EP0618289B1 - High active granular detergents comprising chelants and polymers, and processes for their preparation - Google Patents

High active granular detergents comprising chelants and polymers, and processes for their preparation Download PDF

Info

Publication number
EP0618289B1
EP0618289B1 EP19930870058 EP93870058A EP0618289B1 EP 0618289 B1 EP0618289 B1 EP 0618289B1 EP 19930870058 EP19930870058 EP 19930870058 EP 93870058 A EP93870058 A EP 93870058A EP 0618289 B1 EP0618289 B1 EP 0618289B1
Authority
EP
European Patent Office
Prior art keywords
polymer
paste
chelating agent
high active
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19930870058
Other languages
German (de)
French (fr)
Other versions
EP0618289A1 (en
Inventor
Adrian John Waynforth Angell
Yousef Georges Aouad
Jose Luis Vega
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8215330&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0618289(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Priority to DE1993620455 priority Critical patent/DE69320455T2/en
Priority to EP19930870058 priority patent/EP0618289B1/en
Priority to US08/532,555 priority patent/US5712242A/en
Priority to CA002159178A priority patent/CA2159178C/en
Priority to JP6522056A priority patent/JPH08508525A/en
Priority to PCT/US1994/001917 priority patent/WO1994022992A1/en
Publication of EP0618289A1 publication Critical patent/EP0618289A1/en
Publication of EP0618289B1 publication Critical patent/EP0618289B1/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3757(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions
    • C11D3/3761(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions in solid compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents
    • C11D11/0082Special methods for preparing compositions containing mixtures of detergents one or more of the detergent ingredients being in a liquefied state, e.g. slurry, paste or melt, and the process resulting in solid detergent particles such as granules, powders or beads
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/06Powder; Flakes; Free-flowing mixtures; Sheets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/26Organic compounds containing nitrogen
    • C11D3/33Amino carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/36Organic compounds containing phosphorus
    • C11D3/364Organic compounds containing phosphorus containing nitrogen

Definitions

  • the present invention relates to a high active surfactant paste composition and to high active granular detergent components and compositions which can be made using such paste compositions.
  • the invention also relates to a process for making these pastes, and granular components and compositions.
  • agglomeration This term describes any process in which small particles of the components are processed in such a way that they are built-up (or “agglomerated") to form suitable granular components.
  • the ideal detergent agglomerate should have a high bulk density and a high surfactant content and yet still have good solubility and dispersion properties. It should also be possible to use a manufacturing process which is both efficient and versatile.
  • US-A-5 080 848 published on 14th January, 1992 describes a process for making surfactant granules typically having an anionic surfactant activity of 50% to 75% (see examples 1 to 8).
  • the process involves chilling and granulating a viscous high active surfactant paste.
  • the granulation may be performed with the aid of some detergency builders (see examples 3 and 4), but the emphasis is on reducing the temperature in order to initiate granulation.
  • the finished detergent composition may contain other optional ingredients including chelating agents, but there is no indication of any advantages of adding solutions of chelating agent and polymers directly to the paste.
  • EP-A-0 508 543 published on 14th October, 1992 discloses methods of chemically conditioning high active surfactant pastes in order to achieve high active detergent granules. Phosphonates, polymers and copolymers are disclosed as useful conditioning agents. Conditioning of a paste may be achieved by, for example, increasing paste viscosity and/or drying. An example of paste conditioning by the addition of powdered co-polymer is given. However there is no suggestion of the benefits of using solutions of chelant and polymer together.
  • the present invention addresses the problems of how to make higher active surfactant particles than possible using the disclosures in prior art and how to increase the rate of solubility of the resulting particles. There is no need to cool the paste during the granulation step, and the resulting agglomerates have an activity of at least 35%, preferably at least 50%, and more preferably at least 60%.
  • the present invention allows the handling of paste compositions which contain more water than those of the prior art, which therefore have a correspondingly lower viscosity, and yet still result in granular detergents having a very high surfactant composition.
  • a free-flowing granular detergent component or composition having a bulk density of at least 650 g/l which comprises
  • the high active surfactant paste of the present invention comprises three essential components, a surfactant premix, a chelating agent and a polymer or copolymer. It is also an essential feature of the invention that the chelating agent and the polymer or copolymer are in the form of aqueous solutions. The three essential components may then be mixed together in any convenient order.
  • the ratio of chelating agent to polymer/copolymer has now been found to be essential for making high active agglomerates having a good rate of solubility.
  • the ratio of chelating agent to polymer/copolymer in the present invention should be from 1:100 to 1:1; and preferably from 1:50 to 1:2, and more preferably from 1:20 to 1:5. Most preferably the ratio is about 1:7.
  • One or various aqueous pastes of the salts of anionic surfactants is preferred for use in the present invention, preferably the sodium salt of the anionic surfactant. While granulation using various pure or mixed surfactants is known, for the present invention to be of practical use in industry and to result in particles of adequate physical properties to be incorporated into granular detergents, an anionic surfactant must be part of the paste in a concentration of above 40%, preferably from 40%-95%.
  • the activity of the aqueous surfactant paste premix is at least 40% and can go up to about 95%; preferred activities are : 50-80% and 65-75%.
  • the balance of the paste premix is primarily water but can include a processing aid such as a nonionic surfactant. At the higher active concentrations, little or no builder is required for cold granulation of the paste.
  • the resultant concentrated surfactant granules can be added to dry builders or powders or used in conventional agglomeration operations.
  • the aqueous surfactant paste premix contains an organic surfactant selected from the group consisting of anionic, zwitterionic, ampholytic and cationic surfactants, and mixtures thereof. Anionic surfactants are preferred.
  • Nonionic surfactants are used as secondary surfactants or processing aids and are not included herein as an "active" surfactant.
  • Surfactants useful herein are listed in U.S. Pat. No. 3,664,961, Norris, issued May 23, 1972, and in U.S. Pat. No. 3,919,678, Laughlin et al., issued Dec. 30, 1975.
  • Useful cationic surfactants also include those described in U.S. Pat. No. 4,222,905, Cockrell, issued Sept. 16, 1980, and in U.S. Pat. 4,239,659, Murphy, issued Dec. 16, 1980.
  • cationic surfactants are generally less compatible with the aluminosilicate materials herein, and thus are preferably used at low levels, if at all, in the present compositions. The following are representative examples of surfactants useful in the present compositions.
  • Water-soluble salts of the higher fatty acids are useful anionic surfactants in the compositions herein.
  • Soaps can be made by direct saponification of fats and oils or by the neutralization of free fatty acids.
  • Particularly useful are the sodium and potassium salts of the mixtures of fatty acids derived from coconut oil and tallow, i.e., sodium or potassium tallow and coconut soap.
  • Useful anionic surfactants also include the water-soluble salts, preferably the alkali metal, ammonium and alkylolammonium salts, of organic sulfuric reaction products having in their molecular structure an alkyl group containing from 10 to 20 carbon atoms and a sulfonic acid or sulfuric acid ester group.
  • alkyl is the alkyl portion of acyl groups.
  • this group of synthetic surfactants are the sodium and potassium alkyl sulfates, especially those obtained by sulfating the higher alcohols (C 8 -C 18 carbon atoms) such as those produced by reducing the glycerides of tallow or coconut oil; and the sodium and potassium alkyl benzene sulfonates in which the alkyl group contains from 9 to 15 carbon atoms, in straight or branched chain configuration, e.g., those of the type described in U.S. Pat. Nos. 2,220,099 and 2,477,383.
  • Especially valuable are linear straight chain alkyl benzene sulfonates in which the average number of carbon atoms in the alkyl group is from 11 to 13, abbreviated as C 11 -C 13 LAS.
  • anionic surfactants herein are the sodium alkyl glyceryl ether sulfonates, especially those ethers of higher alcohols derived from tallow and coconut oil; sodium coconut oil fatty acid monoglyceride sulfonates and sulfates; sodium or potassium salts of alkyl phenol ethylene oxide ether sulfates containing from 1 to 10 units of ethylene oxide per molecule and wherein the alkyl groups contain from 8 to 12 carbon atoms; and sodium or potassium salts of alkyl ethylene oxide ether sulfates containing from 1 to 10 units of ethylene oxide per molecule and wherein the alkyl group contains from 10 to 20 carbon atoms.
  • Suitable anionic surfactants herein include the water-soluble salts of esters of alpha-sulfonated fatty acids containing from 6 to 20 carbon atoms in the fatty acid group and from 1 to 10 carbon atoms in the ester group; water-soluble salts of 2-acyloxy-alkane-1-sulfonic acids containing from 2 to 9 carbon atoms in the acyl group and from 9 to 23 carbon atoms in the alkane moiety; alkyl ether sulfates containing from 10 to 20 carbon atoms in the alkyl group and from 1 to 30 moles of ethylene oxide; water-soluble salts of olefin sulfonates containing from 12 to 24 carbon atoms; and beta-alkyloxy alkane sulfonates containing from 1 to 3 carbon atoms in the alkyl group and from 8 to 20 carbon atoms in the alkane moiety.
  • the acid salts are typically discussed and used, the acid neutralization cam be performed as part of the
  • the preferred anionic surfactant pastes are mixtures of linear or branched alkylbenzene sulfonates having an alkyl of 10-16 carbon atoms and alkyl sulfates having an alkyl of 10-18 carbon atoms. These pastes are usually produced by reacting a liquid organic material with sulfur trioxide to produce a sulfonic or sulfuric acid and then neutralizing the acid to produce a salt of that acid.
  • the salt is the surfactant paste discussed throughout this document.
  • the sodium salt is preferred due to end performance benefits and cost of NaOH vs. other neutralizing agents, but is not required as other agents such as KOH may be used.
  • Water-soluble nonionic surfactants are also useful as secondary surfactant in the compositions of the invention. Indeed, preferred processes use anionic/nonionic blends.
  • a particularly preferred paste comprises a blend of nonionic and anionic surfactants having a ratio of from 0.01:1 to 1:1, more preferably 0.05:1.
  • Nonionics can be used up to an equal amount of the primary organic surfactant.
  • Such nonionic materials include compounds produced by the condensation of alkylene oxide groups (hydrophilic in nature) with an organic hydrophobic compound, which may be aliphatic or alkyl aromatic in nature. The length of the polyoxyalkylene group which is condensed with any particular hydrophobic group can be readily adjusted to yield a water-soluble compound having the desired degree of balance between hydrophilic and hydrophobic elements.
  • Suitable nonionic surfactants include the polyethylene oxide condensates of alkyl phenols, e.g., the condensation products of alkyl phenols having an alkyl group containing from 6 to 16 carbon atoms, in either a straight chain or branched chain configuration, with from 4 to 25 moles of ethylene oxide per mole of alkyl phenol.
  • Preferred nonionics are the water-soluble condensation products of aliphatic alcohols containing from 8 to 22 carbon atoms, in either straight chain or branched configuration, with from 4 to 25 moles of ethylene oxide per more of alcohol. Particularly preferred are the condensation products of alcohols having an alkyl group containing from 9 to 15 carbon atoms with from 4 to 25 moles of ethylene oxide per mole of alcohol; and condensation products of propylene glycol with ethylene oxide.
  • Semi-polar nonionic surfactants include water-soluble amine oxides containing one alkyl moiety of from 10 to 18 carbon atoms and 2 moieties selected from the group consisting of alkyl groups and hydroxyalkyl groups containing from 1 to 3 carbon atoms; water-soluble phosphine oxides containing one alkyl moiety of 10 to 18 carbon atoms and 2 moieties selected from the group consisting of alkyl groups and hydroxyalkyl groups containing from 1 to 3 carbon atoms; and water-soluble sulfoxides containing one alkyl moiety of from 10 to 18 carbon atoms and a moiety selected from the group consisting of alkyl and hydroxyalkyl moieties of from 1 to 3 carbon atoms.
  • Ampholytic surfactants include derivatives of aliphatic or aliphatic derivatives of heterocyclic secondary and tertiary amines in which the aliphatic moiety can be either straight or branched chain and wherein one of the aliphatic substituents contains from 8 to 18 carbon atoms and at least one aliphatic substituent contains an anionic water-solubilizing group.
  • Zwitterionic surfactants include derivatives of aliphatic quaternary ammonium phosphonium, and sulfonium compounds in which one of the aliphatic substituents contains from 8 to 18 carbon atoms.
  • Particularly preferred surfactants herein include linear alkylbenzene sulfonates containing from 11 to 14 carbon atoms in the alkyl group; tallow alkyl sulfates; coconutalkyl glyceryl ether sulfonates; alkyl ether sulfates wherein the alkyl moiety contains from 14 to 18 carbon atoms and wherein the average degree of ethoxylation is from 1 to 4; olefin or paraffin sulfonates containing from 14 to 16 carbon atoms; alkyldimethylamine oxides wherein the alkyl group contains from 11 to 16 carbon atoms; alkyldimethylammonio propane sulfonates and alkyldimethylammonio hydroxy propane sulfonates wherein the alkyl group contains from 14 to 18 carbon atoms; soaps of higher fatty acids containing from 12 to 18 carbon atoms; condensation products of C9-C15 alcohols with from 3 to 8 moles of
  • Useful cationic surfactants include.
  • Useful cationic surfactants include water-soluble quaternary ammonium compounds of the form R 4 R 5 R 6 R 7 N + X - , wherein R 4 is alkyl having from 10 to 20, preferably from 12-18 carbon atoms, and R 5 , R 6 and R 7 are each C 1 to C 7 alkyl preferably methyl; X - is an anion, e.g. chloride.
  • Examples of such trimethyl ammonium compounds include C 12-14 alkyl trimethyl ammonium chloride and cocalkyl trimethyl ammonium methosulfate.
  • Specific preferred surfactants for use herein include: sodium linear C 11 -C 13 alkylbenzene sulfonate; alpha-olefin sulphonates; triethanolammonium C 11 -C 13 alkylbenzene sulfonate; alkyl sulfates, (tallow, coconut, palm, synthetic origins, e.g.
  • Viscosity is a function, among others, of concentration and temperature, with a range in this application from 10,000 cps to 10,000,000 cps.
  • the viscosity of the paste entering the system is from 20,000 to 100,000 cps. and more preferably from 30,000 to 70,000 cps.
  • the viscosity of the paste of this invention is measured at a temperature of 70°C when measured at 25s -1 .
  • a Physica Viscotherm VT100 was used for measuring viscosity.
  • the chelating agents suitable for use in the present invention can be chosen from a wide range of chemicals which are known to the man skilled in the art.
  • suitable chelating agents are phosphonic and succinic acids and their salts.
  • the polyphosphonates are the sodium and potassium salts of ethylene diphosphonic acid, the sodium and potassium salts of ethane 1-hydroxy-1,1-diphosphonic acid and the sodium and potassium salts of ethane, 1,1,2-triphosphonic acid.
  • particularly suitable chelating agents are ethylene diamine tetra (methylene phosphonic acid) and diethylene triamine penta (methylene phosphonic acid).
  • EDDS ethylenediamine-N,N'-disuccinic acid
  • Preferred EDDS compounds are the free acid form and the sodium or magnesium salt thereof.
  • Examples of such preferred sodium salts of EDDS include NaEDDS, Na 2 EDDS and Na 4 EDDS.
  • Examples of such preferred magnesium salts of EDDS include Mg EDDS and Mg 2 EDDS.
  • the magnesium salts are the most preferred for inclusion in compositions in accordance with the invention.
  • the structure of the acid form of EDDS is as follows : EDDS can be synthesised, for example, from readily available, inexpensive starting material such as maleic anhydride and ethylene diamine as follows :
  • the [S,S] isomer of EDDS can be synthesised from L-aspartic acid and 1,.2-dibromoethane, as follows :
  • the concentration of the aqueous solutions of the chelating agent is not critical in the present invention. However, it is convenient to use solutions which are readily available commercially. Aqueous solutions having a concentration of from 5% to 60% of the chelating agent are suitable.
  • the polymers and co-polymers of the present invention may be chosen from a wide range of organic polymers, some of which also may function as builders to improve detergency. Included among such polymers may be mentioned sodium carboxy-lower alkyl celluloses, sodium lower alkyl celluloses and sodium hydroxy-lower alkyl celluloses, such as sodium carboxymethyl cellulose, sodium methyl cellulose and sodium hydroxypropyl cellulose, polyvinyl alcohols (which often also include some polyvinyl acetate), polyacrylamides, polyacrylates, polyaspartates, polyvinylpyrrolidones and various copolymers, such as those of maleic and acrylic acids. Molecular weights for such polymers vary widely but most are within the range of 2,000 to 100,000.
  • Polymeric polycarboxyate builders are set forth in U.S. Patent 3,308,067, Diehl, issued March 7, 1967. Such materials include the water-soluble salts of homo-and copolymers of aliphatic carboxylic acids such as maleic acid, itaconic acid, mesaconic acid, fumaric acid, aconitic acid, citraconic acid and methylenemalonic acid.
  • copolymers of maleic and acrylic acid having a molecular weight of from 2000 to 100000, carboxymethyl cellulose and mixtures thereof.
  • the concentration of the aqueous solutions of the polymer or copolymer is not critical in the present invention. However, it is convenient to use solutions which are readily available commercially. Aqueous solutions having a concentration of from 5% to 60% of the polymer or copolymer are suitable.
  • the high active surfactant paste described hereinabove may be treated by any suitable process, for example agglomeration with powders to form granular detergent components or compositions.
  • the high active surfactant paste is mixed by fine dispersion mixing and granulation with an effective amount of powder.
  • Any compatible detergency builder or combination of builders or powder can be used in the process and compositions of the present invention.
  • the detergent compositions herein can contain crystalline aluminosilicate ion exchange material of the formula Na z [(AlO 2 ) z ⁇ (SiO 2 ) y ] ⁇ xH 2 O wherein z and y are at least 6, the molar ratio of z to y is from 1.0 to 0.4 and z is from 10 to 264.
  • Amorphous hydrated aluminosilicate materials useful herein have the empirical formula M z (zAlO 2 ⁇ ySiO 2 ) wherein M is sodium, potassium, ammonium or substituted ammonium, z is from 0.5 to 2 and y is 1, said material having a magnesium ion exchange capacity of at least 50 milligram equivalents of CaCO 3 hardness per gram of anhydrous aluminosilicate. Hydrated sodium Zeolite A with a particle size of from 1 to 10 microns is preferred.
  • the aluminosilicate ion exchange builder materials herein are in hydrated form and contain from 10% to 28% of water by weight if crystalline, and potentially even higher amounts of water if amorphous. Highly preferred crystalline aluminosilicate ion exchange materials contain from 18% to 22% water in their crystal matrix.
  • the crystalline aluminosilicate ion exchange materials are further characterized by a particle size diameter of from 0.1 micron to 10 microns. Amorphous materials are often smaller, e.g., down to less than 0.01 micron.
  • Preferred ion exchange materials have a particle size diameter of from 0.2 micron to 4 microns.
  • particle size diameter herein represents the average particle size diameter by weight of a given ion exchange material as determined by conventional analytical techniques such as, for example, microscopic determination utilizing a scanning electron microscope.
  • the crystalline aluminosilicate ion exchange materials herein are usually further characterized by their calcium ion exchange capacity, which is at least 200 mg equivalent of CaCO 3 water hardness/g of aluminosilicate, calculated on an anhydrous basis, and which generally is in the range of from 300 mg eq./g to 352 mg eq./g.
  • the aluminosilicate ion exchange materials herein are still further characterized by their calcium ion exchange rate which is at least 13x10 -2 g/l/min/g/l (2 grains Ca ++ /gallon/minute/gram/gallon) of aluminosilicate (anhydrous basis) and generally lies within the range of from 13x10 -2 g/l/min/g/l (2 grains/gallon/minute/gram/gallon) to 39x10 -2 g/l/min/g/l (6 grains/gallon/minute/gram/gallon), based on calcium ion hardness.
  • Optimum aluminosilicate for builder purposes exhibit a calcium ion exchange rate of at least 26x10 -2 g/l/min/g/l (4 grains/gallon/minute/gram/gallon).
  • the amorphous aluminosilicate ion exchange materials usually have a Mg ++ exchange of at least 50 mg eq. CaCO 3 /g (12 mg Mg ++ /g) and a Mg ++ exchange rate of at least 6.5x10 -2 g/l/min/g/l (1 grain/gallon/minute/gram/gallon). Amorphous materials do not exhibit an observable diffraction pattern when examined by Cu radiation (1.54 Angstrom Units).
  • Aluminosilicate ion exchange materials useful in the practice of this invention are commercially available.
  • the aluminosilicates useful in this invention can be crystalline or amorphous in structure and can be naturally occurring aluminosilicates or synthetically derived.
  • a method for producing aluminosilicate ion exchange materials is discussed in U.S. Pat. No. 3,985,669, Krummel et al., issued Oct. 12, 1976.
  • Preferred synthetic crystalline aluminosilicate ion exchange materials useful herein are available under the designations Zeolite A, Zeolite B, and Zeolite X.
  • the crystalline aluminosilicate ion exchange material has the formula Na 12 [(AlO 2 ) 12 (SiO2) 12 ] ⁇ xH 2 O wherein x is from 20 to 30, especially 27 and has a particle size generally less than 5 microns.
  • the granular detergents of the present invention can contain neutral or alkaline salts which have a pH in solution of seven or greater, and can be either organic or inorganic in nature.
  • the builder salt assists in providing the desired density and bulk to the detergent granules herein. While some of the salts are inert, many of them also function as detergency builder materials in the laundering solution.
  • neutral water-soluble salts examples include the alkali metal, ammonium or substituted ammonium chlorides, fluorides and sulfates.
  • the alkali metal, and especially sodium, salts of the above are preferred.
  • Sodium sulfate is typically used in detergent granules and is a particularly preferred salt.
  • Citric acid and, in general, any other organic or inorganic acid may be incorporated into the granular detergents of the present invention as long as it is chemically compatible with the rest of the agglomerate composition.
  • water-soluble salts include the compounds commonly known as detergent builder materials.
  • Builders are generally selected from the various water-soluble, alkali metal, ammonium or substituted ammonium phosphates, polyphosphates, phosphonates, polyphosphonates, carbonates, silicates, borates, and polyhyroxysulfonates.
  • alkali metal especially sodium, salts of the above.
  • inorganic phosphate builders are sodium and potassium tripolyphosphate, pyrophosphate, polymeric metaphosphate having a degree of polymerization of from 6 to 21, and orthophosphate.
  • Other phosphorus builder compounds are disclosed in U.S. Pat. Nos. 3,159,581; 3,213,030; 3,422,021; 3,422,137; 3,400,176 and 3,400,148.
  • nonphosphorus, inorganic builders are sodium and potassium carbonate, bicarbonate, sesquicarbonate, tetraborate decahydrate, and silicate having a molar ratio of SiO 2 to alkali metal oxide of from 0.5 to 4.0, preferably from 1.0 to 2.4.
  • the compositions made by the process of the present invention does not require excess carbonate for processing, and preferably does not contain over 2% finely divided calcium carbonate as disclosed in U.S. Pat. No. 4,196,093, Clarke et al., issued Apr.1, 1980, and is preferably free of the latter.
  • powders normally used in detergents such as zeolite, carbonate, silica, silicate, citrate, phosphate or perborate and process acids such as starch, can be used in preferred embodiments of the present invention.
  • the process steps of the present invention comprise:
  • the surfactant paste premix may be prepared by any method which is known to the man skilled in the art. Particularly useful methods include sulphation and/or sulphonation or other reactions to make the desired anionic surfactants e.g. in a falling film sulphonating reactors, digestion tanks, esterification reactors, etc. It is particularly convenient to neutralise the acid precursers of anionic surfactants in a continuous neutralisation loop. In such a piece of equipment the acid precurser is fed into a loop together with a neutralising agent such as aqueous sodium hydroxide. The components are intimately mixed to promote neutralisation and then fed through a heat exchanger to be cooled. A proportion of the neutralised surfactant is removed from the loop, whilst the remainder is fed back to the point of injection of the acid and the alkali, and passes around the loop again.
  • a neutralising agent such as aqueous sodium hydroxide
  • the surfactant paste must then be mixed with a solution of a chelating agent and a solution of a polymer or co-polymer. This may be achieved in any convenient piece of mixing equipment, and may be carried out using any order of addition of the separate or premixed components.
  • the moisture in the surfactant aqueous paste is as low as possible, while maintaining paste fluidity, since low moisture leads to a higher concentration of the surfactant in the finished particle.
  • the paste after drying contains between 5 and 40% water, more preferably between 15 and 35% water and most preferably between 15% and 25% water.
  • a highly attractive mode of operation for lowering the moisture of the paste is the installation, in line, of an atmospheric or a vacuum flash drier, or a scraped surface heat exchanger or a wiped film evaporator.
  • the extruder fulfils the functions of pumping and mixing the viscous surfactant paste on a continuous basis.
  • a basic extruder consists of a barrel with a smooth inner cylindrical surface. Mounted within this barrel is the extruder screw. There is an inlet port for the high active paste which, when the screw is rotated, causes the paste to be moved along the length of the barrel.
  • the detailed design of the extruder allows various functions to be carried out. Firstly additional ports in the barrel may allow other ingredients, including the chemical structuring agents to be added directly into the barrel. Secondly a vacuum pump and a seal around the shaft of the screw allows a vacuum to be drawn which enables the moisture level to be reduced. Thirdly means for heating or cooling may be installed in the wall of the barrel for temperature control.
  • a preferred extruder is the twin screw extruder. This type of extruder has two screws mounted in parallel within the same barrel, which are made to rotate either in the same direction (co-rotation) or in opposite directions (counter-rotation).
  • the co-rotating twin screw extruder is the most preferred piece of equipment for use in this invention.
  • An extruder is particularly useful in this invention because the paste can be effectively cooled by adding liquid nitrogen or solid carbon dioxide into the barrel (this may be considered surprising, because normally an extruder heats its contents as a result of the mechanical energy input to overcome viscous shear forces) and at the same time pumps the increasingly viscous (colder) paste out of the extruder and into the mixer/agglomerator were granulation takes place.
  • Suitable twin screw extruders for use in the present invention include those supplied by : APV Baker, (CP series); Werner and Pfleiderer, (Continua Series); Wenger, (TF Series); Leistritz, (ZSE Series); and Buss, (LR Series).
  • the extruder allows the paste to be conditioned by moisture and temperature reduction. Moisture may be removed under vacuum, preferably between O mmHg (gauge) and -55 mmHg (gauge), (0 - 7.3 kPa below atmospheric pressure).
  • Temperature may be reduced by the addition of solid carbon dioxide or liquid nitrogen directly into the extruder barrel. However, this is not a preferred mode of operation of the present invention.
  • any apparatus, plants or units suitable for the processing of surfactants can be used for carrying out the process according to the invention.
  • any of a number of mixers/agglomerators can be used.
  • the process of the invention is continuously carried out.
  • mixers of the Fukae R FS-G series manufactured by Fukae Powtech Kogyo Co., Japan are essentially in the form of a bowl-shaped vessel accessible via a top port, provided near its base with a stirrer having a substantially vertical axis, and a cutter positioned on a side wall.
  • the stirrer and cutter may be operated independently of one another and at separately variable speeds.
  • the vessel can be fitted with a cooling jacket or, if necessary, a cryogenic unit.
  • mixers found to be suitable for use in the process of the invention include Diosna R V series ex Dierks & Söhne, Germany; and the Pharma Matrix R ex T K Fielder Ltd., England.
  • Other mixers believed to be suitable for use in the process of the invention are the Fuji R VG-C series ex Fuji Sangyo Co., Japan; and the Roto R ex Zanchetta & Co srl, Italy.
  • Other preferred suitable equipment can include Eirich R , series RV, manufactured by Gustau Eirich Hardheim, Germany; Lödige R , series FM for batch mixing, series Baud KM for continuous mixing/agglomeration, manufactured by Lödige Machinenbau GmbH, Paderborn Germany; Drais R T160 series, manufactured by Drais Werke GmbH, Mannheim Germany; and Winkworth R RT 25 series, manufactured by Winkworth Machinery Ltd., Berkshire, England.
  • the Littleford Mixer, Model #FM-130-D-12, with internal chopping blades and the Cuisinart Food Processor, Model #DCX-Plus, with 7.75 inch (19.7 cm) blades are two examples of suitable mixers. Any other mixer with fine dispersion mixing and granulation capability and having a residence time in the order of 0.1 to 10 minutes can be used.
  • the "turbine-type" impeller mixer, having several blades on an axis of rotation, is preferred.
  • the invention can be practiced as a batch or a continuous process.
  • the paste can be introduced into the mixer at an initial temperature between its softening point (generally in the range of 40-60°C) and its degradation point (depending on the chemical nature of the paste, e.g. alkyl sulphate pastes tend to degrade above 75-85°C). High temperatures reduce viscosity simplifying the pumping of the paste but result in lower active agglomerates.
  • the introduction of the paste into the mixer can be done in many ways, from simply pouring to high pressure pumping through small holes at the end of the pipe, before the entrance to the mixer. While all these ways are viable to manufacture agglomerates with good physical properties, it has been found that in a preferred embodiment of the present invention the extrusion of the paste results in a better distribution in the mixer which improves the yield of particles with the desired size.
  • the use of high pumping pressures prior to the entrance in the mixer results in an increased activity in the final agglomerates.
  • the resulting detergent granules may be dried, cooled and/or dusted with a suitable surface coating agent.
  • C45AS/AE3S 80:20
  • This example describes the process in batch mode in a lab scale high shear mixer (food processor manufactured by Braun [Trade Name]). Three hundred grams of powders are added first to the mixer. In this particular case a 1.2:1.0 ratio of Zeolite A to finely divided light density sodium carbonate is used.
  • the surfactant is an aqueous paste of C45AS/AE3S (80:20) with a detergent activity of 78%, and a water content of 16%.
  • the paste is pre-mixed in a batch mixer with a 40% solution of the co-polymer of maleic and acrylic acid , sodium salt and a 20% solution of the sodium salt of the ethylene diamine-N,N-disuccinic acid.
  • the weight ratio of paste : polymer : chelating agent was 1 : 0.64 : 0.09.
  • the mixture is then dried to the original paste moisture of 16%.
  • the paste mixture is placed into an oven at 60 °C until thermal equilibrium is reached.
  • the mixer is then started and paste added at a rate of 500g/min until the onset of agglomeration and formation of granules.
  • the end point is sharp and easily recognized. It is characterized by an increased power draw by the mixer, and a change in the mixer contents from a mixture of finely divided powders and distributed surfactant paste, to agglomerates containing powders and paste having a mean particle size between 400 - 600 micrometers.
  • the activity of the agglomerates formed is 51%.
  • the agglomerates were dried in a fluid bed drier and the rate of surfactant release of the resulting agglomerates was tested in a Sotax bath at 20 °C in distilled water (see section B - test method). The time taken for 50% of the surfactant to dissolve is 78 seconds.
  • This example describes the process in batch mode in a lab scale high shear mixer (food processor) as used in example 1.
  • the powders composition is a 1.2:1.0 ratio of zeolite A to finely divided light density sodium carbonate.
  • the surfactant is an aqueous paste of C45AS/AE3S (80:20) with a detergent activity of 78%, and a water content of 16%.
  • the paste temperature is 60 °C.
  • the mixer is started and paste added at a rate of 500 g/min until the onset of agglomeration and the formation of granules.
  • the activity of agglomerates formed is 40%.
  • the agglomerates were dried in a fluid bed drier and the rate of surfactant release of the resulting agglomerates was tested in a Sotax bath at 20 °C in distilled water (see section B - test method). The time taken for 50% of the surfactant to dissolve is 114 seconds..
  • This example describes the process in batch mode in a lab scale high shear mixer (food processor) as used in example 1.
  • Three hundred grams of powders are added first to the mixer.
  • a 1.2:1.0 ratio of Zeolite A to finely divided sodium carbonate is used.
  • the surfactant is an aqueous paste of C45AS/AE3S (80:20) with a detergent activity of 78%, and a water content of 16%.
  • the paste is pre-mixed in a batch mixer with a 40% solution of the co-polymer of maleic and acrylic acid , sodium salt .
  • the weight ratio of paste:polymer was 1:0.64.
  • the mixture is then dried to the original paste moisture of 16%.
  • the paste mixture is placed into an oven at 60 °C until thermal equilibrium is reached.
  • the mixer is then started and paste added at a rate of 500 g/min until the onset of agglomeration and formation of granules.
  • the activity of the agglomerates formed is 46%.
  • the agglomerates were dried in a fluid bed drier and the rate of surfactant release of the resulting agglomerates was tested in a Sotax bath at 20°C in distilled water (see section B - test method).
  • the time taken for 50% of the surfactant to dissolve is 84 seconds..
  • This example describes the process in batch mode in a lab scale high shear mixer (food processor) as used in example 1.
  • a lab scale high shear mixer food processor
  • Three hundred grams of powders are added first to the mixer.
  • a 1.2:1.0 ratio of Zeolite A to finely divided light density sodium carbonate is used.
  • the surfactant is an aqueous paste of C45AS/AE3S (80:20) with a detergent activity of 78%, and a water content of 16%.
  • the paste is pre-mixed in a batch mixer with a 20% solution of the sodium salt of the ethylene diamine-N,N-disuccinic acid.
  • the weight ratio of paste:chelating agent was 1:0.09.
  • the mixture is then dried to the original paste moisture of 16%.
  • the paste mixture is placed into an oven at 60 °C until thermal equilibrium is reached.
  • the mixer is then started and paste added at a rate of 500 g/min until the onset of agglomeration and formation of granules.
  • the activity of the agglomerates formed is 49%.
  • the agglomerates were dried in a fluid bed drier and the rate of surfactant release of the resulting agglomerates was tested in a Sotax bath at 20 °C in distilled water (see section B - test method). The time taken for 50% of the surfactant to dissolve was 120 seconds.
  • Example 1 illustrates the product of the present invention.
  • Example 2 shows a comparison of a product made without chelant or polymer. The surfactant activity is lower and the rate of solubility is poorer.
  • Example 3 shows a comparison of a product made with polymer only (ie without chelant). Good rate of solubility is achieved, but the particulate activity is lower.
  • Example 4 shows a comparison of a product made with chelant only (ie without polymer). Good surfactant activity is obtained but the rate of solubility is poor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)

Description

Background of the invention
The present invention relates to a high active surfactant paste composition and to high active granular detergent components and compositions which can be made using such paste compositions. The invention also relates to a process for making these pastes, and granular components and compositions.
In recent years there has been a trend towards making granular detergents having a higher bulk density than before. Various techniques of making dense granular detergents, and of processing low density granular detergents in such a way that the bulk density is increased, have been described. One example of a suitable technique for making dense granular detergents is known as "agglomeration". This term describes any process in which small particles of the components are processed in such a way that they are built-up (or "agglomerated") to form suitable granular components.
The ideal detergent agglomerate should have a high bulk density and a high surfactant content and yet still have good solubility and dispersion properties. It should also be possible to use a manufacturing process which is both efficient and versatile.
Different approaches to these objectives have been made in the prior art.
US-A-5 080 848, published on 14th January, 1992 describes a process for making surfactant granules typically having an anionic surfactant activity of 50% to 75% (see examples 1 to 8). The process involves chilling and granulating a viscous high active surfactant paste. The granulation may be performed with the aid of some detergency builders (see examples 3 and 4), but the emphasis is on reducing the temperature in order to initiate granulation. The finished detergent composition may contain other optional ingredients including chelating agents, but there is no indication of any advantages of adding solutions of chelating agent and polymers directly to the paste.
EP-A-0 508 543, published on 14th October, 1992 discloses methods of chemically conditioning high active surfactant pastes in order to achieve high active detergent granules.
Phosphonates, polymers and copolymers are disclosed as useful conditioning agents. Conditioning of a paste may be achieved by, for example, increasing paste viscosity and/or drying.
An example of paste conditioning by the addition of powdered co-polymer is given. However there is no suggestion of the benefits of using solutions of chelant and polymer together.
The prior art suggests that in order to maximise the surfactant activity it is necessary to minimise the amount of water in the surfactant paste. This has resulted in the need to handle surfactant pastes having an increasingly high viscosity which imposes limits on the flexibility of the process. However, it has now been found that it is possible to further improve the process in order to make agglomerates which have still higher surfactant activity, and still maintain, or further improve the desired physical characteristics of the granular detergent.
The present invention addresses the problems of how to make higher active surfactant particles than possible using the disclosures in prior art and how to increase the rate of solubility of the resulting particles. There is no need to cool the paste during the granulation step, and the resulting agglomerates have an activity of at least 35%, preferably at least 50%, and more preferably at least 60%.
It has now been surprisingly found that it is advantageous to incorporate a chelating agent and a polymer or co-polymer in the form of an aqueous solution. In particular, it has been found that a narrowly defined ratio of chelating agent to polymer or co-polymer gives the benefits sought.
The present invention allows the handling of paste compositions which contain more water than those of the prior art, which therefore have a correspondingly lower viscosity, and yet still result in granular detergents having a very high surfactant composition.
Summary of the Invention
A free-flowing granular detergent component or composition having a bulk density of at least 650 g/l which comprises
  • i) at least 35% by weight of anionic surfactant
  • ii) 0.5% to 10% by weight of a chelating agent
  • iii) 0.5% to 30% by weight of a polymer or co-polymer
  • wherein the weight ratio of chelating agent to polymer/co-polymer is from 1:100 to 1:1.
    A process for making the granular detergent component or composition is also described. It is an essential feature of this process that aqueous solutions of a chelating agent and a polymer or co-polymer are added to a high active surfactant paste.
    Detailed Description of the Invention
    Different aspects of the present invention are a high active surfactant paste, high active detergent granular detergent made from this paste, and a process for making the paste and the granular detergent.
    Each of these aspects of the invention will now be discussed in more detail.
    High Active Surfactant Paste
    The high active surfactant paste of the present invention comprises three essential components, a surfactant premix, a chelating agent and a polymer or copolymer. It is also an essential feature of the invention that the chelating agent and the polymer or copolymer are in the form of aqueous solutions. The three essential components may then be mixed together in any convenient order. The ratio of chelating agent to polymer/copolymer has now been found to be essential for making high active agglomerates having a good rate of solubility. The ratio of chelating agent to polymer/copolymer in the present invention should be from 1:100 to 1:1; and preferably from 1:50 to 1:2, and more preferably from 1:20 to 1:5. Most preferably the ratio is about 1:7.
    Paste Premix
    One or various aqueous pastes of the salts of anionic surfactants is preferred for use in the present invention, preferably the sodium salt of the anionic surfactant. While granulation using various pure or mixed surfactants is known, for the present invention to be of practical use in industry and to result in particles of adequate physical properties to be incorporated into granular detergents, an anionic surfactant must be part of the paste in a concentration of above 40%, preferably from 40%-95%.
    The activity of the aqueous surfactant paste premix is at least 40% and can go up to about 95%; preferred activities are : 50-80% and 65-75%. The balance of the paste premix is primarily water but can include a processing aid such as a nonionic surfactant. At the higher active concentrations, little or no builder is required for cold granulation of the paste. The resultant concentrated surfactant granules can be added to dry builders or powders or used in conventional agglomeration operations. The aqueous surfactant paste premix contains an organic surfactant selected from the group consisting of anionic, zwitterionic, ampholytic and cationic surfactants, and mixtures thereof. Anionic surfactants are preferred.
    Nonionic surfactants are used as secondary surfactants or processing aids and are not included herein as an "active" surfactant. Surfactants useful herein are listed in U.S. Pat. No. 3,664,961, Norris, issued May 23, 1972, and in U.S. Pat. No. 3,919,678, Laughlin et al., issued Dec. 30, 1975. Useful cationic surfactants also include those described in U.S. Pat. No. 4,222,905, Cockrell, issued Sept. 16, 1980, and in U.S. Pat. 4,239,659, Murphy, issued Dec. 16, 1980. However, cationic surfactants are generally less compatible with the aluminosilicate materials herein, and thus are preferably used at low levels, if at all, in the present compositions. The following are representative examples of surfactants useful in the present compositions.
    Water-soluble salts of the higher fatty acids, i.e., "soaps", are useful anionic surfactants in the compositions herein. This includes alkali metal soaps such as the sodium, potassium, ammonium, and alkylammonium salts of higher fatty acids containing from 8 to 24 carbon atoms, and preferably from 12 to 18 carbon atoms. Soaps can be made by direct saponification of fats and oils or by the neutralization of free fatty acids. Particularly useful are the sodium and potassium salts of the mixtures of fatty acids derived from coconut oil and tallow, i.e., sodium or potassium tallow and coconut soap.
    Useful anionic surfactants also include the water-soluble salts, preferably the alkali metal, ammonium and alkylolammonium salts, of organic sulfuric reaction products having in their molecular structure an alkyl group containing from 10 to 20 carbon atoms and a sulfonic acid or sulfuric acid ester group. (Included in the term "alkyl" is the alkyl portion of acyl groups.) Examples of this group of synthetic surfactants are the sodium and potassium alkyl sulfates, especially those obtained by sulfating the higher alcohols (C8-C18 carbon atoms) such as those produced by reducing the glycerides of tallow or coconut oil; and the sodium and potassium alkyl benzene sulfonates in which the alkyl group contains from 9 to 15 carbon atoms, in straight or branched chain configuration, e.g., those of the type described in U.S. Pat. Nos. 2,220,099 and 2,477,383. Especially valuable are linear straight chain alkyl benzene sulfonates in which the average number of carbon atoms in the alkyl group is from 11 to 13, abbreviated as C11-C13 LAS.
    Other anionic surfactants herein are the sodium alkyl glyceryl ether sulfonates, especially those ethers of higher alcohols derived from tallow and coconut oil; sodium coconut oil fatty acid monoglyceride sulfonates and sulfates; sodium or potassium salts of alkyl phenol ethylene oxide ether sulfates containing from 1 to 10 units of ethylene oxide per molecule and wherein the alkyl groups contain from 8 to 12 carbon atoms; and sodium or potassium salts of alkyl ethylene oxide ether sulfates containing from 1 to 10 units of ethylene oxide per molecule and wherein the alkyl group contains from 10 to 20 carbon atoms.
    Other useful anionic surfactants herein include the water-soluble salts of esters of alpha-sulfonated fatty acids containing from 6 to 20 carbon atoms in the fatty acid group and from 1 to 10 carbon atoms in the ester group; water-soluble salts of 2-acyloxy-alkane-1-sulfonic acids containing from 2 to 9 carbon atoms in the acyl group and from 9 to 23 carbon atoms in the alkane moiety; alkyl ether sulfates containing from 10 to 20 carbon atoms in the alkyl group and from 1 to 30 moles of ethylene oxide; water-soluble salts of olefin sulfonates containing from 12 to 24 carbon atoms; and beta-alkyloxy alkane sulfonates containing from 1 to 3 carbon atoms in the alkyl group and from 8 to 20 carbon atoms in the alkane moiety. Although the acid salts are typically discussed and used, the acid neutralization cam be performed as part of the fine dispersion mixing step.
    The preferred anionic surfactant pastes are mixtures of linear or branched alkylbenzene sulfonates having an alkyl of 10-16 carbon atoms and alkyl sulfates having an alkyl of 10-18 carbon atoms. These pastes are usually produced by reacting a liquid organic material with sulfur trioxide to produce a sulfonic or sulfuric acid and then neutralizing the acid to produce a salt of that acid. The salt is the surfactant paste discussed throughout this document. The sodium salt is preferred due to end performance benefits and cost of NaOH vs. other neutralizing agents, but is not required as other agents such as KOH may be used.
    Water-soluble nonionic surfactants are also useful as secondary surfactant in the compositions of the invention. Indeed, preferred processes use anionic/nonionic blends. A particularly preferred paste comprises a blend of nonionic and anionic surfactants having a ratio of from 0.01:1 to 1:1, more preferably 0.05:1. Nonionics can be used up to an equal amount of the primary organic surfactant. Such nonionic materials include compounds produced by the condensation of alkylene oxide groups (hydrophilic in nature) with an organic hydrophobic compound, which may be aliphatic or alkyl aromatic in nature. The length of the polyoxyalkylene group which is condensed with any particular hydrophobic group can be readily adjusted to yield a water-soluble compound having the desired degree of balance between hydrophilic and hydrophobic elements.
    Suitable nonionic surfactants include the polyethylene oxide condensates of alkyl phenols, e.g., the condensation products of alkyl phenols having an alkyl group containing from 6 to 16 carbon atoms, in either a straight chain or branched chain configuration, with from 4 to 25 moles of ethylene oxide per mole of alkyl phenol.
    Preferred nonionics are the water-soluble condensation products of aliphatic alcohols containing from 8 to 22 carbon atoms, in either straight chain or branched configuration, with from 4 to 25 moles of ethylene oxide per more of alcohol. Particularly preferred are the condensation products of alcohols having an alkyl group containing from 9 to 15 carbon atoms with from 4 to 25 moles of ethylene oxide per mole of alcohol; and condensation products of propylene glycol with ethylene oxide.
    Semi-polar nonionic surfactants include water-soluble amine oxides containing one alkyl moiety of from 10 to 18 carbon atoms and 2 moieties selected from the group consisting of alkyl groups and hydroxyalkyl groups containing from 1 to 3 carbon atoms; water-soluble phosphine oxides containing one alkyl moiety of 10 to 18 carbon atoms and 2 moieties selected from the group consisting of alkyl groups and hydroxyalkyl groups containing from 1 to 3 carbon atoms; and water-soluble sulfoxides containing one alkyl moiety of from 10 to 18 carbon atoms and a moiety selected from the group consisting of alkyl and hydroxyalkyl moieties of from 1 to 3 carbon atoms.
    Ampholytic surfactants include derivatives of aliphatic or aliphatic derivatives of heterocyclic secondary and tertiary amines in which the aliphatic moiety can be either straight or branched chain and wherein one of the aliphatic substituents contains from 8 to 18 carbon atoms and at least one aliphatic substituent contains an anionic water-solubilizing group.
    Zwitterionic surfactants include derivatives of aliphatic quaternary ammonium phosphonium, and sulfonium compounds in which one of the aliphatic substituents contains from 8 to 18 carbon atoms.
    Particularly preferred surfactants herein include linear alkylbenzene sulfonates containing from 11 to 14 carbon atoms in the alkyl group; tallow alkyl sulfates; coconutalkyl glyceryl ether sulfonates; alkyl ether sulfates wherein the alkyl moiety contains from 14 to 18 carbon atoms and wherein the average degree of ethoxylation is from 1 to 4; olefin or paraffin sulfonates containing from 14 to 16 carbon atoms; alkyldimethylamine oxides wherein the alkyl group contains from 11 to 16 carbon atoms; alkyldimethylammonio propane sulfonates and alkyldimethylammonio hydroxy propane sulfonates wherein the alkyl group contains from 14 to 18 carbon atoms; soaps of higher fatty acids containing from 12 to 18 carbon atoms; condensation products of C9-C15 alcohols with from 3 to 8 moles of ethylene oxide, and mixtures thereof.
    Useful cationic surfactants include. Useful cationic surfactants include water-soluble quaternary ammonium compounds of the form R4R5R6R7N+X-, wherein R4 is alkyl having from 10 to 20, preferably from 12-18 carbon atoms, and R5, R6 and R7 are each C1 to C7 alkyl preferably methyl; X- is an anion, e.g. chloride. Examples of such trimethyl ammonium compounds include C12-14 alkyl trimethyl ammonium chloride and cocalkyl trimethyl ammonium methosulfate.
    Specific preferred surfactants for use herein include:
    sodium linear C11-C13 alkylbenzene sulfonate; alpha-olefin sulphonates; triethanolammonium C11-C13 alkylbenzene sulfonate; alkyl sulfates, (tallow, coconut, palm, synthetic origins, e.g. C45, etc.); sodium alkyl sulfates; MES; sodium coconut alkyl glyceryl ether sulfonate; the sodium salt of a sulfated condensation product of a tallow alcohol with 4 moles of ethylene oxide; the condensation product of a coconut fatty alcohol with 6 moles of ethylene oxide; the condensation product of tallow fatty alcohol with 11 moles of ethylene oxide; the condensation of a fatty alcohol containing from 14 to 15 carbon atoms with 7 moles of ethylene oxide; the condensation product of a C12-C13 fatty alcohol with 3 moles of ethylene oxide; 3-(N,N-dimethyl-N-coconutalkylammonio)-2-hydroxypropane-1-sulfonate; 3-(N,N-dimethyl-N-coconutalkylammonio)-propane-1-sulfonate; 6-(N-dodecylbenzyl-N,N-dimethylammonio) hexanoate; dodecyldimethylamine oxide; coconutalkyldimethylamine oxide; and the water-soluble sodium and potassium salts of coconut and tallow fatty acids.
    Two important parameters of the surfactant pastes which can affect the mixing and granulation step are the paste temperature and viscosity. Viscosity is a function, among others, of concentration and temperature, with a range in this application from 10,000 cps to 10,000,000 cps. Preferably, the viscosity of the paste entering the system is from 20,000 to 100,000 cps. and more preferably from 30,000 to 70,000 cps. The viscosity of the paste of this invention is measured at a temperature of 70°C when measured at 25s-1. For the present purposes a Physica Viscotherm VT100 was used for measuring viscosity.
    Chelating Agents
    The chelating agents suitable for use in the present invention can be chosen from a wide range of chemicals which are known to the man skilled in the art. Examples of suitable chelating agents are phosphonic and succinic acids and their salts.
    The polyphosphonates are the sodium and potassium salts of ethylene diphosphonic acid, the sodium and potassium salts of ethane 1-hydroxy-1,1-diphosphonic acid and the sodium and potassium salts of ethane, 1,1,2-triphosphonic acid. Examples of particularly suitable chelating agents are ethylene diamine tetra (methylene phosphonic acid) and diethylene triamine penta (methylene phosphonic acid).
    Another preferred chelating agent is ethylenediamine-N,N'-disuccinic acid (EDDS) or the alkali metal, alkaline earth metal, ammonium, or substituted ammonium salts thereof, or mixtures thereof. Preferred EDDS compounds are the free acid form and the sodium or magnesium salt thereof.
    Examples of such preferred sodium salts of EDDS include NaEDDS, Na2EDDS and Na4EDDS. Examples of such preferred magnesium salts of EDDS include Mg EDDS and Mg2EDDS. The magnesium salts are the most preferred for inclusion in compositions in accordance with the invention.
    The structure of the acid form of EDDS is as follows :
    Figure 00120001
    EDDS can be synthesised, for example, from readily available, inexpensive starting material such as maleic anhydride and ethylene diamine as follows :
    Figure 00120002
    A more complete disclosure of methods for synthesising EDDS from commercially available starting materials can be found in US Patent 3,158,635, Kezerian and Ramsay, issued November 24, 1964.
    The synthesis of EDDS from maleic anhydride and ethylene diamine yields a mixture of three optical isomers, [R,R],[S,S], and [S,R], due to the two asymmetric carbon atoms. The biodegradation of EDDS is optical isomerspecific, with the [S,S] isomer degrading most rapidly and extensively, and for this reason the [S,S] isomer is most preferred for inclusion in the compositions of the invention.
    The [S,S] isomer of EDDS can be synthesised from L-aspartic acid and 1,.2-dibromoethane, as follows :
    Figure 00130001
    A more complete disclosure of the reaction of L-aspartic acid with 1,2-dibromoethane to form the [S,S] isomer of EDDS can be found in Neal and Rose, Stereospecific Ligands and Their Complexes of Ethylenediaminediscuccinic Acid, Inorganic Chemistry, Vol 7 (1968), pp. 2405-2412.
    The concentration of the aqueous solutions of the chelating agent is not critical in the present invention. However, it is convenient to use solutions which are readily available commercially. Aqueous solutions having a concentration of from 5% to 60% of the chelating agent are suitable.
    Polymers and/or Co-polymers
    The polymers and co-polymers of the present invention may be chosen from a wide range of organic polymers, some of which also may function as builders to improve detergency. Included among such polymers may be mentioned sodium carboxy-lower alkyl celluloses, sodium lower alkyl celluloses and sodium hydroxy-lower alkyl celluloses, such as sodium carboxymethyl cellulose, sodium methyl cellulose and sodium hydroxypropyl cellulose, polyvinyl alcohols (which often also include some polyvinyl acetate), polyacrylamides, polyacrylates, polyaspartates, polyvinylpyrrolidones and various copolymers, such as those of maleic and acrylic acids. Molecular weights for such polymers vary widely but most are within the range of 2,000 to 100,000.
    Polymeric polycarboxyate builders are set forth in U.S. Patent 3,308,067, Diehl, issued March 7, 1967. Such materials include the water-soluble salts of homo-and copolymers of aliphatic carboxylic acids such as maleic acid, itaconic acid, mesaconic acid, fumaric acid, aconitic acid, citraconic acid and methylenemalonic acid.
    Most preferred for use in the present invention are copolymers of maleic and acrylic acid having a molecular weight of from 2000 to 100000, carboxymethyl cellulose and mixtures thereof.
    The concentration of the aqueous solutions of the polymer or copolymer is not critical in the present invention.
    However, it is convenient to use solutions which are readily available commercially. Aqueous solutions having a concentration of from 5% to 60% of the polymer or copolymer are suitable.
    Granular Detergent Components
    It is another aspect of the invention that the high active surfactant paste described hereinabove may be treated by any suitable process, for example agglomeration with powders to form granular detergent components or compositions. In a preferred embodiment of the invention, the high active surfactant paste is mixed by fine dispersion mixing and granulation with an effective amount of powder.
    Any compatible detergency builder or combination of builders or powder can be used in the process and compositions of the present invention.
    The detergent compositions herein can contain crystalline aluminosilicate ion exchange material of the formula Naz[(AlO2)z·(SiO2)y]·xH2O wherein z and y are at least 6, the molar ratio of z to y is from 1.0 to 0.4 and z is from 10 to 264. Amorphous hydrated aluminosilicate materials useful herein have the empirical formula Mz(zAlO2·ySiO2) wherein M is sodium, potassium, ammonium or substituted ammonium, z is from 0.5 to 2 and y is 1, said material having a magnesium ion exchange capacity of at least 50 milligram equivalents of CaCO3 hardness per gram of anhydrous aluminosilicate. Hydrated sodium Zeolite A with a particle size of from 1 to 10 microns is preferred.
    The aluminosilicate ion exchange builder materials herein are in hydrated form and contain from 10% to 28% of water by weight if crystalline, and potentially even higher amounts of water if amorphous. Highly preferred crystalline aluminosilicate ion exchange materials contain from 18% to 22% water in their crystal matrix. The crystalline aluminosilicate ion exchange materials are further characterized by a particle size diameter of from 0.1 micron to 10 microns. Amorphous materials are often smaller, e.g., down to less than 0.01 micron. Preferred ion exchange materials have a particle size diameter of from 0.2 micron to 4 microns. The term "particle size diameter" herein represents the average particle size diameter by weight of a given ion exchange material as determined by conventional analytical techniques such as, for example, microscopic determination utilizing a scanning electron microscope. The crystalline aluminosilicate ion exchange materials herein are usually further characterized by their calcium ion exchange capacity, which is at least 200 mg equivalent of CaCO3 water hardness/g of aluminosilicate, calculated on an anhydrous basis, and which generally is in the range of from 300 mg eq./g to 352 mg eq./g. The aluminosilicate ion exchange materials herein are still further characterized by their calcium ion exchange rate which is at least 13x10-2 g/l/min/g/l (2 grains Ca++/gallon/minute/gram/gallon) of aluminosilicate (anhydrous basis) and generally lies within the range of from 13x10-2 g/l/min/g/l (2 grains/gallon/minute/gram/gallon) to 39x10-2 g/l/min/g/l (6 grains/gallon/minute/gram/gallon), based on calcium ion hardness. Optimum aluminosilicate for builder purposes exhibit a calcium ion exchange rate of at least 26x10-2 g/l/min/g/l (4 grains/gallon/minute/gram/gallon).
    The amorphous aluminosilicate ion exchange materials usually have a Mg++ exchange of at least 50 mg eq. CaCO3/g (12 mg Mg++/g) and a Mg++ exchange rate of at least 6.5x10-2 g/l/min/g/l (1 grain/gallon/minute/gram/gallon). Amorphous materials do not exhibit an observable diffraction pattern when examined by Cu radiation (1.54 Angstrom Units).
    Aluminosilicate ion exchange materials useful in the practice of this invention are commercially available. The aluminosilicates useful in this invention can be crystalline or amorphous in structure and can be naturally occurring aluminosilicates or synthetically derived. A method for producing aluminosilicate ion exchange materials is discussed in U.S. Pat. No. 3,985,669, Krummel et al., issued Oct. 12, 1976. Preferred synthetic crystalline aluminosilicate ion exchange materials useful herein are available under the designations Zeolite A, Zeolite B, and Zeolite X. In an especially preferred embodiment, the crystalline aluminosilicate ion exchange material has the formula Na12[(AlO2)12(SiO2)12]·xH2O wherein x is from 20 to 30, especially 27 and has a particle size generally less than 5 microns.
    The granular detergents of the present invention can contain neutral or alkaline salts which have a pH in solution of seven or greater, and can be either organic or inorganic in nature. The builder salt assists in providing the desired density and bulk to the detergent granules herein. While some of the salts are inert, many of them also function as detergency builder materials in the laundering solution.
    Examples of neutral water-soluble salts include the alkali metal, ammonium or substituted ammonium chlorides, fluorides and sulfates. The alkali metal, and especially sodium, salts of the above are preferred. Sodium sulfate is typically used in detergent granules and is a particularly preferred salt. Citric acid and, in general, any other organic or inorganic acid may be incorporated into the granular detergents of the present invention as long as it is chemically compatible with the rest of the agglomerate composition.
    Other useful water-soluble salts include the compounds commonly known as detergent builder materials. Builders are generally selected from the various water-soluble, alkali metal, ammonium or substituted ammonium phosphates, polyphosphates, phosphonates, polyphosphonates, carbonates, silicates, borates, and polyhyroxysulfonates. Preferred are the alkali metal, especially sodium, salts of the above.
    Specific examples of inorganic phosphate builders are sodium and potassium tripolyphosphate, pyrophosphate, polymeric metaphosphate having a degree of polymerization of from 6 to 21, and orthophosphate. Other phosphorus builder compounds are disclosed in U.S. Pat. Nos. 3,159,581; 3,213,030; 3,422,021; 3,422,137; 3,400,176 and 3,400,148.
    Examples of nonphosphorus, inorganic builders are sodium and potassium carbonate, bicarbonate, sesquicarbonate, tetraborate decahydrate, and silicate having a molar ratio of SiO2 to alkali metal oxide of from 0.5 to 4.0, preferably from 1.0 to 2.4. The compositions made by the process of the present invention does not require excess carbonate for processing, and preferably does not contain over 2% finely divided calcium carbonate as disclosed in U.S. Pat. No. 4,196,093, Clarke et al., issued Apr.1, 1980, and is preferably free of the latter.
    As mentioned above powders normally used in detergents such as zeolite, carbonate, silica, silicate, citrate, phosphate or perborate and process acids such as starch, can be used in preferred embodiments of the present invention.
    Processing
    The process steps of the present invention comprise:
  • 1. Mixing a surfactant premix with solutions of chelant and polymer
  • 2. Drying (optional)
  • 3. Transferring to a high speed mixer, preferably by means of a twin screw extruder.
  • 4. Agglomerating surfactant paste with an effective amount of powder
  • It will be understood that any convenient order of the process steps listed above can be contemplated. Also it may be possible and even advantageous to carry out two or more of the above operations in a single piece of process equipment. Each of these operations will now be described in more detail.
    Making a Paste Premix
    The surfactant paste premix may be prepared by any method which is known to the man skilled in the art. Particularly useful methods include sulphation and/or sulphonation or other reactions to make the desired anionic surfactants e.g. in a falling film sulphonating reactors, digestion tanks, esterification reactors, etc.
    It is particularly convenient to neutralise the acid precursers of anionic surfactants in a continuous neutralisation loop. In such a piece of equipment the acid precurser is fed into a loop together with a neutralising agent such as aqueous sodium hydroxide. The components are intimately mixed to promote neutralisation and then fed through a heat exchanger to be cooled. A proportion of the neutralised surfactant is removed from the loop, whilst the remainder is fed back to the point of injection of the acid and the alkali, and passes around the loop again.
    In the present invention the surfactant paste must then be mixed with a solution of a chelating agent and a solution of a polymer or co-polymer. This may be achieved in any convenient piece of mixing equipment, and may be carried out using any order of addition of the separate or premixed components.
    Paste Drying (in-line)
    It is preferred that the moisture in the surfactant aqueous paste is as low as possible, while maintaining paste fluidity, since low moisture leads to a higher concentration of the surfactant in the finished particle.
    Preferably the paste after drying contains between 5 and 40% water, more preferably between 15 and 35% water and most preferably between 15% and 25% water. A highly attractive mode of operation for lowering the moisture of the paste is the installation, in line, of an atmospheric or a vacuum flash drier, or a scraped surface heat exchanger or a wiped film evaporator.
    Twin Screw Extruder
    The extruder fulfils the functions of pumping and mixing the viscous surfactant paste on a continuous basis. A basic extruder consists of a barrel with a smooth inner cylindrical surface. Mounted within this barrel is the extruder screw. There is an inlet port for the high active paste which, when the screw is rotated, causes the paste to be moved along the length of the barrel.
    The detailed design of the extruder allows various functions to be carried out. Firstly additional ports in the barrel may allow other ingredients, including the chemical structuring agents to be added directly into the barrel. Secondly a vacuum pump and a seal around the shaft of the screw allows a vacuum to be drawn which enables the moisture level to be reduced. Thirdly means for heating or cooling may be installed in the wall of the barrel for temperature control. Fourthly, careful design of the extruder screw promotes mixing of the paste both with itself and with other additives.
    A preferred extruder is the twin screw extruder. This type of extruder has two screws mounted in parallel within the same barrel, which are made to rotate either in the same direction (co-rotation) or in opposite directions (counter-rotation). The co-rotating twin screw extruder is the most preferred piece of equipment for use in this invention.
    An extruder is particularly useful in this invention because the paste can be effectively cooled by adding liquid nitrogen or solid carbon dioxide into the barrel (this may be considered surprising, because normally an extruder heats its contents as a result of the mechanical energy input to overcome viscous shear forces) and at the same time pumps the increasingly viscous (colder) paste out of the extruder and into the mixer/agglomerator were granulation takes place.
    Suitable twin screw extruders for use in the present invention include those supplied by : APV Baker, (CP series); Werner and Pfleiderer, (Continua Series); Wenger, (TF Series); Leistritz, (ZSE Series); and Buss, (LR Series).
    The extruder allows the paste to be conditioned by moisture and temperature reduction. Moisture may be removed under vacuum, preferably between O mmHg (gauge) and -55 mmHg (gauge), (0 - 7.3 kPa below atmospheric pressure).
    Temperature may be reduced by the addition of solid carbon dioxide or liquid nitrogen directly into the extruder barrel. However, this is not a preferred mode of operation of the present invention.
    Fine Dispersion Mixing and Granulation
    Any apparatus, plants or units suitable for the processing of surfactants can be used for carrying out the process according to the invention. For mixing/ agglomeration any of a number of mixers/agglomerators can be used. In one preferred embodiment, the process of the invention is continuously carried out. Especially preferred are mixers of the FukaeR FS-G series manufactured by Fukae Powtech Kogyo Co., Japan; this apparatus is essentially in the form of a bowl-shaped vessel accessible via a top port, provided near its base with a stirrer having a substantially vertical axis, and a cutter positioned on a side wall. The stirrer and cutter may be operated independently of one another and at separately variable speeds. The vessel can be fitted with a cooling jacket or, if necessary, a cryogenic unit.
    Other similar mixers found to be suitable for use in the process of the invention include DiosnaR V series ex Dierks & Söhne, Germany; and the Pharma MatrixR ex T K Fielder Ltd., England. Other mixers believed to be suitable for use in the process of the invention are the FujiR VG-C series ex Fuji Sangyo Co., Japan; and the RotoR ex Zanchetta & Co srl, Italy.
    Other preferred suitable equipment can include EirichR, series RV, manufactured by Gustau Eirich Hardheim, Germany; LödigeR, series FM for batch mixing, series Baud KM for continuous mixing/agglomeration, manufactured by Lödige Machinenbau GmbH, Paderborn Germany; DraisR T160 series, manufactured by Drais Werke GmbH, Mannheim Germany; and WinkworthR RT 25 series, manufactured by Winkworth Machinery Ltd., Berkshire, England.
    The Littleford Mixer, Model #FM-130-D-12, with internal chopping blades and the Cuisinart Food Processor, Model #DCX-Plus, with 7.75 inch (19.7 cm) blades are two examples of suitable mixers. Any other mixer with fine dispersion mixing and granulation capability and having a residence time in the order of 0.1 to 10 minutes can be used. The "turbine-type" impeller mixer, having several blades on an axis of rotation, is preferred. The invention can be practiced as a batch or a continuous process.
    The paste can be introduced into the mixer at an initial temperature between its softening point (generally in the range of 40-60°C) and its degradation point (depending on the chemical nature of the paste, e.g. alkyl sulphate pastes tend to degrade above 75-85°C). High temperatures reduce viscosity simplifying the pumping of the paste but result in lower active agglomerates.
    The introduction of the paste into the mixer can be done in many ways, from simply pouring to high pressure pumping through small holes at the end of the pipe, before the entrance to the mixer. While all these ways are viable to manufacture agglomerates with good physical properties, it has been found that in a preferred embodiment of the present invention the extrusion of the paste results in a better distribution in the mixer which improves the yield of particles with the desired size. The use of high pumping pressures prior to the entrance in the mixer results in an increased activity in the final agglomerates.
    By combining both effects, and introducing the paste through holes (extrusion) small enough to allow the desired flow rate but that keep the pumping pressure to a maximum feasible in the system, highly advantageous results are achieved.
    It is also within the scope of the present invention that the resulting detergent granules may be dried, cooled and/or dusted with a suitable surface coating agent.
    Examples
    In these examples the following abbreviations have been used:
    C45AS/AE3S (80:20) ; A mixture of Sodium C14-15 Alkyl Sulphate/C13-15Alkyl Ethoxy Sulphate in the ratio 80% by weight alkyl sulphate to 20% by weight alkyl ethoxy sulphate.
    Example 1
    This example describes the process in batch mode in a lab scale high shear mixer (food processor manufactured by Braun [Trade Name]). Three hundred grams of powders are added first to the mixer. In this particular case a 1.2:1.0 ratio of Zeolite A to finely divided light density sodium carbonate is used.
    The surfactant is an aqueous paste of C45AS/AE3S (80:20) with a detergent activity of 78%, and a water content of 16%. In this example the paste is pre-mixed in a batch mixer with a 40% solution of the co-polymer of maleic and acrylic acid , sodium salt and a 20% solution of the sodium salt of the ethylene diamine-N,N-disuccinic acid. The weight ratio of paste : polymer : chelating agent was 1 : 0.64 : 0.09. The mixture is then dried to the original paste moisture of 16%. The paste mixture is placed into an oven at 60 °C until thermal equilibrium is reached.The mixer is then started and paste added at a rate of 500g/min until the onset of agglomeration and formation of granules.
    The end point is sharp and easily recognized. It is characterized by an increased power draw by the mixer, and a change in the mixer contents from a mixture of finely divided powders and distributed surfactant paste, to agglomerates containing powders and paste having a mean particle size between 400 - 600 micrometers. The activity of the agglomerates formed is 51%.
    The agglomerates were dried in a fluid bed drier and the rate of surfactant release of the resulting agglomerates was tested in a Sotax bath at 20 °C in distilled water (see section B - test method). The time taken for 50% of the surfactant to dissolve is 78 seconds.
    Comparative example 2
    This example describes the process in batch mode in a lab scale high shear mixer (food processor) as used in example 1. Three hundred grams of powders are added to the mixer.
    The powders composition is a 1.2:1.0 ratio of zeolite A to finely divided light density sodium carbonate.
    The surfactant is an aqueous paste of C45AS/AE3S (80:20) with a detergent activity of 78%, and a water content of 16%. The paste temperature is 60 °C. The mixer is started and paste added at a rate of 500 g/min until the onset of agglomeration and the formation of granules. The activity of agglomerates formed is 40%.
    The agglomerates were dried in a fluid bed drier and the rate of surfactant release of the resulting agglomerates was tested in a Sotax bath at 20 °C in distilled water (see section B - test method). The time taken for 50% of the surfactant to dissolve is 114 seconds..
    Comparative example 3
    This example describes the process in batch mode in a lab scale high shear mixer (food processor) as used in example 1. Three hundred grams of powders are added first to the mixer. In this particular case a 1.2:1.0 ratio of Zeolite A to finely divided sodium carbonate is used.
    The surfactant is an aqueous paste of C45AS/AE3S (80:20) with a detergent activity of 78%, and a water content of 16%. In this example the paste is pre-mixed in a batch mixer with a 40% solution of the co-polymer of maleic and acrylic acid , sodium salt . The weight ratio of paste:polymer was 1:0.64. The mixture is then dried to the original paste moisture of 16%. The paste mixture is placed into an oven at 60 °C until thermal equilibrium is reached.The mixer is then started and paste added at a rate of 500 g/min until the onset of agglomeration and formation of granules. The activity of the agglomerates formed is 46%.
    The agglomerates were dried in a fluid bed drier and the rate of surfactant release of the resulting agglomerates was tested in a Sotax bath at 20°C in distilled water (see section B - test method). The time taken for 50% of the surfactant to dissolve is 84 seconds..
    Comparative example 4
    This example describes the process in batch mode in a lab scale high shear mixer (food processor) as used in example 1. Three hundred grams of powders are added first to the mixer. In this particular case a 1.2:1.0 ratio of Zeolite A to finely divided light density sodium carbonate is used.
    The surfactant is an aqueous paste of C45AS/AE3S (80:20) with a detergent activity of 78%, and a water content of 16%. In this example the paste is pre-mixed in a batch mixer with a 20% solution of the sodium salt of the ethylene diamine-N,N-disuccinic acid. The weight ratio of paste:chelating agent was 1:0.09. The mixture is then dried to the original paste moisture of 16%. The paste mixture is placed into an oven at 60 °C until thermal equilibrium is reached.The mixer is then started and paste added at a rate of 500 g/min until the onset of agglomeration and formation of granules. The activity of the agglomerates formed is 49%.
    The agglomerates were dried in a fluid bed drier and the rate of surfactant release of the resulting agglomerates was tested in a Sotax bath at 20 °C in distilled water (see section B - test method). The time taken for 50% of the surfactant to dissolve was 120 seconds.
    Example 1 illustrates the product of the present invention.
    Example 2 shows a comparison of a product made without chelant or polymer. The surfactant activity is lower and the rate of solubility is poorer.
    Example 3 shows a comparison of a product made with polymer only (ie without chelant). Good rate of solubility is achieved, but the particulate activity is lower. Example 4 shows a comparison of a product made with chelant only (ie without polymer). Good surfactant activity is obtained but the rate of solubility is poor.
    Section B - Test Methods Rate of Dissolution of Anionic Surfactant Agglomerates under Stressed Conditions (Sotax Method) Equipment
  • 1) Sotax cup (1L)
  • 2) Distilled water
  • 3) Electrical stirrer motor with variable speed (IKA-Werk RW 20 DZM)
  • 4) Stainless steel propeller stirrer (Sotax no 3990-2)
  • 5) 6 disposable filter type units with pore size 0.22 micron (25 mm diam., Millex No. SLGSO25NB Millipore).
  • 6) Plastic syringes (2 mL) and disposable needles (21x 1½)
  • 7) Sample collectors (15 mL glass tubes)
  • 8) Set of Tyler sieves and sieving equipment (Rotap)
  • 9) Thermostated bath
  • Sample Preparation
    Take a representative sample of 10g of the detergent composition.
    Experimental Procedure
  • 1) Place the cup containing 1 L of water (or desired solution) in the bath at the desired temperature. Allow the temperature of the water to reach that of the bath.
  • 2) Place the impeller in the cup at 0.33 cm from the bottom.
  • 3) Prepare 5 syringes with a filter unit and a needle. Prepare 1 syringe with needle without the filter.
  • 4) Set the mixer speed to 200 r.p.m.
  • 5) Quickly add 10 g of the product to be tested. Start the stopwatch.
  • 6) Remove, at precise intervals of 10 sec., 30 sec., 1 min. , 2,5 min. and 5 min, about 2 mL samples with the syringes. For adequate sampling, the needle has to be ± 4 cm below the surface of the liquid.
  • 7) After taking the 5 min. sample, increase the speed of the impeller to 300 r.p.m.
  • 8) After 10 minutes take another sample through the filter.
  • 9) Take a sample of the liquid with the syringe without filter. The difference between the result of this and the previous one is an indication of the solubility that can be expected at this temperature. Care must be taken that during this time, the system does not increase its temperature due to the vigorous stirring action.
  • 10) Carry out the analytical determination of the content of active ingredient (CatSO3 analysis or similar). When using a turbidimetric end point indication for the titration, care must be taken that there is no interference in the unfiltered sample due to the presence of insolubles.
  • 11) Calculate the percent dissolved in each sample by using the unfiltered sample as 100 % (by CatSO3 analysis, even the undissolved surfactant will be titrated).
  • 12) Plot the percent dissolved versus time for the first period of time (up to 5 min.). Calculate the percent solubility at the experimental conditions from the filtered sample at 10 min.
  • Claims (12)

    1. A free-flowing granular detergent component or composition having a bulk density of at least 650 g/l which comprises
      i) at least 35% by weight of anionic surfactant
      ii) 0.5% to 30% by weight of polymer or co-polymer characterised in that it further comprises
      iii) 0.5% to 10% by weight of chelating agent
         wherein the weight ratio of chelating agent to polymer/co-polymer is from 1:100 to 1:1.
    2. A free-flowing granular detergent component or composition according to claim 1 wherein the weight ratio of chelating agent to polymer/co-polymer is from 1:50 to 1:2, preferably from 1:20 to 1:5.
    3. A free-flowing granular detergent component or composition according to either claim 1 or claim 2 which comprises at least 50% by weight of anionic surfactant.
    4. A free-flowing granular detergent component or composition according to any of the previous claims wherein the chelating agent is chosen from the group of succinic acids, phosphonic acids, or their salts, or mixtures of these.
    5. A free-flowing granular detergent component or composition according to claim 4 wherein the chelating agent is ethylenediamine-N,N'-disuccinic acid or diethylene triamine penta (methylene phosphonic acid), or their salts, or mixtures of these.
    6. A free-flowing granular detergent component or composition according to either claim 1 or claim 2, wherein the polymer or co-polymer used is chosen from the copolymers of maleic and acrylic acid having a molecular weight of from 2 000 to 100 000, or carboxymethyl cellulose, or mixtures of these.
    7. A process for making a high active detergent paste which has a viscosity of at least 10 Pas when measured at 70°C and a shear rate of 25 s-1 by:
      i) preparing a paste premix which comprises at least 40% by weight of an anionic surfactant, and which is characterised in that the paste premix is
      ii) mixed with a solution comprising a polymer or co - polymer and
      iii) a solution comprising a chelating agent,
         wherein the weight ratio of chelating agent to polymer/co-polymer is from 1:100 to 1:1.
    8. A process for making a high active detergent paste according to claim 7 wherein the solution of the chelating agent is an aqueous solution comprising from 5% to 60% of a chelating agent is chosen from the group of succinic acids, phosphonic acids, or their salts, or mixtures of these.
    9. A process for making a high active detergent paste according to claim 7 wherein the solution of the polymer or co-polymer is an aqueous solution comprising from 5% to 60% of a copolymer of maleic and acrylic acid having a molecular weight of from 2 000 to 100 000.
    10. A process for making a high active granular detergent which comprises the steps of
      (i) preparing a paste premix which comprises at least 40% by weight of an anionic surfactant
      (ii) mixing the paste premix with a solution comprising a polymer or co-polymer, to give a high active detergent paste which has a viscosity of at least 10 Pas when measured at 70°C and a shear rate of 25 s-1
      (iii) mixing the paste premix with a solution comprising a chelating agent,
      (iv) transporting the high active detergent paste from (iii) to the inlet port of a high speed mixer;
      (v) mixing the high active detergent paste with an effective amount of powdered materials in said high speed mixer, having a residence time of from 1 second to 30 seconds;
      (vi) optionally drying and/or cooling the high active granular detergent.
      wherein the weight ratio of chelating agent (in step (iii)) to polymer/co-polymer (in step (ii)) is from 1:100 to 1:1.
    11. A process for making a high active granular detergent according to claim 10 wherein a twin-screw extruder is used in step iv) of the process.
    12. A process for making a high active granular detergent according to claim 11 wherein a drier is used before the twin-screw extruder.
    EP19930870058 1993-03-30 1993-03-30 High active granular detergents comprising chelants and polymers, and processes for their preparation Expired - Lifetime EP0618289B1 (en)

    Priority Applications (6)

    Application Number Priority Date Filing Date Title
    DE1993620455 DE69320455T2 (en) 1993-03-30 1993-03-30 Highly active granular detergents containing chelating agents and polymers and processes for their production
    EP19930870058 EP0618289B1 (en) 1993-03-30 1993-03-30 High active granular detergents comprising chelants and polymers, and processes for their preparation
    JP6522056A JPH08508525A (en) 1993-03-30 1994-02-23 Highly active granular detergents containing chelating agents and polymers and processes for their preparation
    CA002159178A CA2159178C (en) 1993-03-30 1994-02-23 High active granular detergents comprising chelants and polymers, and processes for their preparation
    US08/532,555 US5712242A (en) 1993-03-30 1994-02-23 High active granular detergents comprising chelants and polymers, and processes for their preparation
    PCT/US1994/001917 WO1994022992A1 (en) 1993-03-30 1994-02-23 High active granular detergents comprising chelants and polymers, and processes for their preparation

    Applications Claiming Priority (1)

    Application Number Priority Date Filing Date Title
    EP19930870058 EP0618289B1 (en) 1993-03-30 1993-03-30 High active granular detergents comprising chelants and polymers, and processes for their preparation

    Publications (2)

    Publication Number Publication Date
    EP0618289A1 EP0618289A1 (en) 1994-10-05
    EP0618289B1 true EP0618289B1 (en) 1998-08-19

    Family

    ID=8215330

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP19930870058 Expired - Lifetime EP0618289B1 (en) 1993-03-30 1993-03-30 High active granular detergents comprising chelants and polymers, and processes for their preparation

    Country Status (5)

    Country Link
    EP (1) EP0618289B1 (en)
    JP (1) JPH08508525A (en)
    CA (1) CA2159178C (en)
    DE (1) DE69320455T2 (en)
    WO (1) WO1994022992A1 (en)

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US8262852B2 (en) 2006-11-03 2012-09-11 Nalco Company Method for improving fiber quality and process efficiency in mechanical pulping

    Families Citing this family (10)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP0659871B1 (en) * 1993-12-23 2000-06-21 The Procter & Gamble Company Rinsing compositions
    GB2285053A (en) * 1993-12-23 1995-06-28 Procter & Gamble Rinse aid composition
    CN1234825A (en) * 1996-08-26 1999-11-10 普罗格特-甘布尔公司 Agglomeration process for producing detergent compositions involving premixing modified polyamine polymers
    US6046153A (en) * 1996-08-26 2000-04-04 The Procter & Gamble Company Spray drying process for producing detergent compositions involving premixing modified polyamine polymers
    GB9618877D0 (en) * 1996-09-10 1996-10-23 Unilever Plc Process for preparing high bulk density detergent compositions
    GB9618875D0 (en) * 1996-09-10 1996-10-23 Unilever Plc Process for preparing high bulk density detergent compositions
    JP2001518525A (en) * 1997-07-15 2001-10-16 ザ、プロクター、エンド、ギャンブル、カンパニー Production method of highly active detergent aggregates by multi-stage surfactant paste injection
    ES2196635T3 (en) * 1998-11-25 2003-12-16 Procter & Gamble PROCEDURE TO PREPARE A CLEANING COMPOSITION.
    DE102004032320A1 (en) 2004-07-02 2006-01-19 Basf Ag Mixed powder or mixed granules based on MGDA
    EP1803801A1 (en) 2006-01-03 2007-07-04 Basf Aktiengesellschaft Powder or granulate based on glutamic-N,N,diacetic acid and its salts

    Family Cites Families (10)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE2857294A1 (en) * 1977-09-26 1980-02-28 Procter & Gamble DETERGENT MIXTURE WITH LOW PHOSPHATE CONTENT FOR WASHING TEXTILES
    US4894117A (en) * 1988-04-28 1990-01-16 Colgate-Palmolive Company Process for manufacturing high bulk density particulate fabric softening synthetic anionic organic detergent compositions
    US4925585A (en) * 1988-06-29 1990-05-15 The Procter & Gamble Company Detergent granules from cold dough using fine dispersion granulation
    US5045238A (en) * 1989-06-09 1991-09-03 The Procter & Gamble Company High active detergent particles which are dispersible in cold water
    US5152932A (en) * 1989-06-09 1992-10-06 The Procter & Gamble Company Formation of high active detergent granules using a continuous neutralization system
    ATE121126T1 (en) * 1990-07-10 1995-04-15 Procter & Gamble METHOD FOR PRODUCING A HIGH BULK DENSITY CLEANING AGENT.
    US5066425A (en) * 1990-07-16 1991-11-19 The Procter & Gamble Company Formation of high active detergent particles
    CZ90793A3 (en) * 1990-11-14 1994-06-15 Procter & Gamble Preparations free of phosphates and with oxygen-containing bleaching systems for automatic dish washers, and process for preparing thereof
    EP0510746A3 (en) * 1991-04-12 1993-09-08 The Procter & Gamble Company Process for preparing condensed detergent granules
    DE69221357T2 (en) * 1991-04-12 1998-03-12 Procter & Gamble Chemical structuring of surface-active pastes for the production of highly effective surfactant granules

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US8262852B2 (en) 2006-11-03 2012-09-11 Nalco Company Method for improving fiber quality and process efficiency in mechanical pulping

    Also Published As

    Publication number Publication date
    JPH08508525A (en) 1996-09-10
    CA2159178C (en) 1999-05-11
    DE69320455D1 (en) 1998-09-24
    CA2159178A1 (en) 1994-10-13
    EP0618289A1 (en) 1994-10-05
    DE69320455T2 (en) 1999-04-22
    WO1994022992A1 (en) 1994-10-13

    Similar Documents

    Publication Publication Date Title
    US5712242A (en) High active granular detergents comprising chelants and polymers, and processes for their preparation
    EP0508543B1 (en) Chemical structuring of surfactant pastes to form high active surfactant granules
    EP0656825B1 (en) Process for making compact detergent compositions
    EP0510746A2 (en) Process for preparing condensed detergent granules
    US5663136A (en) Process for making compact detergent compositions
    EP0618289B1 (en) High active granular detergents comprising chelants and polymers, and processes for their preparation
    EP0578871B1 (en) Process and compositions for compact detergents
    US5494599A (en) Agglomeration of high active pastes to form surfactant granules useful in detergent compositions
    EP0560001B1 (en) High active detergent pastes
    EP0639638A1 (en) Process for making detergent compositions
    US5451354A (en) Chemical structuring of surfactant pastes to form high active surfactant granules
    US5703037A (en) Process for the manufacture of free-flowing detergent granules
    WO1994002574A1 (en) Detergent compositions
    US5529722A (en) High active detergent pastes
    EP0816486B1 (en) Process for conditioning of surfactant pastes to form high active surfactant agglomerates
    EP0678573B1 (en) Process for the manufacture of free-flowing detergent granules
    US6172033B1 (en) Process for conditioning of surfactant pastes to form high active surfactant agglomerates
    AU1878592A (en) Agglomeration of high active pastes to form surfactant granules useful in detergent compositions

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE FR GB SE

    17P Request for examination filed

    Effective date: 19950323

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    17Q First examination report despatched

    Effective date: 19970828

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    RBV Designated contracting states (corrected)

    Designated state(s): DE FR GB SE

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE FR GB SE

    REF Corresponds to:

    Ref document number: 69320455

    Country of ref document: DE

    Date of ref document: 19980924

    ET Fr: translation filed
    PLBI Opposition filed

    Free format text: ORIGINAL CODE: 0009260

    PLBF Reply of patent proprietor to notice(s) of opposition

    Free format text: ORIGINAL CODE: EPIDOS OBSO

    26 Opposition filed

    Opponent name: HENKEL KGAA

    Effective date: 19990512

    PLBF Reply of patent proprietor to notice(s) of opposition

    Free format text: ORIGINAL CODE: EPIDOS OBSO

    PLBF Reply of patent proprietor to notice(s) of opposition

    Free format text: ORIGINAL CODE: EPIDOS OBSO

    PLBO Opposition rejected

    Free format text: ORIGINAL CODE: EPIDOS REJO

    PLBN Opposition rejected

    Free format text: ORIGINAL CODE: 0009273

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: OPPOSITION REJECTED

    27O Opposition rejected

    Effective date: 20001210

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20050303

    Year of fee payment: 13

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060331

    EUG Se: european patent has lapsed
    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20090331

    Year of fee payment: 17

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20090306

    Year of fee payment: 17

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20101130

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100331

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20101001

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20110221

    Year of fee payment: 19

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20120330

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20120330