EP0600222B1 - Lightning-current withstand device with at least two series-connected surge gaps - Google Patents

Lightning-current withstand device with at least two series-connected surge gaps Download PDF

Info

Publication number
EP0600222B1
EP0600222B1 EP93117367A EP93117367A EP0600222B1 EP 0600222 B1 EP0600222 B1 EP 0600222B1 EP 93117367 A EP93117367 A EP 93117367A EP 93117367 A EP93117367 A EP 93117367A EP 0600222 B1 EP0600222 B1 EP 0600222B1
Authority
EP
European Patent Office
Prior art keywords
spark
insulating layer
arrangement according
spark gap
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93117367A
Other languages
German (de)
French (fr)
Other versions
EP0600222A1 (en
Inventor
Johannes Prof. Dr.-Ing. Wiesinger
Wolfgang Dr.-Ing. Zischank
Peter Dr.-Ing. Hasse
Walter Dipl.-Ing. Aumeier (Fh)
Peter Dr.-Ing. Zahlmann
Raimund König
Georg Wittmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dehn SE and Co KG
Original Assignee
Dehn and Soehne GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dehn and Soehne GmbH and Co KG filed Critical Dehn and Soehne GmbH and Co KG
Publication of EP0600222A1 publication Critical patent/EP0600222A1/en
Application granted granted Critical
Publication of EP0600222B1 publication Critical patent/EP0600222B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T4/00Overvoltage arresters using spark gaps
    • H01T4/16Overvoltage arresters using spark gaps having a plurality of gaps arranged in series
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T1/00Details of spark gaps
    • H01T1/02Means for extinguishing arc
    • H01T1/08Means for extinguishing arc using flow of arc-extinguishing fluid
    • H01T1/10Means for extinguishing arc using flow of arc-extinguishing fluid with extinguishing fluid evolved from solid material by heat of arc

Definitions

  • the invention relates to a lightning current-carrying arrangement with at least two spark gaps connected in series, each spark gap consisting of two electrodes and an insulating layer located between them, and a flashover gap being provided between the electrodes of a spark gap, and the thickness of at least one of the insulating layers being different than the thickness the remaining insulating layer (s) (preamble of claim 1).
  • a lightning current-carrying arrangement with at least two spark gaps connected in series, each spark gap consisting of two electrodes and an insulating layer located between them, and a flashover gap being provided between the electrodes of a spark gap, and the thickness of at least one of the insulating layers being different than the thickness the remaining insulating layer (s) (preamble of claim 1).
  • Such an arrangement is known from DE-A-39 14 624, the insulation layers of different thicknesses being made of the same material and thus having the same specific resistance.
  • DE-C-29 34 238 shows the use of this of insulating layers made of a material which, when heated, in particular heated by an arc, emits a gas which pushes it outwards or blows it.
  • Hydromethylene (POM) Polyoxymethylene
  • a surge arrester which shows a series connection of spark gap stacks and voltage-dependent resistors, the spark gap stacks and the voltage-dependent resistors alternating in series.
  • a control resistor is connected in parallel to each spark gap stack.
  • the space between this active part and an insulating housing surrounding it is filled with a foam whose pores contain an electronegative gas.
  • the object of the invention is to design an arrangement according to the preamble of claim 1 in such a way that a low response voltage with good extinguishing capacity of the line follow current and retention the required lightning current carrying capacity.
  • a first spark gap is provided with a relatively high-resistance and a relatively short flashover insulation layer
  • a second spark gap or a second and further spark gaps is or are provided which has or have an insulating layer that is relatively low-resistance compared to the first spark gap and has a relatively long flashover gap, the second spark gap or the second and further spark gaps being electrically connected in series with the first spark gap.
  • this spark gap is practically short-circuited, and thus most of the voltage is present on the second spark gap or on the second and further spark gaps, which also causes a flashover there.
  • This results in a quick and safe deletion of the short circuit or line follow current.
  • the above-mentioned division into several partial arcs is particularly favorable for re-consolidation after the current has passed through zero, since the instantaneous consolidation voltage is automatically multiplied when the arcs are multiplied. In this way, the re-ignition after the zero crossing of the current is prevented or at least significantly impeded.
  • the invention thus provides an arrangement of spark gaps capable of carrying lightning current for network applications, which is designed as a controlled multiple spark gap, consisting of at least two spark gaps in series, with a response voltage which approximately corresponds to the response voltage of a single spark gap, that is to say can be kept relatively low.
  • the overvoltage that arrives in the event of a fault only finds a single spark gap, while the recurring voltage finds two spark gaps.
  • an optimized quenching behavior is achieved by "widening" the arc as a result of the serial multiple spark gap, by dividing the arc into at least two completely separate partial arcs.
  • the insulating layer of the first spark gap can either consist of a very high-resistance material, for example a pure polyoxymethylene (POM), but also of an air layer or a gas arrester.
  • the low-resistance insulation layers of the second spark gap or the second and further spark gaps of such an arrangement consist of an insulating material, the specific ohmic resistance of which is considerably smaller than that of the insulating layer of the first spark gap (claim 3).
  • This can be the aforementioned POM, for example, but is essential with its conductivity compared to pure POM increasing additives made of conductive particles, such as metal or graphite.
  • the insulating layers of both the first and the second or further spark gaps are made from a gas-blowing material such as the above-mentioned POM (claims 4 and 5), there are still further advantages with regard to extinguishing the arc.
  • the spark gaps of the arrangement can be arranged spatially one above the other. This has the advantage of a very compact construction.
  • the flashover path is a sliding spark gap. This is particularly advantageous in connection with an insulating material which, when heated by the arc, emits a gas that pushes or blows the arc outwards (e.g. the above-mentioned POM which emits hydrogen (H2)).
  • an insulating material which, when heated by the arc, emits a gas that pushes or blows the arc outwards (e.g. the above-mentioned POM which emits hydrogen (H2)).
  • the invention also provides possibilities for varying the course and direction of the sliding spark gaps and the blow-out direction by appropriately configuring the insulating layers and the electrodes of the spark gap.
  • the insulating layer consists of a high-resistance material 3, for example the above-mentioned pure POM, while the insulating layer 4 of the low-resistance spark gap 5 'consists of a material with a conductivity that is significantly greater than the conductivity of the material of layer 3 This can be, for example, a POM with corresponding contamination from particles of metal or graphite.
  • the ratio of the aforementioned conductivities (or reciprocally the ratio of the specific resistances) of the materials of the insulating layers 4 and 3 to one another can be, for example, up to 10,000: 1.
  • the electrodes 1, 2 and 1 'and the described insulating layer 4 according to FIG. 1a are also provided.
  • an air layer 3 ' At the location of the layer 3 made of a high-resistance material there is an air layer 3 '.
  • a gas discharge tube could also be arranged (not in the drawing shown).
  • the exemplary embodiment according to FIG. 1c is based on the design of the exemplary embodiment according to FIG. La, but a further spark gap 5 ⁇ is also provided.
  • the electrode 1 ' serves as a common electrode for the spark gaps 5' and 5 ⁇ , while the spark gap 5 ⁇ has an electrode 1 ⁇ on the underside.
  • the flashover distances of the two low-resistance spark gaps 5 ', 5 ⁇ and thus the partial arcs 6', 6 ⁇ that arise on them are also larger than the flashover distance and thus as the arc 6 of the high-resistance spark gap 5.
  • spark gaps are both electrically connected in series, and are or can be arranged spatially in a series. If necessary, a third or fourth low-resistance spark gap could also be provided and arranged in Fig. 1c below the spark gap 5 ⁇ .
  • Fig. 1a to c shows that in this simplified version - as mentioned - in principle, the different lengths of the flashover distances and thus the arcing there by appropriate choice of the thickness of the insulating layers 3, 3 ', 4 between the can reach respective electrodes.
  • the rollover paths run as sliding spark gaps along the jackets of the disks forming the insulating layers 3, 4, or in the case of the insulating layer 3 'of FIG. 1b consisting of air as a breakdown between the Electrodes 1, 2.
  • the spark gaps according to the invention are designed to be rotationally symmetrical, preferably cylindrical, at least in the area of the above-mentioned sliding spark gaps.
  • a high-resistance spark gap initially isolates one or more low-resistance spark gaps from the network and thus determines the response voltage.
  • both the high-resistance and the low-resistance spark gaps or the low-resistance spark gaps form the explained arcs and extinguish the line follow current.
  • the large flashover distances, preferably sliding discharge paths of the low-resistance spark gap or the low-resistance spark gaps create an increased range and thus increased arc length of the arcs 6 '. This gives the above-mentioned advantages for the deletion of the network follow-up current without, however, adversely affecting the response behavior of the overall arrangement.
  • the intrinsic dynamics of the arc ie its pushing outward, is increased. This results in additional energy losses from the arc as a result of the cooling that occurs, which further improves the extinguishing behavior of the arcs.
  • the serial coupling according to the invention of several low-resistance spark gaps to one high-resistance spark gap only slightly changes the response behavior of the overall arrangement.
  • the high-resistance spark gap and the low-resistance spark gap or low-resistance spark gaps work together as explained, a functional separation takes place insofar as the high-resistance spark gap primarily fulfills the task of "isolating” and “responding”, while the low-resistance spark gaps more the function "deleting the line follow current " take.
  • FIG. 1a shows details of an embodiment according to the invention, which is constructed in principle according to FIG. 1a, but the rollover distances according to details A and B are designed differently than in Fig. 1a.
  • spark gaps 5 and 5' are provided in a common housing 7, which is closed at its ends with outer contact plates 8, which connection tabs 8 'for connections , for example clamp clips.
  • the housing 7 is lined on the inside with two quenching chamber walls 9 which surround quenching chambers 10.
  • the housing 7 is preferably made of an insulating material, so that it only has to be insulated from the contact plates 8 in the event that a continuous electrical connection can be formed by the arc through a conductive deposit on the inner wall of the housing.
  • Cover plates 22 are used for this purpose, which are designed in such a way that they enclose the electrodes in a ring shape, separated by a narrow gap 23 (see in particular FIG. 6).
  • the width of the gap 23 and the width of the annular cover plate 22 are in such a ratio that an evaporation-free zone 23 'is formed on the rear ring surface, in which no conductive connection is possible due to the spreading of the arc or the spreading of the metal vapor transporting gas . A vaporization barrier is thus formed.
  • the quenching chamber walls 9 are preferably made of a plastic which, when heated, emits a gas which presses the arc and combustion gases inside the quenching chambers 10 through an outlet opening 11 to the outside.
  • the contact and cover plates 8, 22 also serve to close off the quenching chambers 10 to the outside. Screws 12 are used to screw the contact plates 8 to the housing 7. They also produce the contact pressure between the electrodes 1, 2 and 2, 1 'and their insulating layers 3, 4.
  • the insulating layer 3 of the high-resistance spark gap 5 is substantially thicker than the insulating layer 4 of the low-resistance spark gap 5 '.
  • this has no influence on the achievement of the effect according to the invention, since the voltage drops which arise, given the large difference in the specific resistances of the layers 3, 4, are not appreciably influenced by the thicknesses of these insulating layers.
  • the further parameter which is decisive for the creation of the success according to the invention is the difference in the lengths of the rollover sections 6, 6 '. These arcing paths are shown in the form of sliding spark gaps 6, 6 'in the details A and B according to FIGS. 4 and 5. In the case of the detail A (FIG.
  • the length of the region d of the insulating layer 5 projecting upward above the electrode 2 is decisive for the size of the sliding spark gap 6 which arises there.
  • the arcs which arise are horizontal / vertical (as in the present exemplary embodiment), but also to run vertically / vertically or horizontally / horizontally or also at an acute angle to the longitudinal axis of the spark gap.
  • the ratio of the lengths of the arc 6 'of the low-resistance spark gap to the arc 6 of the high-resistance spark gap can also be different from that shown in the drawing. In practice, ranges from 4: 1 to 5: 1 are preferred, but the invention is not limited to these.
  • the insulating layers are made of a material which emits a gas when heated (for example the above-mentioned POM), the gas pushes the arc outwards in accordance with arrow 13 until, in the case of detail A, it initially acts as an arc 14 between Edges 15 and 16 are present or in the case of detail B as an arc 17 between the edges 2 'and 18.
  • the electrode 2 is provided with a circumferential web 2a which forms the edge 16 in the high-resistance spark gap the electrode 2 underside the edge 2 'and the electrode 1' has the edge 18. This results in an overall length of the arcs that is greater than the total length of the arcs 6, 6 '. This favors the deletion process.
  • the insulating layer 3 is effective for the formation of the sliding spark gap and thus for the arc 6, which is above the dash-dotted line 19.
  • the area of the insulation 3 located below the line 19 is inactive for arcing. It serves on the one hand to hold the insulating layer 3 in the electrode 2 and also because of its mass for thermal stabilization in that it absorbs part of the heat which arises at the active part of this insulating layer located above the line 19.
  • the part of the insulating layer 3, which is below the line 19 and thus within a recess of the electrode 2 causes that by the arc temperature Conditional material losses are located from the area of the spark gap 6, ie the edge of the insulating layer 3 (see FIG.
  • the electrodes 1, 2 and 2, 1 ' have the function of target electrodes.
  • a desired length of the respective arc and thus a corresponding total length of the arcs present at the arrangement can be created (see here also the teaching of claim 1).
  • the shift of the upcoming arcs to the area between the edges 15, 16 and 2 ', 18 also brings a significant thermal relief of the insulating material 3 and 4 in the area of the arcs 6, 6 'and the associated areas of the electrodes.
  • the above-mentioned thickening of the insulating layers also contributes to increasing their thermal stability, as is shown by means of the insulating layer 3. Accordingly, the mass of the insulating layer 4 could also be increased (not shown in the drawing).
  • This and the above-described displacement of the arc to an area further away from the insulating material and the electrodes eliminates the risk of damaging erosion on the insulating layers and the electrodes. In extreme cases, such a thermal erosion could burn away the entire insulating layer 3 or 4 and thus short-circuit the spark gap.
  • the materials of the electrodes which are preferably used here are extremely resistant to erosion.

Abstract

A spark gap arrangement capable of handling lightning includes a first spark gap with a relatively high-resistance insulating layer having a relatively short spark-over path, and at least one second spark gap which, compared to the first spark gap, has a relatively low-resistance insulating layer with a relatively long spark-over path, the second spark gap being electrically connected in series to the first spark gap.

Description

Die Erfindung betrifft eine blitzstromtragfähige Anordnung mit zumindest zwei in Reihe geschalteten Funkenstrecken, wobei jede Funkenstrecke aus zwei Elektroden und einer dazwischen befindlichen Isolierschicht besteht, und zwischen den Elektroden einer Funkenstrecke eine Überschlagsstrecke vorgesehen ist und wobei die Dicke zumindest einer der Isolierschichten anders ist als die Dicke der übrigen Isolierschicht(en) (Oberbegriff des Anspruches 1). Eine solche Anordnung ist aus DE-A-39 14 624 bekannt, wobei die unterschiedlich dicken Isolationsschichten aus dem gleichen Material bestehen und somit den gleichen spezifischen Widerstand haben. Ferner kennt man mehrere in Reihe geschaltete Funkenstrecken, wobei jede Funkenstrecke aus zwei Elektroden und einer dazwischen befindlichen Isolierschicht besteht und zwischen den Elektroden einer Funkenstrecke eine Überschlagstrecke vorgesehen ist aus DE-C-29 34 238 und 29 34 236. Solche Anordnungen werden vielfach eingesetzt, insbesondere in Niederspannungsanlagen und dabei besonders an der Netzeingangsseite. Davon zeigt DE-C-29 34 238 zwar die Verwendung von Isolierschichten aus einem Material, das beim Erhitzen, insbesondere Erhitzen durch einen Lichtbogen, ein diesen nach außen drückendes bzw. blasendes Gas abgibt. Dabei wird bevorzugt ein Isoliermaterial in Form eines thermoplastischen, Wasserstoffgas (H₂) abgebenden Kunststoffes, z .B. Polyoxymethylen (POM), vorgesehen. Im übrigen berührt diese Vorveröffentlichung aber die nachstehend angegebene Thematik und Lösung der vorliegenden Erfindung nicht. Das gleiche gilt im Prinzip für den Gegenstande von DE-C-29 34 236. Hiermit soll zwar ein verbessertes Löschverhalten für Netzfolgeströme erreicht werden, jedoch hat diese Anordnung den Nachteil einer relativ hohen Ansprechspannung, welche ihren praktischen Einsatz in bestimmten Installationsbereichen erschwert.The invention relates to a lightning current-carrying arrangement with at least two spark gaps connected in series, each spark gap consisting of two electrodes and an insulating layer located between them, and a flashover gap being provided between the electrodes of a spark gap, and the thickness of at least one of the insulating layers being different than the thickness the remaining insulating layer (s) (preamble of claim 1). Such an arrangement is known from DE-A-39 14 624, the insulation layers of different thicknesses being made of the same material and thus having the same specific resistance. Furthermore, several spark gaps connected in series are known, each spark gap consisting of two electrodes and an insulating layer between them, and a flashover gap between the electrodes of a spark gap is provided from DE-C-29 34 238 and 29 34 236. Such arrangements are widely used, especially in low-voltage systems and especially on the input side. DE-C-29 34 238 shows the use of this of insulating layers made of a material which, when heated, in particular heated by an arc, emits a gas which pushes it outwards or blows it. An insulating material in the form of a thermoplastic, hydrogen gas (H₂) emitting plastic, for example, is preferred. Polyoxymethylene (POM). Otherwise, this prior publication does not affect the subject matter and solution of the present invention specified below. The same applies in principle to the subject matter of DE-C-29 34 236. Although this is intended to achieve an improved extinguishing behavior for line follow currents, this arrangement has the disadvantage of a relatively high response voltage, which makes its practical use in certain installation areas more difficult.

Der Gegenstand von DE-C-39 14 624 strebt zwar eine möglichst tiefe Ansprechspannung bei hoher Stromtragfähigkeit und unmittelbare Löschung des Netzfolgestromes nach dem Zünden der Überspannung an. Nachteilig ist jedoch, daß in der Praxis sich nur relativ kleine Kapazitätsverhältnisse in der Größenordnung von 1:6 erreichen lassen. Hiermit ergeben sich Grenzen im praktischen Einsatz, sobald höhere Anforderungen gestellt werden.The subject of DE-C-39 14 624 strives for a response voltage that is as low as possible with a high current carrying capacity and immediate deletion of the line follow current after the overvoltage has been ignited. However, it is disadvantageous that in practice only relatively small capacity ratios of the order of 1: 6 can be achieved. This results in limits in practical use as soon as higher demands are made.

Aus CH-A-449 106 ist ein Überspannungsableiter bekannt, der eine Reihenschaltung von Funkenstreckenstapeln und spannungsabhängigen Widerständen zeigt, wobei die Funkenstreckenstapel und die spannungsabhängigen Widerstände sich in der Reihe abwechseln. Dabei ist jedem Funkenstreckenstapel ein Steuerwiderstand parallel geschaltet. Der Zwischenraum zwischen diesem Aktivteil und einem ihn umgebenden, isolierenden Gehäuse ist mit einem Schaumstoff ausgefüllt, dessen Poren ein elektronegatives Gas enthalten. Es fehlt eine Aussage darüber, welcher Art die Steuerwiderstände sind, damit ein Steuereffekt erreicht werden kann. Über den Steuereffekt selber wird auch nichts gesagt, so daß dieser Literaturstelle keine Hinweise oder Anregungen zu der nachstehend erläuterten Erfindung entnommen werden können. Im übrigen ist der konstruktive Aufbau des Überspannungsableiters nach CH-A-449 106 durch die angegebene Reihenschaltung und die parallelen Steuerwiderstände, sowie durch das Vorsehen eines Gehäuses insgesamt in der Herstellung aufwendig und hat einen erheblichen Platzbedarf, der aber in der Praxis oft nicht vorhanden ist.From CH-A-449 106 a surge arrester is known which shows a series connection of spark gap stacks and voltage-dependent resistors, the spark gap stacks and the voltage-dependent resistors alternating in series. A control resistor is connected in parallel to each spark gap stack. The space between this active part and an insulating housing surrounding it is filled with a foam whose pores contain an electronegative gas. There is no statement as to what type of control resistors are so that a tax effect can be achieved. Nothing is said about the tax effect itself, so that this reference does not provide any information or suggestions on the following explained invention can be removed. Otherwise, the construction of the surge arrester according to CH-A-449 106 is complex due to the series connection and the parallel control resistors, as well as the provision of a housing, and requires a considerable amount of space, but this is often not available in practice .

Bei Anordnungen gemäß dem Oberbegriff des Anspruches 1, welche Blitzströme ableiten sollen, besteht die grundsätzliche Aufgabe, nach Erreichen des Schutzpegels die im Stromimpuls enthaltene Energie gezielt abzuleiten, und die nachgeschalteten Anlagen und Geräte somit zu schützen. Der beim Ansprechen der Funkenstrecke entstehende Netzfolgestrom soll im nächsten Stromnulldurchgang sicher gelöscht, bzw. bis zum Unterbrechen durch eine Vorsicherung ohne Zerstörung geführt werden. Dabei bestehen sich z.T. widersprechende Anforderungen. Zum einen soll die Ansprechspannung der Funkenstrecke möglichst niedrig sein, was in der Regel über einen kleinen Abstand der Elektroden der Funkenstrecke voneinander erreicht wird. Für die sichere Löschung des Kurzschlußstromes ist eine möglichst hohe Brennspannung des Lichtbogens an der Überschlagsstrecke günstig, die aber am besten über einen großen Elektrodenabstand realisiert werden kann, der aber wiederum die Ansprechspannung erhöht (siehe oben). Weitere bekannte Maßnahmen zur Löschung des Kurzschlußstromes sind ebenfalls nachteilig. So bedingt eine Erhöhung der Feldstärke des Lichtbogens durch Kühlung ein entsprechend großes Volumen der Funkenstrecke. Auch die Serienschaltung von mehreren Funkenstrecken, die im vorstehend genannten Stand der Technik verwirklicht ist, bedingt eine unerwünschte Erhöhung der Ansprechspannung der Gesamtanordnung.In the case of arrangements according to the preamble of claim 1, which are intended to discharge lightning currents, there is the basic task of specifically dissipating the energy contained in the current pulse after the protection level has been reached, and thus protecting the downstream systems and devices. The line follow current that arises when the spark gap is triggered should be safely extinguished in the next current zero crossing, or it should be guided through a backup without destruction until interrupted. There are sometimes conflicting requirements. On the one hand, the response voltage of the spark gap should be as low as possible, which is usually achieved by a small distance between the electrodes of the spark gap. For the safe extinguishing of the short-circuit current, the highest possible arc voltage at the flashover is favorable, but this can best be achieved with a large electrode gap, which in turn increases the response voltage (see above). Other known measures for extinguishing the short-circuit current are also disadvantageous. For example, an increase in the field strength of the arc due to cooling requires a correspondingly large volume of the spark gap. The series connection of several spark gaps, which is implemented in the prior art mentioned above, also causes an undesirable increase in the response voltage of the overall arrangement.

Die Aufgabenstellung der Erfindung besteht demgegenüber darin, eine Anordnung gemäß dem Oberbegriff des Anspruches 1 so auszubilden, daß man eine niedrige Ansprechspannung bei gutem Löschvermögen des Netzfolgestromes und Beibehaltung der erforderlichen Blitzstromtragfähigkeit erhält.In contrast, the object of the invention is to design an arrangement according to the preamble of claim 1 in such a way that a low response voltage with good extinguishing capacity of the line follow current and retention the required lightning current carrying capacity.

Die Lösung dieser Aufgabe wird zunächst, ausgehend vom Oberbegriff des Anspruches 1, dadurch erreicht, daß eine erste Funkenstrecke mit einer relativ hochohmigen und eine relativ kurze Überschlagsstrecke besitzende Isolierschicht vorgesehen ist, und daß eine zweite Funkenstrecke oder eine zweite und weitere Funkenstrecken vorgesehen ist oder sind, die eine gegenüber der ersten Funkenstrecke relativ niederohmige und eine relativ lange Überschlagsstrecke aufweisende Isolierschicht aufweist oder aufweisen, wobei die zweite Funkenstrecke oder die zweite und weiteren Funkenstrecken mit der ersten Funkenstrecke elektrisch in Reihe geschaltet sind. Hiermit werden die zum Stand der Technik erläuterten Nachteile vermieden. Fällt eine Überspannung an, so wird der größte Teil des Spannungsabfalles an der hochohmigen ersten Funkenstrecke anliegen, so daß dort zunächst der Überschlag erfolgt. Sobald dieser Überschlag an der ersten Funkenstrecke anliegt, ist diese Funkenstrecke praktisch kurzgeschlossen, und damit steht der größte Teil der Spannung an der zweiten Funkenstrecke bzw. an der zweiten und weiteren Funkenstrecken an, womit auch dort ein Überschlag stattfindet. Dies wiederum hat eine schnelle und sichere Löschung des Kurzschluß- bzw. Netzfolgestromes zur Folge. Die o.g. Aufteilung in mehrere Teillichtbögen ist nämlich besonders für die Wiederverfestigung nach dem Stromnulldurchgang günstig, da sich bei einer Vervielfachung der Lichtbögen automatisch die Sofortverfestigungsspannung vervielfacht. Hierdurch wird das Wiederzünden nach dem Nulldurchgang des Stromes verhindert oder zumindest maßgeblich behindert. Dies wiederum bedeutet sehr gute Löscheigenschaften, und zwar auch bei ungünstigen Netzbedingungen wie ein ungünstiger cos φ und rasch wiederkehrenden Spannungen. Erwähnt sei in dem Zusammenhang zum Stand der Technik, daß man zwar Widerstandssteuerungen mit einem einzigen leitfähigen Isolator kennt; man kennt aber nicht die vorliegende Kombination einer Widerstandssteuerung gemäß der Erfindung.The solution to this problem is first achieved, starting from the preamble of claim 1, in that a first spark gap is provided with a relatively high-resistance and a relatively short flashover insulation layer, and in that a second spark gap or a second and further spark gaps is or are provided which has or have an insulating layer that is relatively low-resistance compared to the first spark gap and has a relatively long flashover gap, the second spark gap or the second and further spark gaps being electrically connected in series with the first spark gap. This avoids the disadvantages explained in relation to the prior art. If an overvoltage occurs, the major part of the voltage drop will be applied to the high-resistance first spark gap, so that the flashover takes place there first. As soon as this flashover is applied to the first spark gap, this spark gap is practically short-circuited, and thus most of the voltage is present on the second spark gap or on the second and further spark gaps, which also causes a flashover there. This in turn results in a quick and safe deletion of the short circuit or line follow current. The above-mentioned division into several partial arcs is particularly favorable for re-consolidation after the current has passed through zero, since the instantaneous consolidation voltage is automatically multiplied when the arcs are multiplied. In this way, the re-ignition after the zero crossing of the current is prevented or at least significantly impeded. This in turn means very good extinguishing properties, even under unfavorable network conditions such as an unfavorable cos φ and rapidly recurring voltages. It should be mentioned in connection with the prior art that resistance controls with a single conductive insulator are known; but one does not know the present combination of a resistance control according to the invention.

Die Erfindung schafft somit eine Anordnung aus blitzstromtragfähigen Funkenstrecken für Netzanwendungen, die als gesteuerte Mehrfachfunkenstrecke, bestehend aus mindestens zwei in Serie liegenden Funkenstrecken, mit einer Ansprechspannung ausgeführt ist, die annähernd der Ansprechspannung einer einzelnen Funkenstrecke entspricht, also relativ niedrig gehalten werden kann. Die im Störungsfall ankommende Überspannung findet nur eine einzige Funkenstrecke, die wiederkehrende Spannung dagegen findet zwei Funkenstrecken vor. Zugleich wird ein optimiertes Löschverhalten durch ein "Aufweiten" des Lichtbogens in Folge der seriellen Mehrfachfunkenstrecke erreicht, indem der Lichtbogen auf mindestens zwei völlig voneinander getrennte Teillichtbögen aufgeteilt wird. Diese Teillichtbögen wirken aber funktionell im Hinblick auf die Löschung wie ein Lichtbogen, dessen Länge der Addition der Länge beider (oder mehrerer) Teillichtbögen entspricht. Dabei ist für die Erzielung der tiefen Ansprechspannung die sehr unterschiedliche Spannungsaufteilung an den einzelnen Funkenstrecken durch Verwendung von Isolierschichten aus einem Material mit sehr unterschiedlichen Leitwerten, bzw. spezifischem elektrischen Widerstand maßgeblich. Es ist also eine Widerstandssteuerung gegeben, ohne daß man zusätzlich zu den Funkenstrecken selber noch weitere Mittel wie beispielsweise externe Widerstände vorsehen muß.The invention thus provides an arrangement of spark gaps capable of carrying lightning current for network applications, which is designed as a controlled multiple spark gap, consisting of at least two spark gaps in series, with a response voltage which approximately corresponds to the response voltage of a single spark gap, that is to say can be kept relatively low. The overvoltage that arrives in the event of a fault only finds a single spark gap, while the recurring voltage finds two spark gaps. At the same time, an optimized quenching behavior is achieved by "widening" the arc as a result of the serial multiple spark gap, by dividing the arc into at least two completely separate partial arcs. In terms of extinguishing, however, these partial arcs function like an arc whose length corresponds to the addition of the length of both (or more) partial arcs. The very different voltage distribution at the individual spark gaps is decisive for achieving the low response voltage by using insulating layers made of a material with very different conductance values or specific electrical resistance. So there is a resistance control without having to provide additional means such as external resistors in addition to the spark gaps.

Die Isolierschicht der ersten Funkenstrecke kann gemäß Anspruch 2 entweder aus einem sehr hochohmigen Werkstoff, beispielsweise einem reinen Polyoxymethylen (POM) , aber auch aus einer Luftschicht oder einem Gasableiter bestehen. Die niederohmigen Isolationsschichten der zweiten Funkenstrecke bzw. der zweiten und weiteren Funkenstrecken einer solchen Anordnung bestehen aus einem Isolierstoff, dessen spezifischer Ohm'scher Widerstand wesentlich kleiner ist als der der Isolierschicht der ersten Funkenstrecke (Anspruch 3). Dies kann beispielsweise das vorgenannte POM sein, jedoch mit seine Leitfähigkeit gegenüber reinem POM wesentlich erhöhenden Zusätzen aus leitenden Partikeln, z.B. aus Metall oder Graphit. Bei Ausbildung der Isolierschichten sowohl der ersten als auch der zweiten bzw. weiteren Funkenstrecken aus einem gasabblasenden Werkstoff wie dem o.g. POM (Ansprüche 4 und 5) ergeben sich noch weitere Vorteile hinsichtlich der Löschung des Lichtbogens.The insulating layer of the first spark gap can either consist of a very high-resistance material, for example a pure polyoxymethylene (POM), but also of an air layer or a gas arrester. The low-resistance insulation layers of the second spark gap or the second and further spark gaps of such an arrangement consist of an insulating material, the specific ohmic resistance of which is considerably smaller than that of the insulating layer of the first spark gap (claim 3). This can be the aforementioned POM, for example, but is essential with its conductivity compared to pure POM increasing additives made of conductive particles, such as metal or graphite. If the insulating layers of both the first and the second or further spark gaps are made from a gas-blowing material such as the above-mentioned POM (claims 4 and 5), there are still further advantages with regard to extinguishing the arc.

Gemäß Anspruch 6 können die Funkenstrecken der Anordnung räumlich übereinander angeordnet sein. Dies hat den Vorzug einer räumlich sehr kompakten Bauweise.According to claim 6, the spark gaps of the arrangement can be arranged spatially one above the other. This has the advantage of a very compact construction.

Sofern die Isolierschicht bzw. die Isolierschichten aus einem Werkstoff bestehen, empfiehlt es sich, die Überschlagsstrecke als Gleitfunkenstrecke auszubilden. Insbesondere ist dies von Vorteil in Verbindung mit einem isolierenden Werkstoff, der bei seiner Erhitzung durch den Lichtbogen ein den Lichtbogen nach außen drückendes bzw. blasendes Gas abgibt (z.B. das o.g., Wasserstoff (H₂) abblasende POM).If the insulating layer or the insulating layers consist of one material, it is advisable to design the flashover path as a sliding spark gap. This is particularly advantageous in connection with an insulating material which, when heated by the arc, emits a gas that pushes or blows the arc outwards (e.g. the above-mentioned POM which emits hydrogen (H₂)).

Die Erfindung sieht ferner Möglichkeiten vor, Verlauf und Richtung der Gleitfunkenstrecken und der Ausblasrichtung durch entsprechende Konfiguration der Isolierschichten und der Elektroden der Funkenstrecke zu variieren.The invention also provides possibilities for varying the course and direction of the sliding spark gaps and the blow-out direction by appropriately configuring the insulating layers and the electrodes of the spark gap.

Weitere Vorteile und Merkmale der Erfindung sind sowohl den Unteransprüchen als auch der nachfolgenden Beschreibung und der zugehörigen Zeichnung von erfindungsgemäßen Ausführungsmöglichkeiten zu entnehmen. In der Zeichnung zeigt:

Fig. 1a, b und c:
Prinzipdarstellung von unterschiedlichen Anordnungen nach der Erfindung,
Fig. 2:
im Längsschnitt ein Ausführungsbeispiel der Erfindung,
Fig. 3:
die Draufsicht auf Fig. 2,
Fig. 4:
im vergrößerten Maßstab die Einzelheit A in Fig. 2,
Fig. 5:
im vergrößerten Maßstab die Einzelheit B in Fig. 2,
Fig. 6:
im vergrößerten Maßstab die Einzelheit C in Fig. 2,
Fig. 7:
z.T. im Schnitt, im übrigen in perspektivischer Darstellung das Ausführungsbeispiel nach Fig. 2, jedoch in einer demgegenüber um 90° verdrehten Lage.
Further advantages and features of the invention can be found both in the subclaims and in the following description and the associated drawing of possible embodiments according to the invention. The drawing shows:
1a, b and c:
Schematic representation of different arrangements according to the invention,
Fig. 2:
in longitudinal section an embodiment of the invention,
Fig. 3:
the top view of Fig. 2,
Fig. 4:
on an enlarged scale the detail A in Fig. 2,
Fig. 5:
on an enlarged scale the detail B in Fig. 2,
Fig. 6:
on an enlarged scale the detail C in Fig. 2,
Fig. 7:
partly in section, the rest in perspective representation of the embodiment of FIG. 2, but in a position rotated by 90 °.

Die Fig. 1a und 1b zeigen jeweils eine Anordnung nach der Erfindung, bestehend aus einer hochohmigen Funkenstrecke 5 und einer niederohmigen Funkenstrecke 5′, wobei die Elektroden mit 1, 1′ und 2 beziffert sind. Hierbei dient die Zwischenelektrode 2 funktionell als Elektrode sowohl der Funkenstrecke 5, als auch der Funkenstrecke 5,. Im Beispiel der Fig. 1a besteht die Isolierschicht aus einem hochohmigen Werkstoff 3, z.B. dem o.g. reinen POM, während die Isolierschicht 4 der niederohmigen Funkenstrecke 5′ aus einem Werkstoff mit einer Leitfähigkeit besteht, die wesentlich größer ist als die Leitfähigkeit des Werkstoffes der Schicht 3. Dies kann beispielsweise ein POM mit entsprechenden Verunreinigungen durch Partikel aus Metall oder Graphit sein. Das Verhältnis der vorgenannten Leitfähigkeiten (oder reziprok das Verhältnis der spezifischen Widerstände) der Materialien der Isolierschichten 4 und 3 zueinander kann beispielsweise bei bis zu 10 000:1 liegen. Im Beispiel nach Fig. 1b sind ebenfalls die Elektroden 1, 2 und 1′ sowie die beschriebene Isolierschicht 4 gemäß Fig. 1a vorgesehen. An der Stelle der Schicht 3 aus einem hochohmigen Werkstoff befindet sich hier eine Luftschicht 3′. Statt dessen könnte auch ein Gasableiter angeordnet sein (in der Zeichnung nicht dargestellt).1a and 1b each show an arrangement according to the invention, consisting of a high-resistance spark gap 5 and a low-resistance spark gap 5 ', the electrodes being numbered 1, 1' and 2. Here, the intermediate electrode 2 serves functionally as an electrode of both the spark gap 5 and the spark gap 5. In the example of Fig. 1a, the insulating layer consists of a high-resistance material 3, for example the above-mentioned pure POM, while the insulating layer 4 of the low-resistance spark gap 5 'consists of a material with a conductivity that is significantly greater than the conductivity of the material of layer 3 This can be, for example, a POM with corresponding contamination from particles of metal or graphite. The ratio of the aforementioned conductivities (or reciprocally the ratio of the specific resistances) of the materials of the insulating layers 4 and 3 to one another can be, for example, up to 10,000: 1. In the example according to FIG. 1b, the electrodes 1, 2 and 1 'and the described insulating layer 4 according to FIG. 1a are also provided. At the location of the layer 3 made of a high-resistance material there is an air layer 3 '. Instead, a gas discharge tube could also be arranged (not in the drawing shown).

Es ist ersichtlich, daß in beiden vorgenannten Fällen, d.h. Funkenstrecken in der Konfiguration der Fig. 1a und 1b entsprechend der Dicken der Isolierschichten 3, 3′ und 4 die Länge der Überschlagsstrecke 6 der hochohmigen Funkenstrecke 5 kleiner ist als die Länge der Überschlagsstrecke 6′ der niederohmigen Funkenstrecke 5′.It can be seen that in both of the aforementioned cases, i.e. Spark gaps in the configuration of FIGS. 1a and 1b corresponding to the thicknesses of the insulating layers 3, 3 'and 4, the length of the flashover 6 of the high-resistance spark gap 5 is less than the length of the flashover 6' of the low-resistance spark gap 5 '.

Das Ausführungsbeispiel nach Fig. lc geht aus von der Gestaltung des Ausführungsbeispieles nach Fig. la, wobei aber noch eine weitere Funkenstrecke 5˝ vorgesehen ist. Die Elektrode 1′ dient dabei als gemeinsame Elektrode für die Funkenstrecken 5′ und 5˝, während die Funkenstrecke 5˝ unterseitig noch eine Elektrode 1˝ aufweist. Die Überschlagstrecken der beiden niederohmigen Funkenstrecken 5′, 5˝ und damit die an ihnen entstehenden Teillichtbögen 6′, 6˝ sind auch hier größer als die Überschlagsstrecke und damit als der Lichtbogen 6 der hochohmigen Funkenstrecke 5.The exemplary embodiment according to FIG. 1c is based on the design of the exemplary embodiment according to FIG. La, but a further spark gap 5˝ is also provided. The electrode 1 'serves as a common electrode for the spark gaps 5' and 5˝, while the spark gap 5˝ has an electrode 1˝ on the underside. The flashover distances of the two low-resistance spark gaps 5 ', 5˝ and thus the partial arcs 6', 6˝ that arise on them are also larger than the flashover distance and thus as the arc 6 of the high-resistance spark gap 5.

Es ist ersichtlich, daß in allen Ausführungsbeispielen die Funkenstrecken sowohl elektrisch in Reihe geschaltet sind, als auch räumlich in einer Reihe angeordnet sind oder sein können. Falls erforderlich, könnte auch eine dritte oder vierte niederohmige Funkenstrecke vorgesehen und in Fig. 1c unterhalb der Funkenstrecke 5˝ angeordnet sein.It can be seen that in all of the exemplary embodiments the spark gaps are both electrically connected in series, and are or can be arranged spatially in a series. If necessary, a third or fourth low-resistance spark gap could also be provided and arranged in Fig. 1c below the spark gap 5˝.

Die prinzipielle Darstellung der Fig. 1a bis c zeigt, daß man in dieser vereinfachten Ausführung - wie erwähnt - vom Prinzip her die unterschiedlichen Längen der Überschlagsstrecken und damit der dort anfallenden Lichtbögen durch entsprechende Wahl der Dicke der Isolierschichten 3, 3′, 4 zwischen den jeweiligen Elektroden erreichen kann. In diesen Fällen verlaufen die Überschlagsstrecken als Gleitfunkenstrecken entlang der Mäntel der die Isolierschichten bildenden Scheiben 3, 4, bzw. im Fall der aus Luft bestehenden Isolierschicht 3′ der Fig. 1b als Durchschlag zwischen den Elektroden 1, 2. Im vorstehenden Zusammenhang sei erwähnt, daß die Funkenstrecken nach der Erfindung zumindest im Bereich der vorgenannten Gleitfunkenstrecken rotationssymmetrisch, bevorzugt zylindrisch, ausgebildet sind.The basic representation of Fig. 1a to c shows that in this simplified version - as mentioned - in principle, the different lengths of the flashover distances and thus the arcing there by appropriate choice of the thickness of the insulating layers 3, 3 ', 4 between the can reach respective electrodes. In these cases, the rollover paths run as sliding spark gaps along the jackets of the disks forming the insulating layers 3, 4, or in the case of the insulating layer 3 'of FIG. 1b consisting of air as a breakdown between the Electrodes 1, 2. In the above context it should be mentioned that the spark gaps according to the invention are designed to be rotationally symmetrical, preferably cylindrical, at least in the area of the above-mentioned sliding spark gaps.

Funktionell ist allen Ausführungen der Erfindung gemeinsam, daß eine hochohmige Funkenstrecke eine oder mehrere niederohmige Funkenstrecken zunächst vom Netz isoliert und damit die Ansprechspannung bestimmt. Im Ansprechfall bilden sowohl die hochohmige als auch die niederohmige Funkenstrecke bzw. die niederohmigen Funkenstrecken die erläuterten Lichtbögen und löschen den Netzfolgestrom. Dabei schaffen die großen Überschlagsstrecken, bevorzugt Gleitentladungsstrecken der niederohmigen Funkenstrecke bzw. der niederohmigen Funkenstrecken eine erhöhte Schlagweite und damit erhöhte Bogenlänge der Lichtbögen 6′. Dies ergibt die o.g. Vorteile für die Löschung des Netzfolgestromes, ohne jedoch das Ansprechverhalten der Gesamtanordnung nachteilig zu beeinflussen. Insbesondere wird bei der bereits erläuterten bevorzugten Ausführung der Werkstoffe der Isolierschichten 3, 4 der Funkenstrecken aus einem bei Erhitzung Gas abblasenden Werkstoff die Eigendynamik des Lichtbogens, d.h. sein Drücken nach außen, erhöht. Dies ergibt zusätzliche Energieverluste des Lichtbogens in Folge der eintretenden Kühlung, wodurch das Löschverhalten der Lichtbögen weiterhin verbessert wird. Erwähnt sei noch, daß die erfindungsgemäße serielle Ankopplung mehrerer niederohmiger Funkenstrecken an eine hochohmige Funkenstrecke das Ansprechverhalten der Gesamtanordnung nur geringfügig verändert. Obgleich die hochohmige Funkenstrecke und die niederohmige Funkenstrecke bzw. niederohmigen Funkenstrecken wie erläutert zusammenarbeiten, findet doch insoweit eine Funktionstrennung statt, als die hochohmige Funkenstrecke primär die Aufgabe "Isolieren" und "Ansprechen" löst, während die niederohmigen Funkenstrecken mehr die Funktion "Löschen des Netzfolgestromes" übernehmen.Functionally, all versions of the invention have in common that a high-resistance spark gap initially isolates one or more low-resistance spark gaps from the network and thus determines the response voltage. In response, both the high-resistance and the low-resistance spark gaps or the low-resistance spark gaps form the explained arcs and extinguish the line follow current. The large flashover distances, preferably sliding discharge paths of the low-resistance spark gap or the low-resistance spark gaps create an increased range and thus increased arc length of the arcs 6 '. This gives the above-mentioned advantages for the deletion of the network follow-up current without, however, adversely affecting the response behavior of the overall arrangement. In particular, in the already described preferred embodiment of the materials of the insulating layers 3, 4 of the spark gaps made of a material that blows off gas when heated, the intrinsic dynamics of the arc, ie its pushing outward, is increased. This results in additional energy losses from the arc as a result of the cooling that occurs, which further improves the extinguishing behavior of the arcs. It should also be mentioned that the serial coupling according to the invention of several low-resistance spark gaps to one high-resistance spark gap only slightly changes the response behavior of the overall arrangement. Although the high-resistance spark gap and the low-resistance spark gap or low-resistance spark gaps work together as explained, a functional separation takes place insofar as the high-resistance spark gap primarily fulfills the task of "isolating" and "responding", while the low-resistance spark gaps more the function "deleting the line follow current " take.

Die Fig. 2 bis 7 zeigen Einzelheiten eines Ausführungsbeispieles nach der Erfindung, das im Prinzip gemäß Fig. 1a aufgebaut ist, wobei allerdings die Überschlagsstrecken gemäß Einzelheiten A und B anders gestaltet sind als in Fig. 1a.2 to 7 show details of an embodiment according to the invention, which is constructed in principle according to FIG. 1a, but the rollover distances according to details A and B are designed differently than in Fig. 1a.

Die aus den Teilen 1, 3, 2 einerseits und 2, 4, 1′ andererseits bestehenden beiden Funkenstrecken 5 und 5′ sind in einem gemeinsamen Gehäuse 7 vorgesehen, das an seinen Stirnenden mit äußeren Kontaktplatten 8 abgeschlossen ist, welche Anschlußlaschen 8′ für Anschlüsse, z.B. Bügelklemmen, aufweisen. Das Gehäuse 7 ist innenseitig mit zwei Löschkammerwandungen 9 ausgekleidet, welche Löschkammern 10 umgeben. Es ist also für jede der Funkenstrecken 5, 5′ eine Löschkammer 10 vorgesehen, wobei im vorliegenden Ausführungsbeispiel diese Löschkammern von der Elektrode 2 getrennt sind. Es wäre aber auch möglich, für beide Funkenstrecken 5, 5′ eine gemeinsame Löschkammer vorzusehen, wozu die Elektrode 2 entsprechend anders gestaltet werden müßte. Das Gehäuse 7 besteht bevorzugt aus einem isolierenden Werkstoff, so daß es gegenüber den Kontaktplatten 8 nur für den Fall isoliert werden muß, daß sich durch den Lichtbogen eine durchgängige elektrische Verbindung durch einen leitfähigen Niederschlag an der Gehäuseinnenwand ausbilden kann. Dazu dienen Abdeckplatten 22, die so ausgebildet sind, daß sie die Elektroden ringförmig, durch einen schmalen Spalt 23 getrennt umschließen (siehe insbesondere Fig. 6). Die Breite des Spaltes 23 und die Breite der ringförmigen Abdeckplatte 22 stehen in einem solchen Verhältnis, daß auf der hinteren Ringoberfläche eine bedampfungsfreie Zone 23′ entsteht, in der aufgrund der Lichtbogenausbreitung bzw. der Ausbreitung des metall-dampftransportierenden Gases keine leitfähige Verbindung mehr möglich ist. Es ist also eine Bedampfungssperre gebildet. Verstärkt wird dieser Effekt durch einen zusätzlichen Steg 22′ am Innenradius der Abdeckplatte 22, der mit der Kontaktplatte 8 einen weiteren Spalt 23˝ bildet. Ein weiterer Steg 22˝ am Außenradius der Abdeckplatte 22 schließt mit der Kontaktplatte 8 ab und deckt gleichzeitig den oberen Teil der Innenwandung des Gehäuses 7 gegen Bedampfung ab. Die Löschkammerwandungen 9 bestehen bevorzugt aus einem Kunststoff, der bei Erhitzung ein Gas abgibt, welches die Lichtbogen- und Abbrandgase im Innern der Löschkammern 10 durch je eine Austrittsöffnung 11 nach außen drückt. Die Kontakt- und Abdeckplatten 8, 22 dienen zugleich zum Abschluß der Löschkammern 10 nach außen. Schrauben 12 dienen zur Verschraubung der Kontaktplatten 8 mit dem Gehäuse 7. Sie stellen zugleich den Kontaktdruck zwischen den Elektroden 1, 2 und 2, 1′ und deren Isolierschichten 3, 4 her.The parts 1, 3, 2 on the one hand and 2, 4, 1 'on the other hand, two spark gaps 5 and 5' are provided in a common housing 7, which is closed at its ends with outer contact plates 8, which connection tabs 8 'for connections , for example clamp clips. The housing 7 is lined on the inside with two quenching chamber walls 9 which surround quenching chambers 10. There is therefore an arcing chamber 10 for each of the spark gaps 5, 5 ', these arcing chambers being separated from the electrode 2 in the present exemplary embodiment. But it would also be possible to provide a common arcing chamber for both spark gaps 5, 5 ', for which purpose the electrode 2 would have to be designed differently. The housing 7 is preferably made of an insulating material, so that it only has to be insulated from the contact plates 8 in the event that a continuous electrical connection can be formed by the arc through a conductive deposit on the inner wall of the housing. Cover plates 22 are used for this purpose, which are designed in such a way that they enclose the electrodes in a ring shape, separated by a narrow gap 23 (see in particular FIG. 6). The width of the gap 23 and the width of the annular cover plate 22 are in such a ratio that an evaporation-free zone 23 'is formed on the rear ring surface, in which no conductive connection is possible due to the spreading of the arc or the spreading of the metal vapor transporting gas . A vaporization barrier is thus formed. This effect is reinforced by an additional web 22 'on the inner radius of the cover plate 22, which forms a further gap 23' with the contact plate 8. Another web 22˝ on the outer radius of the cover plate 22 also includes the contact plate 8 and at the same time covers the upper part of the inner wall of the housing 7 against evaporation. The quenching chamber walls 9 are preferably made of a plastic which, when heated, emits a gas which presses the arc and combustion gases inside the quenching chambers 10 through an outlet opening 11 to the outside. The contact and cover plates 8, 22 also serve to close off the quenching chambers 10 to the outside. Screws 12 are used to screw the contact plates 8 to the housing 7. They also produce the contact pressure between the electrodes 1, 2 and 2, 1 'and their insulating layers 3, 4.

Gemäß Fig. 2 ist zwar die Isolierschicht 3 der hochohmigen Funkenstrecke 5 wesentlich dicker als die Isolierschicht 4 der niederohmigen Funkenstrecke 5′. Dies hat aber im vorliegenden Ausführungsbeispiel keinen Einfluß auf die Erzielung des erfindungsgemäßen Effektes, da die entstehenden Spannungsabfälle bei dem großen Unterschied der spezifischen Widerstände der Schichten 3, 4 von den Dicken dieser Isolierschichten nicht spürbar beeinflußt werden. Der weitere, für die Schaffung des erfindungsgemäßen Erfolges maßgebliche Parameter ist der Unterschied der Längen der Überschlagsstrecken 6, 6′. Diese Überschlagsstrecken sind in Form von Gleitfunkenstrecken 6, 6′ in den Einzelheiten A und B gemäß den Fig. 4 und 5 eingezeichnet. Dabei ist im Fall der Einzelheit A (Fig. 4) die Länge des über die Elektrode 2 nach oben ragenden Bereiches d der Isolierschicht 5 bestimmend für die Größe der dort entstehenden Gleitfunkenstrecke 6. Im Fall der Einzelheit B (Fig. 5) ist bestimmend für die Größe der dort entstehenden Gleitfunkenstrecke 6′ der Abstand e zwischen der Kante 21 der Elektrode 1′ und der Kante 2′ der Elektrode 2. Es ist ersichtlich, daß der Abstand e, d.h. die Länge des Gleitbogens 6′ an der niederohmigen Funkenstrecke 5′ größer ist als der Bereich d und damit die Länge des Lichtbogens 6 an der hochohmigen Funkenstrecke 5. In dem Zusammenhang sei darauf hingewiesen, daß es im Bereich der Erfindung liegt, die entstehenden Lichtbogen waagerecht/senkrecht (wie im vorliegenden Ausführungsbeispiel), aber auch senkrecht/senkrecht oder waagerecht/waagerecht oder auch in einem spitzen Winkel zur Längsachse der Funkenstrecke verlaufen zu lassen. Das Verhältnis der Längen des Lichtbogens 6′ der niederohmigen Funkenstrecke zum Lichtbogen 6 der hochohmigen Funkenstrecke kann auch anders sein als in der Zeichnung dargestellt. In der Praxis werden bevorzugt Bereiche von 4:1 bis 5:1 angestrebt, ohne daß aber die Erfindung hierauf beschränkt ist. Sind gemäß der bevorzugten Ausführungsform der Erfindung die Isolierschichten aus einem bei Erhitzung ein Gas abgebenden Werkstoff (z.B. das o.g. POM), so drückt das Gas den Lichtbogen gemäß Pfeil 13 jeweils nach außen, bis er zunächst im Falle der Einzelheit A als Lichtbogen 14 zwischen den Kanten 15 und 16 ansteht bzw. im Fall der Einzelheit B als Lichtbogen 17 zwischen den Kanten 2′ und 18. Um dies zu erreichen, ist bei der hochohmigen Funkenstrecke die Elektrode 2 mit einem umlaufenden Steg 2a versehen, der die Kante 16 bildet, während die Elektrode 2 unterseitig die Kante 2′ und die Elektrode 1′ die Kante 18 aufweist. Hierdurch ergibt sich eine Gesamtlänge der Lichtbögen, die größer ist als die Gesamtlänge der Lichtbögen 6, 6′. Hierdurch wird der Löschungsvorgang begünstigt.2, the insulating layer 3 of the high-resistance spark gap 5 is substantially thicker than the insulating layer 4 of the low-resistance spark gap 5 '. In the present exemplary embodiment, however, this has no influence on the achievement of the effect according to the invention, since the voltage drops which arise, given the large difference in the specific resistances of the layers 3, 4, are not appreciably influenced by the thicknesses of these insulating layers. The further parameter which is decisive for the creation of the success according to the invention is the difference in the lengths of the rollover sections 6, 6 '. These arcing paths are shown in the form of sliding spark gaps 6, 6 'in the details A and B according to FIGS. 4 and 5. In the case of the detail A (FIG. 4), the length of the region d of the insulating layer 5 projecting upward above the electrode 2 is decisive for the size of the sliding spark gap 6 which arises there. In the case of detail B (FIG. 5) it is determining for the size of the resulting spark gap 6 'the distance e between the edge 21 of the electrode 1' and the edge 2 'of the electrode 2. It can be seen that the distance e, ie the length of the sliding arc 6' on the low-resistance spark gap 5 ' is greater than the area d and thus the length of the arc 6 at the high-resistance spark gap 5. In the context, it should be pointed out that it is within the scope of the invention that the arcs which arise are horizontal / vertical (as in the present exemplary embodiment), but also to run vertically / vertically or horizontally / horizontally or also at an acute angle to the longitudinal axis of the spark gap. The ratio of the lengths of the arc 6 'of the low-resistance spark gap to the arc 6 of the high-resistance spark gap can also be different from that shown in the drawing. In practice, ranges from 4: 1 to 5: 1 are preferred, but the invention is not limited to these. If, according to the preferred embodiment of the invention, the insulating layers are made of a material which emits a gas when heated (for example the above-mentioned POM), the gas pushes the arc outwards in accordance with arrow 13 until, in the case of detail A, it initially acts as an arc 14 between Edges 15 and 16 are present or in the case of detail B as an arc 17 between the edges 2 'and 18. In order to achieve this, the electrode 2 is provided with a circumferential web 2a which forms the edge 16 in the high-resistance spark gap the electrode 2 underside the edge 2 'and the electrode 1' has the edge 18. This results in an overall length of the arcs that is greater than the total length of the arcs 6, 6 '. This favors the deletion process.

Es ist ersichtlich, daß von der Isolierschicht 3 nur derjenige Teil für die Bildung der Gleitfunkenstrecke und damit für den Lichtbogen 6 wirksam ist, der sich oberhalb der strichpunktierten Linie 19 befindet. Dagegen ist der unterhalb der Linie 19 befindliche Bereich der Isolierung 3 für die Lichtbogenbildung inaktiv. Er dient zum einen zum Halt der Isolierschicht 3 in der Elektrode 2 und ferner aufgrund seiner Masse zur thermischen Stabilisierung, indem er einen Teil der Wärme, die am oberhalb der Linie 19 befindlichen aktiven Teil dieser Isolierschicht entsteht, aufnimmt. Außerdem bewirkt der Teil der Isolierschicht 3, der sich unterhalb der Linie 19 und damit innerhalb einer Ausnehmung der Elektrode 2 befindet, daß durch die Lichtbogentemperatur bedingte Materialverluste sich vom Bereich der Gleitfunkenstrecke 6, d.h. dem Rand der Isolierschicht 3 (siehe Fig. 4) im wesentlichen entlang des Randes der Isolierschicht 3 zum Boden der sie aufnehmenden Ausnehmung der Elektrode 2 hin befinden, d.h. in der Darstellung der Fig. 4 vom Bereich des Lichtbogens 6 nach unten hin. Wäre dagegen der unterhalb der Linie 19 befindliche Teil der Isolierschicht 3 nicht vorhanden, so bestände die Gefahr, daß der Lichtbogen die gesamte Isolierschicht oberhalb der Linie 19 bzw. einer dort vorhandenen Elektrodenfläche abbrennt mit der Folge, daß dann der Abstand d nicht mehr gehalten werden kann und die Elektrode 1 aufgrund der auf sie wirkenden Andruckkraft in Richtung zur Elektrode 2 gedrückt wird. Dies wiederum hätte schädliche Auswirkungen auf die elektrischen Eigenschaften der Gleitfunkenstrecke 6. Analoges gilt für die weitere in Fig. 5 dargestellte Funkenstrecke, bestehend aus den Elektroden 2, 1′ und der Isolierschicht 4 mit der Gleitfunkenstrecke 6′.It can be seen that only that part of the insulating layer 3 is effective for the formation of the sliding spark gap and thus for the arc 6, which is above the dash-dotted line 19. In contrast, the area of the insulation 3 located below the line 19 is inactive for arcing. It serves on the one hand to hold the insulating layer 3 in the electrode 2 and also because of its mass for thermal stabilization in that it absorbs part of the heat which arises at the active part of this insulating layer located above the line 19. In addition, the part of the insulating layer 3, which is below the line 19 and thus within a recess of the electrode 2, causes that by the arc temperature Conditional material losses are located from the area of the spark gap 6, ie the edge of the insulating layer 3 (see FIG. 4) essentially along the edge of the insulating layer 3 towards the bottom of the recess in the electrode 2 receiving it, ie in the representation of FIG. 4 from Area of the arc 6 downwards. If, on the other hand, the part of the insulating layer 3 located below the line 19 was not present, there would be the risk that the arc would burn off the entire insulating layer above the line 19 or an electrode surface there, with the result that the distance d would then no longer be maintained can and the electrode 1 is pressed due to the pressure force acting on it in the direction of the electrode 2. This in turn would have harmful effects on the electrical properties of the spark gap 6. The same applies to the further spark gap shown in Fig. 5, consisting of the electrodes 2, 1 'and the insulating layer 4 with the spark gap 6'.

Wenn der Gas abgebende Werkstoff der Isolierschichten 3, 4 zu blasen beginnt und der Lichtbogen 6 bzw. 6′ gemäß dem Pfeil 13 nach außen wandert, bleibt er bei den Fangkanten 15, 16 bzw. 2′, 18 hängen. In diesem Stadium haben die Elektroden 1, 2 bzw. 2, 1′ die Funktion von Fangelektroden. Hiermit kann man sich gegenüber der jeweiligen effektiven Dicke (d) bzw. Länge (e) des die Überschlagsstrecke bildenden Teiles der Isolierschichten 3 bzw. 4 eine gewünschte Länge des jeweiligen Lichtbogens und damit eine entsprechende Gesamtlänge der an der Anordnung anstehenden Lichtbogen schaffen (siehe hierzu auch die Lehre des Anspruches 1). Durch Weiterwandern der Fußpunkte 15, 16 bzw. 2′, 18 auf den Elektroden in Richtung zur Löschkammer 10 kommen die Lichtbögen dann zum Erlöschen. Die entstehenden Gase werden, wie erläutert, bei 11 ausgeblasen.When the gas-emitting material of the insulating layers 3, 4 begins to blow and the arc 6 or 6 'moves outwards according to the arrow 13, it remains at the trailing edges 15, 16 and 2', 18. At this stage, the electrodes 1, 2 and 2, 1 'have the function of target electrodes. In this way, compared to the respective effective thickness (d) or length (e) of the part of the insulating layers 3 or 4 forming the rollover path, a desired length of the respective arc and thus a corresponding total length of the arcs present at the arrangement can be created (see here also the teaching of claim 1). By moving the base points 15, 16 and 2 ', 18 on the electrodes towards the quenching chamber 10, the arcs then go out. As explained, the resulting gases are blown out at 11.

Die Verlagerung der anstehenden Lichtbögen auf den Bereich zwischen den Kanten 15, 16 bzw. 2′, 18 bringt darüber hinaus eine wesentliche thermische Entlastung des Isoliermaterials 3 bzw. 4 im Bereich der eingezeichneten Lichtbögen 6, 6′ und der dazugehörigen Bereiche der Elektroden. Hierzu trägt ferner die o.g. Verdickung der Isolierschichten zur Erhöhung ihrer thermischen Stabilität bei, wie es anhand der Isolierschicht 3 gezeigt ist. Entsprechend könnte (in der Zeichnung nicht dargestellt) auch die Masse der Isolierschicht 4 vergrößert sein. Dies und die vorstehend erläuterte Verlagerung des Lichtbogens auf einen vom Isoliermaterial und den Elektroden entfernteren Bereich beseitigt die Gefahr eines schädlichen Abbrandes an den Isolierschichten und den Elektroden. Ein solcher thermischer Abbrand könnte im Extremfall die gesamte Isolierschicht 3 bzw. 4 wegbrennen und damit die Funkenstrecke zum Kurzschluß bringen. Vorteilhafterweise kommt zur Verminderung dieser Abbrandgefahr hinzu, daß die hier bevorzugt eingesetzten Materialien der Elektroden extrem abbrandfest sind.The shift of the upcoming arcs to the area between the edges 15, 16 and 2 ', 18 also brings a significant thermal relief of the insulating material 3 and 4 in the area of the arcs 6, 6 'and the associated areas of the electrodes. The above-mentioned thickening of the insulating layers also contributes to increasing their thermal stability, as is shown by means of the insulating layer 3. Accordingly, the mass of the insulating layer 4 could also be increased (not shown in the drawing). This and the above-described displacement of the arc to an area further away from the insulating material and the electrodes eliminates the risk of damaging erosion on the insulating layers and the electrodes. In extreme cases, such a thermal erosion could burn away the entire insulating layer 3 or 4 and thus short-circuit the spark gap. In addition, in order to reduce this risk of erosion, the materials of the electrodes which are preferably used here are extremely resistant to erosion.

Claims (23)

  1. An arrangement capable of carrying lightning current having at least two series-connected spark gaps, wherein each spark gap consists of two electrodes and an insulating layer located therebetween, which between the electrodes of the respective spark gap forms a spark-over path and wherein the thickness of at least one of the insulating layers is different from the thickness of the remaining insulating layer(s),
    characterised in that a first spark gap (5) having a relatively high-resistance insulating layer (3, 3′) possessing a relatively short spark-over path (6) is provided,
    and in that a second spark gap (5′) or a second and further spark gaps (5, 5˝) is or are provided, which, in comparison with the design of the first spark gap, has or have a relatively low-resistance insulating layer (4) possessing a relatively long spark-over path (6′, 6˝) and is or are connected electrically in series with the first spark gap.
  2. An arrangement according to Claim 1,
    characterised in that the high-resistance insulating layer of the first spark gap (5) consists either of air (3′), or a gas discharger or of a high-resistance insulating material (3).
  3. An arrangement according to Claim 1 or 2,
    characterised in that the low-resistance insulating layer (4) of the second spark gap (5′) or of the further spark gaps (5˝) with corresponding design is or are made from a low-resistance insulating material.
  4. An arrangement according to one of Claims 1 to 3,
    characterised in that the insulating layers (3, 4) are made from a material which, when heated, blows off gas.
  5. An arrangement according to Claim 4,
    characterised in that the material of the insulating layers (3, 4) which blows off gas is a thermoplastic plastic which gives of hydrogen gas (H₂), e.g. polymethylene oxide (PMO), wherein pure PMO is provided for the high-resistance insulating layer (3) of the first spark gap (5), but on the other hand a PMO provided with conductive particles, e.g. graphite or metal particles, is used for the low-resistance insulating layer (4) of the second and further spark gap(s) (5′, 5˝).
  6. An arrangement according to one of Claims 1 to 5,
    characterised in that the spark gaps (5, 5′, 5˝) are arranged spatially above one another.
  7. An arrangement according to one of Claims 1 to 6,
    characterised in that when forming the insulating layers from a corresponding material, these insulating layers (3, 4) and the associated electrodes (1, 2; 2, 1′; 1′ 1˝) of the spark gaps (5, 5′, 5˝) are formed so that the spark-over between the electrodes takes place along a sliding discharge gap (6, 6′) of the respective insulating layer.
  8. An arrangement according to one of Claims 1 to 7,
    characterised by a configuration of the electrodes and of the insulating layers of one or more of the spark gaps (5, 5′, 5˝) which is such that the respective sliding spark gap (6) runs along the rotationally symmetrical, preferably cylindrical casing, of the respective insulating layer (3).
  9. An arrangement according to one of Claims 1 to 8,
    characterised in that the high-resistance insulating layer (3) is embedded in one of the electrodes of the associated spark gap, whereby this insulating layer protrudes only with one part (d) of its thickness beyond the surface of the respective electrode and preferably the thickness of the region of the insulating layer located in the electrode is greater than the above-mentioned thickness (d) of the protruding part of this insulating layer.
  10. An arrangement according to one of Claims 1 to 7,
    characterised by a configuration of the electrodes and of the insulating layers of one or more of the spark gaps (5, 5′, 5˝) which is such that the sliding discharge gaps (6′) run in the radial direction of the disc-shaped insulating layer (4) in particular to its outer casing.
  11. An arrangement according to Claim 10,
    characterised in that the low-resistance insulating layer (4) is embedded in one of the electrodes of the associated spark gap, wherein the surface of this insulating layer is flush with the surface of the above-mentioned electrode surrounding it.
  12. An arrangement according to one of Claims 1 to 11,
    characterised in that the ohmic resistance of the high-resistance insulating layer (3) to that of the low-resistance insulating layer (4) is about 10000:1.
  13. An arrangement according to one of Claims 1 to 12,
    characterised in that the length of the sliding discharge gap (6) of the high-resistance spark gap (5) to the length of the sliding discharge gap (6′) of the low-resistance spark gap (5′, 5˝) is roughly in the ratio 1:4 or 1:5.
  14. An arrangement according to one of Claims 4 to 13,
    characterised in that in a blowing direction (13) of the insulating material of the insulating layers (3, 4), two catch edges (15, 16; 2′, 18) of the two electrodes (1, 2; 2, 1′) belonging to the respective spark gap are provided at a distance from one another which at first holds the arc (14, 17), with the above-mentioned arc having a corresponding distance from the respective sliding discharge gap (6, 6′).
  15. An arrangement according to Claim 14,
    characterised in that to form catch edges (16) the respective electrode (2, 1′) has a circumferential web (2a) and a circumferential step (20).
  16. An arrangement according to one of Claims 1 to 15,
    characterised in that each spark gap (5, 5′) is provided with an extinguishing chamber (10) which has a blow-out opening (11).
  17. An arrangement according to Claim 16,
    characterised in that the extinguishing chamber or chambers (10) are made of an insulating material which, when heated, blows off gas.
  18. An arrangement according to one of Claims 1 to 17,
    characterised in that the spark gaps (5, 5′) are positioned in a common housing (7) which also encloses the extinguishing chambers (10).
  19. An arrangement according to Claim 18,
    characterised in that the housing (7) is closed off on the front side by cover plates (8) which are provided with outwardly protruding connections (8′).
  20. An arrangement according to one of Claims 1 to 19,
    characterised in that it is provided with means for preventing vapour deposit, which prevent a continuous vapour deposit on the inside wall of the housing and thus a continuous electrically conductive connection.
  21. An arrangement according to Claim 20,
    characterised by cover plates (22), which cover the surface of the respective cover plate (8) facing the respective spark gap,
    and in that the cover plates (22) surround the electrodes in a ring and in so doing are separated therefrom by a narrow air gap (23) which is also ring-shaped.
  22. An arrangement according to Claim 21,
    characterised in that each cover plate (22) has on its inside radius a web (22′) which is directed towards the respective contact plate (8) and forms a gap (23˝) therewith.
  23. An arrangement according to Claim 21 or 22,
    characterised in that the outer edge of the cover plate (22) is constructed as a web-like cover (22˝) for the inner surface of the wall of the housing (7) which adjoins the contact plate (8).
EP93117367A 1992-11-28 1993-10-27 Lightning-current withstand device with at least two series-connected surge gaps Expired - Lifetime EP0600222B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4240138A DE4240138C2 (en) 1992-11-28 1992-11-28 Arrangement capable of carrying lightning current with at least two spark gaps connected in series
DE4240138 1992-11-28

Publications (2)

Publication Number Publication Date
EP0600222A1 EP0600222A1 (en) 1994-06-08
EP0600222B1 true EP0600222B1 (en) 1995-12-27

Family

ID=6473954

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93117367A Expired - Lifetime EP0600222B1 (en) 1992-11-28 1993-10-27 Lightning-current withstand device with at least two series-connected surge gaps

Country Status (7)

Country Link
US (1) US5450274A (en)
EP (1) EP0600222B1 (en)
AT (1) ATE132303T1 (en)
DE (2) DE4240138C2 (en)
DK (1) DK0600222T3 (en)
ES (1) ES2083815T3 (en)
ZA (1) ZA938909B (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2185466Y (en) * 1994-02-05 1994-12-14 杨炳霖 Surge absorption tube
DE19510181C1 (en) * 1995-03-21 1996-06-05 Dehn & Soehne Overvoltage diverter and current extinction device
DE19543022C1 (en) * 1995-11-18 1996-12-19 Bettermann Obo Gmbh & Co Kg Overvoltage protection element e.g. for lightning strike
DE19615521C2 (en) * 1996-04-19 2000-10-19 Dehn & Soehne Spark gap
DE19742302A1 (en) * 1997-09-25 1999-04-08 Bettermann Obo Gmbh & Co Kg Spark gap capable of carrying lightning current
DE10060426B4 (en) * 2000-11-24 2004-04-15 Dehn + Söhne Gmbh + Co. Kg Encapsulated surge arrester with at least one spark gap
DE10133848A1 (en) * 2001-07-12 2003-02-20 Dehn & Soehne Lightning current, excess voltage conductor for low, medium voltage systems has separate insulation paths for absorbing incoming electrical load of conducting process and normal insulation
DE10140950B4 (en) * 2001-08-01 2006-10-19 Dehn + Söhne Gmbh + Co. Kg Encapsulated surge arrester based on spark gap
DE10212697A1 (en) * 2001-12-17 2003-07-10 Phoenix Contact Gmbh & Co Overvoltage protection device
DE20220908U1 (en) * 2001-12-17 2004-07-29 Phoenix Contact Gmbh & Co. Kg Overvoltage protection device
DE102004006988B4 (en) 2003-11-28 2014-02-06 Dehn + Söhne Gmbh + Co. Kg Spark-gap overvoltage protection device comprising at least two main electrodes located in a pressure-tight housing
DE102008064794B3 (en) 2007-10-15 2017-03-02 DEHN + SÖHNE GmbH + Co. KG. Spark gap arrangement for higher rated voltages
DE102008049471A1 (en) 2007-10-15 2009-11-12 Dehn + Söhne Gmbh + Co. Kg Spark gap arrangement for higher rated voltages
DE102011102937B4 (en) 2010-08-17 2017-03-02 DEHN + SÖHNE GmbH + Co. KG. Arrangement for the ignition of spark gaps
DE102011102864A1 (en) * 2010-10-22 2012-04-26 Dehn + Söhne GmbH Spark gap with several series-connected, stacked single spark gaps

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE327016C (en) * 1919-03-16 1920-10-06 Bbc Brown Boveri & Cie Surge arrester consisting of several elements based on the breakdown principle
CH215001A (en) * 1940-06-11 1941-05-31 Bbc Brown Boveri & Cie Surge arrester for high and extra high voltages.
GB877694A (en) * 1958-10-20 1961-09-20 Ass Elect Ind Improvements relating to protective devices for electrical equipment
CH449106A (en) * 1966-07-19 1967-12-31 Bbc Brown Boveri & Cie Surge arresters
DE2934238C2 (en) * 1979-08-24 1982-02-18 Dehn + Söhne GmbH + Co KG, 8500 Nürnberg Spark gap
DE2934236C2 (en) * 1979-08-24 1983-02-24 Aeg-Telefunken Ag, 1000 Berlin Und 6000 Frankfurt Surge arrester with spark gap
DE3016265C2 (en) * 1980-04-26 1984-05-17 ANT Nachrichtentechnik GmbH, 7150 Backnang Surge arrester with spark gap
DE3914624A1 (en) * 1989-05-03 1990-11-08 Dehn & Soehne Arcing unit for overload protection - has two part arc paths in series to provide protection

Also Published As

Publication number Publication date
US5450274A (en) 1995-09-12
ATE132303T1 (en) 1996-01-15
EP0600222A1 (en) 1994-06-08
ES2083815T3 (en) 1996-04-16
ZA938909B (en) 1994-08-02
DE4240138A1 (en) 1994-06-01
DE59301256D1 (en) 1996-02-08
DE4240138C2 (en) 1995-05-24
DK0600222T3 (en) 1996-01-29

Similar Documents

Publication Publication Date Title
EP0600222B1 (en) Lightning-current withstand device with at least two series-connected surge gaps
EP2827462B1 (en) Assembly for igniting spark gaps
EP0789434B1 (en) Method for influencing the extinctive capacity of follow-up current of overvoltage arresters and overvoltage arresters using this method
EP0706245B1 (en) Overvoltage protection element
EP2936530B1 (en) Power circuit breaker
EP1456921B1 (en) Overvoltage protection device
EP1692751B1 (en) Surge suppressor
DE2337743C3 (en) Spark gap
DE2636177C3 (en) High energy laser
DE1513155C3 (en) Surge arresters
DE102007002429B4 (en) Encapsulated, pressure-resistant, lightning current-carrying surge arrester with follow-up current extinguishing capability
DE102008038486A1 (en) Overvoltage protective device for use in low-voltage mains power supply, has arc combustion chamber formed between one electrode and another electrode, and insulation section connected in series with arc combustion chamber
DE10140950A1 (en) Encapsulated voltage surge absorber based on a spark gap for protecting against surges has disk-shaped facing electrodes with big surfaces to form a rotationally symmetrical makeup and an arc discharge gap between the electrodes
DE1588233A1 (en) Surge arresters
DE102014015609B3 (en) Surge arresters
EP0786844A2 (en) Surge arrester device
DE19543022C1 (en) Overvoltage protection element e.g. for lightning strike
DE102017119288B4 (en) Encapsulated surge arrester based on spark gaps
WO2015150253A1 (en) Surge arrester
DE19503237A1 (en) Multi-pole arrangement of overvoltage protection elements for three=phase system
DE10212697A1 (en) Overvoltage protection device
EP4270688A1 (en) Multiple spark gap arrangement
DE102018133389A1 (en) Surge arresters
DE3122102A1 (en) Valve-type arrester
DE1935190A1 (en) Spark gap arrangement for direct current surge arresters

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19940422

17Q First examination report despatched

Effective date: 19950208

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 132303

Country of ref document: AT

Date of ref document: 19960115

Kind code of ref document: T

ET Fr: translation filed
REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960105

REF Corresponds to:

Ref document number: 59301256

Country of ref document: DE

Date of ref document: 19960208

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCHMAUDER & WANN PATENTANWALTSBUERO

ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R.L.

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2083815

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20011022

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20011023

Year of fee payment: 9

Ref country code: CH

Payment date: 20011023

Year of fee payment: 9

Ref country code: BE

Payment date: 20011023

Year of fee payment: 9

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20021007

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20021017

Year of fee payment: 10

Ref country code: NL

Payment date: 20021017

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20021022

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20021024

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021031

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021031

BERE Be: lapsed

Owner name: *DEHN + SOHNE G.M.B.H. + CO. K.G.

Effective date: 20021031

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031027

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20031027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040630

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20040501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20031028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051027

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101230

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120501

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59301256

Country of ref document: DE

Effective date: 20120501