EP0617447B1 - Method for adjusting the armature travel in a relay - Google Patents

Method for adjusting the armature travel in a relay Download PDF

Info

Publication number
EP0617447B1
EP0617447B1 EP94103581A EP94103581A EP0617447B1 EP 0617447 B1 EP0617447 B1 EP 0617447B1 EP 94103581 A EP94103581 A EP 94103581A EP 94103581 A EP94103581 A EP 94103581A EP 0617447 B1 EP0617447 B1 EP 0617447B1
Authority
EP
European Patent Office
Prior art keywords
contact
armature
section
contact spring
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94103581A
Other languages
German (de)
French (fr)
Other versions
EP0617447A1 (en
Inventor
Heinz Stadler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0617447A1 publication Critical patent/EP0617447A1/en
Application granted granted Critical
Publication of EP0617447B1 publication Critical patent/EP0617447B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H49/00Apparatus or processes specially adapted to the manufacture of relays or parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/16Magnetic circuit arrangements
    • H01H50/18Movable parts of magnetic circuits, e.g. armature
    • H01H50/34Means for adjusting limits of movement; Mechanical means for adjusting returning force
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H11/00Apparatus or processes specially adapted for the manufacture of electric switches
    • H01H2011/0087Welding switch parts by use of a laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/54Contact arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/54Contact arrangements
    • H01H50/548Contact arrangements for miniaturised relays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H51/00Electromagnetic relays
    • H01H51/22Polarised relays
    • H01H51/2272Polarised relays comprising rockable armature, rocking movement around central axis parallel to the main plane of the armature

Definitions

  • the invention relates to a method for adjusting the armature stroke on a relay having at least one contact spring which can be actuated by an armature and which is fastened to a carrier with a fastening section in order to cooperate with a contact section with a mating contact element firmly anchored in a base body.
  • the aim of the present invention is therefore to provide a method for setting the armature stroke, which enables a final overstroke setting already in the assembly process, without the tolerances of the individual parts impairing the result.
  • the contact force or a corresponding overstroke is thus set during manufacture in the closed state of each contact; only then is the contact spring itself fixed with its fastening section. This ensures that the tolerances of the individual parts no longer affect the position of the fully assembled contact spring and that subsequent contact adjustment is therefore no longer necessary.
  • a metal connection element is provided as a carrier for the contact springs, which also represents the current supply to the contact spring.
  • the contact spring is usually welded to its support after the overstroke has been set; a soldered connection or an equivalent fastening is also possible.
  • the relay shown in Figures 1 to 3 has a base 1 on which a contact arrangement 2 is movably mounted, which in turn is firmly connected to a rocker armature 3.
  • a flat permanent magnet 4 is arranged approximately parallel to it, which lies with a center pole above the bearing point of the armature and has two poles of the same name to the center pole at its two ends.
  • a coil 5 is arranged above the permanent magnet and above the armature, which carries a winding 57 on a coil former 50 with two flanges 51 and 52 and in the coil former tube receives a rod-shaped core 6.
  • a pole piece 7 is connected to the ends of the core.
  • Each of the pole shoes 7 is also coupled to one end of the permanent magnet 4 in the region of a coil end and forms a pole surface for the armature 3 at the bottom.
  • the coil flanges 51 and 52 each have lugs 53 which are extended downwards and overlap the base 1 in a box-like manner and come to lie in recesses 18 in the base.
  • Vertical grooves 55 are also provided in the coil flanges or extensions 53, into which coil connection elements 56 are inserted.
  • the base 1, shown enlarged in FIG. 3, consists of a base base body 10 which is formed from insulating material and in which fixed mating contact elements 11, 12, 13 and 14 as well as connecting elements 15 and 16 for movable middle contact elements are anchored. All these contact elements are expediently cut out of a common circuit board and embedded in the base body with a fastening section parallel to the base surface of the base. Of these embedded sections, connecting pins 11a, 12a, 13a, 14a, 15a and 16a are bent perpendicular to the underside of the base.
  • the counter-contact elements 11, 12, 13 and 14 themselves are exposed at the top of the base in the trough-shaped base body 10 and are provided with welding profiles 11b, 12b, 13b and 14b.
  • connection elements 15 and 16 are bent upwards on opposite sides of the base, where they form two bearing supports 15b and 16b for the movable contact arrangement or for the armature by means of corresponding bends and offsets.
  • a rib 17 is formed in each case between the fixed counter-contact elements 11 and 13 or 12 and 14 lying next to one another in order to enlarge the insulating distances.
  • the movable contact arrangement 2 has a contact carrier 20 made of insulating material, in which contact springs 21, 22, 23 and 24 are embedded. These contact springs optionally work together with the fixed counter-contact elements 11, 12, 13 and 14 located below them. To form two changeover contacts, the contact springs 21 and 22 are connected in one piece in the present example, so that they form a center contact element which is mechanically and electrically connected to the connecting element 15 in the base via a bearing band 25. Accordingly, the contact springs 23 and 24 are integrally connected to a bearing band 26 and coupled to the connecting element 16. The contact arrangement 2 is firmly connected to the armature 3 via two fastening pins 27.
  • the movable contact arrangement 2 When installing the relay, the movable contact arrangement 2 is first combined with the armature 3 to form an armature-contact assembly, the fastening pins 27 being anchored in the armature bores by hot deformation. Then this armature-contact assembly is connected to the base 1, the contact distances or the respective contact overstroke being set in a defined manner. This will now be explained in more detail with reference to FIGS. 3 to 7.
  • the carrier 20 has lateral lugs 28 from which the two bearing strips emerge in the longitudinal direction of the armature, from where they are then bent vertically upward with a relatively small radius. These upwardly bent sections of the bearing strips thus lie in a common plane perpendicular to the base plane, which on the other hand also runs approximately through the bearing axis of the armature.
  • the contact distances or the respective overstroke are set to a predetermined value. This is preferably done with a device according to FIG. 4 or with a comparable device.
  • the armature-contact assembly with the contact springs 21, 22, 23 and 24 or their contacting sections lies on the associated mating contact elements 11, 12, 13 and 14 on.
  • the bearing strips or connecting tabs 25 and 26 rest with their vertical contact surfaces on the bearing supports 15b and 16b of the connecting elements 15 and 16.
  • the mounting device 9 shown in Figure 4 contains a schematically shown measuring device 90, which is brought with two electrically conductive legs 91 and 92 to a coupling point on the top 35 of the armature (double arrow 95) until an electrical passage from the leg 91 over the armature to Leg 92 takes place and is determined in the measuring device mentioned. If the armature is crooked due to a deformed contact spring, a certain pressure force is required to establish the electrical continuity over the armature. The size of the deformation can be derived from the size of this necessary pressing force; if a maximum permissible predetermined force is exceeded, the anchor system is eliminated as faulty.
  • the measuring device travels down a predetermined path, that is to say toward the base 1.
  • a predetermined path that is to say toward the base 1.
  • an electrical connection is established between the four contact springs 21, 22, 23 and 24 on the one hand and the associated mating contact elements 11, 12, 13 and 14 in the base on the other hand. This is determined by measurement on the connection pins 11a, 12a, 13a and 14a.
  • This test procedure ensures that at least one contact arm each contact springs 21, 22, 23 and 24 divided into two arms each ensure a sufficient overstroke. This position with overtravel on all contact springs is shown in FIG. 5.
  • a slide 96 which is located in the measuring device 90, is lowered (double arrow direction 97).
  • the armature 3 is held by a permanent magnet 98 which is fastened on the slide 96.
  • the measuring device is now moved upwards together with the armature assembly, taking the previously generated overstroke into account, corresponding to the desired contact distance 29 when the armature is in the middle position (double arrow 95).
  • This position is shown in Figure 6.
  • the bearing strips 25 and 26 of the armature contact assembly are now at the desired height with respect to the bearing sockets 15b and 16b of the base assembly. In this position, the bearing strips 25 and 26 are welded to the adjacent bearing supports 15b and 16b, respectively.
  • the welding can be carried out, for example, as resistance welding or laser welding.
  • the magnet system according to FIGS. 1 and 2 with the coil 5, the core 6, the pole pieces 7 and the permanent magnet 4 is then pushed onto the base assembly until the desired armature stroke is reached.
  • the coil body is clamped onto the base body 10 or fixed in some other way.
  • the position of the pole shoes 7 with respect to the armature 3 is shown schematically in FIG. Due to the polarization of the system with the permanent magnet 4, the armature is optionally attracted to one of its ends or one of its pole faces 32 or 33 to the opposite pole shoe 7.
  • the contact spring section below - in FIG. 7 the contact spring 24 - is taken upwards, while the opposite contact spring section - in FIG. 7 the contact spring 23 - is pressed onto the mating contact element underneath.
  • the contact distance 29 in the central position of FIG. 6 does not correspond to the full armature stroke, but about half of it, since the respective anchor wing moves upwards to the pole shoe 7 in each case beyond the central position when the contact is opened.
  • the contact distance 29 also does not correspond exactly to half the armature stroke, since when the corresponding armature wing moves downward from the central position, the associated contact spring section only moves along part of the armature stroke and then lies against the counter-contact element, while the armature itself performs the described overstroke to generate the desired contact force.
  • the person skilled in the art can easily set the distance 29 such that the desired overstroke is ensured.
  • FIGS. 8 and 9 show the possibility of a contact setting according to the invention using the example of a folding armature relay.
  • a base body 101 is shown there, which carries a winding 102, a core 103 and an angled yoke 104 as the coil body.
  • An armature 105 forms a working air gap with a slightly rounded core pole surface 106.
  • a contact spring 107 is fastened to the armature, which is to be fastened to the yoke with a fastening section 108, which thus also serves as a bearing spring for the armature 105.
  • the free end of the contact spring 107 forms a contact section 109 with a contact piece, which forms a normally open contact with a mating contact element 110.
  • This counter-contact element 110 is anchored in the base body 101 in a conventional manner.
  • Another mating contact element 111 can be provided to form a changeover contact.
  • the arrangement is first selected in accordance with FIG. 8 such that the armature 105 abuts the pole face 106 and the contact section 109 abuts the counter-contact element 110. Then the fastening section 108 is moved in the direction of arrow 112 on the yoke, while the armature is kept in contact with the pole face. This results in a change in the anchor angle relative to the bearing point on the yoke, as is exaggerated in FIG. 9. The armature rolls on the pole face 106, while the contact spring cannot go along with this overstroke because its contacting section 109 is already in contact with the mating contact element 110. As soon as the desired overstroke has been reached, the fastening section 108 is connected to the yoke 104 at a welding point 113.
  • FIGS. 10 and 11 show the setting of an armature overstroke using the example of a relay with slide actuation of the contact spring.
  • a winding 202 is arranged on a coil former 201.
  • a U-shaped yoke 203 is connected to the coil or arranged on a base body, not shown.
  • an armature 205 is arranged within the coil in such a way that it forms a working air gap with a pole face 206 of the base body.
  • a slide 204 is coupled to the free end of the armature and transmits the armature movement to a contact spring 207.
  • This contact spring has a fastening section 208 and a contact section 209 with a contact piece which interacts with a mating contact element 210 anchored in the base body.
  • the contact spring is actuated via the slide 204 at the free end 211 of the spring, so that the contact section 209 lies between the fastening section 208 and the actuating section 211.
  • the fastening section is displaceable on a carrier 212 and can be fastened thereon, this carrier 212 being a connecting element anchored in the base body.
  • the armature 205 is first brought into its working position on the pole face 206, as shown in FIG. 10, so that the slide 204 assumes its lower position (in FIG. 10).
  • the contact spring 207 is arranged so that on the one hand with the slider 211 is engaged and, on the other hand, its contact section 209 bears against the mating contact element 210.
  • the fastening section 208 is displaced in the direction of the arrow 213, that is to say parallel to the actuating direction of the slide 204, until the desired overstroke or the desired contact force is reached. In this arrangement shown in FIG. 11, the fastening section 208 is then welded to the carrier 212.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnets (AREA)
  • Breakers (AREA)
  • Portable Nailing Machines And Staplers (AREA)
  • Gear-Shifting Mechanisms (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

In the case of the method, a contact spring (23) which is operatively connected to an armature (3) is moved, when in a position corresponding to the operating position of the armature, into touching contact with its respective mating contact element. After this, a further movement is exerted on the armature in such a manner that the desired contact force is produced. A fastening end of the respective contact spring is fitted to a support (20) in a position corresponding to the further movement, and is connected to said support (20). As a result of the additional movement setting before fastening of the contact spring, this contact spring is already fixed in the correct position on its support so that tolerance accumulation is largely precluded and subsequent adjustment is avoided. <IMAGE>

Description

Die Erfindung betrifft ein verfahren zur Einstellung des Ankerhubes an einem Relais mit mindestens einer von einem Anker betätigbaren Kontaktfeder, welche mit einem Befestigungsabschnitt an einem Träger befestigt wird, um mit einem Kontaktabschnitt mit einem in einem Grundkörper fest verankertem Gegenkontaktelement zusammenzuwirken.The invention relates to a method for adjusting the armature stroke on a relay having at least one contact spring which can be actuated by an armature and which is fastened to a carrier with a fastening section in order to cooperate with a contact section with a mating contact element firmly anchored in a base body.

Bei Relais der verschiedensten Bauarten besteht generell das Problem, daß sich vielfach aufgrund eines Schichtaufbaus Toleranzen der Einzelelemente summieren, so daß nach dem Zusammenbau die Kontakte nicht in der gewünschten Weise schließen oder zumindest nicht die nötige Kontaktkraft ergeben. Um eine bestimmte Kontaktkraft zwischen einer Kontaktfeder und einem Gegenkontaktelement zu erzeugen, ist ohnehin ein Überhub, also eine Bewegung der Kontaktfeder über die erste Berührung mit dem Gegenkontaktelement hinaus, erforderlich. Um diesen Überhub einzustellen und die gewünschte Kontaktkraft zu erzeugen, ist es deshalb vielfach erforderlich, die Kontaktfedern nach der Montage des Relais zusätzlich durch Biegen zu justieren. Eine solche Biegejustierung ist jedoch nicht nur arbeitsaufwendig, sondern auch fehleranfällig. Insbesondere bei sehr kleinen Relais bedeutet es zudem eine Einschränkung der konstruktiven Gestaltungsmöglichkeiten, wenn die Kontaktfedern einzeln für eine Biegejustierung zugänglich sein müssen.In the case of relays of the most varied types, there is generally the problem that tolerances of the individual elements often accumulate due to a layer structure, so that after the assembly the contacts do not close in the desired manner or at least do not give the necessary contact force. In order to generate a certain contact force between a contact spring and a mating contact element, an overstroke, that is to say a movement of the contact spring beyond the first contact with the mating contact element, is required anyway. In order to set this overstroke and to generate the desired contact force, it is often necessary to additionally adjust the contact springs by bending after installing the relay. Such a bend adjustment is not only labor intensive, but also prone to errors. In the case of very small relays in particular, it also means that the design options can be restricted if the contact springs must be individually accessible for bending adjustment.

Ziel der vorliegenden Erfindung ist es deshalb, ein Verfahren zur Einstellung des Ankerhubes anzugeben, welches bereits im Montageablauf eine endgültige Überhubeinstellung ermöglicht, ohne daß die Toleranzen der Einzelteile das Ergebnis beeinträchtigen.The aim of the present invention is therefore to provide a method for setting the armature stroke, which enables a final overstroke setting already in the assembly process, without the tolerances of the individual parts impairing the result.

Erfindungsgemäß umfaßt ein solches Verfahren bei einem Relais der eingangs genannten Art die folgenden Schritte:

  • die mit dem Anker in Wirkverbindung stehende Kontaktfeder wird bei einer der Arbeitsposition des Ankers entsprechenden Stellung in Kontaktberührung mit dem Gegenkontaktelement gebracht,
  • der Kontaktabschnitt der Kontaktfeder wird in eine einem vorgegebenen Überhub entsprechende Position gebracht und
  • dann wird der Befestigungsabschnitt der Kontaktfeder in einer dem Überhub entsprechenden Position mit dem Träger verbunden.
According to the invention, such a method comprises the following steps for a relay of the type mentioned at the beginning:
  • the contact spring which is operatively connected to the armature is brought into contact with the mating contact element in a position corresponding to the working position of the armature,
  • the contact section of the contact spring is brought into a position corresponding to a predetermined overstroke and
  • then the fastening section of the contact spring is connected to the carrier in a position corresponding to the overstroke.

Bei dem erfindungsgemäßen Verfahren wird also bereits bei der Fertigung im geschlossenen Zustand eines jeden Kontaktes die Kontaktkraft bzw. ein entsprechender Überhub eingestellt; erst danach wird die Kontaktfeder selbst mit ihrem Befestigungsabschnitt fixiert. Dadurch wird gewährleistet, daß sich die Toleranzen der Einzelteile nicht mehr auf die Position der fertig montierten Kontaktfeder auswirken und daß somit eine nachträgliche Kontaktjustierung nicht mehr erforderlich ist.In the method according to the invention, the contact force or a corresponding overstroke is thus set during manufacture in the closed state of each contact; only then is the contact spring itself fixed with its fastening section. This ensures that the tolerances of the individual parts no longer affect the position of the fully assembled contact spring and that subsequent contact adjustment is therefore no longer necessary.

Je nach dem Aufbau eines Relaissystems wird dieses Verfahren in zweckmäßiger Weise abgewandelt. Entsprechende Verfahrensabläufe sind in den Unteransprüchen angegeben.Depending on the structure of a relay system, this method is expediently modified. Corresponding procedures are specified in the subclaims.

In der Regel wird als Träger für die Kontaktfedern ein metallisches Anschlußelement vorgesehen sein, welches zugleich die Stromzuführung zu der Kontaktfeder darstellt. In diesen Fällen wird die Kontaktfeder in der Regel nach dem Einstellen des Überhubs an ihren Träger geschweißt; möglich ist aber auch eine Lötverbindung oder eine gleichwertige Befestigung. Weiterhin ist es zweckmäßig, im Fertigungsablauf vor der Befestigung der Kontaktfeder den Stromdurchgang an den geschlossenen Kontakten zu prüfen. So ist es möglich, bei auftretenden Abweichungen der Überhubeinstellung die Werkzeuge nachzujustieren, ohne daß fehlerhafte Relais produziert werden.As a rule, a metal connection element is provided as a carrier for the contact springs, which also represents the current supply to the contact spring. In these cases, the contact spring is usually welded to its support after the overstroke has been set; a soldered connection or an equivalent fastening is also possible. Furthermore, it is advisable to check the continuity of current at the closed contacts in the manufacturing process before attaching the contact spring. This makes it possible to use the tools in the event of deviations in the overstroke setting readjust without producing faulty relays.

Die Erfindung wird nachfolgend an Ausführungsbeispielen anhand der Zeichnung naher erläutert. Es zeigen

  • Figur 1 ein Relais mit einem Wippanker, der eine symmetrische Kontaktfederanordnung trägt,
  • Figur 2 das Relais von Figur 1 in geschnittener Darstellung,
  • Figur 3 den Sockel und die Ankerbaugruppe des Relais von Figur 1,
  • Figur 4 eine Montagevorrichtung für die Ankerbaugruppe von Figur 3,
  • Figuren 5, 6 und 7 den Sockel und die Ankerbaugruppe des Relais von Figur 1 in verschiedenen Montageschritten (im Schnitt),
  • Figur 8 und Figur 9 ein schematisch dargestelltes Klappankerrelais in zwei verschiedenen Montagezuständen und
  • Figur 10 und Figur 11 ein Relais mit Schieberbetätigung in zwei schematisch dargestellten Montagezuständen.
The invention is explained in more detail below using exemplary embodiments with reference to the drawing. Show it
  • 1 shows a relay with a rocker armature which carries a symmetrical contact spring arrangement,
  • FIG. 2 shows the relay from FIG. 1 in a sectional representation,
  • FIG. 3 the base and the armature assembly of the relay from FIG. 1,
  • FIG. 4 shows a mounting device for the armature assembly from FIG. 3,
  • FIGS. 5, 6 and 7 the base and the armature assembly of the relay from FIG. 1 in different assembly steps (in section),
  • Figure 8 and Figure 9 is a schematically illustrated hinged armature relay in two different mounting states and
  • Figure 10 and Figure 11 shows a relay with slide actuation in two schematically illustrated mounting states.

Das in den Figuren 1 bis 3 dargestellte Relais besitzt einen Sockel 1, auf welchem eine Kontaktanordnung 2 beweglich gelagert ist, welche ihrerseits mit einem Wippanker 3 fest verbunden ist. Oberhalb des Ankers ist annähernd parallel zu diesem ein flacher Dauermagnet 4 angeordnet, der mit einem Mittelpol über der Lagerstelle des Ankers liegt und an seinen beiden Enden zwei zum Mittelpol ungleichnamige Pole aufweist. Über dem Dauermagneten und über dem Anker ist eine Spule 5 angeordnet, welche auf einem Spulenkörper 50 mit zwei Flanschen 51 und 52 eine Wicklung 57 trägt und im Spulenkörperrohr einen stabförmigen Kern 6 aufnimmt. Mit den Enden des Kerns ist jeweils ein Polschuh 7 verbunden. Jeder der Polschuhe 7 ist im Bereich eines Spulenendes auch mit einem Ende des Dauermagneten 4 gekoppelt und bildet nach unten eine Polfläche für den Anker 3.The relay shown in Figures 1 to 3 has a base 1 on which a contact arrangement 2 is movably mounted, which in turn is firmly connected to a rocker armature 3. Above the armature, a flat permanent magnet 4 is arranged approximately parallel to it, which lies with a center pole above the bearing point of the armature and has two poles of the same name to the center pole at its two ends. A coil 5 is arranged above the permanent magnet and above the armature, which carries a winding 57 on a coil former 50 with two flanges 51 and 52 and in the coil former tube receives a rod-shaped core 6. A pole piece 7 is connected to the ends of the core. Each of the pole shoes 7 is also coupled to one end of the permanent magnet 4 in the region of a coil end and forms a pole surface for the armature 3 at the bottom.

Die Spulenflansche 51 und 52 besitzen an den vier Ecken des Systems jeweils nach unten verlängerte Ansätze 53, welche den Sockel 1 schachtelförmig übergreifen und in Ausnehmungen 18 des Sockels zu liegen kommen. In den Spulenflanschen bzw. den Fortsätzen 53 sind außerdem senkrechte Nuten 55 vorgesehen, in welche Spulenanschlußelemente 56 eingesteckt sind. Mit einer auf den Sockel 1 aufgesetzten Kappe 8 wird schließlich ein geschlossenes Gehäuse gebildet, das in üblicher Weise auch abgedichtet werden kann.At the four corners of the system, the coil flanges 51 and 52 each have lugs 53 which are extended downwards and overlap the base 1 in a box-like manner and come to lie in recesses 18 in the base. Vertical grooves 55 are also provided in the coil flanges or extensions 53, into which coil connection elements 56 are inserted. With a cap 8 placed on the base 1, a closed housing is finally formed, which can also be sealed in the usual way.

Der in Figur 3 vergrößert gezeichnete Sockel 1 besteht aus einem Sockel-Grundkörper 10, der aus Isolierstoff geformt ist und in welchem feststehende Gegenkontaktelemente 11, 12, 13 und 14 sowie Anschlußelemente 15 und 16 für bewegliche Mittel-Kontaktelemente verankert sind. Alle diese Kontaktelemente sind zweckmäßigerweise aus einer gemeinsamen Platine freigeschnitten und mit einem Befestigungsabschnitt parallel zur Bodenfläche des Sockels in den Grundkörper eingebettet. Von diesen eingebetteten Abschnitten sind jeweils Anschlußstifte 11a, 12a, 13a, 14a, 15a und 16a, senkrecht zur Unterseite des Sockels abgebogen. Die Gegenkontaktelemente 11, 12, 13 und 14 selbst liegen an der Oberseite des Bodens im wannenförmigen Sockel-Grundkörper 10 frei und sind mit Schweißprofilen 11b, 12b, 13b und 14b versehen. Die Anschlußelemente 15 und 16 jedoch sind an gegenüberliegenden Seiten des Sockels nach oben abgebogen, wo sie durch entsprechende Abwinkelungen und Abkröpfungen zwei Lagerstützen 15b und 16b für die beweglichen Kontaktanordnung bzw. für den Anker bilden. Zwischen den jeweils nebeneinander liegenden feststehenden Gegenkontaktelementen 11 und 13 bzw. 12 und 14 ist jeweils eine Rippe 17 zur Vergrößerung der Isolierstrecken angeformt.The base 1, shown enlarged in FIG. 3, consists of a base base body 10 which is formed from insulating material and in which fixed mating contact elements 11, 12, 13 and 14 as well as connecting elements 15 and 16 for movable middle contact elements are anchored. All these contact elements are expediently cut out of a common circuit board and embedded in the base body with a fastening section parallel to the base surface of the base. Of these embedded sections, connecting pins 11a, 12a, 13a, 14a, 15a and 16a are bent perpendicular to the underside of the base. The counter-contact elements 11, 12, 13 and 14 themselves are exposed at the top of the base in the trough-shaped base body 10 and are provided with welding profiles 11b, 12b, 13b and 14b. The connection elements 15 and 16, however, are bent upwards on opposite sides of the base, where they form two bearing supports 15b and 16b for the movable contact arrangement or for the armature by means of corresponding bends and offsets. A rib 17 is formed in each case between the fixed counter-contact elements 11 and 13 or 12 and 14 lying next to one another in order to enlarge the insulating distances.

Die bewegliche Kontaktanordnung 2 besitzt einen Kontaktträger 20 aus Isolierstoff, in welchen Kontaktfedern 21, 22, 23 und 24 eingebettet sind. Diese Kontaktfedern arbeiten wahlweise mit den unter ihnen liegenden feststehenden Gegenkontaktelementen 11, 12, 13 und 14 zusammen. Zur Bildung von zwei Umschaltkontakten sind im vorliegenden Beispiel die Kontaktfedern 21 und 22 einstückig verbunden, so daß sie ein Mittelkontaktelement bilden, das über ein Lagerband 25 mechanisch und elektrisch mit dem Anschlußelement 15 im Sockel verbunden ist. Entsprechend sind die Kontaktfedern 23 und 24 einstückig mit einem Lagerband 26 verbunden und an das Anschlußelement 16 gekoppelt. Über zwei Befestigungszapfen 27 ist die Kontaktanordnung 2 mit dem Anker 3 fest verbunden.The movable contact arrangement 2 has a contact carrier 20 made of insulating material, in which contact springs 21, 22, 23 and 24 are embedded. These contact springs optionally work together with the fixed counter-contact elements 11, 12, 13 and 14 located below them. To form two changeover contacts, the contact springs 21 and 22 are connected in one piece in the present example, so that they form a center contact element which is mechanically and electrically connected to the connecting element 15 in the base via a bearing band 25. Accordingly, the contact springs 23 and 24 are integrally connected to a bearing band 26 and coupled to the connecting element 16. The contact arrangement 2 is firmly connected to the armature 3 via two fastening pins 27.

Bei der Montage des Relais wird die bewegliche Kontaktanordnung 2 zunächst mit dem Anker 3 zu einer Anker-Kontakt-Baugruppe vereinigt, wobei die Befestigungszapfen 27 in Bohrungen des Ankers durch Warmverformung verankert werden. Dann wird diese Anker-Kontakt-Baugruppe mit dem Sockel 1 verbunden, wobei die Kontaktabstände bzw. der jeweilige Kontaktüberhub in definierter Weise eingestellt werden. Dies soll anhand der Figuren 3 bis 7 nunmehr näher erläutert werden.When installing the relay, the movable contact arrangement 2 is first combined with the armature 3 to form an armature-contact assembly, the fastening pins 27 being anchored in the armature bores by hot deformation. Then this armature-contact assembly is connected to the base 1, the contact distances or the respective contact overstroke being set in a defined manner. This will now be explained in more detail with reference to FIGS. 3 to 7.

Die Lagerbänder 25 und 26, die gleichzeitig als elektrische Anschlußlappen für die Mittelkontaktelemente 21/22 bzw. 23/24 dienen und mit diesen einstückig aus einer Platine geschnitten sind, treten jeweils im wesentlichen waagerecht aus dem Isolierstoffträger 20 der Kontaktanordnung aus. Zu diesem Zweck besitzt der Träger 20 seitliche Ansätze 28, aus denen die beiden Lagerbänder in Längsrichtung des Ankers austreten, von wo sie dann mit einem verhältnismäßig kleinen Radius senkrecht nach oben abgebogen sind. Diese nach oben abgebogenen Abschnitte der Lagerbänder liegen damit in einer gemeinsamen, zur Grundebene senkrechten Ebene, welche andererseits auch annähernd durch die Lagerachse des Ankers geht.The bearing strips 25 and 26, which also serve as electrical connection tabs for the center contact elements 21/22 and 23/24 and are cut integrally therewith from a circuit board, each emerge essentially horizontally from the insulating carrier 20 of the contact arrangement. For this purpose, the carrier 20 has lateral lugs 28 from which the two bearing strips emerge in the longitudinal direction of the armature, from where they are then bent vertically upward with a relatively small radius. These upwardly bent sections of the bearing strips thus lie in a common plane perpendicular to the base plane, which on the other hand also runs approximately through the bearing axis of the armature.

Nach dem Einsetzen der Anker-Kontakt-Baugruppe in den Sockel 1 gemäß Figur 3 werden die Kontaktabstände bzw. der jeweilige Überhub auf einen vorgegebenen Wert eingestellt. Dies erfolgt vorzugsweise mit einer Vorrichtung gemäß Figur 4 oder mit einer vergleichbaren Vorrichtung. Nachdem die Lagerbänder 25 und 26 zu den Lagerstützen 15b und 16b des Grundkörpers ausgerichtet wurden, liegt die Anker-Kontakt-Baugruppe mit den Kontaktfedern 21, 22, 23 und 24 bzw. deren kontaktgebenden Abschnitten auf den zugehörigen Gegenkontaktelementen 11, 12, 13 und 14 auf. Die Lagerbänder bzw. Anschlußlappen 25 und 26 liegen mit ihren senkrechten Kontaktflachen an den Lagerstützen 15b und 16b der Anschlußelemente 15 und 16 an.After inserting the armature-contact assembly into the base 1 according to FIG. 3, the contact distances or the respective overstroke are set to a predetermined value. This is preferably done with a device according to FIG. 4 or with a comparable device. After the bearing strips 25 and 26 have been aligned with the bearing supports 15b and 16b of the base body, the armature-contact assembly with the contact springs 21, 22, 23 and 24 or their contacting sections lies on the associated mating contact elements 11, 12, 13 and 14 on. The bearing strips or connecting tabs 25 and 26 rest with their vertical contact surfaces on the bearing supports 15b and 16b of the connecting elements 15 and 16.

Die in Figur 4 dargestellte Montagevorrichtung 9 enthält eine schematisch gezeigte Meßeinrichtung 90, welche mit zwei elektrisch leitenden Schenkeln 91 und 92 an eine Ankoppelstelle auf der Oberseite 35 des Ankers herangeführt wird (Doppelpfeil 95), bis ein elektrischer Durchgang vom Schenkel 91 über den Anker zum Schenkel 92 stattfindet und in der erwähnten Meßeinrichtung festgestellt wird. Liegt der Anker aufgrund einer deformierten Kontaktfeder schief, so ist eine gewisse Andruckkraft erforderlich, um den elektrischen Durchgang über den Anker herzustellen. Aus der Größe dieser notwendigen Andruckkraft läßt sich die Größe der Deformation ableiten; bei Überschreiten einer höchstzulässigen vorgegebenen Kraft wird das Ankersystem als fehlerhaft ausgeschieden.The mounting device 9 shown in Figure 4 contains a schematically shown measuring device 90, which is brought with two electrically conductive legs 91 and 92 to a coupling point on the top 35 of the armature (double arrow 95) until an electrical passage from the leg 91 over the armature to Leg 92 takes place and is determined in the measuring device mentioned. If the armature is crooked due to a deformed contact spring, a certain pressure force is required to establish the electrical continuity over the armature. The size of the deformation can be derived from the size of this necessary pressing force; if a maximum permissible predetermined force is exceeded, the anchor system is eliminated as faulty.

Wurde jedoch durch den oben beschriebenen ersten Meßschritt die Anker-Kontakt-Baugruppe als ausreichend eben festgestellt, fährt die Meßeinrichtung einen vorbestimmten Weg weiter nach unten, also in Richtung auf den Sockel 1. In diesem Zustand muß zwischen den vier Kontaktfedern 21, 22, 23 und 24 einerseits und den zugehörigen Gegenkontaktelementen 11, 12, 13 und 14 im Sockel andererseits eine elektrische Verbindung zustandekommen. Dies wird durch Messung an den Anschlußstiften 11a, 12a, 13a und 14a ermittelt. Durch diesen Prüfvorgang wird sichergestellt, daß zumindest jeweils ein Kontaktarm der in jeweils zwei Arme unterteilten Kontaktfedern 21, 22, 23 und 24 einen ausreichenden Überhub gewährleistet. Diese Position mit Überhub an allen Kontaktfedern ist in Figur 5 gezeigt.However, if the armature-contact assembly has been determined to be sufficiently level by the above-described first measuring step, the measuring device travels down a predetermined path, that is to say toward the base 1. In this state, between the four contact springs 21, 22, 23 and 24 on the one hand and the associated mating contact elements 11, 12, 13 and 14 in the base on the other hand an electrical connection is established. This is determined by measurement on the connection pins 11a, 12a, 13a and 14a. This test procedure ensures that at least one contact arm each contact springs 21, 22, 23 and 24 divided into two arms each ensure a sufficient overstroke. This position with overtravel on all contact springs is shown in FIG. 5.

Nach dieser Überhubprüfung wird ein Schieber 96, der sich in der Meßeinrichtung 90 befindet, abgesenkt (Doppelpfeilrichtung 97). Der Anker 3 wird von einem Dauermagneten 98, der auf dem Schieber 96 befestigt ist, festgehalten. Die Meßeinrichtung wird nun einen dem gewünschten Kontaktabstand 29 bei Mittelstellung des Ankers entsprechenden Weg unter Berücksichtigung des vorher erzeugten Überhubs zusammen mit der Ankerbaugruppe nach oben bewegt (Doppelpfeil 95). Diese Position ist in Figur 6 gezeigt. Die Lagerbänder 25 und 26 der Anker-Kontaktbaugruppe liegen nun auf der gewünschten Höhe zu den Lagerstutzen 15b und 16b der Sockelbaugruppe. In dieser Position werden jeweils die Lagerbänder 25 bzw. 26 mit den anliegenden Lagerstützen 15b bzw. 16b verschweißt. Die Schweißung kann beispielsweise als Widerstandsschweißung oder Laserschweißung erfolgen.After this overstroke test, a slide 96, which is located in the measuring device 90, is lowered (double arrow direction 97). The armature 3 is held by a permanent magnet 98 which is fastened on the slide 96. The measuring device is now moved upwards together with the armature assembly, taking the previously generated overstroke into account, corresponding to the desired contact distance 29 when the armature is in the middle position (double arrow 95). This position is shown in Figure 6. The bearing strips 25 and 26 of the armature contact assembly are now at the desired height with respect to the bearing sockets 15b and 16b of the base assembly. In this position, the bearing strips 25 and 26 are welded to the adjacent bearing supports 15b and 16b, respectively. The welding can be carried out, for example, as resistance welding or laser welding.

Danach wird das Magnetsystem gemäß Figur 1 und 2 mit der Spule 5, dem Kern 6, den Polschuhen 7 und dem Dauermagneten 4 auf die Sockelbaugruppe geschoben, bis der gewünschte Ankerhub erreicht ist. Der Spulenkörper wird auf dem Sockel-Grundkörper 10 festgeklemmt bzw. auf sonstige Weise fixiert. In Figur 7 ist die Lage der Polschuhe 7 bezüglich des Ankers 3 schematisch gezeigt. Aufgrund der Polarisierung des Systems mit dem Dauermagneten 4 wird der Anker wahlweise mit einem seiner Enden bzw. einer seiner Polflachen 32 oder 33 an den gegenüberliegenden Polschuh 7 angezogen. Entsprechend wird der darunterliegende Kontaktfederabschnitt - in Figur 7 die Kontaktfeder 24 - mit nach oben genommen, während der gegenüberliegende Kontaktfederabschnitt - in Figur 7 die Kontaktfeder 23 - auf das darunterliegende Gegenkontaktelement gedrückt wird. Somit ist anzumerken, daß der Kontaktabstand 29 bei der Mittellage von Figur 6 nicht dem vollen Ankerhub entspricht, sondern etwa der Hälfte davon, da der jeweilige Ankerflügel sich beim Öffnen des Konaktes jeweils über die Mittellage hinaus in die Schräglage bis zum Polschuh 7 nach oben bewegt. Allerdings ist dem Fachmann klar, daß der Kontaktabstand 29 auch nicht genau dem halben Ankerhub entspricht, da bei der Bewegung des entsprechenden Ankerflügels aus der Mittellage nach unten der zugehörige Kontaktfederabschnitt nur einen Teil des Ankerhubs mitgeht und dann am Gegenkontaktelement anliegt, während der Anker selbst den beschriebenen Überhub ausführt, um die gewünschte Kontaktkraft zu erzeugen. Der Fachmann kann bei der Einstellung der Vorrichtung gemäß Figur 4 ohne weiteres den Abstand 29 so einstellen, daß der gewünschte Überhub gewährleistet ist.The magnet system according to FIGS. 1 and 2 with the coil 5, the core 6, the pole pieces 7 and the permanent magnet 4 is then pushed onto the base assembly until the desired armature stroke is reached. The coil body is clamped onto the base body 10 or fixed in some other way. The position of the pole shoes 7 with respect to the armature 3 is shown schematically in FIG. Due to the polarization of the system with the permanent magnet 4, the armature is optionally attracted to one of its ends or one of its pole faces 32 or 33 to the opposite pole shoe 7. Correspondingly, the contact spring section below - in FIG. 7 the contact spring 24 - is taken upwards, while the opposite contact spring section - in FIG. 7 the contact spring 23 - is pressed onto the mating contact element underneath. It should thus be noted that the contact distance 29 in the central position of FIG. 6 does not correspond to the full armature stroke, but about half of it, since the respective anchor wing moves upwards to the pole shoe 7 in each case beyond the central position when the contact is opened. However, it is clear to the person skilled in the art that the contact distance 29 also does not correspond exactly to half the armature stroke, since when the corresponding armature wing moves downward from the central position, the associated contact spring section only moves along part of the armature stroke and then lies against the counter-contact element, while the armature itself performs the described overstroke to generate the desired contact force. When setting the device according to FIG. 4, the person skilled in the art can easily set the distance 29 such that the desired overstroke is ensured.

In den Figuren 8 und 9 ist an dem Beispiel eines Klappankerrelais die Möglichkeit einer erfindungsgemäßen Kontakteinstellung gezeigt. In vereinfachter Darstellung ist dort ein Grundkörper 101 dargestellt, der als Spulenkörper eine Wicklung 102, einen Kern 103 und ein abgewinkeltes Joch 104 trägt. Ein Anker 105 bildet mit einer leicht abgerundeten Kernpolfläche 106 einen Arbeitsluftspalt. An dem Anker ist eine Kontaktfeder 107 befestigt, welche mit einem Befestigungsabschnitt 108 an dem Joch zu befestigen ist, welcher somit zugleich als Lagerfeder für den Anker 105 dient. Das freie Ende der Kontaktfeder 107 bildet einen Kontaktabschnitt 109 mit einem Kontaktstück, welches mit einem Gegenkontaktelement 110 einen Schließerkontakt bildet. Dieses Gegenkontaktelement 110 ist in dem Grundkörper 101 in üblicher Weise verankert. Ein weiteres Gegenkontaktelement 111 kann zur Bildung eines Umschaltkontaktes vorhanden sein.FIGS. 8 and 9 show the possibility of a contact setting according to the invention using the example of a folding armature relay. In a simplified representation, a base body 101 is shown there, which carries a winding 102, a core 103 and an angled yoke 104 as the coil body. An armature 105 forms a working air gap with a slightly rounded core pole surface 106. A contact spring 107 is fastened to the armature, which is to be fastened to the yoke with a fastening section 108, which thus also serves as a bearing spring for the armature 105. The free end of the contact spring 107 forms a contact section 109 with a contact piece, which forms a normally open contact with a mating contact element 110. This counter-contact element 110 is anchored in the base body 101 in a conventional manner. Another mating contact element 111 can be provided to form a changeover contact.

Für die erfindungsgemäße Einstellung des Überhubes des Ankers zur Gewinnung der gewünschten Kontaktkraft wird zunächst gemäß Figur 8 die Anordnung so gewählt, daß der Anker 105 an der Polfläche 106 und der Kontaktabschnitt 109 an dem Gegenkontaktelement 110 anliegen. Dann wird der Befestigungsabschnitt 108 in Richtung des Pfeiles 112 auf dem Joch verschoben, während der Anker in Kontakt mit der Polfläche gehalten wird. Es ergibt sich dabei eine Veränderung des Ankerwinkels gegenüber der Lagerstelle am Joch, wie dies in Figur 9 übertrieben dargestellt ist. Der Anker rollt dabei auf der Polfläche 106 ab, während die Kontaktfeder diesen Überhub nicht mitgehen kann, weil sie mit ihrem kontaktgebenden Abschnitt 109 bereits an dem Gegenkontaktelement 110 anliegt. Sobald der gewünschte Überhub erreicht ist, wird der Befestigungsabschnitt 108 an einem Schweißpunkt 113 mit dem Joch 104 verbunden.For the setting of the overstroke of the armature according to the invention to obtain the desired contact force, the arrangement is first selected in accordance with FIG. 8 such that the armature 105 abuts the pole face 106 and the contact section 109 abuts the counter-contact element 110. Then the fastening section 108 is moved in the direction of arrow 112 on the yoke, while the armature is kept in contact with the pole face. This results in a change in the anchor angle relative to the bearing point on the yoke, as is exaggerated in FIG. 9. The armature rolls on the pole face 106, while the contact spring cannot go along with this overstroke because its contacting section 109 is already in contact with the mating contact element 110. As soon as the desired overstroke has been reached, the fastening section 108 is connected to the yoke 104 at a welding point 113.

In den Figuren 10 und 11 ist am Beispiel eines Relais mit Schieberbetätigung der Kontaktfeder die Einstellung eines Ankerüberhubes gezeigt. Bei dieser ebenfalls schematischen Darstellung ist auf einem Spulenkörper 201 eine Wicklung 202 angeordnet. Außerdem ist ein U-förmiges Joch 203 mit der Spule verbunden bzw. auf einem nicht dargestellten Grundkörper angeordnet. Ein Anker 205 ist in diesem Fall innerhalb der Spule angeordnet, derart, daß er mit einer Polfläche 206 des Grundkörpers einen Arbeitsluftspalt bildet. Am freien Ende des Ankers ist ein Schieber 204 angekoppelt, der die Ankerbewegung auf eine Kontaktfeder 207 überträgt. Diese Kontaktfeder besitzt einen Befestigungsabschnitt 208 sowie einen Kontaktabschnitt 209 mit einem Kontaktstuck, das mit einem im Grundkörper verankerten Gegenkontaktelement 210 zusammenwirkt. Die Betätigung der Kontaktfeder erfolgt über den Schieber 204 am freien Ende 211 der Feder, so daß der Kontaktabschnitt 209 zwischen dem Befestigungsabschnitt 208 und dem Betätigungsabschnitt 211 liegt. Der Befestigungsabschnitt ist an einem Träger 212 verschiebbar und an diesem befestigbar, wobei dieser Träger 212 ein im Grundkörper verankertes Anschlußelement ist.FIGS. 10 and 11 show the setting of an armature overstroke using the example of a relay with slide actuation of the contact spring. In this likewise schematic illustration, a winding 202 is arranged on a coil former 201. In addition, a U-shaped yoke 203 is connected to the coil or arranged on a base body, not shown. In this case, an armature 205 is arranged within the coil in such a way that it forms a working air gap with a pole face 206 of the base body. A slide 204 is coupled to the free end of the armature and transmits the armature movement to a contact spring 207. This contact spring has a fastening section 208 and a contact section 209 with a contact piece which interacts with a mating contact element 210 anchored in the base body. The contact spring is actuated via the slide 204 at the free end 211 of the spring, so that the contact section 209 lies between the fastening section 208 and the actuating section 211. The fastening section is displaceable on a carrier 212 and can be fastened thereon, this carrier 212 being a connecting element anchored in the base body.

Bei der Montage wird zunächst gemäß Figur 10 der Anker 205 in seine Arbeitslage an der Polfläche 206 gebracht, so daß der Schieber 204 seine (in Figur 10) untere Lage einnimmt. Die Kontaktfeder 207 wird so angeordnet, daß sie einerseits mit dem Schieber 211 in Eingriff ist und andererseits mit ihrem Kontaktabschnitt 209 an dem Gegenkontaktelement 210 anliegt. Dann wird der Befestigungsabschnitt 208 in Richtung des Pfeils 213, also parallel zur Betätigungsrichtung des Schiebers 204, verschoben, bis der gewünschte Überhub bzw. die gewünschte Kontaktkraft erreicht ist. In dieser in Figur 11 gezeigten Anordnung wird dann der Befestigungsabschnitt 208 mit dem Träger 212 verschweißt.During assembly, the armature 205 is first brought into its working position on the pole face 206, as shown in FIG. 10, so that the slide 204 assumes its lower position (in FIG. 10). The contact spring 207 is arranged so that on the one hand with the slider 211 is engaged and, on the other hand, its contact section 209 bears against the mating contact element 210. Then the fastening section 208 is displaced in the direction of the arrow 213, that is to say parallel to the actuating direction of the slide 204, until the desired overstroke or the desired contact force is reached. In this arrangement shown in FIG. 11, the fastening section 208 is then welded to the carrier 212.

Claims (6)

  1. Method for setting the excess armature stroke in a relay having at least one contact spring (21, 22, 23, 24; 107; 207) which can be actuated by an armature (3; 105; 205) and is fastened by a fastening section (25, 26; 108; 208) to a carrier (15b, 16b; 104; 212), in order to interact by means of a contact section with a mating contact element which is permanently anchored in a base body, characterized by the following steps:
    - the contact spring (21, 22, 23, 24) which is operatively connected to the armature (3; 105; 205) is brought into contact with the mating contact element (11, 12, 13, 14; 110; 210) in a position corresponding to the operating position of the armature,
    - the contact section of the contact spring (21, 22, 23, 24; 109; 209) is brought into a position corresponding to a predetermined excess stroke, and
    - then the fastening section (25, 26; 108; 208) of the contact spring is connected to the carrier in the position corresponding to the excess stroke.
  2. Method according to Claim 1, the contact spring (107) being coupled to the armature (105) in the region between its fastening section (108) and its contact section (109) and the contact section (109) touching the mating contact element (110) when the armature (105) bears on a core pole (106), characterized by the following steps:
    - the fastening end (108) of the contact spring is moved on the carrier (104) counter to the armature pull-in direction, whereas the section of the spring (107) which is coupled to the armature (105) is restrained, with the result that the contact-making section (109) is pressed onto the mating contact element (110), and
    - the fastening section (108) of the contact spring is connected to the carrier (104) when a predetermined excess stroke is reached.
  3. Method according to Claim 1, the armature (205) engaging via an actuating member (204) on an end (211), opposite the fastening section (208), of the contact spring (207) outside the contact section (209), characterized by the following steps:
    - the contact spring (207) is arranged in a displaceable manner on its carrier (212) in such a way that it touches the actuating member (204) and the mating contact element (210),
    - then the fastening section (208) is displaced on the carrier (212) parallel to the effective direction of the actuating member (204), the mating contact element (210) serving as a pivot point, and
    - the fastening section (208) is connected to the carrier (212) after a predetermined excess stroke has been reached.
  4. Method according to Claim 1, a rocker armature (3), which can be pivoted about a centre axis, being connected to at least one contact spring (21, 22, 23, 24) which has in each case a contact section in the region of the two armature ends and a fastening section (25, 26) in the region of the centre axis, and a base (1), which is arranged underneath the contact spring, having a mating contact element (11, 12, 13, 14) underneath each of the contact sections and having a respective carrier (15b, 16b) in the region of each fastening section (25, 26), characterized by the following steps:
    - together with the armature, each contact spring (21, 22, 23, 24) is pressed with the two opposite contact sections onto the associated mating contact elements (11, 12, 13, 14), until a desired excess stroke is reached,
    - afterwards the armature (3) is lifted with the contact springs (21, 22, 23, 24) by a distance which corresponds to approximately half the stroke of each armature end - taking account of the excess stroke - and
    - then each fastening section (25, 26) is connected to the associated carrier (15b, 16b) of the base (1).
  5. Method according to one of Claims 1 to 4, characterized in that, after the excess stroke position has been reached, the current passage is tested in each case at all the closed contacts.
  6. Method according to one of Claims 1 to 5, characterized in that the carrier (15b, 16b; 104; 212) serves in each case as a power supply means for the contact spring (21, 22, 23, 24; 107; 207), and in that the contact spring is fastened to the carrier by soldering or welding.
EP94103581A 1993-03-24 1994-03-08 Method for adjusting the armature travel in a relay Expired - Lifetime EP0617447B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4309617A DE4309617A1 (en) 1993-03-24 1993-03-24 Procedure for setting the armature stroke on a relay
DE4309617 1993-03-24

Publications (2)

Publication Number Publication Date
EP0617447A1 EP0617447A1 (en) 1994-09-28
EP0617447B1 true EP0617447B1 (en) 1995-11-15

Family

ID=6483764

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94103581A Expired - Lifetime EP0617447B1 (en) 1993-03-24 1994-03-08 Method for adjusting the armature travel in a relay

Country Status (6)

Country Link
EP (1) EP0617447B1 (en)
JP (1) JPH06302263A (en)
AT (1) ATE130463T1 (en)
CA (1) CA2119671A1 (en)
CZ (1) CZ46594A3 (en)
DE (2) DE4309617A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19635277C1 (en) * 1996-08-30 1998-02-12 Siemens Ag Relay armature stroke adjustment method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108987190A (en) * 2018-07-11 2018-12-11 贵州航天电器股份有限公司 Magnetic latching relay is pressed in a kind of double breaking points

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU853696A2 (en) * 1979-02-26 1981-08-07 Харьковское Производственное Объеди-Нение "Радиореле" Electromagnetic relay
SU928451A1 (en) * 1980-06-09 1982-05-15 Опытно-Конструкторское Бюро Специальных Радиотехнических Систем Method of regulating electromagnetic system of two-winding polarized relays
SU1328860A1 (en) * 1985-01-28 1987-08-07 Предприятие П/Я А-7555 Method of adjusting spread of contacts,follow-through of armature,operation voltage and contact pressure of valve-type electromagnetic relay
JPH02291626A (en) * 1989-05-02 1990-12-03 Omron Corp Electromagnetic relay
SU1607025A1 (en) * 1988-09-08 1990-11-15 Предприятие П/Я А-3997 Method of restoring sealed reed relay past its service life
EP0501070B2 (en) * 1991-02-27 2003-05-14 Takamisawa Electric Co., Ltd. Small sized electromagnetic relay
JP3722847B2 (en) * 1991-04-19 2005-11-30 富士通コンポーネント株式会社 Electromagnetic relay

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19635277C1 (en) * 1996-08-30 1998-02-12 Siemens Ag Relay armature stroke adjustment method

Also Published As

Publication number Publication date
JPH06302263A (en) 1994-10-28
DE59400042D1 (en) 1995-12-21
CA2119671A1 (en) 1994-09-25
ATE130463T1 (en) 1995-12-15
CZ46594A3 (en) 1994-10-19
DE4309617A1 (en) 1994-09-29
EP0617447A1 (en) 1994-09-28

Similar Documents

Publication Publication Date Title
EP0691030B1 (en) Polarized electromagnetic relay
EP0281950B1 (en) Electromagnetic relay
DE10205350B4 (en) Electromagnetic relay
WO1998050933A1 (en) Relay with contact springs
EP0678882A2 (en) Electric switch and method for manufacturing the same
EP0780870A2 (en) Small sized monostable electromagnetic relay
EP0099019B1 (en) Relay with contact bridge spring
EP0308819B1 (en) Electromagnetic relay
DE2452305A1 (en) LEAD FRAME FOR A SWITCHING DEVICE AND PROCESS FOR ITS MANUFACTURING
EP0617447B1 (en) Method for adjusting the armature travel in a relay
EP0513010B1 (en) Electromagnetic relay
DE19602642B4 (en) Electromagnetic relay and method for its manufacture
EP0846330B1 (en) Electromagnetic relay and its use on a printed circuit board
DE102008026761A1 (en) Electromagnetic relay
DE3888070T2 (en) Electromagnetic relay.
EP0763843B1 (en) Electrical element, preferably relay, and method for mounting the same on a printed circuit board
EP0897586B1 (en) Electromagnetic relay
EP0125199B1 (en) Electromagnetic relay
DE19544626C2 (en) Electromagnetic relay and method for adjusting the pull voltage of the electromagnetic relay
EP0319478B1 (en) Printed circuit board relay
CH657476A5 (en) ELECTROMAGNETIC RELAY.
DE60305201T2 (en) MAGNETIC SYSTEM INJECTION FOR A RELAY
DE3046985C2 (en)
DE10200619B4 (en) Electromagnetic switching relay
DE958402C (en) Multiple switches based on the coordinate principle with multiple contact fields free of soldering points

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE GB IT LI

17P Request for examination filed

Effective date: 19941018

17Q First examination report despatched

Effective date: 19950508

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE GB IT LI

REF Corresponds to:

Ref document number: 130463

Country of ref document: AT

Date of ref document: 19951215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59400042

Country of ref document: DE

Date of ref document: 19951221

ITF It: translation for a ep patent filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS-ALBIS AKTIENGESELLSCHAFT

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960122

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980211

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19980310

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19980701

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990308

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990331

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990308

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050308

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130327

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59400042

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140311