EP0598316A1 - Process for circulation of groundwater in areas with a sloping groundwaterlevel - Google Patents

Process for circulation of groundwater in areas with a sloping groundwaterlevel Download PDF

Info

Publication number
EP0598316A1
EP0598316A1 EP93118183A EP93118183A EP0598316A1 EP 0598316 A1 EP0598316 A1 EP 0598316A1 EP 93118183 A EP93118183 A EP 93118183A EP 93118183 A EP93118183 A EP 93118183A EP 0598316 A1 EP0598316 A1 EP 0598316A1
Authority
EP
European Patent Office
Prior art keywords
well
groundwater
shaft
wells
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP93118183A
Other languages
German (de)
French (fr)
Inventor
Bruno Bernhardt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IEG Industrie Engineering GmbH
Original Assignee
IEG Industrie Engineering GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IEG Industrie Engineering GmbH filed Critical IEG Industrie Engineering GmbH
Publication of EP0598316A1 publication Critical patent/EP0598316A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/30Specific pattern of wells, e.g. optimising the spacing of wells
    • E21B43/305Specific pattern of wells, e.g. optimising the spacing of wells comprising at least one inclined or horizontal well
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B3/00Methods or installations for obtaining or collecting drinking water or tap water
    • E03B3/06Methods or installations for obtaining or collecting drinking water or tap water from underground
    • E03B3/08Obtaining and confining water by means of wells
    • E03B3/15Keeping wells in good condition, e.g. by cleaning, repairing, regenerating; Maintaining or enlarging the capacity of wells or water-bearing layers

Definitions

  • the invention relates to a method for circulating groundwater in soil areas with a gradient of the groundwater level.
  • the known method has the disadvantage that for pumping the groundwater out of the extraction well up to Earth's surface requires a lot of energy.
  • the groundwater suffers heating due to the change in density when pumping. This leads to problems when reintroducing the water into the swallowing well.
  • the warm water layer remains on the surface of the groundwater-bearing layer, so that there is only a slight mixing and circulation of the groundwater and, consequently, only a low efficiency in the purification of the groundwater.
  • the pumping out of the groundwater leads to a change in the isobars and isotherms in the groundwater, which always leads to crystalline precipitates when the phase is saturated, for example with iron or lime, and thus to blockages in the well and soil.
  • a method for circulating groundwater in soil areas with a gradient of the groundwater level in which, according to the invention, first a first well shaft with a water-permeable shaft wall into the groundwater-flowed soil and then at least a second well shaft with a water-permeable shaft wall at a distance from the first well shaft into a soil area with a lower groundwater level is introduced before a cross-connection between the first well shaft and the second well or wells is created in such a way that groundwater can flow from the first well shaft using the groundwater level gradient into the second well or wells, the advantage that the energy of the natural groundwater gradient in the ground is used to transport water from the first well serving as the extraction well to the second well or two serving as the swallowing well.
  • the water reintroduced into the swallowing wells no longer flows from the swallowing well not only on the surface of the aquifer, but also in deeper layers, so that overall there is a wider flow zone in the ground and thus a better cleaning effect.
  • the groundwater flow in the cross connections can be supported by a pump.
  • at least three well shafts can also be arranged one behind the other in a row extending in the direction of decreasing groundwater level, successive wells being hydraulically connected to one another by a cross connection.
  • the middle wells can each be divided by a transverse wall into two mutually sealed shaft areas, one of which can be used to discharge groundwater into the surrounding soil and the other can be used to absorb groundwater from the soil.
  • the above-described vertical flow in the swallowing well is shifted to the surrounding earth, so that there is an increased vertical flow movement of the groundwater in the soil in the vicinity of the middle wells, which further increases the cleaning effect can.
  • the distances between the wells can advantageously be chosen to be greater than the height of the water column in the well shafts, since the radius of a catchment area of a well is always greater than the groundwater height in the well shaft. Arranging the individual wells too close together would unnecessarily limit the total catchment area that can be achieved for groundwater circulation.
  • a first well shaft 11 and a second well shaft 12 are introduced into a soil 10 through which groundwater flows, up to a base 13 which delimits a bottom water-bearing ground layer 14 at the bottom.
  • the groundwater level has the gradient 15 shown in dash-dot lines in the bottom region 10 shown.
  • Both well shafts 11 and 12 have water-permeable shaft walls 16 and 17.
  • the wells 11 and 12 are also hydraulically connected to one another by a pipe 19 which runs obliquely from bottom to top in the groundwater flow direction 18. Because of the groundwater gradient H1 between the two wells, the water column forming in the first well 11 is higher than in the second well 12.
  • the resulting pressure difference causes water from the first well 11 to flow through the pipe 19 into the second well 12, which is shown in FIG. 1 is indicated by arrows 20. Due to the pipe connection 19, the groundwater levels 21 and 22 prevailing in the shafts are almost equalized. The groundwater level 21 in the first shaft 11 drops by the amount H3, while the groundwater level 22 in the second well shaft 12 rises by almost the same amount H4 .
  • the difference H5 in the groundwater levels 21 and 22 of the well shafts 11 and 12, which can also be ascertained after the creation of the cross connection between the two well shafts 11 and 12, is due to losses due to water resistance in the wells and in the tube 19.
  • groundwater Since the groundwater is colder at greater depths and thus relatively cold water is withdrawn from the bottom of the well shaft 11 via the pipe 19 and fed into wells 12 in comparatively warmer water layers, this water sinks there due to its higher density in the well before it passes through the openings in the shaft wall 17 come out. In this way, a good mixing of the water occurs in the well shaft 12 and a uniform outflow into the surrounding soil 14. With the method according to the invention, groundwater can therefore be supplied without a motor drive fed to and discharged from a second well to mix or treat groundwater.
  • three well shafts 32, 33 and 34 are introduced into a soil 30 with a water-conducting layer 31 up to a bottom 35 which delimits the groundwater-conducting layer at the bottom.
  • the wells 32-34 are in a row one behind the other in the direction of the flow direction 36 and thus in the direction of the falling groundwater level 37.
  • the well shaft 32 and the well shaft 33 are hydraulically connected to one another by a pipe 38 corresponding to the pipe 19 in FIG. 1, and the well shafts 33 and 34 to another pipe 39.
  • the pipes 38 and 39 each again transport water from the lower region of the previous well shaft to just below the groundwater level in the subsequent well shaft.
  • the groundwater levels 40, 41 and 42 that form in the individual well shafts 32-34 thus again reach a largely identical level.
  • the wells 32 and 34 correspond to the wells 11 and 12 in FIG. 1.
  • Well 32 serves as an extraction well and well 34 serves as a swallowing well.
  • the middle well 33 has a shaft wall 43 that is only partially permeable to water and is divided in between by a seal 44 into two vertical shaft areas 45 and 46.
  • the groundwater conveyed by the pipe 38 cannot flow downwards in the well shaft 33 but is pressed outwards into the surrounding soil 31 and sinks there due to its higher density, from where it at least partially enters the lower shaft area 46 of the middle well 33 is sucked in again so that a vertical flow forms in the soil 31 in the vicinity of the well 33.
  • This improves the mixing and circulation of the groundwater and thus increases the efficiency of the arrangement.
  • the well shaft 32 and the lower shaft area 46 of the middle well 33 are filled with filter beds 47.
  • the fountain 33 is also surrounded on the outside of the shaft wall 43 by filter gravel. These filters can be used to remove further contaminants from the groundwater.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Health & Medical Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

A process for the circulation of groundwater in areas (14) with a sloping groundwater table (15), in the case of which process at least two well shafts (11, 12) are introduced in the soil one behind the other in the direction of the falling groundwater table and, subsequently, a cross-connection (19) is provided between the first well shaft (11) and the second well shaft or shafts (12) such that, by exploiting the slope of the groundwater table, groundwater can flow from the first well shaft (11) into the second well shaft or shafts (12). <IMAGE>

Description

Die Erfindung betrifft ein Verfahren zur Umwälzung von Grundwasser in Bodenbereichen mit einem Gefälle des Grundwasserspiegels.The invention relates to a method for circulating groundwater in soil areas with a gradient of the groundwater level.

Es ist bereits bekannt, Entnahme- und Schluckbrunnen in grundwasserdurchströmtes Erdreich einzubringen, um anschließend aus dem Entnahmebrunnen Grundwasser abzupumpen und dem Schluckbrunnen wieder zuzuführen. Dadurch entsteht ein Einzugsbereich in der Umgebung des Entnahmebrunnens, aus dem Grundwasser diesem Brunnen zufließt, was sich durch eine Absenkung des Grundwasserspiegels in der Umgebung des Entnahmebrunnens bemerkbar macht. Andererseits entsteht ein Grundwasserausstoßbereich mit einem erhöhten Grundwasserspiegel in der Umgebung des Schluckbrunnens, so daß sich insgesamt eine erwünschte Umwälzung des Grundwassers durch des Erdreich ergibt. Durch diese Umwälzung kann das Grundwasser nach aufgetretenen Kontaminationen gereinigt und/oder zur Trinkwassergewinnung aufbereitet werden.It is already known to introduce extraction wells and swallowing wells into soil through which ground water flows, in order to then pump ground water out of the extraction well and to feed it back into the swallowing well. This creates a catchment area in the vicinity of the extraction well, from which groundwater flows to this well, which is noticeable by a lowering of the groundwater level in the vicinity of the extraction well. On the other hand, there is a groundwater discharge area with an elevated groundwater level in the vicinity of the swallowing well, so that overall there is a desired circulation of the groundwater through the ground. As a result of this circulation, the groundwater can be cleaned and / or treated for drinking water after contamination has occurred.

Das bekannte Verfahren hat jedoch den Nachteil, daß für das Abpumpen des Grundwassers aus dem Entnahmebrunnen bis über die Erdoberfläche ein hoher Energieaufwand notwendig ist. Außerdem erleidet das Grundwasser durch die Dichteänderung beim Pumpen eine Erwärmung. Dies führt zu Problemen beim Wiedereinleiten des Wassers in die Schluckbrunnen. Die warme Wasserschicht verbleibt an der Oberfläche der grundwasserführenden Schicht, so daß sich nur eine geringe Durchmischung und Umwälzung des Grundwassers und damit verbunden nur eine geringe Effizienz bei der Reinigung des Grundwassers ergibt. Außerdem führt das Abpumpen des Grundwassers zu einer Änderung der Isobare und Isotherme im Grundwasser, was bei einer Phasensättigung beispielsweise mit Eisen oder Kalk stets zu kristallinen Ausfällungen und damit zu Verockerungen von Brunnen und Boden führt.However, the known method has the disadvantage that for pumping the groundwater out of the extraction well up to Earth's surface requires a lot of energy. In addition, the groundwater suffers heating due to the change in density when pumping. This leads to problems when reintroducing the water into the swallowing well. The warm water layer remains on the surface of the groundwater-bearing layer, so that there is only a slight mixing and circulation of the groundwater and, consequently, only a low efficiency in the purification of the groundwater. In addition, the pumping out of the groundwater leads to a change in the isobars and isotherms in the groundwater, which always leads to crystalline precipitates when the phase is saturated, for example with iron or lime, and thus to blockages in the well and soil.

Demgegenüber weist ein Verfahren zur Umwälzung von Grundwasser in Bodenbereichen mit einem Gefälle des Grundwasserspiegels, bei dem erfindungsgemäß zunächst ein erster Brunnenschacht mit wasserdurchlässiger Schachtwandung in das grundwasserdurchströmte Erdreich und anschließend mindestens ein zweiter Brunnenschacht mit wasserdurchlässiger Schachtwandung im Abstand vom ersten Brunnenschacht in einen Bodenbereich mit geringerem Grundwasserspiegel eingebracht wird, bevor eine Querverbindung zwischen dem ersten Brunnenschacht und dem oder den zweiten Brunnenschächten derart geschaffen wird, daß Grundwasser vom ersten Brunnenschacht unter Ausnutzung des Grundwasserspiegel-Gefälles in den oder die zweiten Brunnenschächten fließen kann, den Vorteil auf, daß die Energie des natürlichen Grundwassergefälles im Erdreich zum Wassertransport von dem als Entnahmebrunnen dienenden ersten Brunnen zu dem oder den zweiten, als Schluckbrunnen dienenden Brunnen ausgenutzt wird. Ein Grundwassergefälle ist fast überall vorhanden, insbesondere in Quellgebieten und in der Nähe von Flüssen. Das erfindungsgemäße Verfahren ist daher nahezu überall einsetzbar. Wenn die Querverbindungen zu den jeweils durch Rohre oder Schläuche vom unteren Schachtende des ersten Brunnens zu dem oder den Schächten der zweiten Brunnen dicht unterhalb des dort herrschenden Grundwasserspiegels gebildet werden, wird kühleres Wasser vom unteren Schachtende des ersten Brunnens in wärmere Wasserbereiche des oder der zweiten Brunnen eingeleitet, das anschließend aufgrund seiner größeren Dichte in den zweiten Brunnen nach unten strömt und somit dort eine vertikale Strömung verbunden mit einer guten Durchmischung des Grundwassers bewirkt. Das in die Schluckbrunnen wieder eingeleitete Wasser entströmt damit nicht mehr nur an der Oberfläche des Grundwasserleiters dem Schluckbrunnen sondern auch in tieferen Schichten, so daß sich insgesamt eine breitere Strömungszone im Erdreich und damit ein besserer Reinigungseffekt ergibt. Der Grundwasserfluß in den Querverbindungen kann dabei durch eine Pumpe unterstützt werden. Zur Erzielung eines möglichst großen Einzugsbereiches für die Grundwasserumwälzung können auch mindestens drei Brunnenschächte in einer sich in Richtung abnehmenden Grundwasserspiegels erstreckenden Reihe hintereinanderliegend angeordnet werden, wobei aufeinanderfolgende Brunnen jeweils durch eine Querverbindung hydraulisch miteinander verbunden werden. Hierbei können die mittleren Brunnen jeweils durch eine Querwandung in zwei gegeneinander abgedichtete Schachtbereiche aufgeteilt werden, von denen einer der Abgabe von Grundwasser ins umliegende Erdreich und der andere der Aufnahme von Grundwasser aus dem Erdreich dienen kann. Durch die Aufteilung der mittleren Brunnen in zwei vertikale Bereiche wird die obenbeschriebene vertikale Strömung in den Schluckbrunnen auf das umliegende Erdreich verlagert, so daß sich in der Umgebung der mittleren Brunnen eine verstärkte vertikale Fließbewegung des Grundwassers im Erdreich ergibt, wodurch der Reinigungseffekt noch zusätzlich erhöht werden kann. Die Abstände der Brunnen untereinander können dabei vorteilhafterweise größer gewählt werden als die Höhe der Wassersäule in den Brunnenschächten, da der Radius eines Einzugsgebietes eines Brunnens stets größer als die Grundwasserhöhe im Brunnenschacht ist. Ein zu dichtes Anordnen der einzelnen Brunnen zueinander würde den insgesamt erzielbaren Einzugsbereich für die Grundwasserumwälzung unnötig einschränken.In contrast, a method for circulating groundwater in soil areas with a gradient of the groundwater level, in which, according to the invention, first a first well shaft with a water-permeable shaft wall into the groundwater-flowed soil and then at least a second well shaft with a water-permeable shaft wall at a distance from the first well shaft into a soil area with a lower groundwater level is introduced before a cross-connection between the first well shaft and the second well or wells is created in such a way that groundwater can flow from the first well shaft using the groundwater level gradient into the second well or wells, the advantage that the energy of the natural groundwater gradient in the ground is used to transport water from the first well serving as the extraction well to the second well or two serving as the swallowing well. There is a groundwater gradient almost everywhere, especially in spring areas and near rivers. The method according to the invention can therefore be used almost anywhere. If the cross connections to the respective pipes or hoses from the lower shaft end of the first well to the shafts or shafts of the second wells are formed just below the groundwater table there, the situation becomes cooler Water is introduced from the lower shaft end of the first well into warmer water areas of the second well or wells, which then flows downward into the second well due to its greater density and thus causes a vertical flow there combined with a good mixing of the groundwater. The water reintroduced into the swallowing wells no longer flows from the swallowing well not only on the surface of the aquifer, but also in deeper layers, so that overall there is a wider flow zone in the ground and thus a better cleaning effect. The groundwater flow in the cross connections can be supported by a pump. To achieve the largest possible catchment area for groundwater circulation, at least three well shafts can also be arranged one behind the other in a row extending in the direction of decreasing groundwater level, successive wells being hydraulically connected to one another by a cross connection. The middle wells can each be divided by a transverse wall into two mutually sealed shaft areas, one of which can be used to discharge groundwater into the surrounding soil and the other can be used to absorb groundwater from the soil. By dividing the middle wells into two vertical areas, the above-described vertical flow in the swallowing well is shifted to the surrounding earth, so that there is an increased vertical flow movement of the groundwater in the soil in the vicinity of the middle wells, which further increases the cleaning effect can. The distances between the wells can advantageously be chosen to be greater than the height of the water column in the well shafts, since the radius of a catchment area of a well is always greater than the groundwater height in the well shaft. Arranging the individual wells too close together would unnecessarily limit the total catchment area that can be achieved for groundwater circulation.

Weiterhin ist es möglich, in die Brunnen von außen Zusätze zur Wasserbehandung zuzugeben oder die Brunnen mindestens teilweise mit Filtereinrichtungen zu versehen. Auf diese Weise kann beispielsweise eine pH-Wert-Regulierung des Grundwassers oder eine Neutralisierung einer zu hohen Belastung mit Nitraten oder Chlorkohlenwasserstoffen durchgeführt werden. Bei entsprechenden Grundwassergefällehöhen und entsprechenden Drücken können in den Brunnenschächten über entsprechende Filterkörnungen auch wirkungsvoll Strahlungsträger, beispielsweise Plutonium, ausgefiltert werden.It is also possible to add additives for water treatment to the wells from the outside or to provide the wells with filter devices at least in part. In this way it is possible, for example, to regulate the pH of the groundwater or to neutralize excessive levels of nitrates or chlorinated hydrocarbons. With appropriate groundwater drop heights and corresponding pressures, radiation carriers, for example plutonium, can also be filtered out effectively in the well shafts by means of appropriate filter grains.

Nachfolgend wird das erfindungsgemäße Verfahren anhand zweier Realisierungsbeispiele näher erläutert.The method according to the invention is explained in more detail below on the basis of two implementation examples.

Es zeigen:

Fig. 1
einen schematischen Längsschnitt durch zwei hintereinander in Richtung des Grundwassergefälles angeordnete Brunnen;
Fig. 2
einen schematischen Längsschnitt durch drei in Richtung des Grundwassergefälles hintereinander angeordnete Brunnen.
Show it:
Fig. 1
a schematic longitudinal section through two wells arranged one behind the other in the direction of the groundwater gradient;
Fig. 2
a schematic longitudinal section through three wells arranged one behind the other in the direction of the groundwater gradient.

In Fig. 1 sind in ein grundwasserdurchströmtes Erdreich 10 ein erster Brunnenschacht 11 und ein zweiter Brunnenschacht 12 bis zu einer Sohle 13, die eine grundwasserführende Bodenschicht 14 nach unten hin begrenzt, eingebracht. Der Grundwasserspiegel weist in dem dargestellten Bodenbereich 10 das strichpunktiert eingezeichnete Gefälle 15 auf. Auf diese Weise differieren die Grundwasserspiegel im ersten Brunnen 11 und im zweiten Brunnen 12 um einen Betrag H1. Beide Brunnenschächte 11 und 12 weisen wasserdurchlässige Schachtwandungen 16 und 17 auf. Die Brunnen 11 und 12 sind außerdem durch ein in Grundwasserfließrichtung 18 von unten nach oben schräg verlaufendes Rohr 19 hydraulisch miteinander verbunden. Aufgrund des Grundwassergefälles H1 zwischen den beiden Brunnen ist die sich im ersten Brunnen 11 ausbildende Wassersäule höher als im zweiten Brunnen 12. Der daraus resultierende Druckunterschied bewirkt ein Fließen von Wasser aus dem ersten Brunnen 11 durch das Rohr 19 in den zweiten Brunnen 12, was in Fig. 1 durch Pfeile 20 angedeutet ist. Durch die Rohrverbindung 19 kommt es daher nahezu zu einer Angleichung der in den Schächten herrschenden Grundwasserspiegel 21 und 22. Der Grundwasserspiegel 21 im ersten Schacht 11 sinkt um den Betrag H3 ab, während der Grundwasserspiegel 22 im zweiten Brunnenschacht 12 um nahezu den gleichen Betrag H4 ansteigt. Der auch nach Schaffung der Querverbindung zwischen den beiden Brunnenschächten 11 und 12 durch das Rohr 19 festzustellende Unterschied H5 in den Grundwasserspiegeln 21 und 22 der Brunnenschächte 11 und 12 ist auf Verluste durch Wasserwiderstände in den Brunnen und im Rohr 19 zurückzuführen. Nach Schaffung der hydraulischen Querverbindung 19 zwischen den beiden Brunnen 11 und 12 wird das durch das Rohr 19 aus dem Brunnen 11 abfließende Wasser durch aus dem umgebenden Erdreich 14 zustömendes Wasser wieder ersetzt. In der Umgebung des Brunnenschachtes 11 ergibt sich dabei eine trichterförmige Absenkung des Grundwasserspiegels 15, was durch die strichpunktierte Linie 23 angedeutet ist. Im Gegensatz dazu bildet sich in der Umgebung des zweiten Brunnenschachtes 12 eine Anhöhung des Grundwasserspiegels 15 aus, angedeutet durch die strichpunktierte Linie 24, und es fließt Wasser durch die seitlichen Schachtwände 17 des Brunnens 12 in das umgebende Erdreich 14 ab. Da das Grundwasser in größeren Tiefen kälter ist und somit über das Rohr 19 relativ kaltes Wasser am Boden des Brunnenschachtes 11 entnommen und in vergleichsweise wärmere Wasserschichten in Brunnen 12 zugeführt wird, sinkt dort dieses Wasser aufgrund seiner höheren Dichte im Schacht nach unten, bevor es durch die Öffnungen in der Schachtwandung 17 nach außen tritt. Auf diese Weise tritt eine gute Vermischung des Wassers im Brunnenschacht 12 und ein gleichmäßiges Ausströmen in das umgebende Erdreich 14. Mit dem erfindungsgemäßen Verfahren kann also ohne motorischen Antrieb Grundwasser einem Brunnen zu- und von einem zweiten Brunnen abgeführt werden, um Grundwasser zu mischen oder zu behandeln.In FIG. 1, a first well shaft 11 and a second well shaft 12 are introduced into a soil 10 through which groundwater flows, up to a base 13 which delimits a bottom water-bearing ground layer 14 at the bottom. The groundwater level has the gradient 15 shown in dash-dot lines in the bottom region 10 shown. In this way, the groundwater levels in the first well 11 and in the second well 12 differ by an amount H1. Both well shafts 11 and 12 have water-permeable shaft walls 16 and 17. The wells 11 and 12 are also hydraulically connected to one another by a pipe 19 which runs obliquely from bottom to top in the groundwater flow direction 18. Because of the groundwater gradient H1 between the two wells, the water column forming in the first well 11 is higher than in the second well 12. The resulting pressure difference causes water from the first well 11 to flow through the pipe 19 into the second well 12, which is shown in FIG. 1 is indicated by arrows 20. Due to the pipe connection 19, the groundwater levels 21 and 22 prevailing in the shafts are almost equalized. The groundwater level 21 in the first shaft 11 drops by the amount H3, while the groundwater level 22 in the second well shaft 12 rises by almost the same amount H4 . The difference H5 in the groundwater levels 21 and 22 of the well shafts 11 and 12, which can also be ascertained after the creation of the cross connection between the two well shafts 11 and 12, is due to losses due to water resistance in the wells and in the tube 19. After creating the hydraulic cross-connection 19 between the two wells 11 and 12, the water flowing out of the well 11 through the pipe 19 is replaced by water flowing in from the surrounding soil 14. In the vicinity of the well shaft 11 there is a funnel-shaped lowering of the groundwater level 15, which is indicated by the dash-dotted line 23. In contrast, an increase in the groundwater level 15 is formed in the vicinity of the second well shaft 12, indicated by the dash-dotted line 24, and water flows through the side well walls 17 of the well 12 into the surrounding soil 14. Since the groundwater is colder at greater depths and thus relatively cold water is withdrawn from the bottom of the well shaft 11 via the pipe 19 and fed into wells 12 in comparatively warmer water layers, this water sinks there due to its higher density in the well before it passes through the openings in the shaft wall 17 come out. In this way, a good mixing of the water occurs in the well shaft 12 and a uniform outflow into the surrounding soil 14. With the method according to the invention, groundwater can therefore be supplied without a motor drive fed to and discharged from a second well to mix or treat groundwater.

Im Beispiel in Fig. 2 sind in ein Erdreich 30 mit einer wasserleitenden Schicht 31 drei Brunnenschächte 32, 33 und 34 bis zu einer die grundwasserleitende Schicht nach unten hin begrenzenden Sohle 35 eingebracht. Die Brunnen 32 - 34 liegen dabei in einer Reihe in Richtung der Fließrichtung 36 und damit in Richtung des fallenden Grundwasserspiegels 37 im Erdreich 30 hintereinander. Der Brunnenschacht 32 und der Brunnenschacht 33 sind mit einem dem Rohr 19 in Fig. 1 entsprechenden Rohr 38 und die Brunnenschächte 33 und 34 mit einem weiteren Rohr 39 hydraulisch miteinander verbunden. Die Rohre 38 und 39 transportieren dabei wieder jeweils Wasser vom unteren Bereich des vorhergehenden Brunnenschachtes bis dicht unterhalb des Grundwasserspiegels im nachfolgenden Brunnenschacht. Die sich dadurch in den einzelnen Brunnenschächten 32 - 34 ausbildenden Grundwasserspiegel 40, 41 und 42 erreichen dadurch wieder ein weitgehend gleiches Niveau. Die Brunnen 32 und 34 entsprechen dabei den Brunnen 11 und 12 in Fig. 1. Brunnen 32 dient als Entnahmebrunnen und der Brunnen 34 als Schluckbrunnen. Der mittlere Brunnen 33 hingegen weist eine nur bereichsweise wasserdurchlässige Schachtwandung 43 auf und ist dazwischen durch eine Dichtung 44 in zwei vertikale Schachtbereiche 45 und 46 aufgeteilt. Das vom Rohr 38 geförderte Grundwasser kann dadurch nicht im Brunnenschacht 33 selbst nach unten strömen sondern wird nach außen in das umgebende Erdreich 31 gedrückt und sinkt dort aufgrund seiner höheren Dichte nach unten, von wo es mindestens teilweise in den unteren Schachtbereich 46 des mittleren Brunnens 33 wieder angesaugt wird, so daß sich eine vertikale Strömung im Erdreich 31 in der Umgebung des Brunnens 33 ausbildet. Die Durchmischung und Umwälzung des Grundwassers wird dadurch noch verbessert und damit der Wirkungsgrad der Anordung erhöht.In the example in FIG. 2, three well shafts 32, 33 and 34 are introduced into a soil 30 with a water-conducting layer 31 up to a bottom 35 which delimits the groundwater-conducting layer at the bottom. The wells 32-34 are in a row one behind the other in the direction of the flow direction 36 and thus in the direction of the falling groundwater level 37. The well shaft 32 and the well shaft 33 are hydraulically connected to one another by a pipe 38 corresponding to the pipe 19 in FIG. 1, and the well shafts 33 and 34 to another pipe 39. The pipes 38 and 39 each again transport water from the lower region of the previous well shaft to just below the groundwater level in the subsequent well shaft. As a result, the groundwater levels 40, 41 and 42 that form in the individual well shafts 32-34 thus again reach a largely identical level. The wells 32 and 34 correspond to the wells 11 and 12 in FIG. 1. Well 32 serves as an extraction well and well 34 serves as a swallowing well. The middle well 33, on the other hand, has a shaft wall 43 that is only partially permeable to water and is divided in between by a seal 44 into two vertical shaft areas 45 and 46. As a result, the groundwater conveyed by the pipe 38 cannot flow downwards in the well shaft 33 but is pressed outwards into the surrounding soil 31 and sinks there due to its higher density, from where it at least partially enters the lower shaft area 46 of the middle well 33 is sucked in again so that a vertical flow forms in the soil 31 in the vicinity of the well 33. This improves the mixing and circulation of the groundwater and thus increases the efficiency of the arrangement.

Der Brunnenschacht 32 sowie der untere Schachtbereich 46 des mittleren Brunnens 33 sind mit Filterschüttungen 47 angefüllt. Der Brunnen 33 ist außerdem auf der Außenseite der Schachtwandung 43 von Filterkies umgeben. Durch diese Filter können weitere Kontaminationen aus dem Grundwasser entfernt werden.The well shaft 32 and the lower shaft area 46 of the middle well 33 are filled with filter beds 47. The fountain 33 is also surrounded on the outside of the shaft wall 43 by filter gravel. These filters can be used to remove further contaminants from the groundwater.

Selbstverständlich könnten auch mehr als drei Brunnen hintereinander angeordnet werden, um das Einzugsgebiet für die Grundwasserumwälzung zu erhöhen. Auch ein gleichzeitiges Vorsehen solcher Brunnenketten in mehreren Geländerichtungen mit fallendem Grundwasserspiegel ist denkbar.Of course, more than three wells could also be arranged in a row in order to increase the catchment area for the groundwater circulation. It is also conceivable to provide such well chains in several terrain directions with falling groundwater levels at the same time.

Claims (8)

Verfahren zur Umwälzung von Grundwasser in Bodenbereichen mit einem Gefälle des Grundwasserspiegels, gekennzeichnet durch folgende Schritte: - Einbringen eines ersten Brunnenschachtes (11, 32) mit wasserdurchlässiger Schachtwandung (16) in das grundwasserdurchströmte Erdreich (14, 31), - Einbringen mindestens eines zweiten Brunnenschachtes (12, 33, 34) mit wasserdurchlässigen Schachtwandungen (17, 43) im Abstand (L) vom ersten Brunnenschacht (11, 32) in einen Bodenbereich mit geringerem Grundwasserspiegel (15, 37) als im ersten Brunnenschacht (16, 32), - Schaffung einer Querverbindung (19) zwischen dem ersten Brunnenschacht (11) und dem oder den zweiten Brunnenschächten (12) derart, daß Grundwasser vom ersten Brunnenschacht (11) unter Ausnutzung des Grundwasserspiegelgefälles in den oder die zweiten Brunnenschächte (12) fließen kann. Process for circulating groundwater in soil areas with a gradient of the groundwater level, characterized by the following steps: - Introducing a first well shaft (11, 32) with a water-permeable shaft wall (16) into the ground water (14, 31) through which groundwater flows, - Introducing at least one second well shaft (12, 33, 34) with water-permeable shaft walls (17, 43) at a distance (L) from the first well shaft (11, 32) into a ground area with a lower groundwater level (15, 37) than in the first well shaft ( 16, 32), - Creation of a cross-connection (19) between the first well shaft (11) and the second well shaft (s) (12) such that groundwater from the first well shaft (11) can flow into the second well shaft (12) using the gradient of the water table. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Querverbindungen (19) jeweils durch Rohre oder Schläuche vom unteren Schachtende des ersten Brunnens (11) zu dem oder den Schächten der zweiten Brunnen (12) dicht unterhalb des dort herrschenden Grundwasserspiegels (22) gebildet werden.Method according to claim 1, characterized in that the cross connections (19) are each formed by pipes or hoses from the lower shaft end of the first well (11) to the shaft or shafts of the second wells (12) just below the groundwater level (22) prevailing there . Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Grundwasserfluß in den Querverbindungen (19) durch eine Pumpe unterstützt wird.Method according to claim 1 or 2, characterized in that the groundwater flow in the cross connections (19) is supported by a pump. Verfahren nach einem der Ansprüche 1 - 3, dadurch gekennzeichnet, daß mindestens drei Brunnenschächte (32, 33, 34) in einer sich in Richtung abnehmenden Grundwasserspiegels (37) erstreckenden Reihe hintereinander angeordnet werden, wobei aufeinanderfolgende Brunnen (32, 33; 33, 34) jeweils durch eine Querverbindung (36, 39) hydraulisch miteinander verbunden werden.Method according to one of claims 1-3, characterized in that at least three well shafts (32, 33, 34) are arranged one behind the other in a row extending in the direction of the decreasing groundwater level (37), successive wells (32, 33; 33, 34 ) are each hydraulically connected to one another by a cross connection (36, 39). Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß der oder die mittleren Brunnen (32) jeweils durch eine Querwandung (44) in zwei gegeneinander abgedichtete Schachtbereiche (45, 46) aufgeteilt werden, von denen einer (45) der Abgabe von Grundwasser ins umliegende Erdreich (31) und der andere (46) der Aufnahme von Grundwasser aus dem Erdreich (31) dient.Method according to claim 4, characterized in that the middle well (s) (32) are each divided by a transverse wall (44) into two mutually sealed shaft areas (45, 46), one of which (45) releases groundwater into the surrounding earth (31) and the other (46) serves to absorb groundwater from the soil (31). Verfahren nach einem der Ansprüche 1 - 5, dadurch gekennzeichnet, daß die Abstände (L) der Brunnen untereinander größer gewählt werden als die Höhe der Wassersäule in den Brunnenschächten (11, 12; 32, 33, 34).Method according to one of claims 1-5, characterized in that the distances (L) between the wells are chosen to be greater than the height of the water column in the well shafts (11, 12; 32, 33, 34). Verfahren nach einem der Ansprüche 1 - 6, dadurch gekennzeichnet, daß in die Brunnen (11, 12; 32, 33, 34) von außen Zusätze zur Wasserbehandlung zugegeben werden.Method according to one of claims 1-6, characterized in that additives for water treatment are added to the wells (11, 12; 32, 33, 34) from the outside. Verfahren nach einem der Ansprüche 1 - 7, dadurch gekennzeichnet, daß die Brunnen (11, 12; 32, 33, 34) mindestens teilweise mit Filtereinrichtungen (47, 48) versehen werden.Method according to one of claims 1-7, characterized in that the wells (11, 12; 32, 33, 34) are at least partially provided with filter devices (47, 48).
EP93118183A 1992-11-19 1993-11-10 Process for circulation of groundwater in areas with a sloping groundwaterlevel Withdrawn EP0598316A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4238969 1992-11-19
DE4238969A DE4238969C2 (en) 1992-11-19 1992-11-19 Process for circulating groundwater in soil areas with a gradient of the groundwater level

Publications (1)

Publication Number Publication Date
EP0598316A1 true EP0598316A1 (en) 1994-05-25

Family

ID=6473223

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93118183A Withdrawn EP0598316A1 (en) 1992-11-19 1993-11-10 Process for circulation of groundwater in areas with a sloping groundwaterlevel

Country Status (3)

Country Link
US (1) US5468097A (en)
EP (1) EP0598316A1 (en)
DE (1) DE4238969C2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999060248A1 (en) * 1998-05-20 1999-11-25 Sidney Dantuma Johnston Method of producing fluids from an underground reservoir
CN115369984A (en) * 2022-09-22 2022-11-22 江苏龙腾工程设计股份有限公司 Annular sponge seepage well and construction method thereof

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5813798A (en) * 1997-03-28 1998-09-29 Whiffen; Greg Piecewise continuous control of groundwater remediation
US6254785B1 (en) * 1997-12-19 2001-07-03 Westinghouse Savannah River Company Apparatus and process for water treatment
DE19859862B4 (en) * 1998-12-23 2004-08-12 Versuchseinrichtung zur Grundwasser- und Altlastensanierung, VEGAS Universität Stuttgart Method and device for groundwater remediation using a sealing wall lifter reactor
DE19938922B4 (en) * 1999-08-17 2006-04-06 Bauer Spezialtiefbau Gmbh Groundwater Purification Flow and Treat
SE525025C2 (en) * 2000-12-15 2004-11-09 Arlington Trading Corp S A C O Apparatus and method for creating at least one reaction zone in an aquifer
US6839305B2 (en) * 2001-02-16 2005-01-04 Neil Perlman Habit cessation aide
US6840710B2 (en) 2001-05-15 2005-01-11 Rar Group, Llc Underground alluvial water storage reservoir and method
US7192218B2 (en) * 2004-02-24 2007-03-20 Ps Systems Inc. Direct recharge injection of underground water reservoirs
US8074670B2 (en) * 2006-09-26 2011-12-13 PS Systems, Inc. Maintaining dynamic water storage in underground porosity reservoirs
US20080073087A1 (en) * 2006-09-26 2008-03-27 Ps Systems Inc. Ventilation of underground porosity storage reservoirs
US7972080B2 (en) * 2007-03-14 2011-07-05 PS Systems, Inc. Bank-sided porosity storage reservoirs
US20090173142A1 (en) * 2007-07-24 2009-07-09 Ps Systems Inc. Controlling gas pressure in porosity storage reservoirs

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3368355A (en) * 1965-11-23 1968-02-13 Edward P. Shroyer Ground water table level control well gate system
US4288174A (en) * 1979-09-10 1981-09-08 Laws Awbrey C System for groundwater flow control
EP0418570A1 (en) * 1989-09-16 1991-03-27 IEG Industrie-Engineering GmbH Device for the purification of polluted ground water

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US593057A (en) * 1897-11-02 System of fluid distribution
US1342679A (en) * 1920-02-17 1920-06-08 Davis P Howell System for collecting water
DE7838921U1 (en) * 1978-12-30 1979-11-22 Subterra Methoden Gmbh, 3000 Hannover WELL PIPE
US4254831A (en) * 1979-12-27 1981-03-10 Layne-Western Company, Inc. Method and apparatus for restoring and maintaining underground aquifer water system
SE434388B (en) * 1982-11-10 1984-07-23 Vyrmetoder Ab PROCEDURE FOR REDUCING IRON AND MANGANE CONTENTS IN GROUND WATER
HUT65024A (en) * 1986-03-21 1994-03-28 Asszonyi Method for building deep-level catchwater drain with comb-like suction tubes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3368355A (en) * 1965-11-23 1968-02-13 Edward P. Shroyer Ground water table level control well gate system
US4288174A (en) * 1979-09-10 1981-09-08 Laws Awbrey C System for groundwater flow control
EP0418570A1 (en) * 1989-09-16 1991-03-27 IEG Industrie-Engineering GmbH Device for the purification of polluted ground water

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999060248A1 (en) * 1998-05-20 1999-11-25 Sidney Dantuma Johnston Method of producing fluids from an underground reservoir
GB2354030A (en) * 1998-05-20 2001-03-14 Sidney Johnston Method of producing fluids from an underground reservoir
GB2354030B (en) * 1998-05-20 2002-10-23 Sidney Johnston Method of producing fluids from an underground reservoir
CN115369984A (en) * 2022-09-22 2022-11-22 江苏龙腾工程设计股份有限公司 Annular sponge seepage well and construction method thereof
CN115369984B (en) * 2022-09-22 2023-10-31 江苏龙腾工程设计股份有限公司 Annular sponge seepage well and construction method thereof

Also Published As

Publication number Publication date
US5468097A (en) 1995-11-21
DE4238969C2 (en) 1994-11-10
DE4238969A1 (en) 1994-05-26

Similar Documents

Publication Publication Date Title
EP0598316A1 (en) Process for circulation of groundwater in areas with a sloping groundwaterlevel
DE102006000800A1 (en) Cleaning system for rainwater
AT393116B (en) METHOD AND SYSTEM FOR WASTE WATER TREATMENT
DE3712419C2 (en)
DE60316996T2 (en) APPENDIX FOR THE TREATMENT OF WATER BY FLOTATION
EP1927521B1 (en) Device and method for reducing unpleasant smells in vehicle washing installations
DE2231172A1 (en) COMBINED DEVICE FOR BIOLOGICAL SEWAGE TREATMENT
DE3247944A1 (en) Process for the underground percolation of rainwater
EP3923702B1 (en) Facade element for a building wall having plant container for plants, facade system and method for supplying nutrients to plants of a facade element
DE4237424A1 (en) Sewage treatment using percolation unit with pre- and post-clarification tanks - in which water is recycled from buffer space downstream of percolation tank to stabilise rate of flow through percolation unit
AT411679B (en) METHOD FOR PURIFYING WASTE WATER
EP3135636B1 (en) Sewage system
EP2247539B1 (en) Water introducing arrangement
DE1901079A1 (en) Device and method for clarifying waste water
DE4341591C2 (en) Compact, near-natural sewage pond soil filter sewage treatment plant with underground infiltration for cleaning various types of wastewater
DE2721505A1 (en) FILTERS FOR CLEANING NATURAL AND WASTEWATER
DE2534430C2 (en) Water treatment device
DE202009003919U1 (en) filter means
AT80712B (en) Device for cutting off sand carried in watercourses mDevice for cutting off sand carried along in watercourses. guided sand.
CH631686A5 (en) Process for preparing a substantially homogeneous lime water solution
DE2318102C3 (en) Well for shifting groundwater from one groundwater horizon into a second groundwater horizon separated from it by an impermeable barrier layer
DE556516C (en) Flow ladder in aeration basin
DE615572C (en) Water filtration device
DE10305468A1 (en) Pond for swimming, has partition that divides pond into swimming section and filtering and purification section respectively provided at base with opening and water suction opening
AT280904B (en) Device for water purification

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19941022

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19970603