EP0600192B1 - Heat pipe - Google Patents

Heat pipe Download PDF

Info

Publication number
EP0600192B1
EP0600192B1 EP93116292A EP93116292A EP0600192B1 EP 0600192 B1 EP0600192 B1 EP 0600192B1 EP 93116292 A EP93116292 A EP 93116292A EP 93116292 A EP93116292 A EP 93116292A EP 0600192 B1 EP0600192 B1 EP 0600192B1
Authority
EP
European Patent Office
Prior art keywords
heat
heat pipe
radiator
liquid
thermal contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93116292A
Other languages
German (de)
French (fr)
Other versions
EP0600192A1 (en
Inventor
Reinhard Dr. Schlitt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Original Assignee
Daimler Benz Aerospace AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler Benz Aerospace AG filed Critical Daimler Benz Aerospace AG
Publication of EP0600192A1 publication Critical patent/EP0600192A1/en
Application granted granted Critical
Publication of EP0600192B1 publication Critical patent/EP0600192B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0258Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with means to remove contaminants, e.g. getters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • F28F1/16Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally the means being integral with the element, e.g. formed by extrusion

Definitions

  • the invention relates to an arrangement for dissipating heat, consisting of at least one heat pipe filled with a heat transfer medium, in which there are at least one flow channel each for the liquid and for the heat transfer medium converted into the vaporous state and in which means are provided in the liquid channel remove any bubbles and from at least one radiator in thermal contact with the heat pipe.
  • Heat pipes or "heat pipes” for the transport of heat are already known, in particular from the field of space technology. This is usually a liquid on the heat-emitting side Ammonia, evaporates and the steam is directed to the heat-emitting side. There, the steam condenses, the latent heat stored in it being dissipated to the environment, and the condensate formed flows back to the heat-absorbing side, the evaporator.
  • the steam flow that occurs is a normal pressure flow, while the liquid flow is a capillary flow.
  • Modern cooking performance heat pipes are able to transport heat quantities of the order of about 1 kW over distances between one and about 20 meters, even with comparatively small temperature differences.
  • This higher performance of the high-performance heat pipes compared to conventional heat pipes is achieved by using channels of different dimensions for the transport of the liquid: While in the evaporation area a large number of very small, circumferential channels with capillary geometries are used to achieve large driving capillary forces, the flow in the condenser area and in the transport zone takes place via only a few flow channels, possibly a single channel with a relatively large diameter, which is also referred to as an artery. In this way the friction-related pressure loss is minimized and, with the same capillary forces, a significantly larger fluid mass flow results and, as a result, also a significantly higher heat flow.
  • a major problem with the operation of such high-performance heat pipes is that their function can be significantly impaired or completely interrupted if there are bubbles in the artery from the vapor of the heat transfer fluid or from gaseous, non-condensable foreign substances. These may either have happened to be there when the heat pipe was put into operation, but they may also have arisen due to operational overloading of the heat pipe, for example overheating at the end of the evaporator and the evaporation zone drying out briefly. The bubbles can interrupt the transport of the heat transfer fluid to the heat-absorbing zone, so that it dries out further and the function of the heat pipe is blocked.
  • a disadvantage of an arrangement of ventilation holes in the artery wall is the fact that during the Operation of the heat pipe, the pressure in the steam channel is significantly higher than in the artery, so that an operation interruption is required to transfer gas bubbles from the artery into the steam channel.
  • the ventilation holes are blocked by liquid bridges, which first have to evaporate before the gas bubbles can pass through, these breaks in operation require a comparatively long period of time before the heat pipe is ready for use again.
  • the arrangement of a Venturi nozzle in the steam channel has the following disadvantage: If there is no gas bubble in the suction area of the nozzle, a, albeit small, amount of heat transfer fluid constantly collects from the artery in the suction pipe. If a gas bubble now reaches the suction opening, the amount of liquid must first be removed from the suction pipe so that it can be sucked out of the artery. Because of the associated large pressure loss of the flow in the intake manifold, the pressure drop in the Venturi nozzle must be considerable, i.e. the nozzle must have a comparatively large cross-sectional constriction. On the other hand, however, this leads to a considerable impairment of the steam flow due to the pressure loss and thus to a greatly reduced performance of the heat pipe.
  • the object of the invention is to design a heat pipe of the type mentioned in such a way that vapor bubbles of the heat transfer fluid and bubbles from non-condensable gas can be removed from the flow channel for the fluid simply and quickly, that is to say without interrupting operation, even if they are already in operation most of the flow cross section of the Take up the artery or if these blisters are caused by overload in the evaporation zone.
  • the invention solves this problem by a heat pipe with the characterizing features of claim 1.
  • Advantageous further developments are characterized by the features of the subclaims.
  • the heat pipe according to the invention is to a large extent fault-tolerant to overloads occurring during operation, since the start-up or restart process is simplified and accelerated considerably.
  • a particularly important advantage of the heat pipe according to the invention is that it is possible not only to remove bubbles from non-condensable gases from the liquid channel, but also to effectively remove steam bubbles.
  • the arrangement shown in a plan view in FIG. 1 comprises a main heat pipe 1, two auxiliary heat pipes 2 and 3 and two radiators 4 and 5.
  • the main radiator 4 is in direct thermal contact with the condenser-side end of the main heat pipe 1, while the much smaller auxiliary radiator 5 is arranged thermally separated from the main radiator 4.
  • the Thermal separation of the two radiators is achieved both by the distance between them, as can be seen in FIG. 3, and optionally by an insulation arranged between the two.
  • the auxiliary radiator 5 is in direct thermal contact with the condenser-side end regions of the two auxiliary heat pipes 2 and 3, which have a substantially smaller cross section than the main heat pipe 1. With the latter, they are thermally coupled at the common evaporator end, as the illustration in FIG. 2 shows. This is done via contact surfaces 6, 7 and 8, which are each molded onto the evaporator-side end regions of the heat pipes 1 to 3 and which are connected directly to one another.
  • Figures 2 and 3 also show the inner structure of the main heat pipe 1, which is divided by an axial extrusion 9 into two liquid channels or arteries 10 and 11 and two steam channels 12 and 13. Below the two liquid channels 10 and 11, separated from them by a perforated sheet 14, in the exemplary embodiment described here there also runs another channel 15 through which the liquid flows, which serves as a trap for gas or vapor bubbles contained in the liquid.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Geometry (AREA)
  • Central Heating Systems (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

Die Erfindung betrifft eine Anordnung zum Abführen von Wärme, bestehend aus wenigstens einem mit einem Wärmeträgermedium gefüllten Wärmerohr, in dem wenigstens je ein Strömungskanal für das flüssige und für das in den dampfförmigen Aggregatzustand überführte Wärmeträgermedium vorhanden sind und bei dem Mittel vorgesehen sind, um im Flüssigkeitskanal befindliche Blasen zu entfernen sowie aus wenigstens einem mit dem Wärmerohr in thermischem Kontakt stehenden Radiator.The invention relates to an arrangement for dissipating heat, consisting of at least one heat pipe filled with a heat transfer medium, in which there are at least one flow channel each for the liquid and for the heat transfer medium converted into the vaporous state and in which means are provided in the liquid channel remove any bubbles and from at least one radiator in thermal contact with the heat pipe.

Wärmerohre oder "heat pipes" für den Transport von Wärme sind, insbesondere aus dem Bereich der Raumfahrttechnik bereits bekannt. Bei diesem wird auf der wärmeabgebenden Seite eine Flüssigkeit, in der Regel Ammoniak, verdampft und der Dampf wird zur wärmeabgebenden Seite geleitet. Dort kondensiert der Dampf, wobei die in ihm gespeicherte latente Wärme an die Umgebung abgeführt wird, und das entstehende Kondensat fließt wieder zur wärmeaufnehmenden Seite, dem Verdampfer, zurück. Die dabei auftretende Dampfströmung ist eine normale Druckströmung, während die Flüssigkeitsströmung eine Kapillarströmung ist. Unterschiedliche Krümmungsradien der Grenzfläche zwischen der Flüssigkeit und dem Dampf im Verdampferende einerseits und im Kondensatorende andererseits und die dadurch hervorgerufenen Kapillarkräfte bewirken eine Druckdifferenz in Richtung Verdampferende, die die Strömung antreibt. Die sich einstellende Strömungsgeschwindigkeit ergibt sich aus dem Gleichgewicht zwischen dem Druckverlust aufgrund von Reibungskräften und der wirksamen Druckdifferenz der Kapillarkräfte.Heat pipes or "heat pipes" for the transport of heat are already known, in particular from the field of space technology. This is usually a liquid on the heat-emitting side Ammonia, evaporates and the steam is directed to the heat-emitting side. There, the steam condenses, the latent heat stored in it being dissipated to the environment, and the condensate formed flows back to the heat-absorbing side, the evaporator. The steam flow that occurs is a normal pressure flow, while the liquid flow is a capillary flow. Different radii of curvature of the interface between the liquid and the vapor in the evaporator end on the one hand and in the condenser end on the other hand and the capillary forces caused thereby cause a pressure difference in the direction of the evaporator end which drives the flow. The resulting flow velocity results from the equilibrium between the pressure loss due to frictional forces and the effective pressure difference of the capillary forces.

Moderne Kochleistungswärmerohre sind in der Lage, auch bei vergleichsweise geringen Temperaturdifferenzen, Wärmemengen in der Größenordnung von etwa 1 kW über Entfernungen zwischen einem und etwa 20 Metern zu transportieren.Modern cooking performance heat pipes are able to transport heat quantities of the order of about 1 kW over distances between one and about 20 meters, even with comparatively small temperature differences.

Diese im Vergleich zu konventionellen Wärmerohren höhere Leistung der Hochleistungswärmerohre wird dadurch erzielt, daß für den Transport der Flüssigkeit Kanäle unterschiedlicher Abmessungen verwendet werden: Während im Verdampfungsbereich eine Vielzahl sehr kleiner, in Umfangsrichtung verlaufender Kanäle mit Kapillargeometrien verwendet wird, um große treibende Kapillarkräfte zu erzielen, erfolgt die Strömungsführung im Kondensatorbereich sowie in der Transportzone über nur wenige Strömungskanäle, gegebenenfalls einem einzigen Kanal mit relativ großem Durchmesser, der auch als Arterie bezeichnet wird. Auf diese Weise wird der reibungsbedingte Druckverlust minimiert und es ergibt sich bei gleichen Kapillarkräften ein wesentliche größerer Fluidmassenstrom und als dessen Folge ein ebenfalls wesentlich höherer Wärmestrom.This higher performance of the high-performance heat pipes compared to conventional heat pipes is achieved by using channels of different dimensions for the transport of the liquid: While in the evaporation area a large number of very small, circumferential channels with capillary geometries are used to achieve large driving capillary forces, the flow in the condenser area and in the transport zone takes place via only a few flow channels, possibly a single channel with a relatively large diameter, which is also referred to as an artery. In this way the friction-related pressure loss is minimized and, with the same capillary forces, a significantly larger fluid mass flow results and, as a result, also a significantly higher heat flow.

Ein wesentliches Problem beim Betrieb derartiger Hochleistungswärmerohre liegt darin, daß ihre Funktion erheblich beeinträchtigt bzw. ganz unterbrochen werden kann, wenn sich Blasen aus dem Dampf des Wärmeträgerfluids oder aus gasförmigen, nicht kondensierbaren Fremdstoffen in der Arterie befinden. Diese können sich entweder bereits bei der Inbetriebnahme des Wärmerohres zufällig dort befunden haben, sie können aber auch durch eine betriebsbedingte Überlastung des Wärmerohres, beispielsweise eine Überhitzung am Verdampferende bei kurzzeitiger Austrocknung der Verdampfungszone, entstanden sein. Die Blasen können den Transport des Wärmeträgerfluids zur wärmeaufnehmenden Zone unterbrechen, so daß diese weiter austrocknet und das Wärmerohr in seiner Funktion blockiert wird.A major problem with the operation of such high-performance heat pipes is that their function can be significantly impaired or completely interrupted if there are bubbles in the artery from the vapor of the heat transfer fluid or from gaseous, non-condensable foreign substances. These may either have happened to be there when the heat pipe was put into operation, but they may also have arisen due to operational overloading of the heat pipe, for example overheating at the end of the evaporator and the evaporation zone drying out briefly. The bubbles can interrupt the transport of the heat transfer fluid to the heat-absorbing zone, so that it dries out further and the function of the heat pipe is blocked.

In der Literaturstelle Heat Pipe Design Handbook, Volume 1, B & K Engineering Inc., Towson, Maryland 21204, USA, Seiten 149 und 152, sind deshalb zwei Wärmerohre beschrieben, bei denen Maßnahmen zur Entfernung von Blasen und damit zur Vermeidung von Blockaden durch Glasblasen vorgesehen sind. Diese Maßnahmen bestehen in einem Fall aus einer Anordnung mit Entlüftungsbohrungen in der Wand zwischen der Arterie und dem Dampfkanal, im anderen Fall aus einer Venturidüse, die im Transportbereich für den Dampf angeordnet ist und die zugleich als Strahlpumpe über ein Ansaugrohr in der Arterie vorhandene Gasblasen absaugt.In the heat pipe design handbook, volume 1, B&K Engineering Inc., Towson, Maryland 21204, USA, pages 149 and 152, two heat pipes are therefore described, in which measures are used to remove bubbles and thus prevent blockages Glass bubbles are provided. These measures consist in one case of an arrangement with ventilation holes in the wall between the artery and the steam channel, in the other case a venturi nozzle which is arranged in the transport area for the steam and which at the same time sucks off gas bubbles present in the artery as a jet pump via an intake pipe .

Nachteilig bei einer Anordnung von Entlüftungslöchern in der Arterienwand ist der Umstand, daß während des Betriebes des Wärmerohrs der Druck im Dampfkanal wesentlich höher als in der Arterie ist, so daß zur Überführung von Gasblasen aus der Arterie in den Dampfkanal eine Betriebsunterbrechung erforderlich ist. Da dann aber die Entlüftungsbohrungen von Flüssigkeitsbrücken blockiert sind, die zunächst verdampfen müssen bevor die Gasblasen hindurchtreten können, erfordern diese Betriebspausen einen vergleichsweise langen Zeitraum, bevor das Wärmerohr wieder einsatzbereit ist.A disadvantage of an arrangement of ventilation holes in the artery wall is the fact that during the Operation of the heat pipe, the pressure in the steam channel is significantly higher than in the artery, so that an operation interruption is required to transfer gas bubbles from the artery into the steam channel. However, since the ventilation holes are blocked by liquid bridges, which first have to evaporate before the gas bubbles can pass through, these breaks in operation require a comparatively long period of time before the heat pipe is ready for use again.

Die Anordnung einer Venturidüse im Dampfkanal hat andererseits den folgenden Nachteil: Befindet sich keine Gasblase im Ansaugbereich der Düse, so sammelt sich ständig eine, wenn auch geringe, Menge an Wärmeträgerfluid aus der Arterie im Ansaugrohr. Wenn nun eine Gasblase vor die Ansaugöffnung gelangt, so muß, damit diese aus der Arterie abgesaugt werden kann, zunächst die Flüssigkeitsmenge aus dem Ansaugrohr entfernt werden. Wegen des damit verbundenen großen Druckverlustes der Strömung im Ansaugrohr muß die in der Venturidüse hervorgerufene Druckminderung beträchtlich sein, d.h., die Düse muß eine vergleichsweise starke Querschnittsverengung aufweisen. Dies aber führt auf der anderen Seite zu einer erheblichen Beeinträchtigung der Dampfströmung infolge des Druckverlustes und damit zu einer stark herabgesetzten Leistungsfähigkeit des Wärmerohres.The arrangement of a Venturi nozzle in the steam channel, on the other hand, has the following disadvantage: If there is no gas bubble in the suction area of the nozzle, a, albeit small, amount of heat transfer fluid constantly collects from the artery in the suction pipe. If a gas bubble now reaches the suction opening, the amount of liquid must first be removed from the suction pipe so that it can be sucked out of the artery. Because of the associated large pressure loss of the flow in the intake manifold, the pressure drop in the Venturi nozzle must be considerable, i.e. the nozzle must have a comparatively large cross-sectional constriction. On the other hand, however, this leads to a considerable impairment of the steam flow due to the pressure loss and thus to a greatly reduced performance of the heat pipe.

Aufgabe der Erfindung ist es, ein Wärmerohr der eingangs genannten Art so auszubilden, daß Dampfblasen des Wärmeträgerfluids sowie Blasen aus nicht kondensierbarem Gas einfach und schnell, d.h. ohne Betriebsunterbrechung, aus dem Strömungskanal für das Fluid entfernt werden können, auch wenn sie vor der Inbetriebnahme bereits den größten Teil des Strömungsquerschnittes der Arterie einnehmen oder wenn diese Blasen durch Überlastung in der Verdampfungszone entstanden sind. Die Erfindung löst diese Aufgabe durch ein Wärmerohr mit den kennzeichnenden Merkmalen des Patentanspruchs 1. Vorteilhafte Weiterbildungen sind durch die Merkmale der Unteransprüche gekennzeichnet.The object of the invention is to design a heat pipe of the type mentioned in such a way that vapor bubbles of the heat transfer fluid and bubbles from non-condensable gas can be removed from the flow channel for the fluid simply and quickly, that is to say without interrupting operation, even if they are already in operation most of the flow cross section of the Take up the artery or if these blisters are caused by overload in the evaporation zone. The invention solves this problem by a heat pipe with the characterizing features of claim 1. Advantageous further developments are characterized by the features of the subclaims.

Das Wärmerohr nach der Erfindung ist dabei in hohem Maße fehlertolerant gegenüber im Betrieb auftretenden Überlastungen, da der Start- bzw. Wiederanfahrvorgang wesentlich vereinfacht und beschleunigt wird. Ein besonders wichtiger Vorteil des erfindungsgemäßen Wärmerohres liegt ferner darin, daß es möglich ist, nicht nur Blasen aus nicht-kondensierbaren Gasen aus dem Flüssigkeitskanal zu entfernen, sondern ebenso wirksam auch Dampfblasen.The heat pipe according to the invention is to a large extent fault-tolerant to overloads occurring during operation, since the start-up or restart process is simplified and accelerated considerably. A particularly important advantage of the heat pipe according to the invention is that it is possible not only to remove bubbles from non-condensable gases from the liquid channel, but also to effectively remove steam bubbles.

Im folgenden soll die Erfindung anhand eines Ausführungsbeispiels näher erläutert werden. Es zeigen:

Fig. 1
eine Draufsicht auf eine Anordnung zum Abführen von Wärme und
Fig. 2 und 3
je einen Querschnitt durch die in Fig. 1 dargestellte Anordnung gemäß II-II bzw. III-III.
In the following, the invention will be explained in more detail using an exemplary embodiment. Show it:
Fig. 1
a plan view of an arrangement for dissipating heat and
2 and 3
a cross section through the arrangement shown in Fig. 1 according to II-II and III-III.

Die in Fig. 1 in einer Draufsicht dargestellte Anordnung umfaßt ein Hauptwärmerohr 1, zwei Hilfswärmerohre 2 und 3 sowie zwei Radiatoren 4 und 5. Von letzteren steht der größere der beiden, der Hauptradiator4, in direktem thermischen Kontakt mit dem kondensatorseitigen Ende des Hauptwärmerohres 1, während der wesentlich kleiner ausgelegte Hilfsradiator 5 vom Hauptradiator 4 thermisch getrennt angeordnet ist. Die thermische Trennung der beiden Radiatoren wird dabei sowohl durch den Abstand zwischen diesen erreicht, wie aus Fig. 3 ersichtlich ist, als auch gegebenenfalls durch eine zwischen beiden angeordnete Isolierung.The arrangement shown in a plan view in FIG. 1 comprises a main heat pipe 1, two auxiliary heat pipes 2 and 3 and two radiators 4 and 5. Of the latter, the larger of the two, the main radiator 4, is in direct thermal contact with the condenser-side end of the main heat pipe 1, while the much smaller auxiliary radiator 5 is arranged thermally separated from the main radiator 4. The Thermal separation of the two radiators is achieved both by the distance between them, as can be seen in FIG. 3, and optionally by an insulation arranged between the two.

Der Hilfsradiator 5 steht in direktem thermischen Kontakt mit den kondensatorseitigen Endbereichen der beiden Hilfswärmerohre 2 und 3, die einen wesentlich geringeren Querschnitt als das Hauptwärmerohr 1 aufweisen. Mit letzterem sind sie am gemeinsamen Verdampferende thermisch gekoppelt, wie die Darstellung in Fig. 2 zeigt. Dies geschieht über Kontaktflächen 6,7 und 8, die jeweils an die verdampferseitigen Endbereiche der Wärmerohre 1 bis 3 angeformt sind und die unmittelbar miteinander verbunden sind.The auxiliary radiator 5 is in direct thermal contact with the condenser-side end regions of the two auxiliary heat pipes 2 and 3, which have a substantially smaller cross section than the main heat pipe 1. With the latter, they are thermally coupled at the common evaporator end, as the illustration in FIG. 2 shows. This is done via contact surfaces 6, 7 and 8, which are each molded onto the evaporator-side end regions of the heat pipes 1 to 3 and which are connected directly to one another.

Die Figuren 2 und 3 zeigen ferner den inneren Aufbau des Hauptwärmerohres 1, das durch ein in Axialrichtung verlaufendes Strangpreßprofil 9 in je zwei Flüssigkeitskanäle oder Arterien 10 und 11 sowie in zwei Dampfkanäle 12 und 13 unterteilt ist. Unterhalb der beiden Flüssigkeitskanäle 10 und 11, durch ein perforiertes Blech 14 von diesen getrennt, verläuft bei dem hier beschriebenen Ausführungsbeispiel ferner ein weiterer von der Flüssigkeit durchströmter Kanal 15, der als Falle für in der Flüssigkeit enthaltene Gas- oder Dampfblasen dient.Figures 2 and 3 also show the inner structure of the main heat pipe 1, which is divided by an axial extrusion 9 into two liquid channels or arteries 10 and 11 and two steam channels 12 and 13. Below the two liquid channels 10 and 11, separated from them by a perforated sheet 14, in the exemplary embodiment described here there also runs another channel 15 through which the liquid flows, which serves as a trap for gas or vapor bubbles contained in the liquid.

Gas- oder Dampfblasen, die sich in der Verdampferzone des Wärmerohres 1 befinden und die sich dort entweder bereits aufgrund einer ungünstigen Fluidverteilung vor der Inbetriebnahme im Orbit befanden, die durch eine kurzzeitige Überlastung entstanden sind oder die über die Kanäle 12,13 oder 15 dorthin transportiert wurden, werden dadurch aufgelöst, daß das in diesen Kanälen befindliche Kondensat unterkühlt wird. Dies wird mit Hilfe der Hilfswärmerohre 2 und 3 erreicht, die mit dem Hilfsradiator 5 verbunden sind und die die für die Unterkühlung des Kondensats erforderliche zusätzliche Wärmeabfuhr sicherstellen.Gas or vapor bubbles, which are located in the evaporator zone of the heat pipe 1 and which were either already in orbit due to an unfavorable fluid distribution prior to commissioning, which were caused by a brief overload or which transported there via channels 12, 13 or 15 were dissolved by subcooling the condensate in these channels. This is with With the help of the auxiliary heat pipes 2 and 3, which are connected to the auxiliary radiator 5 and which ensure the additional heat dissipation required for subcooling the condensate.

Claims (4)

  1. Arrangement for dissipating heat, consisting of at least one first heat pipe (1), filled with a heat transfer medium, within which there is at least one flow channel for the liquid heat transfer medium and at least one flow channel for the heat transfer medium transferred in the vaporous state of aggregation and in which there are provided means for removing bubbles present in the liquid channel, and of at least one first radiator (4) which is in thermal contact with the heat pipe, characterized in that the means consist of at least one further heat pipe (2,3), provided in addition to the one or more first heat pipes (1), which is in thermal contact, on the evaporator side, with the evaporator region of the first heat pipe (1) and which is thermally coupled, at its end on the condenser side, with a second radiator (5) which, in turn, is disposed so as to be thermally isolated from the first radiator (4) connected to the first heat pipe (1).
  2. Arrangement according to Claim 1, characterized in that the diameter of the further heat pipe (2) is considerably smaller than that of the first heat pipe (1).
  3. Arrangement according to Claim 2, characterized in that the second radiator (5) is considerably smaller than the first radiator (4).
  4. Arrangement according to Claim 3, characterized in that, in addition to the one or more first heat pipes (1), there are two heat pipes (2,3), disposed symmetrically relative to the latter, both of which are in thermal contact with the second radiator (5) at their end regions on the condenser side.
EP93116292A 1992-11-28 1993-10-08 Heat pipe Expired - Lifetime EP0600192B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4240081 1992-11-28
DE4240081A DE4240081C1 (en) 1992-11-28 1992-11-28 Heat pipe

Publications (2)

Publication Number Publication Date
EP0600192A1 EP0600192A1 (en) 1994-06-08
EP0600192B1 true EP0600192B1 (en) 1996-04-24

Family

ID=6473914

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93116292A Expired - Lifetime EP0600192B1 (en) 1992-11-28 1993-10-08 Heat pipe

Country Status (3)

Country Link
US (1) US5358033A (en)
EP (1) EP0600192B1 (en)
DE (2) DE4240081C1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6065529A (en) * 1997-01-10 2000-05-23 Trw Inc. Embedded heat pipe structure
US6938679B1 (en) * 1998-09-15 2005-09-06 The Boeing Company Heat transport apparatus
FR2840394B1 (en) * 2002-05-30 2004-08-27 Cit Alcatel HEAT TRANSFER DEVICE FOR SATELLITE COMPRISING AN EVAPORATOR
EP1776058B1 (en) * 2004-07-02 2018-12-26 Discus Dental, LLC Dental light device having an improved heat sink
DE102006045701A1 (en) * 2006-09-27 2008-04-03 Osram Opto Semiconductors Gmbh Cooling device for cooling heat source of arrangement i.e. headlight part, of motor vehicle, has heat conductive pipes coupled together thermally, where heat from heat source is conducted to cooling body by one or both pipes
US9315280B2 (en) * 2012-11-20 2016-04-19 Lockheed Martin Corporation Heat pipe with axial wick

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3618660A (en) * 1969-11-21 1971-11-09 Euratom Heat transfer device
JPS5096942A (en) * 1973-12-24 1975-08-01
US4485670A (en) * 1981-02-13 1984-12-04 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Heat pipe cooled probe
US4422501A (en) * 1982-01-22 1983-12-27 The Boeing Company External artery heat pipe
US4627487A (en) * 1983-12-19 1986-12-09 Hughes Aircraft Company Separate liquid flow heat pipe system
US4583587A (en) * 1984-05-31 1986-04-22 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Multi-leg heat pipe evaporator
US4880050A (en) * 1988-06-20 1989-11-14 The Boeing Company Thermal management system
US4941527A (en) * 1989-04-26 1990-07-17 Thermacore, Inc. Heat pipe with temperature gradient
US4917177A (en) * 1989-09-21 1990-04-17 Thermacore, Inc. Cooled artery extension

Also Published As

Publication number Publication date
DE4240081C1 (en) 1994-04-28
US5358033A (en) 1994-10-25
EP0600192A1 (en) 1994-06-08
DE59302367D1 (en) 1996-05-30

Similar Documents

Publication Publication Date Title
EP0600191B1 (en) Heat pipe
DE69915776T2 (en) Side part for heat exchangers and heat exchangers with side plates
EP0334142B1 (en) Evaporator unit
DE60315095T2 (en) Thermosyphon for electronic devices for cooling with a non-uniform air flow
EP0577969B1 (en) Heat-pipe
DE102007034710B4 (en) Two-stage absorption cooler
EP0600192B1 (en) Heat pipe
DE3310236A1 (en) Refrigerant distributor for the evaporator of a refrigerator or heat pump
DE2339013A1 (en) RADIATOR ELEMENT
EP3105650A1 (en) Cooling arrangement for a computer system
EP3507559B1 (en) Heat exchanger integration
DE2820874A1 (en) PLATE EVAPORATOR
DE602004010640T2 (en) EVAPORATOR AND HEAT EXCHANGER WITH EXTERNAL CIRCUIT FLOW AND HEAT PUMP SYSTEM AND AIR CONDITIONING WITH THE EVAPORATOR OR HEAT EXCHANGER
DE112012004635T5 (en) Interior condenser
DE102004047304A1 (en) Subcooling condenser
DE3228311C2 (en) Evaporation crucible for vacuum evaporation systems
DE102009023985A1 (en) Waste heat recovery device
EP0574678A1 (en) Heat-pipe
DE2414295C2 (en) Heat exchanger for the condensation of steam
DE202017104743U1 (en) Heat exchanger with microchannel structure or wing tube structure
DE2839638A1 (en) DRY COOLING SYSTEM FOR POWER PLANTS
EP0130361B1 (en) Heat exchanger end palte with arrangement for cooling
DE8002070U1 (en) COMPRESSOR COOLING ARRANGEMENT
EP2108912B1 (en) Condenser, in particular for a vehicle cooling system
EP3001434B1 (en) Radiator for cooling a coolant liquid of a transformer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR NL

17P Request for examination filed

Effective date: 19940817

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DAIMLER-BENZ AEROSPACE AKTIENGESELLSCHAFT

17Q First examination report despatched

Effective date: 19951013

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19960424

REF Corresponds to:

Ref document number: 59302367

Country of ref document: DE

Date of ref document: 19960530

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980609

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19981021

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19981030

Year of fee payment: 6

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Ref country code: FR

Ref legal event code: CA

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000630

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20000501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000801

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST