EP0607210B1 - Verfahren zur verbrennung von feststoffen - Google Patents

Verfahren zur verbrennung von feststoffen Download PDF

Info

Publication number
EP0607210B1
EP0607210B1 EP92920686A EP92920686A EP0607210B1 EP 0607210 B1 EP0607210 B1 EP 0607210B1 EP 92920686 A EP92920686 A EP 92920686A EP 92920686 A EP92920686 A EP 92920686A EP 0607210 B1 EP0607210 B1 EP 0607210B1
Authority
EP
European Patent Office
Prior art keywords
flue gas
process according
combustion
air
water vapour
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92920686A
Other languages
English (en)
French (fr)
Other versions
EP0607210A1 (de
Inventor
Jörg Krüger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MUELLKRAFTWERK SCHWANDORF BETRIEBSGESELLSCHAFT MBH
Original Assignee
MUELLKRAFTWERK SCHWANDORF BETRIEBSGESELLSCHAFT MBH
MUELLKRAFTWERK SCHWANDORF BETR
Muellkraftwerk Schwandorf Betriebsgesellschaft Mbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MUELLKRAFTWERK SCHWANDORF BETRIEBSGESELLSCHAFT MBH, MUELLKRAFTWERK SCHWANDORF BETR, Muellkraftwerk Schwandorf Betriebsgesellschaft Mbh filed Critical MUELLKRAFTWERK SCHWANDORF BETRIEBSGESELLSCHAFT MBH
Publication of EP0607210A1 publication Critical patent/EP0607210A1/de
Application granted granted Critical
Publication of EP0607210B1 publication Critical patent/EP0607210B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L7/00Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/08Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating
    • F23G5/14Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L2900/00Special arrangements for supplying or treating air or oxidant for combustion; Injecting inert gas, water or steam into the combustion chamber
    • F23L2900/07009Injection of steam into the combustion chamber

Definitions

  • the present invention relates to a method for the combustion of solids, in particular for waste incineration, in a combustion boiler which comprises at least one combustion chamber and an afterburning chamber, water vapor being introduced into the combustion boiler.
  • a sufficient burnout of the flue gases with the oxygen in the air is only guaranteed if there is an excess of air and corresponding turbulence in or directly above the combustion chamber.
  • part of the combustion air is usually blown in as secondary air at low pressure and moderate speeds.
  • the aim is to reduce the formation of carbon monoxide and nitrogen oxides.
  • the amount of secondary air blown in must be selected to be correspondingly high.
  • this excess air significantly increases the amount of exhaust gas and thus the loss of usable energy.
  • the adiabatic combustion temperatures decrease considerably with increasing air excess. If there is a large excess of air, additional CO formation can be caused by supercooling the fuel gases by adding the secondary air. However, high temperature peaks can occur in the edge region of the secondary air flow, which in conjunction with the locally high oxygen concentrations contribute to the formation of NO x .
  • the oxygen concentration in the moist flue gas after the incineration boiler is usually around 10% by volume.
  • the excess air in this case is about 150%, corresponding to an air ratio of 2.5.
  • Between 20 and 40% of the combustion air is usually blown in as secondary air. A reduction in the secondary air leads to poorer combustion of the fuel gases, a reduction in the primary air leads to poorer combustion of the slag.
  • Another task of the secondary air is to achieve a certain flame control. This is intended to break the thermals in the 1st draft of the combustion boiler (afterburning chamber) and thus create a narrow range of dwell times in the 1st draft. This goal has so far been achieved incompletely.
  • the use of tertiary air to break the thermal is only of limited use due to the additional air volume, since cooling results in additional CO formation and additional flue gas volumes.
  • a major disadvantage of the previous methods is the high amount of secondary or tertiary air required to burn out the exhaust gases safely and to break the thermals. These high air volumes can only be added if the primary air volume is reduced at the same time, although the burnout result on the grate is endangered. Increasing the amount of flue gas also leads to a shorter average residence time in the first train. Optimal pollutant degradation is therefore not guaranteed. Furthermore, the adiabatic combustion temperature is reduced by the increased amount of air. The temperature reduction in the area of the steam generator is accordingly flat. This significantly reduces the use of heat.
  • the object of the present invention is to develop a method for the combustion of solids with which it is possible to reduce the amounts of pollutants in the flue gas. Either the amount of flue gas should be significantly reduced while maintaining the same heat output, or vice versa the fuel throughput should be increased significantly. The process should be able to operate with as little excess air as possible. At the same time, the disadvantages of the known methods are to be largely avoided. The method is said to be particularly suitable for use in waste power plants.
  • the solids such as. B. garbage or coal
  • the primary combustion air is blown through the grate from below.
  • Flow through the hot flue gases generated in the combustion chamber First, an afterburner chamber (1st draft of the boiler) and then fed to the convective part of the boiler via further radiation.
  • the flue gas is then freed of dust and pollutants in a flue gas cleaning system and released into the atmosphere via a chimney.
  • no further combustion air such as e.g. Secondary or tertiary air
  • a gas and / or superheated, vaporous medium is injected into the combustion boiler 1 as a fluid medium above the combustion chamber 2 and in the lower region of the afterburning chamber 4.
  • the injection of water vapor does not promote the formation of carbon monoxide and nitrogen oxide in the flue gas.
  • the mixing energy required to generate the turbulence necessary for optimal combustion conditions of the fuel gases is applied via the water vapor. In this way, the total amount of air and the oxygen content of the flue gas can be significantly reduced.
  • the main advantages of this method of operation are a reduction in the amount of flue gas with the same net heat output and lower fuel consumption, or an increase in heat output by increasing the fuel throughput with the same amount of flue gas.
  • Determining the mixing energy which according to the invention is introduced into the combustion boiler via water vapor the set pressure and the volume flow of the water vapor.
  • a value of at least 1 bar should be selected as the minimum overpressure for the water vapor. Below this value, the volume flow of the water vapor must be set very high to ensure sufficient mixing energy. The amount of flue gas can then be reduced slightly at most. In addition, undesirably high water contents in the flue gas can result. In principle, the highest possible excess pressure of the water vapor should therefore be provided. The upper limit is only determined by the justifiable expenditure on equipment.
  • the volume flow of the water vapor to be set depends on the overpressure, with a higher volume requiring a lower volume flow and vice versa.
  • the volume flow is preferably selected so that a mixing energy in the range between 0.1 and 30 kW per m3 of turbulence space is introduced.
  • the area in the combustion boiler that is directly detected by the blown-in water vapor is referred to as the turbulence space.
  • d hydr. hydrof / U F corresponds to the cross-section through which the combustion gases flow (e.g. smallest cross-section after exiting the combustion chamber) and U denotes its circumference.
  • the mixing energy to be introduced can also be related to the exhaust gas volume.
  • mixing energies in the range between 0.03 and 3 W per Nm3 / h exhaust gas should preferably be set.
  • the temperature when entering the afterburning chamber should preferably be in the range between 1273 and 1673 K in order to ensure adequate combustion of the pollutants. Above 1673 K there is a risk of increased NO x formation even with lower oxygen levels in the flue gas.
  • the mean residence time of the flue gases in the afterburning chamber at temperatures ⁇ 1123 K can be increased to such an extent that the degradation of pollutants is considerably promoted.
  • FIG. 1 A conventional incinerator for solids according to the prior art is shown schematically in FIG. 1.
  • the grate 3 is arranged, on which the solids, such as garbage or coal, are burned with the addition of primary air 9.
  • the combustion chamber 2 Immediately above the grate 3 is the combustion chamber 2, which merges upwards into the afterburning chamber 4, corresponding to the 1st draft of the boiler.
  • the hot flue gases generated during combustion in the combustion chamber 2 first flow through the afterburning chamber 4. They are then conducted via the second train 5 of the boiler 1 to the evaporators and superheaters 6 and the ECO 7. Dust and pollutants are then removed in a flue gas cleaning system 8.
  • the supply takes place via secondary air nozzles 10, which are arranged in the combustion chamber 2 in the region of the transition to the afterburning chamber 4.
  • additional tertiary air can be blown in via tertiary air nozzles 11, which are installed in the afterburning chamber 4.
  • the amount of fuel and the amount of primary air can be reduced with the same steam output when the secondary or tertiary air is fully replaced.
  • the primary air volume and the fuel volume can be reduced by 10%, for example.
  • the amount of primary air is preferably reduced to such an extent that the excess air is between the value of 150% customary for such combustion plants and a lower limit value of 20%. With an air excess of 20%, the oxygen content in the flue gas is approx. 2%. If this value is undershot, the pollutants in the flue gases have a very aggressive effect on the boiler wall.
  • the steam is blown in via nozzles designed for supersonic operation, since this enables a particularly good conversion of pressure energy into kinetic energy.
  • the nozzles are installed in the area where the combustion gases exit from the combustion chamber 2 and / or directly in the area of the afterburning chamber 4. They are preferably arranged in one or more nozzle levels.
  • Existing systems can be converted to the method according to the invention in a simple manner by directly installing the nozzles for the water vapor instead of already existing secondary and / or tertiary air nozzles.
  • the combustion and mixing conditions in the combustion chamber 2 and in the inlet to the afterburning chamber 4 are optimized in particular. If, in addition or as an alternative, the water vapor is blown directly into the afterburning chamber 4, z. B. of smoke streaks favors the formation of a uniform piston flow. In this way, it is possible to generate a uniformly narrow residence time spectrum in the afterburning chamber 4 and to significantly increase the pollutant burnup.
  • the dust content of the exhaust gas can be separated with exceptionally high efficiency in the electrical flue gas cleaning.
  • the dust concentration in the exhaust gas after the electrostatic precipitator can be reduced to about 10 mg / Nm3.
  • gases or gas mixtures could also be used instead of water vapor, which are also composed in such a way that they do not promote the formation of CO and NO x in the flue gas, such as, for. B. recycled flue gas or nitrogen and other inert gases or mixtures thereof.
  • these gases are usually present under normal pressure or only a slight excess pressure, so that an extraordinarily high outlay on equipment would be necessary to set the high pressures required for the process according to the invention.
  • the amount to be supplied is so high that the advantages of the process according to the invention cannot be achieved.
  • the hot flue gas can e.g. B. can be returned via one or more connecting channels from the 2nd train to the 1st train of the boiler.
  • the water vapor nozzles are preferably arranged concentrically in the connecting channels for the recirculated flue gas. Due to the injector effect of the steam injected under high pressure, some of the hot flue gases are sucked out of the 2nd draft of the boiler and injected into the combustion boiler together with the water vapor without complex measures. Since the pressure conditions to be overcome for this flue gas recirculation are very low, only a correspondingly small amount of steam is required for this.
  • the proportion of recirculated flue gas is set to values between 5 and 50%, preferably around 30%, of the total flue gas quantity.
  • the maximum temperatures, the temperature reduction and the dwell times in the 1st and 2nd draft of the boiler can thus be easily adjusted to optimal values.
  • nitrogen or other inert gases or their mixtures can be injected into the combustion boiler together with the high-pressure water vapor by the process according to the invention.
  • the oxygen content of the flue gas dropped to approximately 6% by volume (moist). With comparable fuel, the air ratio dropped from 2.5 to 1.8. The amount of flue gas decreased from 100,000 Nm3 / h to 72,500 Nm3 / h and was thus reduced by a total of approx. 27%. The NO x content of the flue gas was reduced by approx. 25%. At the same time, the CO content of the flue gas dropped from 20 mg / Nm3 to values below 10 mg / Nm3.
  • the exhaust gas temperature after the steam generators was reduced from approx. 500 K to approx. 470 K. This increased the chloride separation in the flue gas cleaning system and reduced the HCl emission concentration from 50 to 80 mg / Nm3 to values below 30 mg / Nm3.
  • the dust carried in the flue gas and the hydrated lime used for dry flue gas cleaning, as well as the corresponding reaction products, can be separated out excellently in the electrical flue gas cleaning due to the higher water vapor partial pressure. This behavior is favored by the lower flue gas temperatures. Dust emissions are also positively influenced by the significantly lower gas speeds in the electrical flue gas cleaning system.
  • the dust content in the flue gas after the electrostatic precipitator was reduced from 40 to 60 mg / Nm3 to approx. 10 mg / Nm3.
  • the combustion temperature in the entrance to the afterburner was increased by approx. 200 K.
  • the flue gas temperature at the end of the afterburner rose only slightly by 30 to 50 K.
  • hot flue gas with a temperature of approx. 900 K was returned to the 1st train of the boiler together with part of the water vapor.
  • Some of the nozzles for the steam were installed concentrically in the individual flue gas return channels. Due to the suction effect of the water vapor injected under a pressure of approx. 6 bar, part of the flue gases was withdrawn from the second draft (convective part) and injected into the 1st draft of the boiler. The proportion of the returned flue gas was 30% of the total flue gas amount.
  • the pressure conditions to be overcome were very low with a maximum of 1 to 5 mbar, so that only a little steam was required to return the flue gases.
  • the temperature in the hot zone could e.g. from approximately 1473 K (without flue gas recirculation) to approximately 1308 K.
  • the temperature in the transition to the 1st train could be reduced while maintaining a minimal amount of combustion air.
  • the temperature reduction in the 1st and 2nd draft was somewhat flatter in this case, while the temperature and heat reduction in the convective part of the boiler practically matched the corresponding values without flue gas recirculation. Even under these conditions, a minimum dwell time of 2 s at temperatures above 1123 K could easily be maintained.
  • the other advantages as described when using water vapor without flue gas recirculation are retained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Incineration Of Waste (AREA)
  • Chimneys And Flues (AREA)
  • Air Supply (AREA)
  • Solid-Fuel Combustion (AREA)
  • Gasification And Melting Of Waste (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zur Verbrennung von Feststoffen, insbesondere zur Müllverbrennung, in einem Verbrennungskessel, der zumindest einen Feuerraum und eine Nachbrennkammer umfaßt, wobei in den Verbrennungskessel Wasserdampf eingebracht wird.
  • Ein solches Verfahren ist aus den Dokumenten DE-A-3 125 429 und EP-A-0 487 052 bekannt.
  • Bei der Verbrennung von festen Energieträgern, wie z. B. Müll oder Kohle, entstehen schadstoffhaltige Abgase. Die Verbrennung sollte aus ökologischen und ökonomischen Gründen bei einem optimalem Luftüberschuß gefahren werden, um die Abgas- und Schadstoffmenge zu minimieren. Aus verfahrens- und apparatetechnischen Gründen stehen allerdings die ökologisch und die ökonomisch optimale Betriebsweise häufig im Widerspruch.
  • Ein ausreichender Ausbrand der Rauchgase mit dem Sauerstoff der Luft ist nur bei einem Luftüberschuß und entsprechenden Turbulenzen im oder direkt über dem Feuerraum gewährleistet. Zur Erzeugung dieser Turbulenzen wird üblicherweise ein Teil der Verbrennungsluft als Sekundärluft mit geringem Druck und mäßigen Geschwindigkeiten eingeblasen. Auf diese Weise soll die Bildung von Kohlenmonoxid und Stickoxiden vermindert werden. Um gleichzeitig die notwendigen Turbulenzen und damit eine ausreichende Vermischung sicherzustellen, muß die Menge der eingeblasenen Sekundärluft entsprechend hoch gewählt werden. Durch diese überschüssige Luft steigt allerdings die Abgasmenge und damit der Verlust an nutzbarer Energie deutlich an.
  • Die adiabaten Verbrennungstemperaturen sinken mit steigendem Luftüberschuß erheblich ab. So kann bei hohem Luftüberschuß durch Unterkühlung der Brenngase durch Zugabe der Sekundärluft eine zusätzliche CO-Bildung verursacht werden. Im Randbereich der Sekundärluftströmung können jedoch hohe Temperaturspitzen auftreten, die in Verbindung mit den örtlich hohen Sauerstoffkonzentrationen zur NOx-Bildung beitragen.
  • Bei der Verbrennung von Müll liegt die Sauerstoffkonzentration im feuchten Rauchgas nach dem Verbrennungskessel üblicherweise bei ca. 10 Vol.-%. Der Luftüberschuß beträgt in diesem Fall etwa 150 %, entsprechend einer Luftzahl von 2,5. Zwischen 20 und 40 % der Verbrennungsluft werden üblicherweise als Sekundärluft eingeblasen. Eine Reduktion der Sekundärluft führt dabei zu schlechterem Ausbrand der Brenngase, eine Reduktion der Primärluft führt zu schlechterem Ausbrand der Schlacke.
  • Eine weitere Aufgabe der Sekundärluft ist die Erzielung einer gewissen Flammführung. Dadurch soll die Thermik im 1. Zug des Verbrennungskessels (Nachbrennkammer) gebrochen und damit ein enges Verweilzeitspektrum im 1. Zug erzeugt werden. Dieses Ziel wird bisher allenfalls unvollständig erreicht. Auch der Einsatz von Tertiärluft zum Brechen der Thermik ist wegen der zusätzlichen Luftmenge nur beschränkt nutzbringend, da durch Abkühlung unter anderem zusätzliche CO-Bildung und weitere Rauchgasmengen resultieren.
  • Wesentlicher Nachteil der bisherigen Verfahren ist die zum sicheren Ausbrand der Abgase und zum Brechen der Thermik erforderliche hohe Sekundär- bzw. Tertiärluftmenge. Die Zugabe dieser hohen Luftmengen ist nur möglich, wenn gleichzeitig die Primärluftmenge reduziert wird, wobei allerdings das Ausbrandergebnis auf dem Rost gefährdet ist. Die Erhöhung der Rauchgasmenge führt zudem zu einer geringeren mittleren Verweilzeit im 1. Zug. Ein optimaler Schadstoffabbau ist daher nicht gewährleistet. Des weiteren wird die adiabate Verbrennungstemperatur durch die erhöhte Luftmenge gesenkt. Der Temperaturabbau im Bereich der Dampferzeuger verläuft dementsprechend flach. Dadurch wird die Wärmenutzung erheblich verringert.
  • Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zur Verbrennung von Feststoffen zu entwickeln, mit dem es gelingt, die Schadstoffmengen im Rauchgas zu senken. Dabei soll entweder die Rauchgasmenge bei gleichbleibender Wärmeleistung erheblich vermindert werden, oder vice versa der Brennstoffdurchsatz deutlich erhöht werden. Das Verfahren soll mit möglichst geringem Luftüberschuß betrieben werden können. Gleichzeitig sollen die Nachteile der bekannten Verfahren weitestgehend vermieden werden. Das Verfahren soll sich insbesondere zur Anwendung in Müllkraftwerken eignen.
  • Diese Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren mit den Merkmalen des Hauptanspruchs. Vorteilhafte Ausgestaltungen und Weiterbildungen des neuen Verfahrens ergeben sich aus den Unteransprüchen.
  • Die Feststoffe, wie z. B. Müll oder Kohle, werden in einen Verbrennungskessel chargiert und auf einem Rost im Feuerraum verbrannt. Die primäre Verbrennungsluft wird von unten durch den Rost eingeblasen. Die im Feuerraum entstehenden heißen Rauchgase durchströmen zunächst eine Nachbrennkammer (1. Zug des Kessels) und werden dann über weitere Strahlungszüge dem konvektiven Teil des Kessels zugeführt. Im Anschluß daran wird das Rauchgas in einer Rauchgasreinigungsanlage von Staub und Schadstoffen befreit und über einen Kamin an die Atmosphäre abgegeben.
  • Nach dem erfindungsgemäßen Verfahren wird neben der Primärluft keine weitere Verbrennungsluft, wie z.B. Sekundär- bzw. Tertiärluft, in den Verbrennungskessel eingeführt. Ein ausschließlicher Einsatz von Primärluft würde allerdings zu einem schlechten Ausbrand der Rauchgase, bedingt durch unzureichende Vermischung in der Nachbrennkammer (Nachreaktions- bzw. Ausbrennkammer), und dementsprechend zu hohen CO- und Schadstoffgehalten im Abgas führen. Daher wird erfindungsgemäß oberhalb des Feuerraums 2 und im unteren Bereich der Nachbrennkammer 4 als fluides Medium ein gas- und/oder überhitztes, dampfförmiges Medium in den Verbrennungskessel 1 eingedüst. Durch das Einblasen von Wasserdampf wird die Kohlenmonoxid- und Stickoxidbildung im Rauchgas nicht gefördert. Über den Wasserdampf wird die zur Erzeugung der für optimale Verbrennungsbedingungen der Brenngase notwendigen Turbulenzen erforderliche Mischenergie aufgebracht. Auf diese Weise kann die Gesamtluftmenge und der Sauerstoffgehalt des Rauchgases erheblich reduziert werden. Wesentliche Vorteile dieser Arbeitsweise sind eine Verringerung der Rauchgasmenge bei gleicher Nettowärmeleistung und geringerem Brennstoffbedarf, bzw. eine Steigerung der Wärmeleistung durch Erhöhung des Brennstoffdurchsatzes bei gleicher Rauchgasmenge.
  • Bestimmend für die Mischenergie, die erfindungsgemäß über den Wasserdampf in den Verbrennungskessel eingebracht wird, sind der eingestellte Überdruck und der Volumenstrom des Wasserdampfes. Als Mindestüberdruck für den Wasserdampf sollte ein Wert von mindestens 1 bar gewählt werden. Unterhalb dieses Wertes muß der Volumenstrom des Wasserdampfes zur Gewährleistung einer ausreichenden Mischenergie sehr hoch eingestellt werden. Die Rauchgasmenge kann dann allenfalls geringfügig abgesenkt werden. Zudem können sich unerwünscht hohe Wassergehalte im Rauchgas ergeben. Grundsätzlich sollte daher ein möglichst hoher Überdruck des Wasserdampfes vorgesehen werden. Die obere Grenze wird lediglich bestimmt durch den vertretbaren apparatetechnischen Aufwand.
  • Der einzustellende Volumenstrom des Wasserdampfes ist abhängig vom Überdruck, wobei mit höherem Druck ein geringerer Volumenstrom erforderlich ist und umgekehrt. Bei vorgegebenem Druck des Wasserdampfes wird der Volumenstrom bevorzugt so gewählt, daß eine Mischenergie im Bereich zwischen 0,1 und 30 kW pro m³ Turbulenzraum eingebracht wird.
  • Als Turbulenzraum wird dabei derjenige Bereich im Verbrennungskessel bezeichnet, der unmittelbar durch den eingeblasenen Wasserdampf erfaßt wird. Das Volumen VT des Turbulenzraumes kann z. B. nach folgender Formel bestimmt werden : V T =( π 4 *d hydr. 2 )*(a*d hydr. )
    Figure imgb0001
    wobei a Werte zwischen 0,2 und 0,5 annehmen kann. Dabei sind für a mit zunehmender Anzahl an Düsenebenen für den Wasserdampf kleinere Werte des genannten Bereiches anzusetzen. Die charakteristische Länge dhydr. (hydraulischer Durchmesser) errechnet sich hier wie folgt: d hydr. = 4 F / U
    Figure imgb0002
    Dabei entspricht F dem von den Verbrennungsgasen durchströmten Querschnitt (z. B. geringster Querschnitt nach Austritt aus dem Feuerraum) und U bezeichnet dessen Umfang.
  • Die einzubringende Mischenergie kann auch auf das Abgasvolumen bezogen werden. In diesem Fall sind vorzugsweise Mischenergien im Bereich zwischen 0,03 und 3 W pro Nm³/h Abgas einzustellen.
  • Unterhalb einer Mischenergie von 0,1 kW/m³ Turbulenzraum bzw. 0,03 W pro Nm³/h Abgas sind die erzeugten Turbulenzen nicht ausreichend, um optimale Verbrennungsbedingungen zu gewährleisten, während oberhalb von 30 kW/m³ Turbulenzraum bzw. 3 W pro Nm³/h Abgas unwirtschaftlich hohe Drucke und/oder Volumenströme des Wasserdampfes erforderlich werden. Ein enges Verweilzeitspektrum innerhalb der Nachbrennkammer (Nachreaktions-bzw. Ausbrennkammer) des Verbrennungskessels wird erreicht, wenn der Druck und der Volumenstrom des Wasserdampfes so gewählt werden, daß in der Nachbrennkammer eine gleichmäßige Kolbenströmung des Rauchgases erzielt wird. Auf diese Weise kann ein optimaler thermischer Schadstoffabbau gewährleistet werden.
  • Mit dem erfindungsgemäßen Verfahren können vergleichsweise hohe Temperaturen in der Nachbrennkammer erzielt werden, da hier eine Abkühlung der Rauchgase durch hohe Mengen an überschüssiger Luft nicht gegeben ist. Die Temperatur beim Eintritt in die Nachbrennkammer sollte vorzugsweise im Bereich zwischen 1273 und 1673 K liegen, um eine ausreichende Verbrennung der Schadstoffe zu gewährleisten. Oberhalb von 1673 K besteht die Gefahr einer erhöhten NOx-Bildung bereits bei geringeren Sauerstoffgehalten im Rauchgas. Durch Steuerung der Einblasparameter des Wasserdampfes kann zudem die mittlere Verweilzeit der Rauchgase in der Nachbrennkammer bei Temperaturen ≥ 1123 K soweit erhöht werden, daß der Schadstoffabbau erheblich gefördert wird.
  • Eine nach bisherigem Stand der Technik übliche Verbrennungsanlage für Feststoffe ist in Fig. 1 schematisch dargestellt. Im unteren Bereich des Verbrennungskessels 1 ist der Rost 3 angeordnet, auf dem die Feststoffe, wie z.B. Müll oder Kohle, unter Zugabe von Primärluft 9 verbrannt werden. Unmittelbar über dem Rost 3 befindet sich der Feuerraum 2, der nach oben hin in die Nachbrennkammer 4, entsprechend dem 1. Zug des Kessels, übergeht. Die bei der Verbrennung im Feuerraum 2 entstehenden heißen Rauchgase durchströmen zunächst die Nachbrennkammer 4. Sie werden dann über den 2. Zug 5 des Kessels 1 zu den Verdampfern und Überhitzern 6 und dem ECO 7 geleitet. Anschließend erfolgt die Entfernung von Staub und Schadstoffen in einer Rauchgasreinigungsanlage 8. Wird bei einer derartigen Verbrennungsanlage mit Sekundärluft gearbeitet, erfolgt die Zufuhr über Sekundärluftdüsen 10, die im Feuerraum 2 im Bereich des Übergangs zur Nachbrennkammer 4 angeordnet sind. Optional kann über Tertiärluftdüsen 11, die in der Nachbrennkammer 4 installiert werden, zusätzlich Tertiärluft eingeblasen werden.
  • Nach dem erfindungsgemäßen Verfahren wird als Verbrennungsluft ausschließlich Primärluft verwendet. Sekundär- bzw. Tertiärluft werden vollständig durch Wasserdampf ersetzt. Dabei wird der Wasserdampf mit einem Volumenstrom, der weit unterhalb des üblicherweise verwendeten Sekundär- bzw. Tertiärluftvolumenstroms liegt, eingeblasen. Um dennoch eine ausreichend hohe Mischenergie in den Kessel 1 einzubringen, wird der Wasserdampf mit einem Überdruck eingeleitet, der deutlich über dem üblichen Sekundär- bzw. Tertiärluftdruck (ca. 40 mbar) liegt. Auf diese Weise gelingt es, hohe Mischenergien in den Kessel einzubringen, ohne die Nachteile eines hohen Luftüberrschusses in Kauf nehmen zu müssen. Da unter den erfindungsgemäßen Bedingungen die Verbrennungstemperatur ansteigt und die Abgasverluste fallen, kann bei vollem Ersatz von Sekundär- bzw. Tertiärluft die Brennstoffmenge sowie die Primärluftmenge bei gleicher Dampfleistung zurückgenommen werden. Die Primärluftmenge und die Brennstoffmenge können so zum Beispiel um 10 % reduziert werden. Vorzugsweise wird die Primärluftmenge soweit reduziert, daß der Luftüberschuß zwischen dem für derartige Verbrennungsanlagen üblichen Wert von 150 % und einem unteren Grenzwert von 20 % liegt. Bei einem Luftüberschuß von 20 % liegt der Sauerstoffgehalt im Rauchgas bei ca. 2 %. Wird dieser Wert unterschritten, wirken die Schadstoffe der Rauchgase stark aggressiv auf die Kesselwandung.
  • Das Einblasen des Wasserdampfes erfolgt über für den Überschallbetrieb ausgelegte Düsen, da hierdurch eine besonders gute Umwandlung von Druckenergie in kinetische Energie ermöglicht wird.
  • Die Düsen werden im Bereich des Austritts der Verbrennungsgase aus dem Feuerraum 2 und/oder unmittelbar im Bereich der Nachbrennkammer 4 installiert. Sie werden vorzugsweise in einer oder mehreren Düsenebenen angeordnet. Bestehende Anlagen können auf einfache Weise auf das erfindungsgemäße Verfahren umgerüstet werden, durch direkten Einbau der Düsen für den Wasserdampf anstelle bereits vorhandener Sekundär- und/oder Tertiärluftdüsen.
  • Durch Einblasen des Wasserdampfes im Bereich des Austritts der Verbrennungsgase aus dem Feuerraum 2 werden insbesondere die Verbrennungs- und Mischbedingungen im Feuerraum 2 sowie im Eintritt zu Nachbrennkammer 4 optimiert. Wird zusätzlich bzw. alternativ der Wasserdampf unmittelbar in die Nachbrennkammer 4 eingeblasen, so wird in diesem Bereich durch Auflösung und Verwirbelung z. B. von Rauchgassträhnen die Ausbildung einer gleichmäßigen Kolbenströmung begünstigt. Auf diese Weise gelingt es, ein gleichmäßig enges Verweilzeitspektrum in der Nachbrennkammer 4 zu erzeugen und den Schadstoffabbrand deutlich zu erhöhen.
  • Durch die Verwendung von Wasserdampf nach dem erfindungsgemäßen Verfahren wird insbesondere die CO- und NOx -Bildung im Rauchgas nicht gefördert. Gleichzeitig wird Wasserdampf in den Dampferzeugern 6, 7 der Verbrennungsanlage produziert und steht damit kostengünstig und in ausreichender Menge zur Verfügung. Zudem ergibt sich eine Reihe weiterer Vorteile. Durch den höheren Wasserdampfpartialdruck werden die Strahlungseigenschaften der Rauchgase verbessert. Damit steigt der Wärmeübergang durch Strahlung und damit die Wärmenutzung im Strahlungsteil des Kessels erheblich an. In Verbindung mit den unter erfindungsgemäßen Bedingungen erzielten höheren Rauchgastemperaturen und höheren CO₂-Partialdrucken verläuft der Anstieg des Wärmeübergangs durch Strahlung überproportional. Dabei steigt der Wärmeübergang z. B. bei einer Temperaturerhöhung von 1073 auf 1273 K um den doppelten Wert und bei einer Temperaturerhöhung auf 1473 K um den 3,5-fachen Wert. Durch die damit erzielte höhere Wärmenutzung und den schnelleren Temperaturabbau wird die Abgastemperatur nach den Dampferzeugern 6, 7 unter die üblichen Werte abgesenkt.
  • Überraschenderweise hat sich zudem herausgestellt, daß beim erfindungsgemäßen Einsatz von Wasserdampf, vermutlich bedingt durch den höheren Wasserdampfpartialdruck, der Staubgehalt des Abgases mit außergewöhnlich hoher Effizienz in der elektrischen Rauchgasreinigung abgeschieden werden kann. Die Staubkonzentration im Abgas nach dem Elektrofilter kann dadurch auf etwa 10 mg/Nm³ abgesenkt werden.
  • Theoretisch könnten anstelle von Wasserdampf auch Gase bzw. Gasgemische verwendet werden, die ebenfalls so zusammengesetzt sind, das sie die CO- und NOx-Bildung im Rauchgas nicht fördern, wie z. B. rückgeführtes Rauchgas oder auch Stickstoff und andere Inertgase bzw. deren Mischungen. Diese Gase liegen jedoch üblicherweise unter Normaldruck bzw. lediglich geringem Überdruck vor, so daß ein außerordentlich hoher apparativer Aufwand notwendig wäre, um die für das erfindungsgemäße Verfahren erforderlichen hohen Drucke einzustellen. Beim Einblasen derartiger Medien mit den üblichen Überdrucken von ca. 40 mbar, ist die zuzuführende Menge so hoch, daß die Vorteile des erfindungsgemäßen Verfahrens nicht erzielt werden können.
  • Die Rückführung von Rauchgasen in den Verbrennungsbereich des Kessels zur Verminderung von Stickoxidbildung ist grundsätzlich bekannt. Da das Rauchgas hierbei kalt zurückgeführt wird, kann nicht ausgeschlossen werden, daß sich innerhalb des Verbrennungsgasstromes örtlich Strähnen mit geringer Temperatur bilden, die eine zusätzliche CO-Bildung zur Folge haben. Unter den besonderen Bedingungen des erfindungsgemäßen Verfahrens gelingt es jedoch, auch heißes Rauchgas mit Temperaturen oberhalb von 873 K zusammen mit dem Wasserdampf in den Verbrennungskessel zurückzuführen. Auf diese Weise können örtliche Unterkühlungen mit entsprechender CO-Bildung vollständig vermieden werden.
  • Das heiße Rauchgas kann z. B. über einen oder mehrere Verbindungskanäle vom 2. Zug zum 1. Zug des Kessels zurückgeführt werden. Die Wasserdampfdüsen sind dabei vorzugsweise konzentrisch in den Verbindungskanälen für das rückgeführte Rauchgas angeordnet. Durch die Injektorwirkung des unter hohem Druck eingeblasenen Wasserdampfes wird ein Teil der heißen Rauchgase aus dem 2. Zug des Kessels abgesaugt und ohne aufwendige Maßnahmen zusammen mit dem Wasserdampf in den Verbrennungskessel eingedüst. Da die zu überwindenden Druckverhältnisse für diese Rauchgasrückführung sehr gering sind, ist hierzu lediglich eine entsprechend geringe Dampfmenge erforderlich. Wird der insgesamt eingebrachte Wasserdampf über mehrere Düsen bzw. Düsenebenen in den Kessel geführt, ist es ausreichend, lediglich einen Teil dieser Düsen für die Rauchgasrückführung zu verwenden. Der Anteil an rückgeführtem Rauchgas wird auf Werte zwischen 5 und 50 %, vorzugsweise auf etwa 30 %, der gesamten Rauchgasmenge eingestellt. Die maximalen Temperaturen, der Temperaturabbau und die Verweilzeiten im 1. und 2. Zug des Kessels lassen sich damit in einfacher Weise auf optimale Werte einstellen.
  • In gleicher Weise können nach dem erfindungsgemäßen Verfahren auch Stickstoff oder andere Inertgase bzw. deren Mischungen zusammen mit dem unter hohem Druck stehenden Wasserdampf in den Verbrennungskessel eingedüst werden.
  • Die wesentlichen Vorteile des erfindungsgemäßen Verfahrens lassen sich wie folgt zusammenfassen:
    • Die Rauchgasmenge wird bei gleicher Nettowärmeleistung erheblich reduziert, bei vollem Ersatz der Sekundär- bzw. Tertiärluft und Rücknahme der Primärluft (entsprechend dem geringeren Brennstoffdurchsatz) um etwa 20 bis 40 %.
    • Bei gleichbleibender Rauchgasmenge kann der Brennstoffdurchsatz um bis zu 40 % gesteigert werden, ohne die Notwendigkeit besonderer Maßnahmen im Rauchgasweg, insbesondere in der Rauchgasreinigungsanlage.
    • Die Wärmenutzung wird um bis zu 15 % gesteigert.
    • Die Staubbelastung der Heizflächen im gesamten Kessel sowie die Belastung der Rauchgasreinigung fällt zumindest entsprechend der verringerten Rauchgasmenge, wobei u. a. die Ofenreisezeit deutlich verlängert wird.
    • Die Verbrennungstemperaturen im Eintritt zur Nachbrennkammer werden wesentlich erhöht, steuerbar über die zugeführte Primärluftmenge, wodurch ein besserer Ausbrand sichergestellt ist.
    • Die Schadstoffmengen und -konzentrationen im Abgas werden wesentlich reduziert, insbesondere CO und NOx.
    • Unverhältnismäßig hohe Staubabscheidung in der elektrischen Gasreinigung durch Einsatz von Wasserdampf.
    • Durch den Einsatz von Wasserdampf wird der Wärmeübergang durch Strahlung deutlich erhöht, wobei ein schnellerer Temperaturabbau in der Kesselanlage sowie eine geringere Abgastemperatur erzielt wird.
    • Die erforderlichen Antriebsleistungen der Luftventilatoren und des Saugzugs können entsprechend der verringerten Luftmenge vermindert werden.
    • Nachgeschaltete Rauchgasreinigungsanlagen können entsprechend kleiner ausgelegt werden.
    • Bei nachgeschalteten "low dust"-Entstickungsanlagen sinkt der Aufwand an Energie zur Wiederaufwärmung des Rauchgases bei gleicher Grädigkeit entsprechend der geringeren Rauchgasmenge.
    • Bestehende Anlagen lassen sich in einfacher Weise an das erfindungsgemäße Verfahren anpassen.
  • Nachfolgend wird das erfindungsgemäße Verfahren anhand einiger Ausführungsbeispiele näher erläutert.
  • Einblasen von Wasserdampf
  • In diesem Verfahrensbeispiel wurde eine bestehende Verbrennungsanlage eines Müllkraftwerks umgerüstet für das Einblasen von Wasserdampf. Die Dampfdüsen wurden für Überschallbetrieb ausgelegt. Die Zufuhr von Primärluft sowie von Wasserdampf wurde jeweils stufenlos verstellbar eingerichtet.
  • Bei einer Untersuchung der Verbrennung im Müllkraftwerk zeigte sich, daß die Zugabe von Sekundärluft für die Verbrennung nicht notwendig, sondern eher nachteilig für den Gesamtprozeß ist. Im Normalbetrieb arbeitet die Anlage mit einer Gesamtluftmenge von ca. 80 000 Nm³/h, bei einem Sekundärluftanteil von 27 000 Nm³/h. Der Luftüberschuß liegt bei etwa 150 %, entsprechend einer Luftzahl von 2,5. Der Sauerstoffgehalt des Rauchgases beträgt unter diesen Bedingungen ca. 10 Vol.-%. Die Sekundärluft wird unter einem geringen Überdruck von ca. 40 mbar zugeführt. Bei der Entspannung der Sekundärluft wird eine Mischenergie von etwa 30 kW frei.
  • In der auf das erfindungsgemäße Verfahren umgerüsteten Anlage wurde eine Dampfmenge von ca. 2 000 kg/h mit einem Überdruck von 5 bar in den Verbrennungskessel im Bereich des Austritts der Verbrennungsgase aus dem Feuerraum eingeblasen. Die Gesamtluftmenge wurde dabei unter Beibehaltung der Nennlast der Dampferzeugung um ca. 30 % verringert, wobei die Sekundärluft vollständig durch Dampf ersetzt wurde und zusätzlich die Primärluftmenge reduziert wurde.
  • Der Sauerstoffgehalt des Rauchgases fiel unter diesen erfindungsgemäßen Bedingungen auf ca. 6 Vol.-% (feucht) ab. Bei vergleichbarem Brennstoff fiel die Luftzahl hierdurch von 2,5 auf 1,8 ab. Die Rauchgasmenge verringerte sich von 100 000 Nm³/h auf 72 500 Nm³/h und wurde damit insgesamt um ca. 27 % reduziert. Der NOx-Gehalt des Rauchgases wurde dabei um ca. 25 % abgesenkt. Gleichzeitig fiel der CO-Gehalt des Rauchgases von 20 mg/Nm³ auf Werte unter 10 mg/Nm³ ab.
  • Die Abgastemperatur nach den Dampferzeugern wurde von ca. 500 K auf ca. 470 K verringert. Dadurch wurde die Chloridabscheidung in der Rauchgasreinigung gesteigert und die HCl-Emissionskonzentration von 50 bis 80 mg/Nm³ auf Werte unterhalb von 30 mg/Nm³ gesenkt.
  • Der im Rauchgas mitgeführte Staub und das zur trockenen Rauchgasreinigung eingesetzte Kalkhydrat sowie die entsprechenden Reaktionsprodukte lassen sich aufgrund des höheren Wasserdampfpartialdruckes hervorragend in der elektrischen Rauchgasreinigung abscheiden. Dieses Verhalten wird begünstigt durch die tieferen Rauchgastemperaturen. Positiv beeinflußt wird die Staubemission zudem durch die deutlich geringeren Gasgeschwindigkeiten in der elektrischen Rauchgasreinigungsanlage. Der Staubgehalt im Rauchgas nach dem Elektrofilter wurde dadurch von 40 bis 60 mg/Nm³ auf ca. 10 mg/Nm³ vermindert.
  • Die Verbrennungstemperatur im Eintritt zur Nachbrennkammer wurde um ca. 200 K erhöht. Die Rauchgastemperatur am Ende der Nachbrennkammer stieg jedoch nur geringfügig um 30 bis 50 K an.
  • Die Abgasverluste bei vergleichbarer Reisezeit (Standzeit zwischen den Reinigungszyklen) sind mit 5,4 MW weitaus geringer als vor dem Umbau mit 9,3 MW. Unter Beibehaltung der Nennlast der Dampferzeugung konnte der Brennstoffdurchsatz (=Mülldurchsatz) um mehr als 10 % gesenkt werden.
  • Einblasen von Wasserdampf mit Rückführung von heißem Rauchgas
  • Hierzu wurden Untersuchungen in der gleichen Anlage unter im wesentlichen gleichen Bedingungen, wie vorstehend beschrieben, durchgeführt.
  • Über einen bzw. mehrere Verbindungskanäle vom 2. Zug zum 1. Zug des Kessels wurde zusammen mit einem Teil des Wasserdampfes heißes Rauchgas mit einer Temperatur von ca. 900 K in den 1. Zug des Kessels zurückgeführt. Ein Teil der Düsen für den Wasserdampf waren dabei konzentrisch in den einzelnen Rauchgasrückführkanälen eingebaut. Durch die Sogwirkung des unter einem Druck von ca. 6 bar eingedüsten Wasserdampfes wurde ein Teil der Rauchgase aus dem 2. Zug (konvektiver Teil) abgezogen und in den 1. Zug des Kessels injiziert. Der Anteil des rückgeführten Rauchgases betrug 30 % der gesamten Rauchgasmenge. Die zu überwindenden Druckverhältnisse waren mit Werten von maximal 1 bis 5 mbar sehr gering, so daß nur wenig Dampf zur Rückförderung der Rauchgase benötigt wurde. Bei den Versuchen wurde festgestellt, daß pro Nm³ rückgeführtem Rauchgas etwa zwischen 4 und 40 g Wasserdampf erforderlich sind. Bei Einsatz von schwach überhitztem Dampf unter einem Druck von 6 bar mit einer Temperatur von ca. 440 K fiel die Temperatur des rückgeführten Rauchgases (ca. 900 K) praktisch nicht ab.
  • Unter diesen Bedingungen konnte die Temperatur in der heißen Zone z.B. von ca. 1473 K (ohne Rauchgasrückführung) auf ca. 1308 K gesenkt werden. Auf diese Weise konnte unter Beibehaltung einer minimalen Verbrennungsluftmenge die Temperatur im Übergang zum 1. Zug gesenkt werden. Der Temperaturabbau im 1. und 2. Zug war in diesem Fall etwas flacher, während der Temperatur- und Wärmeabbau im konvektiven Teil des Kessels mit den entsprechenden Werten ohne Rauchgasrückführung praktisch übereinstimmte. Auch unter diesen Bedingungen konnte in jedem Fall eine Mindestverweilzeit von 2 s bei Temperaturen oberhalb von 1123 K problemlos eingehalten werden. Zudem bleiben auch die weiteren Vorteile, wie bei Einsatz von Wasserdampf ohne Rauchgasrückführung beschrieben, erhalten.

Claims (14)

  1. Verfahren zur Verbrennung von Feststoffen, insbesondere zur Müllverbrennung in einem Verbrennungskessel (1), der zumindest einen Feuerraum (2) mit einer Primärlufterzeugung (9) und einer Nachbrennkammer (4) umfaßt, wobei in den Verbrennungskessel (1) gas und/oder Wasserdampf mit einer durch einen Überdruck erzeugten Überschallgeschwindigkeit oberhalb des Feuerraumes (2) und im unteren Bereich der Nachbrennkammer (4) in den Verbrennungskessel (1) eingedüst wird, ohne daß neben der Primärluft weitere Verbrennungsluft zugeführt wird.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    daß Wasserdampf und Inertgase sowie Rauchgase oder deren Mischungen eingesetzt werden.
  3. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    daß der Druck und der Volumenstrom des eingedüsten Wasserdampfes so eingestellt werden, daß eine Mischenergie im Bereich zwischen 0,1 und 30 kW pro m³ Turbulenzraum eingebracht wird.
  4. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    daß der Druck und der Volumenstrom des eingedüsten Wasserdampfes so eingestellt werden, daß eine Mischenergie im Bereich zwischen 0,03 bis 3 W pro Nm³/h Abgas eingebracht wird.
  5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Temperatur im Bereich des Eintritts der Verbrennungsgase in die Nachbrennkammer (4) zwischen 1273 und 1673 K eingestellt wird.
  6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Volumenstrom der primären Verbrennungsluft so eingestellt wird, daß der Luftüberschuß zwischen 20 und 150 % beträgt.
  7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß ein Teil des Wasserdampfes verwendet wird, um einen Teil des Rauchgases in den Bereich zwischen dem Feuerraum (2) und der Nachbrennkammer (4) und/oder direkt in die Nachbrennkammer (4) zurückzuführen.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß der Anteil an rückgeführtem Rauchgas zwischen 5 und 50 %, vorzugsweise 30 %, der gesamten Rauchgasmenge beträgt.
  9. Verfahren nach einem der Ansprüche 7 oder 8, dadurch gekennzeichnet, daß das Rauchgas mit einer Temperatur von mindestens 873 K zurückgeführt wird.
  10. Verfahren nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, daß zur Rauchgasrückführung eine Wasserdampfmenge zwischen 4 und 40 g pro Nm³ rückgeführtem Rauchgas verwendet wird.
  11. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß ein Teil des Wasserdampfes verwendet wird, um Stickstoff oder andere Inertgase in den Verbrennungskessel (1) einzubringen.
  12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zum Einblasen des Wasserdampfes Düsen verwendet werden, die in einer oder mehreren Ebenen in der Kesselwand im Bereich des Austritts der Verbrennungsgase aus dem Feuerraum (2) und/oder im Bereich der Nachbrennkammer (4) angeordnet sind.
  13. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zum Einblasen des Wasserdampfes Überschalldüsen verwendet werden.
  14. Verfahren nach einem der Ansprüche 7 bis 13, dadurch gekennzeichnet, daß das Rauchgas über einen oder mehrere Kanäle zurückgeführt wird, wobei in jedem Kanal jeweils eine Wasserdampfdüse konzentrisch angeordnet ist.
EP92920686A 1991-10-08 1992-10-02 Verfahren zur verbrennung von feststoffen Expired - Lifetime EP0607210B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4133239 1991-10-08
DE4133239 1991-10-08
PCT/EP1992/002280 WO1993007422A1 (de) 1991-10-08 1992-10-02 Verfahren zur verbrennung von feststoffen

Publications (2)

Publication Number Publication Date
EP0607210A1 EP0607210A1 (de) 1994-07-27
EP0607210B1 true EP0607210B1 (de) 1996-01-31

Family

ID=6442216

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92920686A Expired - Lifetime EP0607210B1 (de) 1991-10-08 1992-10-02 Verfahren zur verbrennung von feststoffen

Country Status (8)

Country Link
US (1) US5553556A (de)
EP (1) EP0607210B1 (de)
AT (1) ATE133772T1 (de)
CZ (1) CZ284076B6 (de)
DE (1) DE59205258D1 (de)
DK (1) DK0607210T3 (de)
SK (1) SK281396B6 (de)
WO (1) WO1993007422A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012000262A1 (de) 2012-01-10 2013-07-11 Jörg Krüger Verfahren und Vorrichtung zur Verbesserung des Ausbrandes von Schlacken auf Verbrennungsrosten

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19511609C2 (de) * 1995-03-30 1998-11-12 Muellkraftwerk Schwandorf Betr Verfahren und Vorrichtung zur Verbrennung von Feststoffen
EP0741267B1 (de) * 1995-05-05 2001-08-01 BBP Environment GmbH Verfahren und Feuerung zum Verbrennen von Abfällen
US5906806A (en) * 1996-10-16 1999-05-25 Clark; Steve L. Reduced emission combustion process with resource conservation and recovery options "ZEROS" zero-emission energy recycling oxidation system
DE19723298A1 (de) * 1997-06-04 1998-12-10 Abb Patent Gmbh Verfahren zur Steuerung der Mischungsgüte bei der Müllverbrennung
US5937772A (en) * 1997-07-30 1999-08-17 Institute Of Gas Technology Reburn process
DE19938269A1 (de) * 1999-08-12 2001-02-15 Asea Brown Boveri Verfahren zur thermischen Behandlung von Feststoffen
US6647903B2 (en) * 2000-09-14 2003-11-18 Charles W. Aguadas Ellis Method and apparatus for generating and utilizing combustible gas
DE10051733B4 (de) 2000-10-18 2005-08-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur gestuften Verbrennung von Brennstoffen
DE10339133B4 (de) * 2003-08-22 2005-05-12 Fisia Babcock Environment Gmbh Verfahren zur NOx-Minderung in Feuerräumen und Vorrichtung zur Durchführung des Verfahrens
US7140309B2 (en) * 2003-09-22 2006-11-28 New Energy Corporation Method of clean burning and system for same
ES2420805T3 (es) 2005-06-28 2013-08-26 Afognak Native Corporation Metodo y aparato para generación de energía de biomasa, modular, automatizada
US7833296B2 (en) * 2006-10-02 2010-11-16 Clark Steve L Reduced-emission gasification and oxidation of hydrocarbon materials for power generation
US8038744B2 (en) * 2006-10-02 2011-10-18 Clark Steve L Reduced-emission gasification and oxidation of hydrocarbon materials for hydrogen and oxygen extraction
US8038746B2 (en) * 2007-05-04 2011-10-18 Clark Steve L Reduced-emission gasification and oxidation of hydrocarbon materials for liquid fuel production
US10641173B2 (en) * 2016-03-15 2020-05-05 Bechtel Power Corporation Gas turbine combined cycle optimized for post-combustion CO2 capture

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH428063A (de) * 1965-03-31 1967-01-15 Von Roll Ag Verfahren zur Verbrennung von Abfallbrennstoffen, insbesondere Müll, sowie Verbrennungsofen zur Durchführung dieses Verfahrens
US3473331A (en) * 1968-04-04 1969-10-21 Combustion Eng Incinerator-gas turbine cycle
CH583881A5 (de) * 1975-07-04 1977-01-14 Von Roll Ag
US4028551A (en) * 1975-10-17 1977-06-07 Champion International Corporation Apparatus and method for corona discharge priming a dielectric web
US4285282A (en) * 1977-12-22 1981-08-25 Russell E. Stadt Rubbish and refuse incinerator
DE3125429A1 (de) * 1981-06-27 1983-02-03 Erk Eckrohrkessel Gmbh, 1000 Berlin "einrichtung zur durchmischung von gasstraehnen"
DE3915992A1 (de) * 1988-05-19 1989-11-23 Theodor Koch Verfahren zur reduktion von stickstoffoxiden
DK0487052T3 (de) * 1990-11-22 1997-03-17 Hitachi Shipbuilding Eng Co

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012000262A1 (de) 2012-01-10 2013-07-11 Jörg Krüger Verfahren und Vorrichtung zur Verbesserung des Ausbrandes von Schlacken auf Verbrennungsrosten
WO2013104407A2 (de) 2012-01-10 2013-07-18 Krüger, Jörg Verfahren und vorrichtung zur verbesserung des ausbrandes von schlacken auf verbrennungsrosten
DE102012000262B4 (de) * 2012-01-10 2015-12-17 Jörg Krüger Verfahren und Vorrichtung zur Verbesserung des Ausbrandes von Schlacken auf Verbrennungsrosten

Also Published As

Publication number Publication date
US5553556A (en) 1996-09-10
CZ284076B6 (cs) 1998-08-12
SK40594A3 (en) 1994-08-10
CZ80294A3 (en) 1994-08-17
ATE133772T1 (de) 1996-02-15
WO1993007422A1 (de) 1993-04-15
EP0607210A1 (de) 1994-07-27
DE59205258D1 (de) 1996-03-14
SK281396B6 (sk) 2001-03-12
DK0607210T3 (da) 1996-03-18

Similar Documents

Publication Publication Date Title
EP0607210B1 (de) Verfahren zur verbrennung von feststoffen
EP0694147B1 (de) Verfahren zur reduzierung der emissionen bei der verbrennung von abfällen
DE69205161T2 (de) Pulsierende atmosphärische wirbelschichtverbrennungsanlage und verfahren.
EP1570211B1 (de) Verfahren und vorrichtung zur verbrennung eines brennstoffes
EP0191141B1 (de) Verfahren und Anlage zur Reduzierung des NOx-Gehaltes von mittels fossiler Brennstoffe beheizten Grossfeuerungsanlagen
EP0254036A2 (de) Verfahren und Anlage zur Verminderung des NO3-Gehaltes im Rauchgas bei kohlenstaubbefeuerten Dampferzeugern mit Trockenentaschung
DE69111058T2 (de) Verfahren zur Verminderung des Ausstosses von Distickstoffoxid bei der Verbrennung von stickstoffhaltigem Brennstoff in Wirbelschichtreaktoren.
EP0249255A1 (de) Kombinierter Gas-/Dampfturbinen-Prozess
DE19721712A1 (de) Abfallverbrennungssystem sowie in diesem verwendete Brennstoff-Reformierungsanlage
DE3824813C2 (de)
DE2303586B2 (de) Gasturbinenanlage mit vollstaendiger kontinuierlicher verbrennung des ihr zugefuehrten brennstoffs
EP0132584B1 (de) Verfahren und Anlage zum Vermindern der Schadstoffemissionen in Rauchgasen von Feuerungsanlagen
DE60122829T2 (de) Müllverbrennungsanlage mit Abgasrückführung
CH661097A5 (de) Verfahren zum verteilen von restgas in die atmosphaere.
EP0591314B1 (de) Anlage und verfahren zum abbrennen von explosivstoffen
WO1998054513A1 (de) VERFAHREN ZUR NOx-ARMEN VERBRENNUNG VON STEINKOHLE BEI TROCKENENTASCHTEN DAMPFERZEUGERN
DD290042A5 (de) Verbrennungsverfahren zum einschraenken einer bildung von stickstoffoxiden bei verbrennung und anordnung zum ausfuehren des verfahrens
EP0593999A1 (de) Verfahren zur Energiegewinnung bei Müll- oder Sondermüllverbrennungsanlagen
DE2745756A1 (de) Verbrennungsofen
WO2001084051A1 (de) Verfahren und vorrichtung für die verbrennung von organischem reststoff
EP0267206B1 (de) Verfahren und anlage zur verringerung der stickoxidemission bei der verbrennung von mittel-und hochfluechtigen steinkohlen
EP0363812A2 (de) Verfahren und Anlage zur Dampferzeugung, insbesondere in Heizkraftwerken
EP0701674B1 (de) Verfahren zur reduzierung der emission bei der verbrennung von abfällen
WO1992003211A1 (de) Verfahren und vorrichtung zur vollständigen trockenen entschwefelung von so2- und staubhaltigen verbrennungsabgasen
WO1995027872A1 (de) Verfahren zur reduzierung der emission bei der verbrennung von abfällen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940317

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE DK FR GB IE IT LU MC NL SE

17Q First examination report despatched

Effective date: 19950126

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MUELLKRAFTWERK SCHWANDORF BETRIEBSGESELLSCHAFT MBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE DK FR GB IE IT LU MC NL SE

REF Corresponds to:

Ref document number: 133772

Country of ref document: AT

Date of ref document: 19960215

Kind code of ref document: T

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: 67110

REF Corresponds to:

Ref document number: 59205258

Country of ref document: DE

Date of ref document: 19960314

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960227

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MC

Payment date: 19961022

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 19961023

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010912

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20011017

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20011022

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20011023

Year of fee payment: 10

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021003

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20021025

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20021127

Year of fee payment: 11

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20021002

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031031

BERE Be: lapsed

Owner name: MULLKRAFTWERK *SCHWANDORF BETRIEBSGESELLSCHAFT M.B

Effective date: 20031031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20041014

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20041019

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051002

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060501

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20060501

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110412

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120501

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59205258

Country of ref document: DE

Effective date: 20120501