EP0617227B1 - Luftkontrollsystem für hydropneumatischen Behälter - Google Patents

Luftkontrollsystem für hydropneumatischen Behälter Download PDF

Info

Publication number
EP0617227B1
EP0617227B1 EP93400771A EP93400771A EP0617227B1 EP 0617227 B1 EP0617227 B1 EP 0617227B1 EP 93400771 A EP93400771 A EP 93400771A EP 93400771 A EP93400771 A EP 93400771A EP 0617227 B1 EP0617227 B1 EP 0617227B1
Authority
EP
European Patent Office
Prior art keywords
reservoir
chamber
air
pipe
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93400771A
Other languages
English (en)
French (fr)
Other versions
EP0617227A1 (de
Inventor
Emile Roche
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Charlatte
Original Assignee
Charlatte
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Charlatte filed Critical Charlatte
Priority to ES93400771T priority Critical patent/ES2105149T3/es
Priority to EP93400771A priority patent/EP0617227B1/de
Priority to AT93400771T priority patent/ATE153746T1/de
Priority to DK93400771.7T priority patent/DK0617227T3/da
Priority to DE69311091T priority patent/DE69311091T2/de
Priority to DZ940023A priority patent/DZ1760A1/fr
Priority to MA23455A priority patent/MA23147A1/fr
Priority to PCT/FR1994/000317 priority patent/WO1994021957A1/fr
Priority to US08/535,138 priority patent/US5647392A/en
Priority to CA002159097A priority patent/CA2159097C/fr
Priority to JP52073394A priority patent/JP3285358B2/ja
Priority to CN94191589A priority patent/CN1046346C/zh
Priority to TNTNSN94028A priority patent/TNSN94028A1/fr
Publication of EP0617227A1 publication Critical patent/EP0617227A1/de
Application granted granted Critical
Publication of EP0617227B1 publication Critical patent/EP0617227B1/de
Priority to GR970402197T priority patent/GR3024558T3/el
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • F17D1/20Arrangements or systems of devices for influencing or altering dynamic characteristics of the systems, e.g. for damping pulsations caused by opening or closing of valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/2931Diverse fluid containing pressure systems
    • Y10T137/3115Gas pressure storage over or displacement of liquid
    • Y10T137/3118Surge suppression
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/2931Diverse fluid containing pressure systems
    • Y10T137/3115Gas pressure storage over or displacement of liquid
    • Y10T137/3127With gas maintenance or application
    • Y10T137/3137Gas injected by liquid pressure or flow

Definitions

  • the present invention relates to an air regulation system for a hydropneumatic reservoir equipping a hydraulic pipe which can be a distribution network for drinking water or irrigation, or a drainage network for waste water or chemical liquids.
  • the hydropneumatic reservoir can operate as a regulating reservoir (or hydrophore) to regulate the pumping pressure and ensure continuity of service in the pipeline, in a pressure range between a high threshold and a low threshold.
  • a regulating reservoir or hydrophore
  • the pump or one of the pumps supplying the pipe is stopped.
  • the regulation tank then supplies water to the pipeline.
  • the pump is restarted to ensure sufficient pressure in the pipeline.
  • the hydropneumatic tank can also be used as an anti-ram tank in a hydraulic pipe in order to compensate for the effects of depression and overpressure caused for example by a stopping of a pump or a valve closing.
  • the operation of such a tank is known in particular from French patent 2,416,417 (ROCHE).
  • the hydropneumatic tank contains, in operation, water or any liquid flowing in the pipe, and air trapped in the tank just above the water surface.
  • the air supply to the hydropneumatic tank is ensured by means of an air compressor or a outside air injector.
  • the main drawback of the air compressor is that the air introduced into the tank contains droplets or oil vapors sent by the compressor. If the presence of oil thus brought into the tank does not interfere with the evacuation of wastewater, it is not the same for the supply of drinking water.
  • Air injectors eliminate oil entrainment in the air injected into the hydropneumatic tank. They do not allow to compensate with exactitude the variation of the volume of air in the tank. Indeed, only experience has so far made it possible to fix the additional volume of air to be supplied to the tank, in particular as a function of the capacity of the tank and of the pressure of the water in the pipe, since the air in contact with water depends on many factors. As a consequence, either an insufficiency or a surplus of air injected into the tank can occur, which cause a failure of correct regulation and, for the second case, air pockets which can be transported by the water in the pipeline and give birth to water hammer.
  • the conventional air injector suffers from other imperfections: the approximate use of the volume available in the injector for the water filling cycle (air injection into the tank) / emptying (introduction of the air in the device), the absence of means to protect the device's air intake valve against the risk of deterioration by contact with water (in particular waste water), the lack of concern for the quality of the air injected into the tank, and in the case of a pipe with submerged pump, the use of a drain siphon in the pipe which creates a loss of efficiency of the submerged pump due to the permanent evacuation of water pumped by the siphon, and each start of the submersible pump necessarily results in an injection of air into the tank even if such an injection is not requested.
  • the hydropneumatic reservoir generally comprises a hollow body called a balloon which communicates with the pipe to contain the liquid.
  • the balloon may or may not have a bladder.
  • a balloon without bladder it is necessary to provide a means of injection air in the flask to compensate for the dissolution of air in the liquid inside the flask.
  • the object of the present invention is to remedy the aforementioned drawbacks by proposing an air regulation system for a hydropneumatic reservoir which makes it possible to introduce an air volume corresponding precisely to the complement necessary for the reservoir.
  • the invention also relates to an air regulation system making it possible to supply a constant volume of air at each filling and emptying cycle of the system.
  • the invention further relates to an air regulation system whose air intake means is protected against deterioration or clogging in contact with the liquid.
  • Another subject of the invention is an air regulation system which supplies the hydropneumatic reservoir with air compatible with the liquid conveyed in the hydraulic pipe making it possible to avoid pollution of the liquid by the air introduced.
  • the air regulation system for a hydropneumatic reservoir of a hydraulic pipe comprises a chamber, means for filling the chamber with water, means for emptying water from the chamber, means for automatically introducing air into the chamber during emptying, and means for automatically injecting air from the chamber to the tank during filling.
  • the system further comprises a control means connected to at least one detector for exceeding a threshold level of the liquid contained in the tank, and to the means for filling and draining water from the chamber. When the detector provides a signal corresponding to an insufficient volume of air in the tank, the control means initiates the filling / emptying cycle of the chamber until the detector indicates that the air volume in the tank has become sufficient again.
  • the problem of dissolving air in contact with water in the regulation tank can be precisely controlled.
  • the top of the chamber can be fitted with a liquid level detector, connected to the control means to indicate the end of filling of the chamber.
  • the control means can then trigger the chamber emptying phase at this precise moment.
  • a liquid level detector connected to the control means, to indicate the end of the emptying to allow the control means to initiate the filling phase of the chamber.
  • the chamber of the air regulation system comprises a substantially vertical tube, the lower end of which opens into the upper wall of the chamber, the upper end of the tube being provided with a solenoid valve for the admission of the in the room.
  • the vertical tube acts as a compression chamber between the air intake solenoid valve and the surface of the liquid in the chamber preventing the liquid from reaching the solenoid valve air intake, which protects the solenoid valve against possible deterioration in contact with the liquid, especially in the case of waste water or chemical liquids.
  • the air intake solenoid valve of the system is connected to one end of a pipe, the other end of the pipe being placed in the immediate vicinity of the surface of the water to be pumped, so that the air injected by the system into the tank is compatible with the water carried by the pipe.
  • This point is particularly important for a drinking water supply pipe in order to avoid any risk of pollution of the water by the injected air.
  • atmospheric air in the vicinity of the air intake solenoid valve may contain harmful particles which can deteriorate the quality of the water.
  • the hydropneumatic reservoir may further comprise a hollow bar made integral with the reservoir and plunged vertically downward into the reservoir.
  • the lower end of the hollow bar is closed so as to form a longitudinal cavity isolated from the interior of the tank by the wall of the hollow bar.
  • the bar cavity is (are) housed the threshold level overshoot detector (s).
  • the height of the detector (s) in the hollow bar can be adjusted so as to allow the modification of the threshold levels of the liquid in the hollow body of the reservoir as required.
  • the detector (s) can be of the capacitive or equivalent type which provides different signals when there is presence or absence of the liquid at their height.
  • the problem of resistance to pressure, sealing and deposition of impurities known for conventional detection means is eliminated and the reservoir can be easily adapted to regulate the pressure of the liquid to different ranges according to the needs linked to the nature of the pipeline and its new desired hydraulic regime.
  • the system comprises an air trap associated with the hydropneumatic reservoir in the case where air is injected into the tank through the pipeline.
  • the air trap makes it possible to suppress the air flows in the pipe downstream of the tank, which eliminates the problems which can result therefrom and returns total efficiency to the system.
  • the air regulation system is intended for a hydropneumatic tank 1 in the form of a balloon, without bladder, the lower part 1b of which is connected to a hydraulic pipe 2.
  • the system comprises a air injection device installed upstream of the tank 1 in the pipe 2 and downstream of a supply pump 3 submerged or not in a water reservoir 4 which can be a well, a borehole or a tarpaulin.
  • a check valve 5 is associated with the feed pump 3. It is the foot valve of this pump or a valve installed downstream and which prevents any return of water.
  • the valve 5 may not be provided, in particular if a water level detector 26 mentioned below is installed.
  • the air injection device comprises a chamber 6 formed by a section of pipe 2, the section 6 being delimited in the direction of the normal flow 7 of water in the pipe 2, on the one hand at its end downstream by a non-return valve 8 mounted on the pipe 2 upstream of the tank 1, and on the other hand at its upstream end by a water level 9 defined by a water evacuation solenoid valve 10.
  • L the upstream end of the section forming chamber 6 is at a lower level than the downstream end of the section.
  • a pipe 11 connects the pipe 2 downstream of the non-return valve 8 to the section 6 in order to allow the filling of the chamber 6 with water.
  • An electro-valve 12 is installed on the pipe 11 to control the filling of the chamber 6 with water via the pipe 11.
  • the evacuation electro-valve 10 constitutes a means of emptying the chamber 6, the evacuated water being possibly collected in a discharge tank 13.
  • the air injection device further comprises an air intake solenoid valve 14 connected on the one hand to the chamber 6 by means of a vertical tube 15 opening into the upper wall at the top of the chamber 6, and secondly to a pipe 16 which takes air in the vicinity of the water surface 17 of the water reservoir 4.
  • an air intake solenoid valve 14 connected on the one hand to the chamber 6 by means of a vertical tube 15 opening into the upper wall at the top of the chamber 6, and secondly to a pipe 16 which takes air in the vicinity of the water surface 17 of the water reservoir 4.
  • the upper wall of the chamber 6 communicates with the lower part 1b of the hydropneumatic tank 1 via a pipe 18 fitted with a non-return valve 19.
  • the principle of injecting air into the tank 1 is relatively simple.
  • the feed pump 3 stops, the associated valve 5 preventing the water contained in the pipe 2 downstream of the pump 3 from escaping through the latter.
  • the evacuation solenoid valve 10 opens to drain the chamber 6 until the drain level 9 is reached.
  • the air intake solenoid valve 14 is opened in the chamber 6.
  • the non-return valve 8 prevents the downstream water contained in the pipe 2 to pass into the chamber 6.
  • the non-return valve 19 prevents the water from the reservoir 1 from entering the chamber 6.
  • the filling electro-valve 12 stays closed.
  • the chamber 6 is filled with air as illustrated in FIG. 1A.
  • the solenoid valves for water evacuation 10 and the air inlet 14 are then closed and the filling solenoid valve 12 is opened.
  • the pipe 11 then makes it possible to supply the chamber 6 with water contained in the pipe 2 downstream of the non-return valve 8.
  • the air contained in the chamber 6 is expelled through the pipe 18 towards the tank 1 (FIG. 1B).
  • the air bubbles 20 thus created in the water contained in the tank 1 go up to the surface 21 which represents the separation between the water and the air in the tank 1.
  • the air thus introduced into the tank 1 thus contributes to the increase in the air volume of the tank.
  • the chamber 6 emptying and filling cycle begins again.
  • the air regulation system comprises a control means 22 which is connected to at least one detector 23 via a link 24 to indicate the exceeding of a threshold level in the tank 1 by the water surface 21 for a given state (pump stop for example).
  • the control means 22 is also connected to the solenoid valves for water discharge 10, water filling 12 and air intake 14 in order to control their openings and closings. for the operation of the filling / emptying cycle of the chamber 6 as a function of the signal emitted by the detector 23.
  • the water level 21 in the tank 1 when the pump 3 stops is higher than the level of the detector 23 which defines the water level in the tank 1 at stop pump 3 for correct inflation of tank 1.
  • the detector 23 immersed in water then emits a signal to the control means 22 which triggers the emptying / filling cycle of the chamber 6 of the device as previously described.
  • the water level 21 in the tank reaches the level of the detector 23 which is no longer submerged in water.
  • the corresponding signal sent by the detector 23 to the control means 22 allows the latter to stop the filling / emptying cycle of the device.
  • the solenoid valves for water discharge 10, water filling 12 and air intake 14 are and remain closed.
  • the chamber 6 can optionally be fitted with an upper detector 25 at the top of the chamber in the vertical tube 15 and with a lower detector 26 to indicate the level of emptying 9 of the chamber 6.
  • the detectors level can be simple electrical contacts which emit different signals in the presence and absence of water at their level and which are connected to the control means 22.
  • FIG. 2 shows a variant of the system which differs from the previously described mode by its method of filling the chamber 6 and injecting air into the tank 1.
  • the filling of the chamber 6 takes place directly using of the pump 3.
  • the air contained in the chamber 6 is injected through the non-return valve 8 into the pipe 2 downstream of the valve 8, the pipe 2 conveying the volume of air injected into the tank 1.
  • Chamber 6 is formed by a section of pipe 2 which forms an elbow.
  • the vertical part of the bent section is part of the pumping discharge line of the pipe 2.
  • the vertical tube 15 connecting the air intake solenoid valve 14 and the top of the chamber 6 forms a compression chamber which traps air preventing the water conveyed in the chamber 6 from coming into contact with the inlet solenoid valve 14. According to this embodiment, each filling of the chamber 6 requires starting the associated pump 3.
  • the mode illustrated in FIG. 3 is substantially identical to the mode illustrated in FIG. 2 except as regards the shape of the chamber 6 of the system. Instead of having a bent section, the chamber 6 can simply be constituted by an inclined section of the pipe 2.
  • FIG. 4 shows a simplified embodiment of the system of the invention.
  • the check valve 5 associated with the pump 3 is removed.
  • stopping the pump 3 and opening the air intake solenoid valve 14 brings the water level 9 back into the pipeline at the same level as the surface 17 of the pumped water.
  • the emptying level 9 coincides with the surface 17 pumping water.
  • the filling of the chamber 6 is carried out by means of the pump 3 and the air admitted by the solenoid valve 14 (which is now closed) into the chamber 6 is expelled into the tank 1 via the non-return valve. return 8 and part of the pipe 2 upstream of the tank 1.
  • the chamber 6 is emptied by stopping the pump 3 and opening the air intake solenoid valve 14 but only, as before, if there is a lack of air in the tank 1.
  • the height of line 2 thus drained may be too large to inject a correct volume of air into the reservoir 1. It then suffices to close the solenoid valve 14 for air intake, ie after a predetermined time after stopping the pump 3, or when the water level of the lower detector 26 placed at a predetermined height of the pipe 2 exceeds it.
  • the drain level 9 ′ is then greater than the surface 17 of pumping water. We can thus adjust the volume of the chamber 6 of the device.
  • the chamber 6 is produced in the form of a balloon, the upper wall of which communicates with the vertical air intake tube 15 and the air injection tube 18 towards the tank 1 via the check valve. -back 19.
  • the filling and emptying of the chamber 6 is carried out by means of a two-way solenoid valve 27, the first 27a is connected to the filling line 11 and the second 27b connected to the line evacuation 28.
  • the solenoid valve 27 communicates with the interior of the chamber 6 via a vertical tube 29 passing through the bottom of the balloon forming the chamber 6 and the upper end of which can exceed the bottom of the chamber by a height h. It will be appreciated that the emptying level 9 of the chamber 6 is defined by the height of the upper end of the vertical tube 29.
  • an upper detector 25 can be provided in the vertical air intake tube 15 and a lower detector 26 at the level secured to the upper end of the vertical communication tube 29.
  • the air injection pipe 18 can be connected directly to the tank or to the pipe 2 in upstream of the reservoir.
  • the regulation system comprises a vertical or horizontal cylindrical tank 1, the ends of which are slightly domed (balloon), an air compressor 30 and electrical contacts 23a, 23b assuming that it is a hydrophore (or regulation) tank for pumping on demand (or overpressure) with a single pump, for example delivering in line 2.
  • a hydrophore (or regulation) tank for pumping on demand (or overpressure) with a single pump, for example delivering in line 2.
  • the air compressor 30 communicates with the interior of the balloon 1 via an air line 18 opening into the upper wall 1a of the balloon 1.
  • the upper 23a and lower 23b detectors set the predetermined high threshold and low threshold levels for the liquid in the tank 1 in order to regulate the flow of the liquid in the pipe 2.
  • the high threshold and low threshold levels in the tank 1 correspond to upper and lower limit pressures defined for the flow of the fluid in the pipe 2.
  • the detectors 23a and 23b are connected on the one hand to the air compressor 30 via a link 31 and on the other hand via a connection 32 to one or more pumps, not shown, which supply line 2 with liquid.
  • the tank 1 In normal operation of the regulation system, the tank 1 is partly filled with the liquid flowing in the pipe 2.
  • the level 21 of the liquid in the tank should be between the high threshold and low threshold levels determined by the detectors 23a and 23b.
  • the detector 23a When the level 21 becomes higher than the height of the detector 23a, which corresponds to a pressure of the liquid which exceeds the determined upper pressure of the network, the detector 23a emits a signal to the control means 22 which stops the pumping supplying the pipe 2.
  • the continuity of the supply of the pressurized liquid is then ensured by the liquid contained in the tank 1 which feeds via its lower part 1b the pipe 2.
  • the tank 1 is emptied therefore, and when the level of the liquid 21 becomes lower than the height of the lower detector 23b, which means that the pressure of the liquid in the line 2 becomes lower than the authorized lower limit, the detector 23b sends a signal to the control means 22 which delivers a start signal via link 32 to start the pump. Then, again, the pressure in the line 2 increases and the level of the liquid 21 in the balloon 1 increases. In this way, the pressure of the liquid in line 2 can be regulated.
  • the operation of the regulation system as what has just been described requires that the balloon 1 be correctly inflated, not only for its initial inflation, but also to compensate for a reduction in the volume of air inside the balloon 1 due to dissolving air in the liquid.
  • the initial inflation of the balloon determines the upper and lower limit pressures of the network corresponding to the height of the balloon detectors 23a and 23b. An incorrect initial inflation of the balloon would therefore cause a shift in the range of allowable pressures either towards higher values or towards lower values, which could be harmful for line 2 and possibly for users.
  • the pump stops if the level 21 of the liquid is higher than the upper threshold level indicated by the detector 23a, this means that the inflation of balloon 1 has become insufficient.
  • the detector 23a immersed in the liquid sends a signal to the air compressor 30 via the control means 22 and the connection 31.
  • the air compressor 30 starts and sends compressed air to the balloon via line 18 until the level 21 of the liquid reaches the level of the detector 23a, which then emits a stop signal to the air compressor 30 via the control means 22 and the link 31.
  • the inflation of the balloon is restored correctly.
  • the regulation system described above presents the detectors 23a and 23b fixed to the interior wall of the tank 1 and exposed to the liquid which may contain impurities.
  • the deposition of impurities on the detectors 23a and 23b can deteriorate their long-term operation.
  • the fixing of the detectors 23a and 23b requires the opening of windows through the side wall of the balloon 1 and there is no possibility of easy modifications of the position of these detectors, therefore of the adjustments.
  • FIG. 7 illustrates a regulation system of the invention in an operating mode comparable to the system described above and illustrated in FIG. 6.
  • the regulation system comprises a hollow bar 33 plunged vertically inside the balloon 1 from its upper part 1a.
  • the lower end 33a of the hollow bar 33 is closed in order to completely isolate the interior of the hollow bar 33 from the interior of the balloon 1.
  • two level detectors 23a and 23b are arranged inside the hollow bar 33 with a predetermined height difference defining high and low threshold levels of the liquid in the balloon 1.
  • the hollow bar 33 is made in tubular form and mounted coaxially with the balloon 1.
  • the central tube 33 is made from a non-metallic material to allow the installation of detectors 23a, 23b of the capacitive type or equivalent.
  • the central tube 33 can also be metallic if detectors other than of the capacitive type and capable of acting through metallic walls are used.
  • the sensors 23a and 23b can be adjusted in height inside the central tube 33 in order to adapt the balloon 1 to the pressure requirements of the pipe 2.
  • the detectors 23a and 23b are protected by the wall of the central tube 33 against deposits of impurities conveyed by the liquid.
  • the balloon 1 may include a valve 34 at its upper wall 1a which allows air to be discharged from the inside of the balloon 1 to the outside, this in order to avoid an undesirable overpressure at inside the balloon 1. This can be the case for example if the liquid gives off a gaseous mixture, for example air, in the balloon.
  • the number of level detectors used for the tank can vary as required.
  • a single level detector such as the high threshold level detector 23a inside the central tube 33.
  • the triggering of the air compressor 30 by the detector 23a in case of insufficient air volume in the balloon 1 is produced according to the same principle as above.
  • the system can operate both for regulating the pressure in the pipe 2 and for avoiding the pressure surge in the pipe 2.
  • a valve 34 can be provided on the upper wall 1a of the balloon 1 if necessary. Since the operating principles of the various embodiments of the invention are comparable to each other, we will only describe their difference.
  • the lower part 1b of the balloon 1 is provided with an airtight valve 35 which controls the communication between the balloon 1 and the pipe 2.
  • An evacuation pipe 36 is provided between the lower part 1b of the balloon and the valve 35.
  • the evacuation pipe 36 is connected to a drain valve 37.
  • Such equipment facilitates the initial inflation of the balloon 1, either when the tank is put into service, or after a stop extended installation (in irrigation for example).
  • the valve 35 is closed and the drain valve 37 is opened.
  • the drain valve 37 is closed and the balloon 1 is inflated, thanks to the pipe 18, opening in its upper part 1a, with compressed air coming from the air compressor 30 or from a compressed air bottle, up to the desired pressure corresponding to the correct inflation of the balloon. Then stop the injection of air and open the valve 35 to re-establish communication between the tank 1 and the pipe 2.
  • the reservoir according to FIG. 9 differs from that illustrated in FIG. 7 in the design of the means for injecting the air into the balloon 1.
  • an air injection device 38 is used which is connected on the one hand to the pipe 2 via a pipe 39 and on the other hand either to the lower part of the balloon 1 or to the pipe 2 upstream of the balloon 1 via a pipe 18 provided with a non-return valve 19.
  • the device 38 makes it possible to introduce air into the balloon 1 by means of emptying and filling cycles an auxiliary tank or chamber 6 of the device.
  • the filling of the auxiliary tank 6 with the liquid expels the air at the upper part of the auxiliary tank of the device in the balloon 1 via the connection line 18, the non-return valve 19 preventing the return of the air and the liquid in the auxiliary tank 6.
  • the regulation system comprises an air injection device 40 which is integrated into the pipe 2 upstream of the balloon 1 in order to inject the air, if necessary, into the balloon 1 via line 2.
  • an air injection device 40 which is integrated into the pipe 2 upstream of the balloon 1 in order to inject the air, if necessary, into the balloon 1 via line 2.
  • the pipe 2 has an inlet 41 and an outlet 42 for the liquid in the balloon 1.
  • the inlet 41 can be extended vertically upwards by a pipe 43 projecting inside the balloon 1.
  • the purpose of such an extension 43 is to create an air trap injected into the liquid by the air injection device 40.
  • the air conveyed by the liquid introduced into the balloon 1 via the inlet 41 rises in the balloon 1 to the separation surface 21 between the air and the liquid contained in the balloon 1 or terminates directly in the air zone if this surface 21 is located below the top of the pipe 43. This configuration therefore avoids any loss of useful volume in the balloon 1.
  • FIG. 12 shows an alternative embodiment of the air trap constituted by the inlet 41, the possible vertical extension 43 and the outlet 42 for the liquid at the lower part 1b of the balloon 1.
  • the difference in structure of the air trap between the modes illustrated in FIGS. 10 and 12 is better illustrated by FIGS. 11 and 13.
  • the inlet 41 and the outlet 42 are constituted by two compartments of a tubular pipe 44 separated by a central wall 45.
  • the section of the tubular pipe 44 advantageously corresponds to the sum of the sections of the pipe 2 immediately upstream and downstream of the tank 1.
  • the inlet 41 and outlet 42 are independent of each other and are constituted by a simple bend in the pipe 2 opening into the lower part 1b of the balloon 1.
  • an air trap is only used for the case where the injection of air into the balloon 1 is carried out via the pipe 2.
  • the air trap can take various forms, it suffices that the air introduced into the balloon 1 through the inlet 41 cannot escape with the liquid at the outlet 42.
  • the inlet 41 with possibly its extension 43 must be located at a level above the outlet 42.
  • FIGS. 14 and 15 show two other embodiments of the air trap.
  • the inlet 41 opens into the side wall of the balloon 1 above the bottom of the balloon, and the outlet 42 opens out into the bottom of the balloon.
  • This mode is particularly suitable for wastewater, because tows or other long bodies conveyed by the liquid in the pipe 2 risk being wound around the extension 43 of the inlet 41 illustrated in FIGS. 10 to 13.
  • the air traps described above require that all of the pumped water pass through the balloon. In the case of waste water, they risk causing deposits at the bottom of the tank, because all the materials transported in the waste water pass through the tank 1.
  • the problem can be solved by the mode illustrated in Figure 15.
  • the pipeline 2 has a part 2a with three openings and located immediately below the balloon 1.
  • the upper opening of part 2a opens into the lower part 1b of the balloon 1.
  • the liquid arrives through the intermediate opening of part 2a and leaves through the lower opening of this part of the pipe.
  • the intermediate and lower openings are connected by a vertical or inclined pipe section of an angle ⁇ at least equal to 45 ° relative to the horizontal.
  • the air trap according to FIG. 15 therefore makes it possible to limit the quantity of materials transported by the waste water which pass through the balloon 1.
  • a safety device can be provided at the lower part 1b of the balloon at the outlet 42 for the liquid.
  • the safety device comprises a float 46 made of light material, such as foam or plastic, a flexible membrane 47 and flexible lines 48.
  • the flexible membrane 47 is fixed to the float 46 by the flexible lines 48.
  • the lower part 1b of the balloon has an opening 1c closed by a horizontal plate 49 fixed to the balloon 1 by means of bolts.
  • the plate 49 has an opening communicating with the outlet 42 for the liquid, on this opening being provided a grid 50.
  • the float 46 on which the Archimedes' push of the liquid acts keeps the flexible membrane 47 fixed upward curved at the center of the grid 50.
  • the water can therefore pass through the outlet 42.
  • the float 46 lowers and the membrane 47 is applied to the grid 50 and to the plate 49, which prevents the complete emptying of the balloon 1.
  • On the underside of the float 46 can be provided lugs 51 allowing the pressure of the liquid to be exerted uniformly on the membrane 47 even when the float 46 is in contact with it.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Vehicle Body Suspensions (AREA)
  • Loading And Unloading Of Fuel Tanks Or Ships (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Devices For Use In Laboratory Experiments (AREA)
  • Load-Engaging Elements For Cranes (AREA)
  • Catching Or Destruction (AREA)
  • Supply Devices, Intensifiers, Converters, And Telemotors (AREA)
  • Air Bags (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Wind Motors (AREA)

Claims (24)

  1. Luftkontrollsystem für einen hydropneumatischen Behälter (1) mittels einer hydraulischen Leitung (2), bestehend aus einer Kammer (6), einer Vorrichtung zum Einfüllen von Wasser (11, 12; 3; 11, 27a) in die Kammer, eine Vorrichtung zum Ausbringen des Wassers (10, 13; 27b, 28) aus der Kammer, einer Vorrichtung zum automatischen Einfüllen von Luft (14, 15, 16) in die Kammer während des Leerens, einer Vorrichtung zum automatischen Einblasen (18, 19; 8) von Luft aus der Kammer über den Behälter während des Einfüllens, mit einer Steuervorrichtung (22), die zumindest mit einem Überschreitungsdetektor (23; 23a, 23b) eines Schwellenniveaus des im Behälter vorhandenen Wasserstands und mit Einfüll- und Entleerungsvorrichtungen der Kammer verbunden ist, und, falls der Detektor, sollte ein bestimmter Zustand eintreten, im Behälter ein unzureichendes Luftvolumen für diesen Zustand anzeigt, eine Steuervorrichtung Auffüll-/Entleerungszyklen der Kammer auslöst, bis der Detektor anzeigt, daß das Luftvolumen im Behälter ausreichend ist.
  2. System nach Anspruch 1, dadurch gekennzeichnet, daß es einen höher gelegenen Detektor (25) für den Wasserstand beinhaltet, der am oberen Ende der Kammer (6) angebracht und mit der Steuervorrichtung (22) verbunden ist, um das Ende des Einfüllvorgangs in die Kammer anzuzeigen.
  3. System nach Anspruch 2, dadurch gekennzeichnet, daß es einen niedriger angebrachten Detektor (26) für den wasserstand beinhaltet, der am unteren Ende der Kammer angebracht und mit der Steuervorrichtung (22) verbunden ist, um das Ende des Entleervorgangs der Kammer anzuzeigen.
  4. System nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Kammer (6) ein senkrechtes Rohr (15) zur Einleitung der Luft beinhaltet, dessen unteres Ende in das obere Ende der Kammer einmündet und dessen oberes Ende mit einem Elekroventil für die Luftzufuhr (14) verbunden ist, wobei das senkrechte Rohr ein Kompressionsraum zwischen dem Elektroventil zur Einleitung der Luft und des Wassers in die Kammer ist.
  5. System nach Anspruch 4, dadurch gekennzeichnet, daß der obere Detektor (25) auf dem senkrechten Rohr (15) angebracht ist.
  6. System nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß es eine Leitung (16) beinhaltet, deren eines Ende sich in der Nähe der Oberfläche (17) des gepumpten Wassers (4) befindet und deren anderes Ende mit der Vorrichtung zur automatischen Luftzufuhr in die Kammer verbunden ist.
  7. System nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Kammer (6) durch einen Röhrensystemabschnitt (2) gebildet ist, die in Richtung des normalen Abflusses (7) der Flüssigkeit in dem Röhrenabschnitt begrenzt ist, und zwar auf der einen Seite am stromabwärts gelegenen Ende durch ein Rückschlagventil (8), das auf dem Röhrensystem stromaufwärts vom Behälter (1) angebracht ist, und auf der anderen Seite an seinem stromaufwärts gelegenen Ende durch ein Entleerungsniveau (9), das von einer Entleerungsvorrichtung abgegrenzt ist, wobei der Stand des stromaufwärts gelegenen Endes des Abschnitts niedriger ist als der des stromabwärts gelegenen Endes.
  8. System nach Anspruch 7, dadurch gekennzeichnet, daß die Vorrichtung zur automatischen Luftzufuhr ein im voraus bestimmtes Volumen mittels des Rückschlagventils (8) in das Röhrensystems (2) stromaufwärts vom Behälter (1) oder direkt in den unteren Teil des Behälters mittels einer Leitung (18), die mit einem Rückschlagventil (19) versehen ist, einführt.
  9. System nach Anspruch 7 oder 8, dadurch gekennzeichnet, daß die Vorrichtung zum Einfüllen in die Kammer durch entweder ein Elektroventil (12), das an einer Einfülleitung (11) angebracht ist, deren eines Ende in das Röhrensystem (2) am stromabwärts gelegenen Ende des Rückschlagventils (8) und deren anderes Ende in die Kammer (6) mündet, oder durch eine Pumpe (3), die zu normalen Zeiten die Zufuhr im Röhrensystem (2) sicherstellt, gebildet ist.
  10. System nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Kammer (6) mittels eines Ballons gebildet ist, der von dem Röhrensystem (2) getrennt ist, und daß die Vorrichtungen zum Einfüllen und Entleeren aus einem Elektroventil mit zwei Kanälen (27) bestehen, das mit der Kammer (6) durch ein zwischengeschaltetes senkrechtes Rohr (29) verbunden ist, welches die untere Wand der Kammer durchdringt, wobei das senkrechte Rohr (29) über den Boden der Kammer, und zwar mit einer regulierbaren Höhe (h) im Inneren der Kammer, hinausgehen kann.
  11. System nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß es eine Hohlstange (33) des hydropneumatischen Behälters (1), welche aus einem Stück gefertigt ist, beinhaltet und diese senkrecht in Richtung des Behälterbodens eingetaucht ist, wobei das untere Ende (33a) der Stange geschlossen ist und so einen Hohlraum in der Hohlstange begrenzt, und daß der Überschreitungsdetektor (23a, 23b) in dem Hohlraum gelagert ist.
  12. System nach Anspruch 11, dadurch gekennzeichnet, daß der Überschreitungsdetektor (23a, 23b) in dem Hohlraum der Hohlstange gelagert ist, und zwar auf höhenverstellbare Weise.
  13. System nach Anspruch 11 oder 12, dadurch gekennzeichnet, daß der Überschreitungsdetektor von kapazitiver (oder entsprechender) Art ist, der verschiedene Signale in Gegenwart oder in Abwesenheit von Flüssigkeit entsprechend seinem Niveau liefert.
  14. System nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, daß der Behälter (1) im wesentlichen zylindrisch von beiden Seiten senkrecht oder waagrecht festgehalten ist, und daß die aus einem Stück gefertigte Hohlstange (33) der oberen Wand (la) des Behälters von röhrenartiger Form ist.
  15. System nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß es einen Aufsatz (34) am oberen Teil (la) des Behälters (1) beinhaltet, der es ermöglicht, die Luft im Fall eines Überdrucks im Behälter zu entleeren.
  16. System nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß es ein Ventil (35) beinhaltet, das die Flüssigkeitsverbindung zwischen dem Röhrensystem (2) und dem unteren Teil (1b) des Behälters kontrolliert, und daß es eine Schwemmleitung (36) beinhaltet, deren eines Ende in den unteren Teil des Behälters oberhalb des Ventils (35) mündet und deren anderes Ende einen Ablaßhahn (37) aufweist.
  17. System nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Vorrichtung zur automatischen Einführung (18, 19: 8: 40) Luft in den Behälter (1) via das Röhrensystem (2) einbläst, und daß die Verbindung zwischen dem unteren Teil (1b) des Behälters und dem Röhrensystem eine Luftschleuse (41, 42, 43; 2a) darstellt.
  18. System nach Anspruch 17, dadurch gekennzeichnet, daß die Luftschleuse aus einem Einlaß (41) für die in den unteren Teil (1b) des Behälters sich ergießende Flüssigkeit, der mittels einer Leitung (43) nach oben verlängert werden kann, und aus einem Abfluß (42) für die Flüssigkeit, die sich gleichermaßen in den unteren Teil des Behälters ergießt, besteht, wobei der rechte Abschnitt des jeweiligen Einlasses und Abflusses im wesentlichen identisch mit dem rechten Abschnitt des Röhrensystems (2) unmittelbar stromaufwärts und stromabwärts vom Behälters ist.
  19. System nach Anspruch 17, dadurch gekennzeichnet, daß die Luftschleuse aus einem Einlaß (41) für die Flüssigkeit, die sich in den unteren Teil (1b) des Behälters ergießt, und aus einem Abfluß (42) für die Flüssigkeit, die sich gleichermaßen in den unteren Teil des Behälters ergießt, besteht, wobei sich der Einlaß oberhalb des Abflusses für die Flüssigkeit befindet.
  20. System nach Anspruch 17, dadurch gekennzeichnet, daß die Luftschleuse aus einem Teilstück (2a) des Röhrensystems besteht, welches sich unterhalb des unteren Teils (1b) des Behälters befindet, wobei dieses Teilstück des Röhrensystems eine obere Öffnung aufweist, die in den unteren Teil des Behälters mündet, ferner eine zwischengeschaltete Öffnung, durch die die Flüssigkeit eintritt, und eine untere Öffnung, durch die die Flüssigkeit entleert wird, wobei die zwischengeschaltete und die untere Öffnung sich entsprechend dem Niveau des Röhrensystems unmittelbar stromaufwärts vom Behälter und entsprechend dem Niveau des Röhrensystems unmittelbar stromabwärts vom Behälters befinden.
  21. System entsprechend Anspruch 20, dadurch gekennzeichnet, daß die zwischengeschaltete und die untere Öffnung mit einem Abschnitt des Röhrensystems verbunden sind, der eine Kurve (θ) bildet, die um 45°oder mehr zur Horizontalen geneigt ist.
  22. System nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, daß der untere Teil (1b) des Behälters eine Öffnung (lc) für das Abfließen der Flüssigkeit, die mit dem Röhrensystem (2) verbunden ist, sowie eine Sicherheitsvorrichtung aufweist, welche mit der vorgenannten Öffnung zusammenarbeitet, um das totale Entleeren des Behälters und das Entweichen der Luft in das Röhrensystem ab dem Behälter zu verhindern.
  23. System nach Anspruch 22, dadurch gekennzeichnet, daß die Sicherheitsvorrichtung einen Schwimmer (46) aufweist, ferner eine dehnbare Membran (47), die mit dehnbaren Hängern (48) am Schwimmer aufgehängt ist, und eine mit einem zentralen Gitter (50) versehene Platte (49), die den Abschitt des Röhrensystems (42) bedeckt, welche in die Öffnung (lc) des Behälters mündet, wobei die Membran in ihrer Mitte an dem Gitter befestigt ist und das Gitter vollständig abdecken kann.
  24. System nach Anspruch 23, dadurch gekennzeichnet, daß der Schwimmer (46) die Form einer horizontalen Platte hat, die auf der unteren Oberfläche mit mehreren Vorsprüngen (51) versehen ist, die mit der Platte (49) auf dem Gitter (50) in Kontakt kommen können.
EP93400771A 1993-03-25 1993-03-25 Luftkontrollsystem für hydropneumatischen Behälter Expired - Lifetime EP0617227B1 (de)

Priority Applications (14)

Application Number Priority Date Filing Date Title
ES93400771T ES2105149T3 (es) 1993-03-25 1993-03-25 Sistema de regulacion de aire para un deposito hidroneumatico.
EP93400771A EP0617227B1 (de) 1993-03-25 1993-03-25 Luftkontrollsystem für hydropneumatischen Behälter
AT93400771T ATE153746T1 (de) 1993-03-25 1993-03-25 Luftkontrollsystem für hydropneumatischen behälter
DK93400771.7T DK0617227T3 (da) 1993-03-25 1993-03-25 Luftreguleringssystem for hydropneumatisk beholder
DE69311091T DE69311091T2 (de) 1993-03-25 1993-03-25 Luftkontrollsystem für hydropneumatischen Behälter
DZ940023A DZ1760A1 (fr) 1993-03-25 1994-03-16 Système de régulation d'air pour réservoir hydropneumatique.
PCT/FR1994/000317 WO1994021957A1 (fr) 1993-03-25 1994-03-23 Systeme de regulation d'air pour reservoir hydropneumatique
US08/535,138 US5647392A (en) 1993-03-25 1994-03-23 Air regulation system for hydropneumatic reservoir
MA23455A MA23147A1 (fr) 1993-03-25 1994-03-23 Systeme de regulation d'air pour reservoir hydropneumatique .
CA002159097A CA2159097C (fr) 1993-03-25 1994-03-23 Systeme de regulation d'air pour reservoir hydropneumatique
JP52073394A JP3285358B2 (ja) 1993-03-25 1994-03-23 液空圧槽の空気調節システム
CN94191589A CN1046346C (zh) 1993-03-25 1994-03-23 液压气动式水罐的空气调节系统
TNTNSN94028A TNSN94028A1 (fr) 1993-03-25 1994-03-24 Systeme de regulation d'air pour reservoir hydropneumatique
GR970402197T GR3024558T3 (en) 1993-03-25 1997-08-27 Air control system for hydropneumatic reservoir.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP93400771A EP0617227B1 (de) 1993-03-25 1993-03-25 Luftkontrollsystem für hydropneumatischen Behälter

Publications (2)

Publication Number Publication Date
EP0617227A1 EP0617227A1 (de) 1994-09-28
EP0617227B1 true EP0617227B1 (de) 1997-05-28

Family

ID=8214690

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93400771A Expired - Lifetime EP0617227B1 (de) 1993-03-25 1993-03-25 Luftkontrollsystem für hydropneumatischen Behälter

Country Status (14)

Country Link
US (1) US5647392A (de)
EP (1) EP0617227B1 (de)
JP (1) JP3285358B2 (de)
CN (1) CN1046346C (de)
AT (1) ATE153746T1 (de)
CA (1) CA2159097C (de)
DE (1) DE69311091T2 (de)
DK (1) DK0617227T3 (de)
DZ (1) DZ1760A1 (de)
ES (1) ES2105149T3 (de)
GR (1) GR3024558T3 (de)
MA (1) MA23147A1 (de)
TN (1) TNSN94028A1 (de)
WO (1) WO1994021957A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108105591A (zh) * 2017-12-28 2018-06-01 陈崇勇 通断装置

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2739170B1 (fr) * 1995-09-25 1997-12-12 Roche Emile Reservoir hydropneumatique anti-belier avec dispositif d'admission et de regulation d'air, procede d'admission d'air
FR2766883B1 (fr) 1997-08-01 1999-10-22 Emile Roche Dispositif d'introduction d'air pour un reservoir hydropneumatique
US6917544B2 (en) 2002-07-10 2005-07-12 Saifun Semiconductors Ltd. Multiple use memory chip
US7136304B2 (en) 2002-10-29 2006-11-14 Saifun Semiconductor Ltd Method, system and circuit for programming a non-volatile memory array
US7178004B2 (en) 2003-01-31 2007-02-13 Yan Polansky Memory array programming circuit and a method for using the circuit
US7638850B2 (en) 2004-10-14 2009-12-29 Saifun Semiconductors Ltd. Non-volatile memory structure and method of fabrication
US8053812B2 (en) 2005-03-17 2011-11-08 Spansion Israel Ltd Contact in planar NROM technology
US7804126B2 (en) 2005-07-18 2010-09-28 Saifun Semiconductors Ltd. Dense non-volatile memory array and method of fabrication
JP4915897B2 (ja) * 2005-07-19 2012-04-11 東京エレクトロン株式会社 脈動軽減装置及び検査装置
US7668017B2 (en) 2005-08-17 2010-02-23 Saifun Semiconductors Ltd. Method of erasing non-volatile memory cells
US8116142B2 (en) 2005-09-06 2012-02-14 Infineon Technologies Ag Method and circuit for erasing a non-volatile memory cell
WO2007035104A1 (en) * 2005-09-21 2007-03-29 Ottestad Breathing Systems As An arrangement in a pipe system for distribution of liquid
US7808818B2 (en) 2006-01-12 2010-10-05 Saifun Semiconductors Ltd. Secondary injection for NROM
US7692961B2 (en) 2006-02-21 2010-04-06 Saifun Semiconductors Ltd. Method, circuit and device for disturb-control of programming nonvolatile memory cells by hot-hole injection (HHI) and by channel hot-electron (CHE) injection
US7760554B2 (en) 2006-02-21 2010-07-20 Saifun Semiconductors Ltd. NROM non-volatile memory and mode of operation
US8253452B2 (en) 2006-02-21 2012-08-28 Spansion Israel Ltd Circuit and method for powering up an integrated circuit and an integrated circuit utilizing same
US7701779B2 (en) 2006-04-27 2010-04-20 Sajfun Semiconductors Ltd. Method for programming a reference cell
FR2930014B1 (fr) 2008-04-14 2010-05-28 Charlatte Reservoirs Dispositif et procede d'introduction d'air dans un reservoir hydropneumatique
US8322362B2 (en) * 2008-07-31 2012-12-04 Ethosystems, Llc Backup pneumatic water pressure device
WO2012056474A1 (en) * 2010-10-27 2012-05-03 Jaidip Shah A liquid supply system
KR101984334B1 (ko) * 2011-09-06 2019-05-30 바스프 에스이 파이프라인 시스템 및 파이프라인 시스템의 배수 방법
CN103672415B (zh) * 2013-12-06 2016-01-27 中国石油大学(华东) 基于非介入式传感器的气体管道泄漏检测和定位系统及方法
CN103672416B (zh) * 2013-12-06 2016-03-02 中国石油大学(华东) 一种非介入式压电型气体管道泄漏次声波检测装置
CN103644461B (zh) * 2013-12-06 2016-03-02 中国石油大学(华东) 一种非介入式电容型气体管道泄漏次声波检测装置
US20160290372A1 (en) * 2015-04-01 2016-10-06 Deere & Company Fluid circulation system
KR101630395B1 (ko) * 2015-06-19 2016-06-14 (주)에스엠테크 운전상태 분석알고리즘에 의한 수충격 방지시스템
KR101722078B1 (ko) * 2015-09-18 2017-03-31 플로우테크 주식회사 수배관 시스템 및 그 제어 방법
ITUB20154014A1 (it) * 2015-09-29 2017-03-29 Certech Spa Con Socio Unico Dispositivo compensatore per pompe volumetriche.
CN107228479A (zh) * 2016-03-25 2017-10-03 郭富通 一种预定温热水器
CN106871233A (zh) * 2017-04-13 2017-06-20 山西意迪光华电力勘测设计有限公司 热电联产集中供热热网的膨胀补水稳压系统及其调控方法
US10883663B2 (en) * 2018-05-24 2021-01-05 Rolls-Royce North American Technologies Inc Rapid fill container system
CN114110431B (zh) * 2021-11-16 2023-07-18 华海(北京)科技股份有限公司 一种集成空压站节能供气系统及其调控方法
FR3138263A1 (fr) * 2022-07-29 2024-02-02 Pierre-Marie Delmas Dispositif autonome de pompage et de distribution d’eau

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3347256A (en) * 1964-12-21 1967-10-17 Phillips Petroleum Co Pressure surge suppression in pipe lines
US4182358A (en) * 1976-07-12 1980-01-08 Vsesojuzny Nauchno-Issledovatelsky Institut Komplexnoi Avtomatizatsii Neftyanoi I Gazovoi Promyshlennosti System for limiting rate of pressure rise in pipeline during hydraulic impact
FR2416417A1 (fr) * 1978-02-06 1979-08-31 Roche Emile Reservoir antibelier a regulation d'air automatique

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108105591A (zh) * 2017-12-28 2018-06-01 陈崇勇 通断装置

Also Published As

Publication number Publication date
DZ1760A1 (fr) 2002-02-17
ES2105149T3 (es) 1997-10-16
CA2159097C (fr) 2004-10-19
EP0617227A1 (de) 1994-09-28
DK0617227T3 (da) 1997-12-22
CA2159097A1 (fr) 1994-09-29
JP3285358B2 (ja) 2002-05-27
CN1046346C (zh) 1999-11-10
CN1119887A (zh) 1996-04-03
DE69311091D1 (de) 1997-07-03
JPH08511078A (ja) 1996-11-19
TNSN94028A1 (fr) 1995-04-25
ATE153746T1 (de) 1997-06-15
WO1994021957A1 (fr) 1994-09-29
DE69311091T2 (de) 1998-01-08
MA23147A1 (fr) 1994-10-01
US5647392A (en) 1997-07-15
GR3024558T3 (en) 1997-12-31

Similar Documents

Publication Publication Date Title
EP0617227B1 (de) Luftkontrollsystem für hydropneumatischen Behälter
EP0818603B1 (de) Erdöl-Produktionseinrichtung und Verfahren
EP3194670A1 (de) Vorrichtung für toiletten
EP2110597B1 (de) Vorrichtung und Verfahren der Luftzufuhr in einen hydropneumatischen Behälter
WO2010001031A2 (fr) Chasse pour bachee a ouverture automatique et rapide
FR2759113A1 (fr) Installation de pompage d'un effluent biphasique liquide/gaz
EP0678632B1 (de) Regelvorrichtung für einen Siphon
EP0003700B1 (de) Druckausgleichsbehälter mit automatischer Luftregulierung
FR2647829A1 (fr) Dispositif pour equiper l'extremite d'exutoire d'un tuyau de siphonnage de drain
EP0895020B1 (de) Vorrichtung zur Einführung von Luft in einem hydropneumatischen Vorratsbehälter
FR2526084A1 (fr) Perfectionnements aux systemes d'alimentation de liquide, notamment de carburant pour moteurs d'aeronautique
EP0852684B1 (de) Hydropneumatisches schwallschutzreservoir mit einer vorrichtung zur regelbaren luftzufuhr sowie verfahren zur luftzufuhr
FR2621083A1 (fr) Pompe immergee de prelevement de liquide dans une conduite, notamment une conduite de rejet en eau profonde d'eaux de refroidissement de centrale nucleaire
EP1182355A1 (de) Einrichtung zur Tiefbodendrainage
WO2000034657A1 (fr) Pompe a lixiviat et de depollution, pneumatique, a vanne a manchon
EP2110594A1 (de) Hydropneumatischer Behälter zur Verhinderung von Druckstößen für die hydraulische Kanalisation mit verbesserter Abdichtvorrichtung
BE553245A (de)
WO2007015006A1 (fr) Dispositif de filtration etagee de l'eau d'un bassin
FR2473774A1 (fr) Dispositif d'aspersion automatique de l'enceinte de confinement d'un reacteur a eau pressurisee
FR2580621A1 (fr) Injecteur de chlore pour le traitement des eaux usees
FR2510637A1 (fr) Dispositif pour le retablissement du contenu d'air de reservoirs d'air destines a regulariser la distribution d'eau sous pression comportant l'utilisation de pompes a marche intermittente
FR2851620A1 (fr) Dispositif automatique de vidange d'une cuve
BE423714A (de)
FR2699830A1 (fr) Installation pour la filtration de liquides tels que l'eau.
BE498973A (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

17P Request for examination filed

Effective date: 19950126

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19960802

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

REF Corresponds to:

Ref document number: 153746

Country of ref document: AT

Date of ref document: 19970615

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69311091

Country of ref document: DE

Date of ref document: 19970703

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970829

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KIRKER & CIE SA

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2105149

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 19970826

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3024558

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20120220

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20120224

Year of fee payment: 20

Ref country code: MC

Payment date: 20120220

Year of fee payment: 20

Ref country code: FR

Payment date: 20120223

Year of fee payment: 20

Ref country code: CH

Payment date: 20120322

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120315

Year of fee payment: 20

Ref country code: PT

Payment date: 20120220

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20120327

Year of fee payment: 20

Ref country code: DK

Payment date: 20120227

Year of fee payment: 20

Ref country code: IT

Payment date: 20120326

Year of fee payment: 20

Ref country code: GB

Payment date: 20120320

Year of fee payment: 20

Ref country code: GR

Payment date: 20120222

Year of fee payment: 20

Ref country code: BE

Payment date: 20120329

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20120228

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69311091

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69311091

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20120223

Year of fee payment: 20

BE20 Be: patent expired

Owner name: *CHARLATTE

Effective date: 20130325

REG Reference to a national code

Ref country code: DK

Ref legal event code: EUP

REG Reference to a national code

Ref country code: NL

Ref legal event code: V4

Effective date: 20130325

Ref country code: PT

Ref legal event code: MM4A

Free format text: MAXIMUM VALIDITY LIMIT REACHED

Effective date: 20130325

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20130324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130326

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130324

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 153746

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130325

REG Reference to a national code

Ref country code: GR

Ref legal event code: MA

Ref document number: 970402197

Country of ref document: GR

Effective date: 20130326

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120323

Year of fee payment: 20

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20130718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130403

REG Reference to a national code

Ref country code: IE

Ref legal event code: MK9A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130325