing the same |
JPS5876598A (en) * | 1981-10-26 | 1983-05-09 | 帝人株式会社 | Production of polyester paper |
CA1241476A (en) * | 1982-04-05 | 1988-08-30 | Harold Jabloner | Spurted polyolefin fibers with improved dispersibility in hydrocarbons, including hydrocarbons containing asphalt compositions and method for making same |
JPS61225316A (en) * | 1985-03-29 | 1986-10-07 | Nippon Ester Co Ltd | Binder fiber for polyester paper |
US4657804A (en) * | 1985-08-15 | 1987-04-14 | Chicopee | Fusible fiber/microfine fiber laminate |
US4668566A (en) * | 1985-10-07 | 1987-05-26 | Kimberly-Clark Corporation | Multilayer nonwoven fabric made with poly-propylene and polyethylene |
US4904324A (en) * | 1986-12-29 | 1990-02-27 | Owens-Illinois Plastic Products Inc. | Method of making plastic container with multilayer label applied by in-mold labeling |
JPH01266300A (en) * | 1988-04-14 | 1989-10-24 | Kanzaki Paper Mfg Co Ltd | Coated paper of synthetic fiber |
US5061538A (en) * | 1988-10-14 | 1991-10-29 | Hendrix Batting Co. | Support cushion |
JPH02216295A (en) * | 1989-02-14 | 1990-08-29 | Teijin Ltd | Production of highly strong polyester fiber paper |
JP2765947B2 (en) * | 1989-05-11 | 1998-06-18 | 株式会社クラレ | Bulky paper |
US5133835A (en) * | 1990-03-05 | 1992-07-28 | International Paper Company | Printable, high-strength, tear-resistant nonwoven material and related method of manufacture |
-
1993
- 1993-01-21 EP EP93903587A patent/EP0623070B1/en not_active Expired - Lifetime
- 1993-01-21 DE DE69326443T patent/DE69326443T2/en not_active Expired - Fee Related
- 1993-01-21 AT AT93903587T patent/ATE184542T1/en not_active IP Right Cessation
- 1993-01-21 MX MX9300297A patent/MX9300297A/en not_active IP Right Cessation
- 1993-01-21 JP JP5512715A patent/JPH07502578A/en active Pending
- 1993-01-21 KR KR1019940702501A patent/KR950700463A/en not_active Application Discontinuation
- 1993-01-21 CA CA002128102A patent/CA2128102C/en not_active Expired - Fee Related
- 1993-01-21 WO PCT/US1993/000482 patent/WO1993013940A1/en active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4501641A (en) * | 1981-02-18 | 1985-02-26 | Teijin Limited | Process for producing paper or non-woven fabric |
EP0193798A1 (en) * | 1985-02-26 | 1986-09-10 | Teijin Limited | Paper-like polyester fiber sheet |
US5047121A (en) * | 1990-09-20 | 1991-09-10 | E. I. Du Pont De Nemours And Company | High grade polyethylene paper |
Also Published As
Publication number | Publication date |
---|---|
ATE184542T1 (en) | 1999-10-15 |
EP0623070B1 (en) | 1999-09-15 |
CA2128102C (en) | 2002-04-09 |
DE69326443T2 (en) | 2000-01-13 |
KR950700463A (en) | 1995-01-16 |
MX9300297A (en) | 1993-12-01 |
EP0623070A1 (en) | 1994-11-09 |
CA2128102A1 (en) | 1993-07-22 |
WO1993013940A1 (en) | 1993-07-22 |
JPH07502578A (en) | 1995-03-16 |
DE69326443D1 (en) | 1999-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6171443B1 (en) | Recyclable polymeric synthetic paper and method for its manufacture | |
US5800884A (en) | High gloss ultraviolet curable coating for porous substrates | |
US5133835A (en) | Printable, high-strength, tear-resistant nonwoven material and related method of manufacture | |
EP0623070B1 (en) | Recyclable polymeric synthetic paper and method for its manufacture | |
US10421848B2 (en) | Repulpable and recyclable composite packaging articles and related methods | |
US6150005A (en) | Synthetic paper | |
US11458714B2 (en) | Heat-sealable packaging material | |
US5494745A (en) | Laminated film and method for making a laminated film | |
US4647497A (en) | Composite nonwoven sheet | |
US5616384A (en) | Recyclable polymeric label paper | |
US3256138A (en) | Application of resin particles to a wet fibrous ply in forming a multi-ply water-laid web | |
US5403444A (en) | Printable, high-strength, tear-resistant nonwoven material and related method of manufacture | |
CN117203393A (en) | Heat sealing paper and packaging bag | |
JPH0275678A (en) | Pressure-sensitive adhesive tape | |
US4810571A (en) | Synthetic sheet composite | |
US4941947A (en) | Composite fibrous polyethylene sheet | |
US5242546A (en) | High grade polyethylene paper | |
US6517676B1 (en) | Recyclable thermoplastic moldable nonwoven liner for office partition and method for its manufacture | |
EP0044617B1 (en) | Process for the preparation of cardboard of the corrugated type | |
US5013599A (en) | Composite fibrous polyethylene sheet | |
JPH04113843A (en) | Coated sheet excellent in adaptability for printing tear resistance | |
JP2005041012A (en) | Film for in-mold label and container using it | |
EP0107382B1 (en) | Polyethylene synthetic pulp | |
JP2003137349A (en) | Mat mainly consisting of vegetable fiber, and three- dimensional article formed thereof | |
JP2019059233A (en) | Laminated sheet for molding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19940708 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 19940926 |
|
AK | Designated contracting states |
Kind code of ref document: A4 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE |
|
17Q | First examination report despatched |
Effective date: 19951221 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: POLYWEAVE INTERNATIONAL, LLC |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19990915 Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990915 Ref country code: ES Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19990915 Ref country code: CH Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19990915 |
|
REF | Corresponds to: |
Ref document number: 184542 Country of ref document: AT Date of ref document: 19991015 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
ITF | It: translation for a ep patent filed | ||
REF | Corresponds to: |
Ref document number: 69326443 Country of ref document: DE Date of ref document: 19991021 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
ET | Fr: translation filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19991215 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19991215 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000121 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000121 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 20000131 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20010123 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20010124 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20010125 Year of fee payment: 9 Ref country code: AT Payment date: 20010125 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20010129 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20010131 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20010313 Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020121 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020121 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020122 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020131 |
|
BERE | Be: lapsed |
Owner name: POLYWEAVE INTERNATIONAL LLC Effective date: 20020131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020801 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020801 |
|
EUG | Se: european patent has lapsed |
Ref document number: 93903587.9 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20020121 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020930 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20020801 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050121 |