EP0599782B1 - Method and machine for making expanded metal - Google Patents

Method and machine for making expanded metal Download PDF

Info

Publication number
EP0599782B1
EP0599782B1 EP93810784A EP93810784A EP0599782B1 EP 0599782 B1 EP0599782 B1 EP 0599782B1 EP 93810784 A EP93810784 A EP 93810784A EP 93810784 A EP93810784 A EP 93810784A EP 0599782 B1 EP0599782 B1 EP 0599782B1
Authority
EP
European Patent Office
Prior art keywords
conveying means
lattice
web
conveying
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93810784A
Other languages
German (de)
French (fr)
Other versions
EP0599782A1 (en
Inventor
Bruno Knöpfli
Ulrich Bühlmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuehni AG
Original Assignee
Kuehni AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuehni AG filed Critical Kuehni AG
Publication of EP0599782A1 publication Critical patent/EP0599782A1/en
Application granted granted Critical
Publication of EP0599782B1 publication Critical patent/EP0599782B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D28/00Shaping by press-cutting; Perforating
    • B21D28/24Perforating, i.e. punching holes
    • B21D28/36Perforating, i.e. punching holes using rotatable work or tool holders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D31/00Other methods for working sheet metal, metal tubes, metal profiles
    • B21D31/04Expanding other than provided for in groups B21D1/00 - B21D28/00, e.g. for making expanded metal
    • B21D31/046Expanding other than provided for in groups B21D1/00 - B21D28/00, e.g. for making expanded metal making use of rotating cutters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/18Expanded metal making

Definitions

  • the invention relates to a method and a device for producing expanded metal from a material web, preferably made of metal.
  • expanded metal also called expanded metal
  • a vertically and laterally movable cutter bar is used to produce expanded metal (see, for example, US Pat. No. 3,570,086).
  • the cutter bar cuts incisions spaced apart from one another transversely to the longitudinal direction of the sheet and, in the further course of the cutting movement, simultaneously stretches the transverse strip of the web which has been released by the incisions to the required extent, the expanded metal not only (non-elastically) bent, but also is stretched.
  • the cutter bar is laterally displaced with simultaneous advance of the sheet metal web in order to form the next, offset incisions and to stretch the next transverse strip with a further vertical cutting and stretching movement.
  • the method is not applicable to thin sheet metal strips, such as. B. for the production of the lamellar grid of the packs of mass transfer columns, in which the ratio of the grid web thickness to the web width must be very small (EP-B 0 069 241). No stretch is possible and the grid webs would tear at the nodes if the known method were used.
  • a method of another type is known from US Pat. No. 4,105,724, in which a plastic film made of PVC is provided with staggered incisions, heated in a heating chamber and pulled out of the heating chamber more quickly than it is introduced, resulting in a cellular structure which is subsequently hardened by cooling becomes. It is not a expanded metal process, but a thermoplastic process. A precisely defined and uniform lattice shape is neither intended nor attainable with this method, especially since the lattice emerging from the chamber can still deform slightly before solidification during transport.
  • the devices for carrying out the above-mentioned methods are designed in accordance with the respective method sequence.
  • the device known from GB-A 2 120 138 has two pairs of sprockets which are spaced apart from one another by a material web section and driven at constant speed and which drive two chains provided with prongs. The tines of the two chains reach into the pre-perforated material web at the edges and push tabs out of the web.
  • the object of the invention is to produce expanded metal with high precision and uniformity, in particular with regard to the mesh size and grid height.
  • Mesh size and grid height should - as far as possible - be independently selectable and - once selected - the continuous production of any length of grid strip with exactly the same and exactly uniform grid structure should be guaranteed.
  • Continuous production, in particular a slip-free and non-jerky conveying of the material web or the grid strip should preferably be made possible.
  • each stitch can be shaped and stretched in exactly the same way, so that an absolutely regular grid with high precision of the mesh size and grid height is obtained.
  • the method according to the invention is particularly suitable for the production of special expanded metal meshes, in which high precision and regularity of the mesh structure (mesh size, mesh height, etc.) are important, namely the lamellar mesh used according to EP-B 0 069 241 for packings of mass transfer columns.
  • the lamellar mesh used according to EP-B 0 069 241 for packings of mass transfer columns.
  • a very thin one must be used Starting material are used, in contrast to the usual expanded metal grids, the width of the slats (grid webs 8 in Fig. 1 of the accompanying drawing) is much larger than their thickness.
  • the sheet metal strip 2 is provided with offset incisions by means of a cutting and punching device (not shown).
  • FIG. 1 The shape and position of the incisions in the (still unstretched) sheet metal web 2 can be seen from FIG. 1 (cf. also the corresponding FIG. 8 of EP-B 0 069 241).
  • These are mutually parallel cutting line sections 3 of the same length, which are enlarged in the middle of the section to form a rhombic recess 4 and are offset by half the length in relation to the incisions 3 adjacent in the longitudinal direction (conveying direction) 5.
  • 1 further shows the nodes 6, the rows 7 and columns 9 indicated by dash-dotted lines, and the four webs 8 of the expanded metal 12 to be formed, which are shown in FIG.
  • node points 6 or node surfaces 16 are understood to mean the entire transition area between the webs 8, 18, including the edges delimiting the cutouts 4, 14.
  • the grid height h can be seen from FIG. 3, the angle of inclination n of the node surfaces 16 to the grid plane 20 from FIG. 6.
  • the thickness of the sheet 2 is appropriately 0.15-0.3 mm, the width of the webs z. B. 6 mm.
  • the ratio of the width of the lattice webs 18 to their thickness is therefore considerably greater than in the case of conventional expanded metal.
  • the device for the production of expanded metal consists of three in the conveying direction 5 each around a sheet metal web or web section 21, 22 of z. B. a few tens of times the mesh size w spaced apart from each other, the sheet metal or grid web 2, 12 conveying conveyors 23, 24, 25 and a calibration means 26 for grid height adjustment.
  • the sheet metal strip 2 can be fed into the device directly from the cutting and punching device (not shown).
  • the finished grid 12 is best sheared to the desired grid length immediately after the device with the aid of a cutting device 10.
  • the (constant) conveying speed of the second conveying means 24 is increased in relation to the (likewise constant) conveying speed of the first conveying means 23.
  • the (constant) conveying speed of the third conveying means 25 is also increased compared to that of the second conveying means 24.
  • the conveying speed of the calibration means 26 corresponds to that of the previous funding 25.
  • All three conveying means 23, 24, 25 are fundamentally constructed in the same way in that they are designed to engage in the incisions 3, 4 of the material web 2 or the stitches 13, 14 of the grid web 12 that result therefrom.
  • the design of the conveying means 24, 25 is completely the same, which is why the latter is first described in more detail, through which the grating 12 runs in the finished form, but with an as yet uncalibrated height.
  • It consists of a pair of rolling elements 30, 31 that interlock with each other in the manner of gearwheels and recesses. More specifically, each of the two rolling elements 30, 31 is formed from a number of toothed disks 33-38 seated on a common shaft 32 and corresponding to the number of rows of nodes 17.
  • the grid 12 has only six rows of nodes 17, which is why only six toothed disks 33-38 are provided; in practice, however, the number is naturally higher).
  • the center planes of the toothed disks 33-38 are spaced apart from one another in accordance with the knot row spacing a.
  • the node points 16 of the first, third and fifth row of knots 17 run between the respectively converging tooth flanks 39, 40 of the first, third and fifth toothed disk pairs 33, 35, 37.
  • the tooth flanks 39, 40 of these toothed disk pairs are therefore aligned with one another transversely to the conveying direction 5.
  • the tooth flanks 39, 40 of the second, fourth and sixth disk pairs 34, 36 and 38 are offset in the circumferential direction 41 by the node column distance b from those of the first, third and fifth disk pairs 33, 35, 37 by the node surfaces 16 of the second, fourth and sixth row of nodes 17 record.
  • FIGS. 6 and 7 show how the node surface 16 runs between two interacting tooth flanks 39, 40 of a pair of disks, meanwhile the preceding node surface 16a comes to lie between the two tooth flanks 39a, 40a and the next front node surface 16b runs out of the tooth flanks 39b, 40b.
  • the teeth are designed in such a way and the mutual arrangement is such that the tooth flanks roll over the lattice node surfaces 16, which have the inclination angle n to the lattice plane 20 resulting from the lattice geometry and the stretching process generated, in a deselection process similar to an involute toothing, thus making the three-dimensional Grid is held without any impairment and at the same time is transported linear and straight.
  • the centers of the toothed disks 29 of the preceding conveying means 24 are accordingly spaced apart from one another in accordance with the larger node row spacing a there. And the tooth spacing (in the disk circumferential direction) is also smaller in accordance with the smaller node column spacing b there.
  • the no-exerting funding 23 is made somewhat simpler. It consists of a pair of rollers 28 (just like the conveying means 24, 25) which transports the sheet metal strip 2 smoothly against the pull of the second conveying means 24.
  • the rollers 28 (only schematically indicated) z.
  • the conveying means 23 is basically the same, namely designed to engage in the recesses 4 of the material web 2, like the subsequent conveying means 24, 25 which engage in the corresponding recess spaces 14 of the grid web 12.
  • the teeth of the toothed disks 29, 33-38 applies accordingly analogously to the knobs or projections 27 and recesses of the rollers 28. Accordingly, the axial distance of the knobs or projections 27 in the conveyor 23 is greater than the distance between the toothed disks 29 in the conveyor 24 and the circumferential distance of the knobs or projections 27 is smaller than that of the teeth of the toothed disks 29.
  • the toothed disks 29, 33-38 of the conveying means 24, 25 have the same number of teeth.
  • the different tooth spacing in the conveying means 24, 25 is thus, as indicated schematically in Fig. 4/5, achieved by a different disk diameter.
  • This makes it possible to drive the shafts 32 of the conveying means 24, 25 together at the same speed, simply with the aid of a chain drive 42 via sprockets 43 seated on the shafts 32.
  • the calibration means 26 for the calibration of the grid height consists of cylinder shells 44, 45 rotating at a distance corresponding to the desired grid height h, between which the grid 12 is passed.
  • the calibration means 26 is constructed in the same way as the conveying means 25, so like this it has toothed disks 46 which act on the node surfaces 16 and which - because they rotate at the same conveying speed as the toothed disks 33-38 - do not serve for pulling, but for further transport.
  • the only difference is the much larger diameter of the shafts (cylinder jackets) 44, 45 in the passage area of the grating 12, between which the calibration gap is formed with the height h, so that webs 18 projecting beyond this height are pressed back into the correct position.
  • a particularly precise calibration is achieved by stretching the grille 12 with the conveying means 25 to such an extent that it is consistently slightly higher than the calibration gap between the cylinder shells 44, 45.
  • the calibration of the grille height h is facilitated by the cutouts 4. Thanks to them namely, the webs 8 can be simply rotated about their diagonal without deforming themselves by further deforming the bending edges surrounding the node surface 16, which immediately reduces the grid height.
  • the sheet metal strip 2, which has not yet been stretched and is provided with the cuts 3, 4, is transported continuously (uniformly) with the aid of the conveying means 23 and at the same (constant) first speed as it passes through the cutting and punching device (not shown).
  • the conveyor 23 transports the belt 2 without slippage, so it holds it in the recesses 4 of the belt 2 (and in the recesses) of the counter-roller) engaging projections or knobs 27 against the pull of the faster conveying second conveying means 24.
  • the second conveying speed which is increased in relation to the first speed, but which acts as a traction means due to the speed difference, so that the web section 21 running freely between the conveying means 23/24 is gradually stretched to form a three-dimensional expanded mesh structure.
  • Free-running means that the web can deform freely. Of course, this is not countered by a merely supporting sliding surface or the like).
  • the tooth flanks of the toothed disks 29 roll over the node surfaces 16 now inclined by the stretching process, the resulting three-dimensional grid being held and transported linearly and in a straight line.
  • the calibration means 26 ensures that the grid is held and transported and, at the same time, its height is calibrated.
  • the grid is only gripped at the grid node locations, and preferably at all grid node locations, in order to ensure a uniform grid formation.
  • the tooth shape, especially the tooth width, is selected in such a way (cf. Fig. 6/7) that the tooth flanks only engage and roll over the central, flat area of the inclined node surfaces 16.
  • the adjoining lattice webs 8 can also be set as inclined surfaces 18 over four bending edges which immediately delimit the node 16. Care must be taken to ensure that all toothed lock washers are correctly adjusted and exactly aligned.
  • care must also be taken to ensure that there is always a node column 19 in engagement between the tooth flanks. Otherwise it would not be possible to hold on to the grille continuously and to transport it continuously.
  • the invention has made special use of the (known) cutouts 4 at the nodes 6 for this particularly simple production and manufacturing device.
  • the recesses 4 are in fact used for the timely unimpeded retraction and extension of the teeth of toothed disks with the largest possible diameter in the lattice structure, so that there is always a node column 9 in engagement between two tooth flanks.
  • the use of the recesses 4 with regard to the simplification and advantages in the lattice height calibration has already been pointed out above, and also the securing against slipping in the first pair of rollers 28 by means of the projections or knobs 27.
  • the grid is continuously fixed and positioned. And it is not conveyed in jerks, but steadily with the conveying speed gradually increasing in the area of the sections 21, 22.
  • the three-dimensional lattice shape that results from the pure stretching process can (of course only within certain limits) be influenced and changed by the roller shape, for example the lattice height by the calibration means 26. This enables the desired lattice to be produced with the required precision.
  • Another advantage is the high production speed that can be achieved thanks to the continuous, uniform rotation of the conveyor.
  • the manufacturing process can be interrupted at any time, and the grid can be stopped in any position and restarted immediately or after a period of time without impairing its quality.
  • the grid can thus also be produced intermittently, for example in order to be able to cut off a finished grid part when the grid is stationary.
  • the calibration means 26 can also work at a higher conveying speed than the preceding conveying means in order to act as a traction means at the same time.
  • a particularly precise calibration of the grating height is achieved according to the exemplary embodiment, the grating being stretched through the conveying means 25 to such an extent that the grating height is greater than the calibration gap width between the jackets 44, 45 and the calibrating means 26 and conveying means 25 operate at the same conveying speed.
  • the mesh size w and lattice height h which are decisive for the lattice structure can be precisely preselected using the method according to the invention.
  • the mesh size by appropriate selection of the quotient of the conveying speeds of the conveying means 24, 23 and 25, 24.
  • the grid height h by the distance (calibration gap) between the cylinder jackets 44, 45 of the calibration means 26. (The grid height increases during stretching, ie with the mesh size, can, however, be reduced with the help of the calibration agent compared to the setting that results automatically during stretching).
  • the Speed quotients set constructively.
  • the speed quotients could also be freely selectable by means of individually controlled, independently driven conveying means in order to be able to produce grids of different mesh sizes (and thicknesses) in rapid succession.
  • the device shown in FIGS. 4 to 7 can furthermore have an exchangeable feed drum, on which tape 2 provided with the cuts 3, 4 is wound, which is continuously pulled off the feed drum and fed into the conveying means 23.
  • At least the one or more acting as a traction means can also consist of a positive and negative roller which three-dimensionally represent the entire grid. Since these can practically only be produced with a relatively expensive three-dimensional erosion process, this version is particularly to be considered in the case of special grids to be formed from sheet metal webs with intricately designed incisions / recesses 3/4 or in the case of grids with grid webs to be shaped in a special way be.
  • the grating which has already been three-dimensionally preformed on the way to the pair of rollers acting as a traction means is also held and transported in this case (as in the embodiment shown in the figures) as it passes between the positive and negative rollers in the rolling process.
  • other calibration rollers are possible, e.g. B. also those that increase the grid height following the described simple grid manufacturing device 23-25.
  • positive and negative rollers can not only be used at the grid node locations, but can also be attacked on the bars and any specially designed bars.
  • the grid shape can also be calibrated, that is to say influenced by deformation between the two rollers, and the grid can thus be brought into a desired calibrated, final shape.
  • Calibration is therefore understood in the context of the invention to mean any lattice deformation, from the setting of a single lattice parameter, such as the height h, to the deformation of the entire lattice structure into a desired, precisely determined three-dimensional final shape.
  • the positive and negative rollers can also be made simpler, namely in such a way that they only engage certain parts of the grid, e.g. B. analogous to the toothed disks 33-38 only in the area of the accounts of the grid.
  • the entire three-dimensional node, including the bending points surrounding it, which form the transition to the lattice webs, is depicted in a positive and negative form in the pair of rollers.
  • the pair of rollers can also only engage on the grid webs and thereby bring them into a specifically desired shape.
  • a simple height calibration can also be accomplished with this, but also to a larger grid height.
  • a pair of rollers can also be used as the conveying means, one roller of which carries knobs engaging in the recesses 4 and the other of which has corresponding holes. Furthermore, only a rotating body provided with knobs or other projections can be used as the conveying means.
  • the use of not only simple incisions 3, but also rhombic or other, e.g. B. circular recesses 4 provided sheet metal strip achieve various advantages.
  • the method can also be carried out with a sheet metal strip cut only in the customary manner.
  • the expanded metal can also be produced from a non-metallic material, provided that the plastic deformability of the material web required for the production of expanded metal is guaranteed.
  • the funds are to transport or pull the material or lattice web continuously (evenly) at a uniform speed, therefore continuously and above all not jerkily. And the material web should be conveyed without slippage. This is because the invention is based on the knowledge that any conveyance, even slightly jerky, and any slippage can impair the uniformity and precision of the lattice structure.
  • rotating bodies preferably rotating pairs of rolling bodies (pairs of rolling bodies), are used as conveying means at constant speed, which guarantee a uniform drive.
  • the rotating bodies are designed for the slip-free drive of the material or grid web and in such a way that at least the second and further ones Funding corresponds to the lattice structure, so it does not affect it This is achieved by thinking of the lattice structure as being three-dimensionally mapped onto the circumference of the rotating body and designing the circumferential surface accordingly.
  • the grid is placed around the circumference of the rotating body and pressed into the circumferential surface.
  • roller body pair leads in the case of the preferred roller body pair to the fact that the peripheral surface of one body is designed as a positive form of the grid and that of the other body as a negative form of the grid.
  • the rolling elements are then designed so that they roll over the grid without changing the grid structure.
  • one rolling element could be placed on one side of a grating track (which has the lattice structure at the entrance to the relevant funding) and the other rolling element on the other side of the grating track, and each of the two rolling elements could then be rolled over the relevant side of the grating track , wherein the positive-form circumferential surface of one rolling element engages in the grid path and the grid path would in turn engage in the negative-form circumferential surface of the other rolling element.
  • mapping the grid structure onto the circumference of the conveyor rotating body and its rolling (in the manner of an involute) on the grid track can be realized in a wide variety of variants depending on the desired grid structure, and is therefore neither restricted on the toothed pulley arrangement and on the overall image of the grid on the rollers, but also allows a wide variety of interim solutions.
  • the circumferential surfaces can also be designed differently than exactly adapted to the lattice structure 12 which is automatically set by the train on the material web 2. Namely, they can - within certain limits - be designed according to a desired lattice structure which is different from that which is set automatically by the train Lattice structure differs. With roller circumferential surfaces designed in this way, the grid web is then shaped or calibrated in accordance with the desired grid structure as it passes through the conveying means. The reshaping or calibration can also be carried out with the help of one (or more) rotating calibration means with the same or increased peripheral speed as the preceding conveying means.

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Herstellung von Streckgittern aus einer vorzugsweise aus Metall bestehenden Materialbahn.The invention relates to a method and a device for producing expanded metal from a material web, preferably made of metal.

Die Herstellung von Streckgittern (auch Streckmetallen genannt) basiert bekanntlich auf der plastischen (unelastischen) Verformung von mit versetzten Einschnitten versehenen Metallstreifen. Üblicherweise wird zur Herstellung von Streckgittern ein vertikal und seitlich beweglicher Messerbalken eingesetzt (vgl. z. B. US-PS 3,570,086). Mit der vertikalen Bewegung schneidet der Messerbalken in eine Blechbahn voneinander distanzierte Einschnitte quer zur Bahnlängsrichtung und streckt im weiteren Verlauf der Schneidbewegung gleichzeitig den durch die Einschnitte frei gewordenen Querstreifen der Bahn auf das erforderliche Mass, wobei das Streckmetall nicht nur (unelastisch) gebogen, sondern auch gedehnt wird. Danach wird der Messerbalken unter gleichzeitigem Vorschub der Blechbahn seitlich versetzt, um mit erneuter vertikaler Schneid- und Streckbewegung die nächsten, versetzten Einschnitte zu bilden und den nächsten Querstreifen zu strecken.The production of expanded metal (also called expanded metal) is known to be based on the plastic (inelastic) deformation of metal strips provided with offset cuts. Usually, a vertically and laterally movable cutter bar is used to produce expanded metal (see, for example, US Pat. No. 3,570,086). With the vertical movement, the cutter bar cuts incisions spaced apart from one another transversely to the longitudinal direction of the sheet and, in the further course of the cutting movement, simultaneously stretches the transverse strip of the web which has been released by the incisions to the required extent, the expanded metal not only (non-elastically) bent, but also is stretched. Then the cutter bar is laterally displaced with simultaneous advance of the sheet metal web in order to form the next, offset incisions and to stretch the next transverse strip with a further vertical cutting and stretching movement.

Das übliche Herstellungsverfahren lässt sich lediglich auf dickes Metall anwenden. Es erfordert also eine im Verhältnis zur Stegbreite grosse Blechdicke (vgl. Fig. 12 der US-PS 3,570,086). Und mit ihm lassen sich nur verhältnismässig grobe Gitterstrukturen mit einer beschränkten Genauigkeit herstellen.The usual manufacturing process can only be applied to thick metal. It therefore requires a large sheet thickness in relation to the web width (cf. FIG. 12 of the US Pat 3,570,086). And it can only be used to produce relatively coarse lattice structures with limited accuracy.

Nicht anwendbar ist das Verfahren auf dünne Blechstreifen, wie z. B. für die Herstellung der Lamellengitter der Packungen von Stoffaustauschkolonnen erforderlich, bei denen das Verhältnis der Gitterstegdicke zur -stegbreite sehr klein sein muss (EP-B 0 069 241). Dabei ist keine Dehnung möglich und die Gitterstege würden bei der Anwendung des bekannten Verfahrens an den Knotenstellen reissen.The method is not applicable to thin sheet metal strips, such as. B. for the production of the lamellar grid of the packs of mass transfer columns, in which the ratio of the grid web thickness to the web width must be very small (EP-B 0 069 241). No stretch is possible and the grid webs would tear at the nodes if the known method were used.

Solche Lamellengitter mussten deshalb bisher in aufwendiger Weise einzeln durch Auseinanderziehen der äusseren Ränder eines mit versetzten Einschnitten versehenen Blechstreifens hergestellt werden (EP-B 0 069 241). Dabei liess sich die besonders für die Wirkung der Packungen von Stoffaustauschkolonnen wichtige Genauigkeit und vor allem Regelmässigkeit der Gitterstruktur nicht bzw. nur unvollkommen erreichen.Up to now, such lamellar grids had to be produced individually in a complex manner by pulling apart the outer edges of a sheet metal strip provided with offset incisions (EP-B 0 069 241). The accuracy and, above all, the regularity of the lattice structure, which is particularly important for the effect of the packing of mass transfer columns, could not be achieved, or only incompletely.

Aus der US-PS 4,105,724 ist ein Verfahren anderer Art bekannt, bei dem eine Kunststoffolie aus PVC mit versetzten Einschnitten versehen, in einer Wärmekammer erhitzt und rascher aus der Wärmekammer herausgezogen als hineingeführt wird, wobei sich eine zellulare Struktur ergibt, die anschliessend durch Kühlen gehärtet wird. Es handelt sich dabei nicht um ein Streckgitterverfahren, sondern um ein thermoplastisches Verfahren. Eine genau definierte und gleichmässige Gitterform ist bei diesem Verfahren weder beabsichtigt noch erreichbar, zumal das aus der Kammer heraustretende Gitter sich vor dem Erstarren beim Transport noch leicht verformen kann.A method of another type is known from US Pat. No. 4,105,724, in which a plastic film made of PVC is provided with staggered incisions, heated in a heating chamber and pulled out of the heating chamber more quickly than it is introduced, resulting in a cellular structure which is subsequently hardened by cooling becomes. It is not a expanded metal process, but a thermoplastic process. A precisely defined and uniform lattice shape is neither intended nor attainable with this method, especially since the lattice emerging from the chamber can still deform slightly before solidification during transport.

Verfahren anderer Art, bei denen die Streckung des Gitters oder perforierter Metallstreifen quer zur Förder- bzw. Fertigungsrichtung erfolgt, sind weiter aus GB-A 2 120 138, DE-OS 19 44 273 und US-PS 3,455,135 bekannt.Other types of methods in which the grid or perforated metal strips are stretched transversely to the conveying or production direction are further known from GB-A 2 120 138, DE-OS 19 44 273 and US Pat. No. 3,455,135.

Schliesslich ist in DE-PS 926 424 gezeigt, wie Metallstreifen mittels umlaufender Schneidräder mit linienförmigen Schlitzen versehen werden können.Finally, it is shown in DE-PS 926 424 how metal strips can be provided with linear slots by means of rotating cutting wheels.

Die Vorrichtungen zur Durchführung der oben erwähnten Verfahren sind entsprechend dem jeweiligen Verfahrensablauf ausgestaltet. Die aus der GB-A 2 120 138 bekannte Vorrichtung hat zwei voneinander um einen Materialbahnabschnitt distanzierte, mit konstanter Geschwindigkeit angetriebene Kettenradpaare, die zwei mit Zinken versehene Ketten antreiben. Die Zinken der beiden Ketten greifen an den Rändern in die vorperforierte Materialbahn und drücken Laschen aus der Bahn heraus.The devices for carrying out the above-mentioned methods are designed in accordance with the respective method sequence. The device known from GB-A 2 120 138 has two pairs of sprockets which are spaced apart from one another by a material web section and driven at constant speed and which drive two chains provided with prongs. The tines of the two chains reach into the pre-perforated material web at the edges and push tabs out of the web.

Aufgabe der Erfindung ist es, Streckgitter mit hoher Präzision und Gleichmässigkeit, namentlich hinsichtlich der Maschenweite und Gitterhöhe, herzustellen.The object of the invention is to produce expanded metal with high precision and uniformity, in particular with regard to the mesh size and grid height.

Maschenweite und Gitterhöhe sollen dabei - soweit möglich - voneinander unabhängig wählbar sein und - diese einmal vorgewählt - soll die Endlosherstellung eines beliebig langen Gitterstreifens mit genau gleicher und exakt gleichmässiger Gitterstruktur gewährleistet sein. Dabei soll vorzugsweise eine kontinuierliche Herstellung, insbesondere eine schlupffreie und nicht ruckweise Förderung der Materialbahn bzw. des Gitterstreifens ermöglicht werden.Mesh size and grid height should - as far as possible - be independently selectable and - once selected - the continuous production of any length of grid strip with exactly the same and exactly uniform grid structure should be guaranteed. Continuous production, in particular a slip-free and non-jerky conveying of the material web or the grid strip should preferably be made possible.

Die Lösung der Aufgabe ist in verfahrensmässiger Hinsicht Gegenstand des Anspruchs 1 und in vorrichtungsmässiger Hinsicht Gegenstand des Anspruchs 9.The solution to the problem is the procedural aspect of claim 1 and the device aspect of claim 9.

Bevorzugte Ausführungsarten sind in den abhängigen Ansprüchen umschrieben.Preferred embodiments are described in the dependent claims.

Der Vorteil des erfindungsgemässen Verfahrens ist namentlich darin zu sehen, dass jede Masche in genau identischer Weise geformt und gestreckt werden kann, so dass ein absolut regelmässiges Gitter mit hoher Präzision der Maschenweite und Gitterhöhe erhalten wird.The advantage of the method according to the invention is to be seen in the fact that each stitch can be shaped and stretched in exactly the same way, so that an absolutely regular grid with high precision of the mesh size and grid height is obtained.

Das erfindungsgemässe Verfahren ist besonders für die Herstellung spezieller Streckgitter geeignet, bei denen es auf hohe Präzision und Regelmässigkeit der Gitterstruktur (Maschenweite, Gitterhöhe usw.) ankommt, namentlich der gemäss EP-B 0 069 241 für Packungen von Stoffaustauschkolonnen verwendeten Lamellengitter. Für derartige Gitter muss, wie in der EP-B 0 069 241 beschrieben, ein sehr dünnes Ausgangsmaterial verwendet werden, wobei anders als bei den üblichen Streckmetallgittern die Breite der Lamellen (Gitterstege 8 in Fig. 1 der beiliegenden Zeichnung) wesentlich grösser als deren Dicke ist.The method according to the invention is particularly suitable for the production of special expanded metal meshes, in which high precision and regularity of the mesh structure (mesh size, mesh height, etc.) are important, namely the lamellar mesh used according to EP-B 0 069 241 for packings of mass transfer columns. For such grids, as described in EP-B 0 069 241, a very thin one must be used Starting material are used, in contrast to the usual expanded metal grids, the width of the slats (grid webs 8 in Fig. 1 of the accompanying drawing) is much larger than their thickness.

Im folgenden wird das erfindungsgemässe Verfahren und die Vorrichtung zur Herstellung von Streckgittern anhand der Zeichnung an einem einfachen Ausführungsbeispiel erläutert.In the following, the method according to the invention and the device for producing expanded metal will be explained with reference to the drawing using a simple exemplary embodiment.

Es zeigen:

Fig. 1
eine Draufsicht auf einen mit versetzten Einschnitten versehenen, noch ungestreckten Blechbahnabschnitt,
Fig. 2
eine Draufsicht auf einen aus dem Blechbahnabschnitt von Fig. 1 gebildeten Streckgitterabschnitt,
Fig. 3
eine stark vereinfachte, lediglich in den Konturen angedeutete Seitenansicht des Streckgitterabschnitts von Fig. 2,
Fig. 4
eine schematische Seitenansicht der Vorrichtung,
Fig. 5
eine schematische Draufsicht auf einen Teil der Vorrichtung,
Fig. 6
einen Schnitt nach der Linie VI-VI in Fig. 5, in grösserem Massstab, und
Fig. 7
einen vergrösserten Ausschnitt aus Fig. 6.
Show it:
Fig. 1
2 shows a plan view of a sheet web section which is still undrawn and has offset cuts,
Fig. 2
2 shows a plan view of an expanded metal section formed from the sheet metal web section of FIG. 1,
Fig. 3
2 shows a greatly simplified side view of the expanded metal section of FIG. 2, which is only indicated in the contours,
Fig. 4
a schematic side view of the device,
Fig. 5
2 shows a schematic top view of part of the device,
Fig. 6
a section along the line VI-VI in Fig. 5, on a larger scale, and
Fig. 7
6 shows an enlarged detail from FIG. 6.

Das Blechband 2 wird, bevor es in der in Fig. 4 bis 7 dargestellten Vorrichtung zum Streckgitter verarbeitet wird, mittels einer (nicht dargestellten) Schneid- und Stanzvorrichtung mit versetzen Einschnitten versehen.Before it is processed into expanded metal in the device shown in FIGS. 4 to 7, the sheet metal strip 2 is provided with offset incisions by means of a cutting and punching device (not shown).

Form und Lage der Einschnitte in der (noch ungestreckten) Blechbahn 2 sind aus Fig. 1 ersichtlich (vgl. auch die entsprechende Fig. 8 der EP-B 0 069 241). Es handelt sich um zueinander parallele Schnittlinienabschnitte 3 gleicher Länge, die in der Abschnittsmitte zu einer rhombischen Aussparung 4 vergrössert und gegenüber den in Bandlängsrichtung (Förderrichtung) 5 benachbarten Einschnitten 3 um die Hälfte der Länge versetzt sind. An der Blechbahn 2 der Fig. 1 erkennt man im weiteren die Knotenstellen 6, die durch strichpunktierte Linien angedeutete Knotenreihen 7 und Knotenkolonnen 9 sowie die je vier an eine Knotenstelle 6 angrenzenden Stege 8 des zu bildenden, in Fig. 2 dargestellten Streckgitters 12. An diesem bezeichnen 13 die Maschen, 14 den aus der halben Aussparung 4 entstandenen Ausschnittsraum der Maschen 13, 16 die Knotenflächen, 17 die Knotenreihen, 18 die Gitterstege, 19 die Knotenkolonnen, a den Knotenreihenabstand, b den Knotenkolonnenabstand und w die Maschenweite. Unter den Knotenstellen 6 bzw. Knotenflächen 16 wird der gesamte Uebergangsbereich zwischen den Stegen 8, 18 verstanden, einschliesslich der die Aussparungen 4, 14 begrenzenden Kanten. Die Gitterhöhe h ist aus Fig. 3, der Neigungswinkel n der Knotenflächen 16 zur Gitterebene 20 aus Fig. 6 ersichtlich.The shape and position of the incisions in the (still unstretched) sheet metal web 2 can be seen from FIG. 1 (cf. also the corresponding FIG. 8 of EP-B 0 069 241). These are mutually parallel cutting line sections 3 of the same length, which are enlarged in the middle of the section to form a rhombic recess 4 and are offset by half the length in relation to the incisions 3 adjacent in the longitudinal direction (conveying direction) 5. 1 further shows the nodes 6, the rows 7 and columns 9 indicated by dash-dotted lines, and the four webs 8 of the expanded metal 12 to be formed, which are shown in FIG. 2, and which adjoin a node 6 13 designate the stitches, 14 the cutout space created from the half recess 4 the meshes 13, 16 the knot surfaces, 17 the knot rows, 18 the grid bars, 19 the knot columns, a the knot row spacing, b the knot column spacing and w the mesh size. The node points 6 or node surfaces 16 are understood to mean the entire transition area between the webs 8, 18, including the edges delimiting the cutouts 4, 14. The grid height h can be seen from FIG. 3, the angle of inclination n of the node surfaces 16 to the grid plane 20 from FIG. 6.

Die Dicke der Blechbahn 2 beträgt zweckmässig 0,15-0,3 mm, die Breite der Gitterstege z. B. 6 mm. Das Verhältnis der Breite der Gitterstege 18 zu deren Dicke ist also wesentlich grösser als bei üblichen Streckgittern.The thickness of the sheet 2 is appropriately 0.15-0.3 mm, the width of the webs z. B. 6 mm. The ratio of the width of the lattice webs 18 to their thickness is therefore considerably greater than in the case of conventional expanded metal.

Die Vorrichtung zur Herstellung von Streckgittern besteht aus drei in Förderrichtung 5 je um einen Blechbahn- bzw. Gitterbahnabschnitt 21, 22 von z. B. einige zehn mal die Maschenweite w voneinander distanzierten, die Blech- bzw. Gitterbahn 2, 12 nacheinander fördernden Fördermitteln 23, 24, 25 und einem Kalibriermittel 26 zur Gitterhöheneinstellung.The device for the production of expanded metal consists of three in the conveying direction 5 each around a sheet metal web or web section 21, 22 of z. B. a few tens of times the mesh size w spaced apart from each other, the sheet metal or grid web 2, 12 conveying conveyors 23, 24, 25 and a calibration means 26 for grid height adjustment.

Das Blechband 2 kann direkt von der (nicht dargestellten) Schneid- und Stanzvorrichtung in die Vorrichtung eingespiesen werden. Das fertiggestellte Gitter 12 wird am besten unmittelbar nach der Vorrichtung mit Hilfe einer Schneidvorrichtung 10 auf die gewünschte Gitterlänge abgeschert.The sheet metal strip 2 can be fed into the device directly from the cutting and punching device (not shown). The finished grid 12 is best sheared to the desired grid length immediately after the device with the aid of a cutting device 10.

Die (konstante) Fördergeschwindigkeit des zweiten Fördermittels 24 ist im Verhältnis zur (ebenfalls konstanten) Fördergeschwindigkeit des ersten Fördermittels 23 erhöht. Und auch die (konstante) Fördergeschwindigkeit des dritten Fördermittels 25 ist gegenüber derjenigen des zweiten Fördermittels 24 erhöht. Die Fördergeschwindigkeit des Kalibriermittels 26 entspricht dagegen derjenigen des vorangehenden Fördermittels 25.The (constant) conveying speed of the second conveying means 24 is increased in relation to the (likewise constant) conveying speed of the first conveying means 23. The (constant) conveying speed of the third conveying means 25 is also increased compared to that of the second conveying means 24. The conveying speed of the calibration means 26 corresponds to that of the previous funding 25.

Alle drei Fördermittel 23, 24, 25 sind grundsätzlich insofern gleich aufgebaut, als sie zum Eingreifen in die Einschnitte 3, 4 der Materialbahn 2 bzw. die daraus entstandenen Maschen 13, 14 der Gitterbahn 12 ausgebildet sind. Der konstruktive Aufbau der Fördermittel 24, 25 ist dabei gänzlich gleich, weshalb zuerst das letztere näher beschrieben wird, durch welches das Gitter 12 in der fertigen Form, jedoch mit noch unkalibrierter Höhe, läuft. Es besteht aus einem zahnradartig ineinandergreifende Vorsprünge und Ausnehmungen aufweisenden Wälzkörperpaar 30, 31. Genauer betrachtet ist jeder der beiden Wälzkörper 30, 31 aus einer der Zahl der Knotenreihen 17 entsprechenden Anzahl auf einer gemeinsamen Welle 32 sitzenden Zahnscheiben 33-38 gebildet. (Im hier beschriebenen einfachen Ausführungsbeispiel hat das Gitter 12 nur sechs Knotenreihen 17, weshalb auch nur sechs Zahnscheiben 33-38 vorgesehen sind; in der Praxis ist die Anzahl aber natürlich höher). Die Mittelebenen der Zahnscheiben 33-38 sind entsprechend dem Knotenreihenabstand a voneinander distanziert. Zwischen die jeweils zusammenlaufenden Zahnflanken 39, 40 der ersten, dritten und fünften Zahnscheibenpaare 33, 35, 37 laufen die Knotenstellen 16 der ersten, dritten und fünften Knotenreihe 17. Die Zahnflanken 39, 40 dieser Zahnscheibenpaare fluchten also quer zur Förderrichtung 5 miteinander. Die Zahnflanken 39, 40 der zweiten, vierten und sechsten Scheibenpaare 34, 36 und 38 sind in Umfangsrichtung 41 um den Knotenkolonnenabstand b gegenüber denjenigen der ersten, dritten und fünften Scheibenpaare 33, 35, 37 versetzt, um die Knotenflächen 16 der zweiten, vierten und sechsten Knotenreihe 17 aufzunehmen.All three conveying means 23, 24, 25 are fundamentally constructed in the same way in that they are designed to engage in the incisions 3, 4 of the material web 2 or the stitches 13, 14 of the grid web 12 that result therefrom. The design of the conveying means 24, 25 is completely the same, which is why the latter is first described in more detail, through which the grating 12 runs in the finished form, but with an as yet uncalibrated height. It consists of a pair of rolling elements 30, 31 that interlock with each other in the manner of gearwheels and recesses. More specifically, each of the two rolling elements 30, 31 is formed from a number of toothed disks 33-38 seated on a common shaft 32 and corresponding to the number of rows of nodes 17. (In the simple exemplary embodiment described here, the grid 12 has only six rows of nodes 17, which is why only six toothed disks 33-38 are provided; in practice, however, the number is naturally higher). The center planes of the toothed disks 33-38 are spaced apart from one another in accordance with the knot row spacing a. The node points 16 of the first, third and fifth row of knots 17 run between the respectively converging tooth flanks 39, 40 of the first, third and fifth toothed disk pairs 33, 35, 37. The tooth flanks 39, 40 of these toothed disk pairs are therefore aligned with one another transversely to the conveying direction 5. The tooth flanks 39, 40 of the second, fourth and sixth disk pairs 34, 36 and 38 are offset in the circumferential direction 41 by the node column distance b from those of the first, third and fifth disk pairs 33, 35, 37 by the node surfaces 16 of the second, fourth and sixth row of nodes 17 record.

Figuren 6 und 7 zeigen, wie die Knotenfläche 16 zwischen zwei jeweils zusammenwirkende Zahnflanken 39, 40 eines Scheibenpaars hineinläuft, derweil die vorangehende Knotenfläche 16a zwischen die beiden Zahnflanken 39a, 40a zu liegen kommt und die nächstvordere Knotenfläche 16b aus den Zahnflanken 39b, 40b herausläuft. Dabei sind die Zähne so ausgebildet und die gegenseitige Anordnung ist so getroffen, dass die Zahnflanken über die Gitterknotenflächen 16, die den sich aus der Gittergeometrie und dem erzeugten Streckvorgang ergebenden Neigungswinkel n zur Gitterebene 20 aufweisen, im Abwählzverfahren ähnlich einer Evolventenverzahnung abrollen, womit das dreidimensionale Gitter ohne irgendwelche Beeinträchtigung gehalten und gleichzeitig linear und geradlinig transportiert wird.FIGS. 6 and 7 show how the node surface 16 runs between two interacting tooth flanks 39, 40 of a pair of disks, meanwhile the preceding node surface 16a comes to lie between the two tooth flanks 39a, 40a and the next front node surface 16b runs out of the tooth flanks 39b, 40b. The teeth are designed in such a way and the mutual arrangement is such that the tooth flanks roll over the lattice node surfaces 16, which have the inclination angle n to the lattice plane 20 resulting from the lattice geometry and the stretching process generated, in a deselection process similar to an involute toothing, thus making the three-dimensional Grid is held without any impairment and at the same time is transported linear and straight.

Es versteht sich, dass der Umfangsabstand bzw. die Anzahl der Zähne auf die jeweils gewünschte Maschenweite w (bzw. den Knotenkolonnenabstand b) abzustimmen sind, die ihrerseits vom Knotenreihenabstand a abhängt. (Je grösser der Knotenkolonnenabstand b wird, desto kleiner wird der Knotenreihenabstand a).It goes without saying that the circumferential distance or the number of teeth must be matched to the respectively desired mesh size w (or the knot column distance b), which in turn depends on the knot row distance a. (The greater the knot column distance b, the smaller the knot row distance a).

Die Mitten der Zahnscheiben 29 des vorangehenden Fördermittels 24 sind demzufolge entsprechend dem dort grösseren Knotenreihenabstand a voneinander distanziert angeordnet. Und der Zahnabstand (in Scheibenumfangsrichtung) ist entsprechend dem dort kleineren Knotenkolonnenabstand b auch kleiner.The centers of the toothed disks 29 of the preceding conveying means 24 are accordingly spaced apart from one another in accordance with the larger node row spacing a there. And the tooth spacing (in the disk circumferential direction) is also smaller in accordance with the smaller node column spacing b there.

Das keinen Zug ausübende Fördermittel 23 ist noch etwas einfacher ausgebildet. Es besteht aus einem (gleich wie die Fördermittel 24, 25) angetriebenen Walzenpaar 28, welches das Blechband 2 schlupflos gegen den Zug des zweiten Fördermittels 24 transportiert. Die Walzen 28 weisen hierzu (lediglich schematisch angedeutete) z. B. noppenartig ausgebildete Vorsprünge 27 und entsprechende Ausnehmungen auf, die ineinander greifen. Die Noppen oder Vorsprünge 27 greifen in die Aussparungen 4 ein und sichern so das Blechband 2 in einfacher Weise gegen Schlupf.The no-exerting funding 23 is made somewhat simpler. It consists of a pair of rollers 28 (just like the conveying means 24, 25) which transports the sheet metal strip 2 smoothly against the pull of the second conveying means 24. For this purpose, the rollers 28 (only schematically indicated) z. B. knob-like projections 27 and corresponding recesses which interlock. The knobs or projections 27 engage in the recesses 4 and thus secure the sheet metal strip 2 against slippage in a simple manner.

Wie schon erwähnt, ist das Fördermittel 23 grundsätzlich gleich, nämlich zum Eingreifen in die Aussparungen 4 der Materialbahn 2 ausgebildet, wie die nachfolgenden Fördermittel 24, 25, die in die entsprechenden Aussparungsräume 14 der Gitterbahn 12 eingreifen. Das für die Zähne der Zahnscheiben 29, 33-38 Gesagte gilt mithin sinngemäss für die Noppen bzw. Vorsprünge 27 und Ausnehmungen der Walzen 28. Dementsprechend ist beim Fördermittel 23 der axiale Abstand der Noppen oder Vorsprünge 27 grösser als der Abstand der Zahnscheiben 29 beim Fördermittel 24 und der Umfangsabstand der Noppen oder Vorsprünge 27 ist kleiner als derjenige der Zähne der Zahnscheiben 29.As already mentioned, the conveying means 23 is basically the same, namely designed to engage in the recesses 4 of the material web 2, like the subsequent conveying means 24, 25 which engage in the corresponding recess spaces 14 of the grid web 12. What has been said for the teeth of the toothed disks 29, 33-38 applies accordingly analogously to the knobs or projections 27 and recesses of the rollers 28. Accordingly, the axial distance of the knobs or projections 27 in the conveyor 23 is greater than the distance between the toothed disks 29 in the conveyor 24 and the circumferential distance of the knobs or projections 27 is smaller than that of the teeth of the toothed disks 29.

Trotz des unterschiedlichen Umfangsabstands haben die Zahnscheiben 29, 33-38 der Fördermittel 24, 25 dieselbe Anzahl Zähne. Der unterschiedliche Zahnabstand bei den Fördermitteln 24, 25 ist somit, wie in Fig. 4/5 schematisch angedeutet, durch einen unterschiedlichen Scheibendurchmesser erreicht. Das erlaubt es, die Wellen 32 der Fördermittel 24, 25 gemeinsam mit gleicher Drehzahl anzutreiben und zwar einfach mit Hilfe eines Kettenantriebs 42 über auf den Wellen 32 sitzende Kettenräder 43. Dasselbe gilt sinngemäss für die Vorsprünge der ebenfalls vom Kettenantrieb 42 angetriebenen Walzen 28. Diese und die Zahnscheiben 29, 33-38 können jedoch auch eine verschiedene Anzahl Vorsprünge bzw. Zähne aufweisen und einzeln angetrieben werden.Despite the different circumferential spacing, the toothed disks 29, 33-38 of the conveying means 24, 25 have the same number of teeth. The different tooth spacing in the conveying means 24, 25 is thus, as indicated schematically in Fig. 4/5, achieved by a different disk diameter. This makes it possible to drive the shafts 32 of the conveying means 24, 25 together at the same speed, simply with the aid of a chain drive 42 via sprockets 43 seated on the shafts 32. The same applies analogously to the projections of the rollers 28, which are also driven by the chain drive 42 and the toothed disks 29, 33-38 can, however, also have a different number of projections or teeth and be driven individually.

Das Kalibriermittel 26 für die Kalibrierung der Gitterhöhe besteht aus im der gewünschten Gitterhöhe h entsprechenden Abstand voneinander rotierenden Zylindermänteln 44, 45, zwischen denen das Gitter 12 hindurchgeführt ist. Das Kalibriermittel 26 ist gleich aufgebaut wie das Fördermittel 25, hat also wie dieses an den Knotenflächen 16 angreifende Zahnscheiben 46, die - weil mit gleicher Fördergeschwindigkeit wie die Zahnscheiben 33-38 umlaufend - nicht zum Ziehen, sondern zum Weitertransport dienen. Unterschiedlich ist nur der viel grössere Durchmesser der Wellen (Zylindermäntel) 44, 45 im Durchgangsbereich des Gitters 12, zwischen denen der Kalibrierspalt mit der Höhe h gebildet ist, so dass über diese Höhe hinausragende Stege 18 in die richtige Lage zurückgedrückt werden. Eine besonders genaue Kalibrierung wird erreicht, indem mit dem Fördermittel 25 das Gitter 12 gerade soweit gestreckt wird, dass es durchwegs geringfügig höher ist als der Kalibrierspalt zwischen den Zylindermänteln 44, 45. Das Kalibrieren der Gitterhöhe h wird erleichtert durch die Aussparungen 4. Dank ihnen können die Stege 8 nämlich, ohne dass sie sich selbst verformen, einfach um ihre Diagonale verdreht werden, indem die die Knotenfläche 16 umgebenden Biegekanten weiter verformt werden, wodurch unmittelbabr die Gitterhöhe verringert wird.The calibration means 26 for the calibration of the grid height consists of cylinder shells 44, 45 rotating at a distance corresponding to the desired grid height h, between which the grid 12 is passed. The calibration means 26 is constructed in the same way as the conveying means 25, so like this it has toothed disks 46 which act on the node surfaces 16 and which - because they rotate at the same conveying speed as the toothed disks 33-38 - do not serve for pulling, but for further transport. The only difference is the much larger diameter of the shafts (cylinder jackets) 44, 45 in the passage area of the grating 12, between which the calibration gap is formed with the height h, so that webs 18 projecting beyond this height are pressed back into the correct position. A particularly precise calibration is achieved by stretching the grille 12 with the conveying means 25 to such an extent that it is consistently slightly higher than the calibration gap between the cylinder shells 44, 45. The calibration of the grille height h is facilitated by the cutouts 4. Thanks to them namely, the webs 8 can be simply rotated about their diagonal without deforming themselves by further deforming the bending edges surrounding the node surface 16, which immediately reduces the grid height.

Das mit der Vorrichtung durchgeführte Verfahren lässt sich wie folgt beschreiben:The method carried out with the device can be described as follows:

Das noch ungestreckte, mit den Einschnitten 3, 4 versehene Blechband 2 wird mit Hilfe des Fördermittels 23 kontinuierlich (gleichförmig) und mit der gleichen (konstanten) ersten Geschwindigkeit transportiert, wie es die (nicht dargestellte) Schneid- und Stanzvorrichtung durchläuft. Das Fördermittel 23 transportiert das Band 2 schlupflos, hält es also mit Hilfe der in die Aussparungen 4 des Bands 2 (und in die Ausnehmungen der Gegenwalze) eingreifenden Vorsprünge bzw. Noppen 27 gegen den Zug des schneller fördernden zweiten Fördermittels 24.The sheet metal strip 2, which has not yet been stretched and is provided with the cuts 3, 4, is transported continuously (uniformly) with the aid of the conveying means 23 and at the same (constant) first speed as it passes through the cutting and punching device (not shown). The conveyor 23 transports the belt 2 without slippage, so it holds it in the recesses 4 of the belt 2 (and in the recesses) of the counter-roller) engaging projections or knobs 27 against the pull of the faster conveying second conveying means 24.

Grundsätzlich dasselbe jedoch mit der im Verhältnis zur ersten Geschwindigkeit erhöhten, zweiten Fördergeschwindigkeit geschieht beim Fördermittel 24, das jedoch zufolge der Geschwindigkeitsdifferenz als Zugmittel wirkt, so dass der frei zwischen den Fördermitteln 23/24 laufende Bahnabschnitt 21 unter Bildung einer dreidimensionalen Streckgitterstruktur allmählich gestreckt wird. (Frei laufend bedeutet, dass sich die Bahn frei verformen kann. Selbstverständlich steht dem etwa eine lediglich unterstützende Gleitfläche o. dgl. nicht entgegen). Die Zahnflanken der Zahnscheiben 29 rollen über die jetzt durch den Streckvorgang geneigten Knotenflächen 16, wobei das entstandene dreidimensionale Gitter gehalten und linear und geradlinig transportiert wird.Basically, however, the same occurs with the second conveying speed, which is increased in relation to the first speed, but which acts as a traction means due to the speed difference, so that the web section 21 running freely between the conveying means 23/24 is gradually stretched to form a three-dimensional expanded mesh structure. (Free-running means that the web can deform freely. Of course, this is not countered by a merely supporting sliding surface or the like). The tooth flanks of the toothed disks 29 roll over the node surfaces 16 now inclined by the stretching process, the resulting three-dimensional grid being held and transported linearly and in a straight line.

Anschliessend an den ersten Streckschritt erfolgt ein zweiter grundsätzlich gleicher Streckschritt. Der Streckgitterabschnitt 22 wird zwischen dem zweiten und dritten Fördermittel 24 und 25 weiter gestreckt, indem auch das dritte Fördermittel 25 im Verhältnis zum zweiten Fördermittel 24 mit erhöhter Fördergeschwindigkeit arbeitet, mithin einen Zug auf den Gitterabschnitt 22 ausübt.Following the first stretching step, there is a second basically the same stretching step. The expanded mesh section 22 is stretched further between the second and third conveying means 24 and 25, in that the third conveying means 25 also operates at an increased conveying speed in relation to the second conveying means 24, thus exerting a tension on the grating portion 22.

Das Kalibriermittel 26 sorgt schliesslich dafür, wie oben schon dargetan, dass das Gitter gehalten und transportiert und gleichzeitig seine Höhe kalibriert wird.Finally, as already demonstrated above, the calibration means 26 ensures that the grid is held and transported and, at the same time, its height is calibrated.

Anzumerken ist, dass das Gitter nur an den Gitterknotenstellen ergriffen wird und zwar vorzugsweise an sämtlichen Gitterknotenstellen, um eine gleichmässige Gitterbildung sicherzustellen. Die Zahnform, insbesondere die Zahnbreite, ist dabei so gewählt (vgl. Fig. 6/7), dass die Zahnflanken nur am mittleren, ebenen Bereich der geneigten Knotenflächen 16 angreifen und darüber abrollen. Dadurch können sich die angrenzenden Gitterstege 8 ebenfalls als geneigte Flächen 18 über vier die Knotenstelle 16 unmittelbar abgrenzende Biegekanten einstellen. Es ist sorgfältig darauf zu achten, dass alle Zahnscheiben richtig justiert sind und exakt fluchten. Selbstverständlich ist bei der Dimensionierung der Zahnscheiben auch darauf zu achten, dass sich immer eine Knotenkolonne 19 im Eingriff zwischen den Zahnflanken befindet. Sonst wäre ein beständiges Festhalten und ein kontinuierlicher Transport des Gitter nicht möglich.It should be noted that the grid is only gripped at the grid node locations, and preferably at all grid node locations, in order to ensure a uniform grid formation. The tooth shape, especially the tooth width, is selected in such a way (cf. Fig. 6/7) that the tooth flanks only engage and roll over the central, flat area of the inclined node surfaces 16. As a result, the adjoining lattice webs 8 can also be set as inclined surfaces 18 over four bending edges which immediately delimit the node 16. Care must be taken to ensure that all toothed lock washers are correctly adjusted and exactly aligned. Of course, when dimensioning the toothed pulleys, care must also be taken to ensure that there is always a node column 19 in engagement between the tooth flanks. Otherwise it would not be possible to hold on to the grille continuously and to transport it continuously.

Im Zusammenhang mit dem beschriebenen einfachen Ausführungsbeispiel der Streckgitterherstellung ist noch darauf hinzuweisen, dass sich die Erfindung für diese besonders einfache Herstellung und Herstellungsvorrichtung die (an sich bekannten) Aussparungen 4 an den Knotenstellen 6 in spezieller Weise zu Nutze gemacht hat. Die Aussparungen 4 werden nämlich genutzt für das rechtzeitig unbehinderte Ein- und wieder Ausfahren der Zähne von möglichst im Durchmesser gross bemessenen Zahnscheiben in die Gitterstruktur, so dass sich immer eine Knotenkolonne 9 im Eingriff zwischen zwei Zahnflanken befindet. Auf die Nutzung der Aussparungen 4 hinsichtlich der Vereinfachung und Vorteile bei der Gitterhöhenkalibrierung wurde bereits weiter oben hingewiesen, ebenso auf die Sicherung gegen Schlupf bei dem ersten Walzenpaar 28 mittels der Vorsprünge bzw. Noppen 27.In connection with the described simple exemplary embodiment of expanded metal production, it should also be pointed out that the invention has made special use of the (known) cutouts 4 at the nodes 6 for this particularly simple production and manufacturing device. The recesses 4 are in fact used for the timely unimpeded retraction and extension of the teeth of toothed disks with the largest possible diameter in the lattice structure, so that there is always a node column 9 in engagement between two tooth flanks. The use of the recesses 4 with regard to the simplification and advantages in the lattice height calibration has already been pointed out above, and also the securing against slipping in the first pair of rollers 28 by means of the projections or knobs 27.

Die Vorteile des beschriebenen Herstellungsverfahrens und der Vorrichtung, die sich insbesondere durch das als der Gitterstruktur angepasste Zugwalze wirkende Födermittel 24 bzw. 25 auszeichnet, sind namentlich in folgendem zu sehen:The advantages of the described production method and the device, which is characterized in particular by the conveyor means 24 and 25 acting as the grating structure, can be seen in the following:

Jeder Gitterteil wird völlig identisch behandelt. Das Gitter wird kontinuierlich fixiert und positioniert. Und es wird nicht ruckweise, sondern gleichmässig mit im Bereich der Abschnitte 21, 22 allmählich ansteigender Fördergeschwindigkeit gefördert. Die dreidimensionale Gitterform, die sich aus dem reinen Streckvorgang ergibt, lässt sich (natürlich nur in gewissen Grenzen) durch die Walzenform beeinflussen und verändern, so zum Beispiel die Gitterhöhe durch das Kalibriermittel 26. Dadurch lässt sich das gewünschte Gitter mit der erforderlichen Präzision herstellen.Each part of the grid is treated in the same way. The grid is continuously fixed and positioned. And it is not conveyed in jerks, but steadily with the conveying speed gradually increasing in the area of the sections 21, 22. The three-dimensional lattice shape that results from the pure stretching process can (of course only within certain limits) be influenced and changed by the roller shape, for example the lattice height by the calibration means 26. This enables the desired lattice to be produced with the required precision.

Ein besonderer Vorteil des beschriebenen und in der Zeichnung dargestellten einfachen Ausführungsbeispiels ist im weiteren darin zu sehen, dass sich präzise Gitter beliebig wählbarer Maschenweite mit preiswerten Mitteln, nämlich einfach herstellbaren Zahnscheibenwalzen erzeugen lassen.A particular advantage of the simple exemplary embodiment described and shown in the drawing can also be seen in the fact that precise gratings of any mesh size can be produced with inexpensive means, namely toothed-disc rollers that are easy to produce.

Ein weiterer Vorteil besteht in der dank dem kontinuierlichen, gleichförmigen Drehen der Födermittel erreichbaren hohen Produktionsgeschwindigkeit.Another advantage is the high production speed that can be achieved thanks to the continuous, uniform rotation of the conveyor.

Das Herstellungsverfahren kann jederzeit unterbrochen werden, wobei das Gitter in jeder beliebigen Stellung angehalten und unmittelbar oder nach einer Zeitspanne wieder angefahren werden kann, ohne dass seine Qualität beeinträchtigt wird. Statt kontinuierlich kann das Gitter mithin auch intermittierend hergestellt werden, beispielsweise, um jeweils bei stillstehendem Gitter einen fertiggestellten Gitterteil abschneiden zu können.The manufacturing process can be interrupted at any time, and the grid can be stopped in any position and restarted immediately or after a period of time without impairing its quality. Instead of continuously, the grid can thus also be produced intermittently, for example in order to be able to cut off a finished grid part when the grid is stationary.

Selbstverständlich kann, vor allem bei nicht sehr hohen Anforderungen an die Präzision und Gleichmässigkeit der Gitterstruktur auch mit nur einem Streckschritt gearbeitet werden, d. h. das Fördermittel 25 und auch das Kalibriermittel 26 kann entfallen. Um die geforderte hohe Präzision und Gleichmässigkeit bezüglich Maschenweite und Gitterhöhe noch weiter zu verbessern, namentlich wenn eine sehr grosse Maschenweite und ein entsprechend grosser Neigungswinkel gewünscht ist, kann aber auch mit noch mehr als zwei Streckschritten gearbeitet werden, d. h. es können im Anschluss an das Fördermittel 25 zusätzliche, als Zugmittel wirkende Fördermittel vorgesehen werden, die das Gitter schrittweise in die gewünschte Schlussform bringen. Es ist im weiteren möglich, mehrere Kalibriermittel einzusetzen, die auch zwischen den als Zugmittel wirkenden Fördermitteln angeordnet sein können und gegenüber dem vorangehenden Fördermittel mit gleicher oder erhöhter Geschwindigkeit fördern.Of course, especially if the demands on the precision and uniformity of the lattice structure are not very high, it is also possible to work with only one stretching step, ie the conveying means 25 and also the calibration means 26 can be omitted. In order to further improve the required high precision and uniformity in terms of mesh size and grid height, especially if a very large mesh size and a correspondingly large angle of inclination is desired, it is also possible to work with more than two extension steps, i.e. it can be done after the funding 25 additional, acting as traction means are provided, which gradually bring the grid into the desired final shape. It is also possible to use several calibration means, which can also be arranged between the conveying means acting as traction means and conveying at the same or increased speed compared to the preceding conveying means.

Je nach den Anforderungen kann das Kalibriermittel 26 auch mit grösserer Fördergeschwindigkeit als das vorangehende Fördermittel arbeiten, um gleichzeitig als Zugmittel zu wirken. Eine besonders genaue Kalibrierung der Gitterhöhe wird aber nach dem Ausführungsbeispiel erreicht, wobei das Gitter soweit durch das Fördermittel 25 gestreckt wird, dass die Gitterhöhe grösser als die Kalibrierspaltweite zwischen den Mänteln 44, 45 ist und Kalibriermittel 26 sowie Fördermittel 25 mit gleicher Fördergeschwindigkeit arbeiten.Depending on the requirements, the calibration means 26 can also work at a higher conveying speed than the preceding conveying means in order to act as a traction means at the same time. A particularly precise calibration of the grating height is achieved according to the exemplary embodiment, the grating being stretched through the conveying means 25 to such an extent that the grating height is greater than the calibration gap width between the jackets 44, 45 and the calibrating means 26 and conveying means 25 operate at the same conveying speed.

Die für die Gitterstruktur massgebende Maschenweite w und Gitterhöhe h lassen sich mit dem erfindungsgemässen Verfahren genau vorwählen. Die Maschenweite durch entsprechende Wahl des Quotienten der Fördergeschwindigkeiten der Fördermittel 24, 23 und 25, 24. Die Gitterhöhe h durch den Abstand (Kalibrierspalt) der Zylindermäntel 44, 45 des Kalibriermittels 26. (Die Gitterhöhe nimmt beim Strecken, d. h. mit der Maschenweite zu, kann aber mit Hilfe des Kalibriermittels gegenüber der sich von selbst beim Strecken ergebenden Einstellung verringert werden). Im Ausführungsbeispiel sind die Geschwindigkeitsquotienten konstruktiv festgelegt. Selbstverständlich könnten die Geschwindigkeitsquotienten aber auch durch einzeln, gesteuerte, unabhängig voneinander angetriebene Fördermittel frei wählbar sein, um rasch nacheinander Gitter unterschiedlicher Maschenweite (und Dicke) herstellen zu können.The mesh size w and lattice height h which are decisive for the lattice structure can be precisely preselected using the method according to the invention. The mesh size by appropriate selection of the quotient of the conveying speeds of the conveying means 24, 23 and 25, 24. The grid height h by the distance (calibration gap) between the cylinder jackets 44, 45 of the calibration means 26. (The grid height increases during stretching, ie with the mesh size, can, however, be reduced with the help of the calibration agent compared to the setting that results automatically during stretching). In the exemplary embodiment, the Speed quotients set constructively. Of course, the speed quotients could also be freely selectable by means of individually controlled, independently driven conveying means in order to be able to produce grids of different mesh sizes (and thicknesses) in rapid succession.

Die in Fig. 4 bis 7 dargestellte Vorrichtung kann ferner eine auswechselbare Speisetrommel aufweisen, auf welche mit den Einschnitten 3, 4 versehenes Band 2 aufgewickelt ist, das kontinuierlich von der Speisetrommel abgezogen und in das Fördermittel 23 eingespeist wird.The device shown in FIGS. 4 to 7 can furthermore have an exchangeable feed drum, on which tape 2 provided with the cuts 3, 4 is wound, which is continuously pulled off the feed drum and fed into the conveying means 23.

Zumindest das oder die als Zugmittel wirkenden, d. h. je mit grösserer Fördergeschwindigkeit als das vorangehende Fördermittel laufenden Fördermittel können auch aus je einer das gesamte Gitter dreidimensional abbildenden Positiv- und Negativwalze bestehen. Da diese praktisch nur mit einem relativ kostspieligen dreidimensionalen Erosionsverfahren hergestellt werden können, wird diese Ausführung vor allem bei speziellen, aus Blechbahnen mit kompliziert ausgebildeten Einschnitten/Aussparungen 3/4 zu formenden Gittern oder bei Gittern mit in besonderer Weise zu formenden Gitterstegen ins Auge zu fassen sein. Das bereits auf dem Weg zum als Zugmittel wirkenden Walzenpaar dreidimensional vorgeformte Gitter wird in diesem Fall ebenfalls (wie beim in den Figuren dargestellten Ausführungsbeispiel) beim Durchlaufen zwischen der Positiv- und Negativwalze im Abwälzverfahren gehalten und transportiert. Auf diese Weise sind andere Kalibrierwalzen möglich, z. B. auch solche, die im Anschluss an die beschriebene, einfache Gitter-Herstellvorrichtung 23-25 die Gitterhöhe vergrössern. Im Gegensatz zum nach den Figuren beschriebenen Ausführungsbeispiel kann mit solchen Positiv-und Negativwalzen nicht nur an den Gitterknotenstellen, sondern auch an den Gitterstegen und allfälligen besonders ausgebildeten Gitterteilen angegriffen werden. Hierbei kann (anders als beim beschriebenen einfachen Ausführungsbeispiel) auch die Gitterform kalibriert, d. h. durch Verformung zwischen den beiden Walzen beeinflusst und das Gitter so in eine gewünschte kalibrierte, endgültige Form gebracht werden.At least the one or more acting as a traction means, ie each running at a higher conveying speed than the preceding conveying means, can also consist of a positive and negative roller which three-dimensionally represent the entire grid. Since these can practically only be produced with a relatively expensive three-dimensional erosion process, this version is particularly to be considered in the case of special grids to be formed from sheet metal webs with intricately designed incisions / recesses 3/4 or in the case of grids with grid webs to be shaped in a special way be. The grating which has already been three-dimensionally preformed on the way to the pair of rollers acting as a traction means is also held and transported in this case (as in the embodiment shown in the figures) as it passes between the positive and negative rollers in the rolling process. In this way, other calibration rollers are possible, e.g. B. also those that increase the grid height following the described simple grid manufacturing device 23-25. In contrast to the exemplary embodiment described according to the figures, such positive and negative rollers can not only be used at the grid node locations, but can also be attacked on the bars and any specially designed bars. In this case (in contrast to the simple exemplary embodiment described), the grid shape can also be calibrated, that is to say influenced by deformation between the two rollers, and the grid can thus be brought into a desired calibrated, final shape.

Unter Kalibrierung wird im Rahmen der Erfindung mithin jegliche Gitterverformung verstanden, von der Einstellung eines einzigen Gitterparameters, wie der Höhe h, bis zur Verformung der gesamten Gitterstruktur in eine gewünschte, genau bestimmte dreidimensionale Endform.Calibration is therefore understood in the context of the invention to mean any lattice deformation, from the setting of a single lattice parameter, such as the height h, to the deformation of the entire lattice structure into a desired, precisely determined three-dimensional final shape.

Selbstverständlich können die Positiv- und Negativwalzen auch einfacher ausgestaltet werden, nämlich so, dass sie nur an bestimmten Teilen des Gitters eingreifen, z. B. analog wie bei den Zahnscheiben 33-38 nur im Bereich der Kontenstellen des Gitters. Im Gegensatz zu den Zahnscheiben 33-38 wird jedoch die gesamte dreidimensionale Knotenstelle samt den sie umgebenden Biegestellen, die den Uebergang zu den Gitterstegen bilden, im Walzenpaar in positiver und negativer Form abgebildet. Das Walzenpaar kann auch nur an den Gitterstegen eingreifen und sie dadurch in eine speziell gewünschte Form bringen. Wie oben bereits erwähnt, kann damit auch nur eine einfache Höhenkalibrierung, jedoch auch zu einer grösseren Gitterhöhe bewerkstelligt werden. Im weiteren kann als Fördermittel auch ein Walzenpaar verwendet werden, deren eine Walze in die Aussparungen 4 eingreifende Noppen trägt und deren andere entsprechende Löcher aufweist. Ferner kann als Fördermittel auch nur ein mit Noppen oder anderen Vorsprüngen versehener Drehkörper eingesetzt werden.Of course, the positive and negative rollers can also be made simpler, namely in such a way that they only engage certain parts of the grid, e.g. B. analogous to the toothed disks 33-38 only in the area of the accounts of the grid. In contrast to the toothed washers 33-38, however, the entire three-dimensional node, including the bending points surrounding it, which form the transition to the lattice webs, is depicted in a positive and negative form in the pair of rollers. The pair of rollers can also only engage on the grid webs and thereby bring them into a specifically desired shape. As already mentioned above, a simple height calibration can also be accomplished with this, but also to a larger grid height. Furthermore, a pair of rollers can also be used as the conveying means, one roller of which carries knobs engaging in the recesses 4 and the other of which has corresponding holes. Furthermore, only a rotating body provided with knobs or other projections can be used as the conveying means.

Wie bereits erwähnt, lassen sich beim erfindungsgemässen Verfahren durch die Verwendung von nicht nur mit den einfachen üblichen Einschnitten 3, sondern zusätzlich mit den rhombischen oder auch anderen, z. B. kreisförmigen Aussparungen 4 versehenem Blechband verschiedene Vorteile erzielen. Das Verfahren kann aber auch mit lediglich in der üblichen Weise eingeschnittenem Blechband durchgeführt werden. Im weiteren kann das Streckgitter auch aus einem nicht metallischen Material hergestellt werden, vorausgesetzt die für die Streckgitterherstellung erforderliche plastische Verformbarkeit der Materialbahn ist gewährleistet.As already mentioned, in the method according to the invention, the use of not only simple incisions 3, but also rhombic or other, e.g. B. circular recesses 4 provided sheet metal strip achieve various advantages. However, the method can also be carried out with a sheet metal strip cut only in the customary manner. Furthermore, the expanded metal can also be produced from a non-metallic material, provided that the plastic deformability of the material web required for the production of expanded metal is guaranteed.

Die oben beschriebenen, bevorzugten Ausführungsarten der Erfindung basieren auf folgenden im Rahmen der Erfindung erfolgten Grundüberlegungen hinsichtlich der Ausbildung der Fördermittel:The preferred embodiments of the invention described above are based on the following basic considerations regarding the design of the funding means within the scope of the invention:

Die Fördermittel sollen die Material- bzw. Gitterbahn kontinuierlich (gleichmässig) mit gleichförmiger Geschwindigkeit, mithin ununterbrochen und vor allem nicht ruckweise transportieren bzw. ziehen. Und die Materialbahn soll schlupffrei gefördert werden. Die Erfindung geht nämlich von der Erkenntnis aus, dass jegliches auch nur geringfügig ruckweises Fördern und jeglicher Schlupf die Gleichmässigkeit und Präzision der Gitterstruktur beeinträchtigen können.The funds are to transport or pull the material or lattice web continuously (evenly) at a uniform speed, therefore continuously and above all not jerkily. And the material web should be conveyed without slippage. This is because the invention is based on the knowledge that any conveyance, even slightly jerky, and any slippage can impair the uniformity and precision of the lattice structure.

Den erfindungsgemäss bevorzugten Fördermitteln liegen dementsprechend zwei Gedanken zugrunde. Erstens werden als Fördermittel mit konstanter Drehzahl laufende Rotationskörper, vorzugsweise aufeinander abwälzende Rotationskörperpaare (Wälzkörperpaare) verwendet, die Gewähr für einen gleichförmigen Antrieb geben. Zweitens werden die Rotationskörper zum schlupffreien Antrieb der Material- bzw. Gitterbahn ausgebildet und zwar so, dass zumindest die zweiten und weiteren Fördermittel der Gitterstruktur entsprechen, diese also nicht beeinträchtigen. Das wird dadurch realisiert, dass man sich die Gitterstruktur dreidimensional auf den Rotationskörperumfang abgebildet denkt und die Umfangsfläche dementsprechend ausbildet. Man kann sich auch vorstellen, das Gitter werde um den Umfang des Rotationskörpers herumgelegt und in die Umfangsfläche hineingedrückt. Dieser Gedanken im Rahmen der Erfindung konsequent umgesetzt, führt im Falle des bevorzugten Wälzkörperpaars dazu, dass die Umfangsfläche des einen Körpers als Positivform des Gitters, diejenige des anderen Körpers als Negativform des Gitters ausgebildet wird. Die Wälzkörper sind dann so beschaffen, dass sie ohne Veränderung der Gitterstruktur über das Gitter abrollen. Das heisst, man könnte den einen Wälzkörper auf die eine Seite einer (die Gitterstruktur am Eingang des betreffenden Fördermittels aufweisenden) Gitterbahn und den anderen Wälzkörper auf die andere Seite der Gitterbahn legen und jeder der beiden Wälzkörper liesse sich dann über die betreffende Seite der Gitterbahn abrollen, wobei die Positivform-Umfangsfläche des einen Wälzkörpers in die Gitterbahn eingreifen und die Gitterbahn ihrerseits in die Negativform-Umfangsfläche des anderen Wälzkörpers eingreifen würde.The subsidies preferred according to the invention are accordingly based on two ideas. Firstly, rotating bodies, preferably rotating pairs of rolling bodies (pairs of rolling bodies), are used as conveying means at constant speed, which guarantee a uniform drive. Secondly, the rotating bodies are designed for the slip-free drive of the material or grid web and in such a way that at least the second and further ones Funding corresponds to the lattice structure, so it does not affect it This is achieved by thinking of the lattice structure as being three-dimensionally mapped onto the circumference of the rotating body and designing the circumferential surface accordingly. One can also imagine that the grid is placed around the circumference of the rotating body and pressed into the circumferential surface. This idea, implemented consistently within the scope of the invention, leads in the case of the preferred roller body pair to the fact that the peripheral surface of one body is designed as a positive form of the grid and that of the other body as a negative form of the grid. The rolling elements are then designed so that they roll over the grid without changing the grid structure. This means that one rolling element could be placed on one side of a grating track (which has the lattice structure at the entrance to the relevant funding) and the other rolling element on the other side of the grating track, and each of the two rolling elements could then be rolled over the relevant side of the grating track , wherein the positive-form circumferential surface of one rolling element engages in the grid path and the grid path would in turn engage in the negative-form circumferential surface of the other rolling element.

Das ist, wie gesagt, die konsequent-theoretische Umsetzung des Gedankens. Man kann aber auch auf eine vollständige Abbildung verzichten und nur Teile der Gitterstruktur abbilden, nämlich jene, wo man die Fördermittel angreifen lassen will. Dies ist beim oben beschriebenen Ausführungsbeispiel der Zahnscheiben 33-38 geschehen, wo man ein Angreifen der Fördermittel nur an den Gitterknotenstellen wünschte: Einerseits mit Blick auf die den beschädigungslosen Eingriff in die Material- bzw. Gitterbahn 2, 12 erleichternden Aussparungen bzw. Aussparungsräume 4, 14. Andererseits wegen der durch ausschliesslichen Zug an den mittleren, flachen Bereichen der Gitterknotenflächen 16 erreichbaren, gewünschten Gitterstruktur 12. Der Gedanken der Abbildung der Gitterstruktur auf den Umfang des Fördermittel-Drehkörpers und dessen Abrollens (nach Art einer Evolventen) auf der Gitterbahn lässt sich je nach gewünschter Gitterstruktur in den verschiedensten Varianten realisieren, ist also weder beschränkt auf die Zahnscheiben-Anordnung noch auf die Gesamtabbildung des Gitters auf die Walzen, sondern erlaubt auch verschiedenste Zwischenlösungen.As I said, this is the consistent theoretical implementation of the idea. But you can also do without a complete image and only show parts of the lattice structure, namely those where you want to attack the funding. This was done in the exemplary embodiment of the toothed disks 33-38 described above, where it was desired to grip the conveying means only at the grid node locations: on the one hand with a view to the cutouts or recess spaces 4 which facilitate the damage-free engagement in the material or grid web 2, 12, 14. On the other hand, because of only pulling on the middle, flat areas of the desired grid structure 12 which can be reached by the grid node surfaces 16. The idea of mapping the grid structure onto the circumference of the conveyor rotating body and its rolling (in the manner of an involute) on the grid track can be realized in a wide variety of variants depending on the desired grid structure, and is therefore neither restricted on the toothed pulley arrangement and on the overall image of the grid on the rollers, but also allows a wide variety of interim solutions.

Die Umfangsflächen können auch anders ausgestaltet werden, als genau angepasst an die sich selbsttätig durch den Zug auf die Materialbahn 2 einstellende Gitterstruktur 12. Sie können nämlich - in gewissen Grenzen - entsprechend einer gewünschten Gitterstruktur ausgebildet sein, die von der sich selbsttätig durch den Zug einstellenden Gitterstruktur abweicht. Mit so ausgebildeten Walzenumfangsflächen wird die Gitterbahn dann beim Durchgang durch das Fördermittel entsprechend der gewünschten Gitterstruktur umgeformt bzw. kalibriert. Die Umformung bzw. Kalibrierung kann auch mit Hilfe eines (oder mehrerer) mit gleicher oder erhöhter Umfangsgeschwindigkeit wie das vorangehende Fördermittel rotierenden Kalibriermittels erfolgen.The circumferential surfaces can also be designed differently than exactly adapted to the lattice structure 12 which is automatically set by the train on the material web 2. Namely, they can - within certain limits - be designed according to a desired lattice structure which is different from that which is set automatically by the train Lattice structure differs. With roller circumferential surfaces designed in this way, the grid web is then shaped or calibrated in accordance with the desired grid structure as it passes through the conveying means. The reshaping or calibration can also be carried out with the help of one (or more) rotating calibration means with the same or increased peripheral speed as the preceding conveying means.

Claims (22)

  1. Process for the manufacture of expanded lattices (12) in which an as yet unexpanded web of material (2) consisting preferably of metal is provided with staggered incisions (3, 4) and is conveyed in the feed direction (5), transversely to the incisions (3, 4), first through first conveying means (23) at a first speed and then through second conveying means (24) at a second speed which is increased in relation to the first speed, the difference in speeds being so calculated that the web portion (21) running freely between the first and second conveying means (23, 24) is expanded to a form a three-dimensional expanded lattice structure, the meshes of the expanded lattice opening continuously.
  2. Process according to claim 1, wherein the web of material (2) is conveyed without slipping and without jerking.
  3. Process according to claim 1 or 2, wherein the expansion is effected in at least two steps with the aid of one or more conveying means (25) that follow the second conveying means (24) and each of which conveys the web of material (2) at an increased speed in comparison with the conveying means (24) preceding it in the conveying direction (5).
  4. Process according to any one of claims 1 to 3, wherein at least one of the conveying means (23, 24, 25), preferably each of the conveying means, engages in the incisions (3, 4) in the web of material (2) or in the meshes (13, 14) of the lattice web (12) which result from those incisions.
  5. Process according to any one of claims 1 to 4, wherein at least one of the conveying means (23, 24, 25) acts on at least part of the lattice intersections (6, 16).
  6. Process according to any one of claims 1 to 5, wherein the conveying means (23, 24, 25) act only on the lattice intersections (6, 16).
  7. Process according to any one of claims 1 to 6, wherein at least the second (24) or one of the subsequent conveying means (25) acts in such a manner on the middle region of the lattice intersections (16) that the adjoining lattice bars (18) are likewise set as inclined faces by way of four curved edges immediately delimiting the intersection (16).
  8. Process according to any one of claims 1 to 7, wherein the lattice web (12) is calibrated or deformed by means of the second conveying means or at least one additional conveying means (26) conveying at the same speed as or at a higher speed than the preceding conveying means (25), in order to obtain a desired lattice parameter (h) or a desired lattice shape.
  9. Apparatus for manufacturing expanded lattices (12) from a web of material (2) consisting preferably of metal in accordance with the process of claim 1, wherein first and second conveying means (23, 24) which are spaced apart by one material web portion (21) and which convey the web of material (2) in succession are provided and the conveying speed of the second conveying means (24) is increased in relation to the conveying speed of the first conveying means (23).
  10. Apparatus according to claim 9 for carrying out the process of claim 3, wherein at least three conveying means (23, 24, 25) which are spaced from one another and convey the web of material (2) in succession are provided and the conveying speed of each conveying means (24, 25) that follows in the conveying direction (5) is increased in comparison with the preceding conveying means (23, 24).
  11. Apparatus according to claim 9 or 10, wherein at least one of the conveying means (23, 24, 25) is constructed to engage in the incisions (3, 4) in the web of material (2) or in the meshes (13, 14) of the lattice web (12) which result from those incisions.
  12. Apparatus according to any one of claims 9 to 11, wherein at least one of the conveying means (23, 24, 25) has at least one rotating body (28, 29, 33-38) the circumference or outer surface of which has projections.
  13. Apparatus according to claim 12, wherein at least one of the conveying means (23, 24, 25) is formed by a pair of rolling bodies (30, 31) that have projections and recesses (40, 39) which mesh with each other.
  14. Apparatus according to any one of claims 9 to 13, wherein at least one of the conveying means (23, 24, 25) consists of toothed discs (28; 29; 33-38) seated on a common shaft (32) and corresponding in number to the number of rows of lattice intersections, the tooth flanks (40, 39) of which roll over the intersections (16) during rotation, whereby the lattice (12) is held at the intersections (16) and continuously transported.
  15. Apparatus according to claim 14, wherein the width of the toothed discs (29, 33-38) in relation to their distance apart is chosen to be so small that the tooth flanks (39, 40) engage only in the middle, flat region of the intersection surfaces (16).
  16. Apparatus according to claim 9 or 10, wherein at least one of the conveying means consists of a rolling body pair (23, 24, 25), at least parts of the lattice structure being reproduced in three-dimensional form in each of the two rolling bodies, namely as the negative shape in one rolling body and as the positive shape in the other, so that, as the rolling bodies rotate simultaneously and counter to each other, the parts of the lattice are continuously held and transported between the rolling bodies in the rolling-off operation.
  17. Apparatus according to claim 16, wherein the two rolling bodies are formed by rollers in which the complete lattice structure is reproduced in three-dimensional form as the negative shape in one of the rollers and as the positive shape in the other, so that, as the rolling bodies rotate simultaneously and counter to each other, the lattice is continuously held and transported between the rolling bodies in the rolling-off operation.
  18. Apparatus according to any one of claims 9 to 17, wherein at least one calibrating means (26) is provided for calibrating one or more lattice parameters or deforming at least part of the lattice structure to the desired final shape.
  19. Apparatus according to claim 18, wherein the calibrating means is formed by a pair of rollers in one roller of which the lattice structure or parts of the lattice structure to be calibrated is/are reproduced as the three-dimensional positive shape and, in the other, is/are reproduced as the negative shape.
  20. Apparatus according to claim 18, wherein the calibrating means (26) consists of cylindrical surfaces (44, 45) which rotate at a distance from each other corresponding to the desired height (h) of the lattice and between which the lattice web (12) is passed in order to calibrate the lattice height (h).
  21. Apparatus according to claims 14 and 20, wherein the calibrating means (26) is integrated in the or one of the conveying means having toothed discs (32-38) by spacing apart the outer surfaces of the shafts (44, 45) connecting the toothed discs (32-38) at a distance corresponding to the desired lattice height (h) so that the lattice (12) is held and transported and, at the same time, its height (h) is adjusted.
  22. Apparatus according to any one of claims 9 to 21, wherein the first conveying means (23) has at least one rotating body (28) the circumference or outer surface of which has projections (27) which engage in the incisions (3, 4) in the web of material (2).
EP93810784A 1992-11-24 1993-11-12 Method and machine for making expanded metal Expired - Lifetime EP0599782B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH359692 1992-11-24
CH3596/92 1992-11-24

Publications (2)

Publication Number Publication Date
EP0599782A1 EP0599782A1 (en) 1994-06-01
EP0599782B1 true EP0599782B1 (en) 1997-12-29

Family

ID=4259401

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93810784A Expired - Lifetime EP0599782B1 (en) 1992-11-24 1993-11-12 Method and machine for making expanded metal

Country Status (5)

Country Link
US (1) US5461761A (en)
EP (1) EP0599782B1 (en)
JP (1) JP3448831B2 (en)
CN (1) CN1049372C (en)
DE (1) DE59307889D1 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2729595B1 (en) * 1995-01-25 1997-04-04 Metal Deploye Sa DECORATED DEFORMED METAL STRUCTURE, PARTICULARLY DEPLOYED METAL, AND PROCESS FOR OBTAINING SAME
CN1069116C (en) * 1996-12-05 2001-08-01 盟鑫工业股份有限公司 Manufacture of reinforced grid
DE19738360C2 (en) * 1997-09-02 2000-05-31 Siemens Ag Receiver for mobile radio systems
IT1320358B1 (en) * 2000-05-23 2003-11-26 Ind Accumulatori S P A Soc PROCEDURE AND MACHINE FOR THE REALIZATION OF ACCUMULATOR PLATES.
DE10027010C2 (en) * 2000-05-31 2002-06-27 Wilhelm Roettger Process for producing expanded metal and expanded metal produced using this process
US6629016B1 (en) * 2002-03-28 2003-09-30 Amerimax Diversified Products, Inc. Apparatus and method of manufacturing expanded sheet metal
DE10357732B4 (en) * 2003-12-06 2012-01-19 Gba-Panek Gmbh Process for the production of expanded metal elements for the construction of fences and fence panel made of an expanded metal mesh element
US20060008614A1 (en) * 2004-07-12 2006-01-12 Rockwell Anthony L Die cut mesh material from polymer fiber
US8133568B2 (en) * 2005-08-22 2012-03-13 Owens Corning Intellectual Capital, Llc Die cut insulation blanket
US7923092B2 (en) * 2005-08-22 2011-04-12 Owens Corning Intellectual Capital, Llc Die cut insulation blanket and method for producing same
US8667688B2 (en) * 2006-07-05 2014-03-11 United Technologies Corporation Method of assembly for gas turbine fan drive gear system
US20110127282A1 (en) * 2009-05-26 2011-06-02 Lisa Carvajal Disposable Splatter Screens
WO2011041270A1 (en) * 2009-09-29 2011-04-07 Wallner Tooling/Expac, Inc. Expanded metal and process of making the same
CN101862789B (en) * 2010-06-25 2011-08-10 鞍山东方钢结构有限公司 Production line of C-shaped steel for tensile steel frame mesh
DE102010044695A1 (en) * 2010-09-08 2012-03-08 Hacanoka Gmbh Process for the production of net-like metal mats and apparatus for carrying out the process
FR3036307B1 (en) * 2015-05-22 2017-06-02 Halcyon IMPROVED PROCESS FOR MANUFACTURING A SANDWICH-TYPE METAL PIECE HAVING A NON-DEVELOPABLE FORM
USD921174S1 (en) * 2016-08-19 2021-06-01 Wallner Expac, Inc. Diffuser
USD921175S1 (en) * 2016-08-19 2021-06-01 Wallner Expac, Inc. Diffuser
DE102017009311A1 (en) * 2017-10-07 2019-04-11 Hacanoka Gmbh A method for spreading and formatting profiled metallic strip material into a net-like mat structure and apparatus for carrying out the method
JP7187383B2 (en) * 2019-05-15 2022-12-12 旭化成建材株式会社 lightweight aerated concrete panel
MX2021016120A (en) 2019-07-02 2022-03-02 Brentwood Ind Inc Cooling tower splash bar hanger and related assembly.
CA3143671C (en) 2019-07-02 2023-02-21 Brentwood Industries, Inc. Cooling tower splash bar and related assembly
CN113832614A (en) * 2021-05-11 2021-12-24 中国建筑股份有限公司 Grid production equipment, grid and grid manufacturing method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE926424C (en) * 1939-06-16 1955-04-18 Mesnel Freres Soc Method and device for the production of cutouts in metal strips or bands
US2537764A (en) * 1946-08-21 1951-01-09 Res Prod Corp Apparatus for slitting and expanding sheet material
US3455135A (en) * 1967-08-15 1969-07-15 Stanray Corp Roll forming machine for producing cellular core panels
US3570086A (en) * 1969-04-21 1971-03-16 Metalex Corp Methods and machines for manufacture of expanded metal
DE1944273A1 (en) * 1969-09-01 1971-03-04 Erdmann Kluge Expanded metal plastics mesh
GB1470196A (en) * 1974-11-13 1977-04-14 Cooling Dev Ltd Contact packing
US4305187A (en) * 1978-05-09 1981-12-15 Yuasa Battery Company Limited Method and apparatus for making continuous grids for lead acid batteries
EP0069241B1 (en) * 1981-07-08 1985-09-11 Kühni AG Packing for material exchange columns, and process for producing the packing
GB2120138B (en) * 1982-05-19 1985-10-23 Rondo Building Services Ltd Production of perforated metal strip
JPS6114028A (en) * 1984-06-29 1986-01-22 Nakayama Kogyo Kk Production of lath for building
AT389658B (en) * 1987-09-04 1990-01-10 Gass Helmut METHOD AND DEVICE FOR THE PRODUCTION OF FILLING MATERIAL FOR CAVITY ROOMS AND SUCH A FILLING MATERIAL
DE3825861A1 (en) * 1988-07-29 1990-02-01 Schmidlin Hans METHOD AND DEVICE FOR HANDLING AND PROCESSING A HONEYCOMB TAPE
US5199142A (en) * 1991-09-04 1993-04-06 The Gem City Engineering Co. Production of expanded metal strip for reinforcing a resilient product

Also Published As

Publication number Publication date
JPH06210368A (en) 1994-08-02
JP3448831B2 (en) 2003-09-22
US5461761A (en) 1995-10-31
DE59307889D1 (en) 1998-02-05
CN1117895A (en) 1996-03-06
EP0599782A1 (en) 1994-06-01
CN1049372C (en) 2000-02-16

Similar Documents

Publication Publication Date Title
EP0599782B1 (en) Method and machine for making expanded metal
DE1479677C3 (en) Process for producing an open network in plastic films
DE1927769C3 (en) Device for producing strips by slitting a paper web in the longitudinal direction
DE2549072C3 (en) Device for producing openings in strip material made of sheet metal
DE1296780B (en) Method for producing a fabric-like network from a film made of thermoplastic material
EP2172109A2 (en) Method for creating dough blanks with an at least mainly triangular and equal-sided basic shape from a dough strip and corresponding device
CH616055A5 (en)
DD298344A5 (en) METHOD AND DEVICE FOR PULLING A PIGGY MASS
DE3020009A1 (en) DEVICE FOR PRODUCING BAGS FROM A PLASTIC TUBE TUBE
DE2135233C2 (en) Method and device for the production of expanded metal products
DE19612239C2 (en) Device for producing a sheet metal profiled at the edge, in particular from a flat sheet
DE4027043C2 (en) Process for producing strip sheets deformed in cross section
DE2856415A1 (en) DEVICE FOR PRODUCING A LAYER OF PARALLEL FEDES
DE2704418A1 (en) METHOD AND ARRANGEMENT FOR PERFORATING A STRIP OF DEFORMABLE MATERIAL
DE1536849B1 (en) Device and method for the production of folded filter inserts from a filter material band
DE3447506C2 (en)
EP1126764B1 (en) Method for producing an adhesive closing element
DE2058026A1 (en) Device for bending the string of struts of lattice girders
DE2508842C2 (en) Gear-shaped rolling tool for fine machining the tooth flanks of gears
DE2429016C2 (en) Method for producing a needled textile material and device for carrying out the method
DE19739605A1 (en) Device for punching out recesses
DE508474C (en) Automatic press for successively producing parallel rows of cuts or holes in uncut material panels
EP3275820B1 (en) Device for cutting a web of material into sections
EP1160026A2 (en) Method of producing expanded metal as well as the expanded metal produced by this method
DE1280609C2 (en) Method and device for producing two coupled rows of zipper links

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI

17P Request for examination filed

Effective date: 19940720

17Q First examination report despatched

Effective date: 19951220

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KELLER & PARTNER PATENTANWAELTE AG

Ref country code: CH

Ref legal event code: EP

ITF It: translation for a ep patent filed

Owner name: DR. ING. AUSSERER ANTON

REF Corresponds to:

Ref document number: 59307889

Country of ref document: DE

Date of ref document: 19980205

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980325

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071112

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20091022

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20091110

Year of fee payment: 17

Ref country code: FR

Payment date: 20091116

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100118

Year of fee payment: 17

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20101112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20091124

Year of fee payment: 17

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20110616

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110801

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59307889

Country of ref document: DE

Effective date: 20110601

Ref country code: DE

Ref legal event code: R119

Ref document number: 59307889

Country of ref document: DE

Effective date: 20110531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101112

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20110616