EP0611218B1 - Procédé et installation de production d'oxygene sous pression - Google Patents

Procédé et installation de production d'oxygene sous pression Download PDF

Info

Publication number
EP0611218B1
EP0611218B1 EP94400300A EP94400300A EP0611218B1 EP 0611218 B1 EP0611218 B1 EP 0611218B1 EP 94400300 A EP94400300 A EP 94400300A EP 94400300 A EP94400300 A EP 94400300A EP 0611218 B1 EP0611218 B1 EP 0611218B1
Authority
EP
European Patent Office
Prior art keywords
pressure
air
component
column
high pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94400300A
Other languages
German (de)
English (en)
Other versions
EP0611218B2 (fr
EP0611218A1 (fr
Inventor
Maurice Grenier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9444023&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0611218(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP0611218A1 publication Critical patent/EP0611218A1/fr
Publication of EP0611218B1 publication Critical patent/EP0611218B1/fr
Application granted granted Critical
Publication of EP0611218B2 publication Critical patent/EP0611218B2/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04084Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04018Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04024Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of purified feed air, so-called boosted air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04145Mechanically coupling of different compressors of the air fractionation process to the same driver(s)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • F25J3/04175Hot end purification of the feed air by adsorption of the impurities at a pressure of substantially more than the highest pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/042Division of the main heat exchange line in consecutive sections having different functions having an intermediate feed connection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04236Integration of different exchangers in a single core, so-called integrated cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04278Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using external refrigeration units, e.g. closed mechanical or regenerative refrigeration units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/10Mathematical formulae, modeling, plot or curves; Design methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/912External refrigeration system
    • Y10S62/913Liquified gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/939Partial feed stream expansion, air
    • Y10S62/94High pressure column

Definitions

  • EP-A-0 504 029 describes a method of this type in which the fraction of air that is overpressed at the second high pressure is constituted by a very low air flow, the only function of which is to provide calories near intake temperature of the turbine which relaxes the fraction of air not overpressed.
  • the object of the invention is to improve this known process in order to increase performance thermodynamics without increasing the corresponding investment.
  • the subject of the invention is a process of the aforementioned type, characterized by the part Characterizing of claim 1.
  • the air distillation system shown in Figure 1 essentially comprises: a air compressor 1; an air cleaning device 2 compressed into water and C02 by adsorption, this device comprising two adsorption bottles 2A, 2B, one of which works in adsorption while the other is in progress regeneration; a fan-blower assembly 3 comprising an expansion turbine 4 and a blower or blower 5 whose shafts are coupled, the blower possibly being equipped with a refrigerant (not represented); a heat exchanger 6 constituting the installation heat exchange line; a double distillation column 7 comprising a medium column pressure 8 surmounted by a low pressure column 9, with a vaporizer-condenser 10 putting the overhead vapor (nitrogen) from column 8 in heat exchange relationship with the tank liquid (oxygen) of column 9; a liquid oxygen tank 11, the bottom of which is connected to a liquid oxygen pump 12; and a nitrogen tank liquid 13, the bottom of which is connected to a nitrogen pump liquid 14.
  • This facility is intended to provide, via a line 15, gaseous oxygen under a high predetermined pressure, which can be between a few bars and a few dozen bars (in the present brief, the pressures considered are absolute pressures).
  • liquid oxygen drawn from the column 9 tank via line 16 and stored in the reservoir 11 is brought to high pressure by the pump 12 in the liquid state, then vaporized and reheated under this high pressure in passages 17 of the exchanger 6.
  • the heat necessary for this vaporization and to this reheating, as well as to reheating and possibly vaporization of other fluids drawn from the double column, is supplied by the air to be distilled, in the following conditions.
  • All of the air to be distilled is compressed by compressor 1 at a first high pressure significantly higher than the average column pressure 8, in practice greater than 9 bars. Then the air, precooled in 18 and cooled to around temperature room in 19, is purified in one, 2A for example, adsorption bottles, and divided into two fractions.
  • the first fraction representing at least 70% of the treated air flow, is boosted a second time high pressure by the booster 5, which is driven by the turbine 4.
  • the first fraction of air is then introduced at the hot end of the exchanger 6 and cooled in all up to an intermediate temperature. At this temperature, a fraction of the air continues to cool and is liquefied in passages 20 of the exchanger and then is relaxed at low pressure in an expansion valve 21 and introduced at a level intermediate in column 9. The rest of the air is expanded at medium pressure in turbine 4 then sent directly, via a line 22, to the base of the column 8.
  • the second fraction is introduced under the first high pressure in exchange line 6, cooled and liquefied to the cold end of it in passages 20A, expanded in an expansion valve 21A and connected to the current from the expansion valve 21.
  • this air pressure is the condensation pressure of the air by exchange of heat with oxygen being vaporized under the high pressure, i.e. the pressure for which the knee G of liquefaction of one of the two fractions of air, on the heat exchange diagram (temperatures on the abscissa, quantities of heat exchanged on the ordinate) is located slightly to the right of the vertical landing P of vaporization of oxygen under high pressure ( Figure 2).
  • the temperature difference at the hot end of the exchange line is adjusted by means of turbine 4, of which the suction temperature is indicated in A.
  • the diagram in Figure 2 corresponds to following numerical values: first high pressure : 24.5 bars; high oxygen pressure: 10 bars; second high pressure: 31 bars; second fraction of air: 28% incoming flow; fraction liquefied in 20: very low; liquid production: 40% of the amount of oxygen separate.
  • the diagram in Figure 3 corresponds to following numerical values: first high pressure: 28.5 bars; purification temperature: + 12 ° C; second air fraction: 11% of the incoming flow; second high pressure: 36.4 bars; fraction relaxed in 4 to 5.7 bars: 77% of the incoming flow; liquefied fraction in 20: 12% of incoming air flow; high oxygen pressure: 40 bars; liquid production: 35% of the amount of oxygen separate.
  • the air from of the turbine 4 is sent to a separator pot 35.
  • the resulting liquid phase is sent directly to the column 8, while the gas phase is, after partial heating in the heat exchange line, expanded at low pressure in a second turbine 36 fitted with an appropriate brake 37, then blown into the column 9.
  • This variant allows either to produce impure oxygen under good energy conditions thanks to the increased production of liquid which results from the presence of the second turbine, i.e. increase liquid production at the expense of amount of oxygen separated, or producing only liquid oxygen.
  • an air flow can be taken between the precooler 38 and blower 5 and sent via a line 39 in other passages 20B of the line heat exchange, therefore at a pressure intermediate between the first and second highs pressures.
  • the installation can generate gaseous oxygen and / or nitrogen gas under at least two different pressures, as explained in the aforementioned EP-A-0 504 029.
  • blower 5 Possibly a small part of the air from blower 5 can be overpressed again by a second blower (not shown), for example coupled to the turbine 36 of Figure 5, before being cooled and liquefied in the heat exchange line, according to the teaching of the request FR 91 15 935.

Description

La présente invention est relative à un procédé de production d'oxygène gazeux sous une haute pression d'oxygène, suivant le préambule de la revendication 1.
Dans ce qui suit, le terme "condensation" doit être entendue au sens large, c'est-à-dire recouvrant également la pseudo-condensation, aux pressions supercritiques.
Le EP-A-0 504 029 décrit un procédé de ce type dans lequel la fraction de l'air qui est surpressée à la seconde haute pression est constituée par un très faible débit d'air, dont la seule fonction est d'apporter des calories au voisinage de la température d'admission de la turbine qui détend la fraction de l'air non surpressé.
L'invention a pour but de perfectionner ce procédé connu de manière à en accroítre les performances thermodynamiques sans augmenter l'investissement correspondant.
A cet effet, l'invention a pour objet un procédé du type précité, caractérisé par la partie caractérisante de la revendication 1.
D'autres modes particuliers de réalisation du procédé suivant l'invention sont décrits dans les revendications 2 à 5.
L'invention a également pour objet une installation destinée à la mise en oeuvre d'un tel procédé. Cette installation est décrite dans la revendication 6.
Des modes de réalisation de cette installation sont décrits dans les revendications 7 à 10.
Des exemples de mise en oeuvre de l'invention vont maintenant être décrit en regard des dessins annexés, sur lesquels :
  • la Figure 1 représente schématiquement une installation conforme à l'invention;
  • la Figure 2 est un diagramme d'échange thermique, obtenu par calcul, correspondant à l'installation de la Figure 1, dans un premier mode de fonctionnement de cette installation; sur ce diagramme, on a porté en abscisses les températures, en degrés Celsius, et en ordonnées les quantités de chaleur échangées;
  • la Figure 3 est un diagramme analogue à celui de la Figure 2 mais correspondant à un autre mode de fonctionnement de l'installation de la Figure 1; et
  • les Figures 4 à 6 sont des vues analogues à la Figure 1 représentant respectivement trois variantes.
L'installation de distillation d'air représentée à la Figure 1 comprend essentiellement : un compresseur d'air 1; un appareil 2 d'épuration de l'air comprimé en eau et en C02 par adsorption, cet appareil comprenant deux bouteilles d'adsorption 2A, 2B dont l'une fonctionne en adsorption pendant que l'autre est en cours de régénération; un ensemble turbine-soufflante 3 comprenant une turbine de détente 4 et une soufflante ou surpresseur 5 dont les arbres sont couplés, la soufflante étant éventuellement équipée d'un réfrigérant (non représenté); un échangeur de chaleur 6 constituant la ligne d'échange thermique de l'installation; une double colonne de distillation 7 comprenant une colonne moyenne pression 8 surmontée d'une colonne basse pression 9, avec un vaporiseur-condenseur 10 mettant la vapeur de tête (azote) de la colonne 8 en relation d'échange thermique avec le liquide de cuve (oxygène) de la colonne 9; un réservoir d'oxygène liquide 11 dont le fond est relié à une pompe d'oxygène liquide 12; et un réservoir d'azote liquide 13 dont le fond est relié à une pompe d'azote liquide 14.
Cette installation est destinée à fournir, via une conduite 15, de l'oxygène gazeux sous une haute pression prédéterminée, qui peut être comprise entre quelques bars et quelques dizaines de bars (dans le présent mémoire, les pressions considérées sont des pressions absolues).
Pour cela, de l'oxygène liquide soutiré de la cuve de la colonne 9 via une conduite 16 et stocké dans le réservoir 11, est amené à la haute pression par la pompe 12 à l'état liquide, puis vaporisé et réchauffé sous cette haute pression dans des passages 17 de l'échangeur 6.
La chaleur nécessaire à cette vaporisation et à ce réchauffage, ainsi qu'au réchauffage et éventuellement à la vaporisation d'autres fluides soutirés de la double colonne, est fournie par l'air à distiller, dans les conditions suivantes.
La totalité de l'air à distiller est comprimée par le compresseur 1 à une première haute pression nettement supérieure à la moyenne pression de la colonne 8, en pratique supérieure à 9 bars. Puis l'air, prérefroidi en 18 et refroidi au voisinage de la température ambiante en 19, est épuré dans l'une, 2A par exemple, des bouteilles d'adsorption, et divisé en deux fractions.
La première fraction, représentant au moins 70% du débit d'air traité, est surpressée à une deuxième haute pression par le surpresseur 5, lequel est entraíné par la turbine 4.
La première fraction d'air est alors introduite au bout chaud de l'échangeur 6 et refroidie en totalité jusqu'à une température intermédiaire. A cette température, une fraction de l'air poursuit son refroidissement et est liquéfiée dans des passages 20 de l'échangeur, puis est détendue à la basse pression dans une vanne de détente 21 et introduite à un niveau intermédiaire dans la colonne 9. Le reste de l'air est détendu à la moyenne pression dans la turbine 4 puis envoyé directement, via une conduite 22, à la base de la colonne 8.
La deuxième fraction, éventuellement prérefroidie vers -40°C par un groupe frigorifique 6A indiqué en traits mixtes, est introduite sous la première haute pression dans la ligne d'échange 6, refroidie et liquéfiée jusqu'au bout froid de celle-ci dans des passages 20A, détendue dans une vanne de détente 21A et réunie au courant issu de la vanne de détente 21.
On reconnaít par ailleurs sur la Figure 1 les conduites habituelles des installations à double colonne, celle représentée étant du type dit "à minaret", c'est-à-dire avec production d'azote sous la basse pression : les conduites 23 à 25 d'injection dans la colonne 9, à des niveaux croissants, de "liquide riche" (air enrichi en oxygène) détendu, de "liquide pauvre inférieur" (azote impur) détendu et de "liquide pauvre supérieur" (azote pratiquement pur) détendu, respectivement, ces trois fluides étant respectivement soutirés à la base, en un point intermédiaire et au sommet de la colonne 8; et les conduites 26 de soutirage d'azote gazeux partant du sommet de la colonne 9 et 27 d'évacuation du gaz résiduaire (azote impur) partant du niveau d'injection du liquide pauvre inférieur. L'azote basse pression est réchauffé dans des passages 28 de l'échangeur 6 puis récupéré via une conduite 29, tandis que le gaz résiduaire, après réchauffement dans des passages 30 de l'échangeur, est utilisé pour régénérer une bouteille d'adsorption, la bouteille 2B dans l'exemple considéré, avant d'être évacué via une conduite 31.
On voit encore sur la Figure 1 qu'une partie de l'azote liquide moyenne pression est, après détente dans une vanne de détente 32, stockée dans le réservoir 13, et qu'une production d'azote liquide et/ou d'oxygène liquide est fournie via une conduite 33 (pour l'azote) et/ou 34 (pour l'oxygène).
De même que dans le procédé du EP-A-0 504 029 précité, pour le choix de la pression de l'air surpressé, on distingue deux cas.
Lorsque la haute pression d'oxygène est inférieure à 20 bars environ, cette pression d'air est la pression de condensation de l'air par échange de chaleur avec l'oxygène en cours de vaporisation sous la haute pression, c'est-à-dire la pression pour laquelle le genou G de liquéfaction de l'une des deux fractions d'air, sur le diagramme d'échange thermique (températures en abscisses, quantités de chaleur échangées en ordonnées) est situé légèrement à droite du palier vertical P de vaporisation de l'oxygène sous la haute pression (Figure 2). L'écart de température au bout chaud de la ligne d'échange est ajusté au moyen de la turbine 4, dont la température d'aspiration est indiquée en A. Cet écart est rendu minimal, c'est-à-dire de l'ordre de 2 à 3°C, vers une température de l'ordre de +10 à +15°C, comme indiqué en B sur la Figure 2, grâce à l'introduction à cette température de la seconde fraction d'air dans la ligne d'échange thermique. C'est cette caractéristique, combinée à la présence du second genou de liquéfaction G', correspondant à la liquéfaction de l'autre fraction d'air, qui permet de resserrer davantage le diagramme d'échange thermique que dans le cas du FR-A précité. Il est à noter que ce résultat peut s'obtenir sans machine supplémentaire. La présence du groupe frigorifique 6A accentue encore ce phénomène favorable.
Le diagramme de la Figure 2 correspond aux valeurs numériques suivantes : première haute pression : 24,5 bars; haute pression d'oxygène : 10 bars; deuxième haute pression : 31 bars; seconde fraction d'air : 28% du débit entrant; fraction liquéfiée en 20 : très faible; production de liquide : 40% de la quantité d'oxygène séparé.
Lorsque la haute pression d'oxygène est supérieure à 20 bars environ, on choisit une pression d'air comprise entre 30 bars et la pression de condensation de l'air dans l'oxygène en cours de vaporisation. Dans ce cas (Figure 3), les genoux de liquéfaction des deux fractions d'air se décalent vers la gauche par rapport au palier P de vaporisation de l'oxygène, et la température d'aspiration de la turbine devient inférieure à celle du palier P. Par suite, une fraction importante de l'air turbiné se trouve en moyenne pression sous forme liquide, et le bilan frigorifique de l'installation est équilibré, avec un écart de température au bout chaud de la ligne d'échange thermique de l'ordre de 3°C, en soutirant de l'installation au moins un produit (oxygène et/ou azote) sous forme liquide via les conduites 33 et/ou 34. Lorsque la pression de l'air est de l'ordre de 30 bars, cet équilibre s'obtient pour un soutirage de liquide de l'ordre de 25% de la production d'oxygène gazeux sous haute pression, proportion qui est accrue si la pression de l'air est supérieure à 30 bars.
Le diagramme de la Figure 3 correspond aux valeurs numériques suivantes : première haute pression: 28,5 bars; température d'épuration : +12°C; seconde fraction d'air : 11% du débit entrant; deuxième haute pression : 36,4 bars; fraction détendue en 4 à 5,7 bars: 77% du débit entrant; fraction liquéfiée en 20 : 12% du débit d'air entrant; haute pression d'oxygène : 40 bars; production de liquide : 35% de la quantité d'oxygène séparé.
Dans la variante de la Figure 4, l'air issu de la turbine 4 est envoyé dans un pot séparateur 35. La phase liquide résultante est directement envoyée à la colonne 8, tandis que la phase gazeuse est, après réchauffement partiel dans la ligne d'échange thermique, détendue à la basse pression dans une seconde turbine 36 munie d'un frein approprié 37, puis insufflée dans la colonne 9. Cette variante permet soit de produire de l'oxygène impur dans de bonnes conditions énergétiques grâce à l'augmentation de la production de liquide qui résulte de la présence de la deuxième turbine, soit d'augmenter la production de liquide aux dépens de la quantité d'oxygène séparé, ou de produire uniquement de l'oxygène liquide.
Comme représenté sur la Figure 5, il peut être alors préférable, dans le même contexte, de réchauffer la phase gazeuse issue du séparateur 35 jusqu'à une température supérieure à la température d'admission de la turbine principale 4, avant d'introduire cette phase gazeuse à l'admission de la turbine 36. Dans ce cas, il peut être nécessaire, comme représenté, d'introduire dans la ligne d'échange thermique l'air qui s'échappe de la turbine 36 et de le refroidir jusqu'au bout froid de cette ligne d'échange, avant de l'introduire dans la colonne 8.
La Figure 6 illustre une autre variante dans laquelle la première haute pression est celle de l'avant-dernier étage du compresseur principal 1. Après épuration en 2 à cette pression, l'air est divisé en deux fractions comme précédemment. La première fraction est réintroduite à l'aspiration du dernier étage du compresseur 1, et en ressort à une pression plus élevée. Puis, après prérefroidissement en 38, cet air est surpressé à la seconde haute pression en 5 puis est traité comme expliqué plus haut. La seconde fraction d'air est directement introduite dans les passages 20A de la ligne d'échange thermique.
Eventuellement, comme indiqué en traits mixtes, un flux d'air peut être prélevé entre le prérefroidisseur 38 et la soufflante 5 et envoyé via une conduite 39 dans d'autres passages 20B de la ligne d'échange thermique, par conséquent à une pression intermédiaire entre les première et seconde hautes pressions.
On a également montré sur la Figure 6 que l'installation peut produire, outre l'azote gazeux basse pression provenant directement de la tête de la colonne 9 et l'oxygène gazeux haute pression, de l'azote gazeux sous pression, obtenu par vaporisation dans la ligne d'échange thermique d'un débit d'azote liquide prélevé dans la conduite 33. Cette vaporisation d'azote peut notamment s'effectuer par condensation de l'air contenu dans les passages 20, 20A ou 20B.
De plus, l'installation peut produire de l'oxygène gazeux et/ou de l'azote gazeux sous au moins deux pressions différentes, de la manière expliquée dans le EP-A-0 504 029 précité.
Eventuellement, une faible partie de l'air issu de la soufflante 5 peut être de nouveau surpressée par une seconde soufflante (non représentée), par exemple couplée à la turbine 36 de la Figure 5, avant d'être refroidie et liquéfiée dans la ligne d'échange thermique, suivant l'enseignement de la demande FR 91 15 935.

Claims (10)

  1. Procédé de production d'oxygène gazeux sous une haute pression d'oxygène par distillation d'air dans une installation à double colonne (7) comprenant une colonne moyenne pression (8) qui fonctionne sous une pression dite moyenne pression, et une colonne basse pression (9) qui fonctionne sous une pression dite basse pression, pompage (en 12) d'oxygène liquide soutiré en cuve de la colonne basse pression (9), et vaporisation (en 6) de l'oxygène liquide comprimé par échange de chaleur avec de l'air dans une ligne d'échange thermique (6) de l'installation, procédé dans lequel :
    on comprime la totalité de l'air à distiller, au moyen d'un compresseur d'air principal (1) de l'installation, jusqu'à une première haute pression nettement supérieure à la moyenne pression, et on la divise en une première et une seconde fractions;
    on surpresse ladite première fraction jusqu'à une seconde haute pression; et
    on refroidit au moins l'essentiel de ladite première fraction dans la ligne d'échange thermique jusqu'à une température intermédiaire, à laquelle une partie est détendue dans une première turbine (4) à la moyenne pression puis introduite dans la colonne moyenne pression (8), tandis que le reste poursuit son refroidissement et est liquéfié, détendu dans une vanne de détente (21) et introduit dans la double colonne (7);
    caractérisé en ce que ladite première fraction représente au moins 70% du débit d'air traité, et en ce qu'on refroidit et on liquéfie ladite seconde fraction, et un ou plusieurs flux à ladite première haute pression ou à une ou plusieurs pressions comprises entre ladite première haute pression et ladite seconde haute pression, et, après détente dans une vanne de détente (21A), on l'introduit dans la double colonne.
  2. Procédé suivant la revendication 1, caractérisé en ce qu'on détend dans une seconde turbine (36), jusqu'à la basse pression, la fraction gazeuse de l'air issu de la première turbine (4), cette fraction gazeuse étant partiellement réchauffée avant sa détente dans la seconde turbine et l'échappement de cette dernière étant insufflé dans la colonne basse pression (9), éventuellement après refroidissement.
  3. Procédé suivant la revendication 1 ou 2, caractérisé en ce qu'on amène l'air à la première haute pression au moyen d'une partie seulement des étages du compresseur d'air (1), on épure l'air en eau et en anhydrique carbonique (en 2) à cette première haute pression, puis on comprime ladite première fraction au moyen du ou des derniers étages de ce compresseur.
  4. Procédé suivant la revendication 3, caractérisé en ce qu'on surpresse au moins une partie de l'air sortant du dernier étage du compresseur (1) au moyen d'une soufflante (5) couplée à la première turbine (4).
  5. Procédé suivant l'une quelconque des revendications 1 à 4, caractérisé en ce qu'on prérefroidit ladite seconde fraction au moyen d'un groupe frigorifique (6A) avant de l'introduire dans la ligne d'échange thermique (6).
  6. Installation de production d'oxygène gazeux sous une haute pression d'oxygène , du type comprenant un compresseur d'air principal (1), une double colonne de distillation d'air (7) comprenant une colonne moyenne pression (8) qui fonctionne sous une pression dite moyenne pression, et une colonne basse pression (9) qui fonctionne sous une pression dite basse pression (7), une pompe (12) de compression d'oxygène liquide soutiré en cuve de la colonne basse pression (9), des moyens (1, 5) pour amener une fraction de l'air à distiller à une haute pression d'air, et une ligne d'échange thermique (6), caractérisée en ce que :
    lesdits moyens sont agencés pour amener la totalité de l'air à distiller à une première haute pression nettement supérieure à la moyenne pression, et comprennent des moyens (5) pour surpresser une première fraction de cet air, représentant au moins 70% du débit d'air traité, jusqu'à une seconde haute pression;
    la ligne d'échange thermique (6) comprend des moyens pour refroidir ladite première fraction jusqu'à une température intermédiaire et pour refroidir plus avant et liquéfier une partie de cette première fraction, et des moyens (20A, 20B) pour refroidir et liquéfier l'air non surpressé à la seconde haute pression, en un ou plusieurs flux à ladite première haute pression ou à une ou plusieurs pressions comprises entre ladite première haute pression et ladite seconde haute pression; et
    l'installation comprend une turbine (4) de détente dont l'aspiration est reliée aux passages de refroidissement d'air sous la seconde haute pression, en un point intermédiaire de la ligne d'échange thermique (6), et dont l'échappement est relié à la colonne moyenne pression (8).
  7. Installation suivant la revendication 6, caractérisée en ce qu'elle comprend une seconde turbine (36) de détente à la basse pression d'une partie au moins de l'air issu de la première turbine (4).
  8. Installation suivant la revendication 6 ou 7, caractérisée en ce que ladite seconde fraction est issue d'un étage intermédiaire du compresseur d'air principal (1), la première fraction étant, après épuration en eau et en anhydrique carbonique (en 2), réintroduite dans ce compresseur.
  9. Installation suivant la revendication 8, caractérisée en ce qu'elle comprend une soufflante (5) couplée à la première turbine (4) et dont l'aspiration est reliée au refoulement du dernier étage du compresseur d'air principal (1).
  10. Installation suivant l'une quelconque des revendications 6 à 9, caractérisée en ce qu'elle comprend un groupe frigorifique (6A) de prérefroidissement de ladite seconde fraction d'air en amont de la ligne d'échange thermique (6).
EP94400300A 1993-02-12 1994-02-11 Procédé et installation de production d'oxygene sous pression Expired - Lifetime EP0611218B2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9301622A FR2701553B1 (fr) 1993-02-12 1993-02-12 Procédé et installation de production d'oxygène sous pression.
FR9301622 1993-02-12

Publications (3)

Publication Number Publication Date
EP0611218A1 EP0611218A1 (fr) 1994-08-17
EP0611218B1 true EP0611218B1 (fr) 1998-11-04
EP0611218B2 EP0611218B2 (fr) 2002-08-07

Family

ID=9444023

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94400300A Expired - Lifetime EP0611218B2 (fr) 1993-02-12 1994-02-11 Procédé et installation de production d'oxygene sous pression

Country Status (10)

Country Link
US (1) US5426947A (fr)
EP (1) EP0611218B2 (fr)
JP (1) JPH06241650A (fr)
CN (1) CN1101924C (fr)
AU (1) AU660385B2 (fr)
CA (1) CA2115399C (fr)
DE (1) DE69414282T3 (fr)
ES (1) ES2124856T5 (fr)
FR (1) FR2701553B1 (fr)
ZA (1) ZA94968B (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012017488A1 (de) 2012-09-04 2014-03-06 Linde Aktiengesellschaft Verfahren zur Erstellung einer Luftzerlegungsanlage, Luftzerlegungsanlage und zugehöriges Betriebsverfahren

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19815885A1 (de) * 1998-04-08 1999-10-14 Linde Ag Verfahren und Vorrichtung zur Erzeugung von gasförmigem Druckprodukt bei der Tieftemperaturzerlegung von Luft
FR2782544B1 (fr) * 1998-08-19 2005-07-08 Air Liquide Pompe pour un liquide cryogenique ainsi que groupe de pompage et colonne de distillation equipes d'une telle pompe
FR2828273A1 (fr) * 2001-07-31 2003-02-07 Air Liquide Procede d'alimentation en air epure d'une unite de distillation d'air cryogenique et installation de mise en oeuvre de ce procede
US7437890B2 (en) * 2006-01-12 2008-10-21 Praxair Technology, Inc. Cryogenic air separation system with multi-pressure air liquefaction
US7487648B2 (en) * 2006-03-10 2009-02-10 Praxair Technology, Inc. Cryogenic air separation method with temperature controlled condensed feed air
FR2928446A1 (fr) * 2008-03-10 2009-09-11 Air Liquide Procede de modification d'un appareil de separation d'air par distillation cryogenique
DE102009048456A1 (de) * 2009-09-21 2011-03-31 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2461906A1 (fr) * 1979-07-20 1981-02-06 Air Liquide Procede et installation cryogeniques de separation d'air avec production d'oxygene sous haute pression
JPS62102074A (ja) * 1985-10-30 1987-05-12 株式会社日立製作所 ガス分離方法及び装置
FR2652409A1 (fr) 1989-09-25 1991-03-29 Air Liquide Procede de production frigorifique, cycle frigorifique correspondant et leur application a la distillation d'air.
US5148680A (en) 1990-06-27 1992-09-22 Union Carbide Industrial Gases Technology Corporation Cryogenic air separation system with dual product side condenser
JP2909678B2 (ja) * 1991-03-11 1999-06-23 レール・リキード・ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード 圧力下のガス状酸素の製造方法及び製造装置
FR2674011B1 (fr) * 1991-03-11 1996-12-20 Maurice Grenier Procede et installation de production d'oxygene gazeux sous pression.
FR2695714B1 (fr) 1992-09-16 1994-10-28 Maurice Grenier Installation de traitement cryogénique, notamment de distillation d'air.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012017488A1 (de) 2012-09-04 2014-03-06 Linde Aktiengesellschaft Verfahren zur Erstellung einer Luftzerlegungsanlage, Luftzerlegungsanlage und zugehöriges Betriebsverfahren

Also Published As

Publication number Publication date
AU660385B2 (en) 1995-06-22
EP0611218B2 (fr) 2002-08-07
FR2701553B1 (fr) 1995-04-28
CN1100514A (zh) 1995-03-22
AU5506094A (en) 1994-08-18
DE69414282T3 (de) 2003-03-20
CN1101924C (zh) 2003-02-19
ZA94968B (en) 1994-08-24
DE69414282D1 (de) 1998-12-10
CA2115399C (fr) 2005-04-26
ES2124856T3 (es) 1999-02-16
EP0611218A1 (fr) 1994-08-17
ES2124856T5 (es) 2003-03-01
FR2701553A1 (fr) 1994-08-19
CA2115399A1 (fr) 1994-08-13
DE69414282T2 (de) 1999-06-17
US5426947A (en) 1995-06-27
JPH06241650A (ja) 1994-09-02

Similar Documents

Publication Publication Date Title
EP0504029B1 (fr) Procédé de production d'oxygène gazeux sous pression
EP0576314B2 (fr) Procédé et installation de production d'oxygène gazeux sous pression
EP0689019B1 (fr) Procédé et installation de production d'oxygène gazeux sous pression
EP0628778B2 (fr) Procédé et unité de fourniture d'un gaz sous pression à une installation consommatrice d'un constituant de l'air
EP0562893B2 (fr) Procédé de production d'azote sous haute pression et d'oxygène
EP0420725A1 (fr) Procédé de production frigorifique, cycle frigorifique correspondant et leur application à la distillation d'air
EP0618415B1 (fr) Procédé et installation de production d'oxygène gazeux et/ou d'azote gazeux sous pression par distillation d'air
FR2757282A1 (fr) Procede et installation de fourniture d'un debit variable d'un gaz de l'air
EP0547946A1 (fr) Procédé et installation de production d'oxygène impur
EP0694746B1 (fr) Procédé de production d'un gaz sous pression à débit variable
EP0789208A1 (fr) Procédé et installation de production d'oxygène gazeux sous haute pression
EP0605262A1 (fr) Procédé et installation de production d'oxygène gazeux sous pression
EP0611936B1 (fr) Procédé et installation de production d'azote ultra-pur par distillation d'air
EP0611218B1 (fr) Procédé et installation de production d'oxygene sous pression
EP0641983B1 (fr) Procédé et installation de production d'oxygène et/ou d'azote gazeux sous pression
EP0914584B1 (fr) Procede et installation de production d'un gaz de l'air a debit variable
EP0677713B1 (fr) Procédé et installation pour la production de l'oxygène par distillation de l'air
EP0595673B1 (fr) Procédé et installation de production d'azote et d'oxygène
EP0612967B1 (fr) Procédé de production d'oxygène et/ou d'azote sous pression
EP0641982B1 (fr) Procédé et installation de production d'au moins un gaz de l'air sous pression
FR2674011A1 (fr) Procede et installation de production d'oxygene gazeux sous pression.
FR2685460A1 (fr) Procede et installation de production d'oxygene gazeux sous pression par distillation d'air.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940216

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FR GB IT NL SE

17Q First examination report despatched

Effective date: 19960118

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES FR GB IT NL SE

REF Corresponds to:

Ref document number: 69414282

Country of ref document: DE

Date of ref document: 19981210

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19981209

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2124856

Country of ref document: ES

Kind code of ref document: T3

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: LINDE AKTIENGESELLSCHAFT

Effective date: 19990803

NLR1 Nl: opposition has been filed with the epo

Opponent name: LINDE AKTIENGESELLSCHAFT

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: L'AIR LIQUIDE, S.A. A DIRECTOIRE ET CONSEIL DE SUR

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: L'AIR LIQUIDE, S.A. A DIRECTOIRE ET CONSEIL DE SUR

27A Patent maintained in amended form

Effective date: 20020807

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): BE DE ES FR GB IT NL SE

NLR2 Nl: decision of opposition
GBTA Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977)
NLR3 Nl: receipt of modified translations in the netherlands language after an opposition procedure
REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Date of ref document: 20021106

Kind code of ref document: T5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20080212

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080122

Year of fee payment: 15

Ref country code: GB

Payment date: 20080118

Year of fee payment: 15

Ref country code: DE

Payment date: 20080118

Year of fee payment: 15

Ref country code: SE

Payment date: 20080121

Year of fee payment: 15

Ref country code: NL

Payment date: 20080118

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080114

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20080208

Year of fee payment: 15

BERE Be: lapsed

Owner name: S.A. L'*AIR LIQUIDE POUR L'ETUDE ET L'EXPLOITATION

Effective date: 20090228

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090211

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20090901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090228

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20090212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090212

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090302