EP0598183A1 - Turbogenerator set - Google Patents
Turbogenerator set Download PDFInfo
- Publication number
- EP0598183A1 EP0598183A1 EP93110574A EP93110574A EP0598183A1 EP 0598183 A1 EP0598183 A1 EP 0598183A1 EP 93110574 A EP93110574 A EP 93110574A EP 93110574 A EP93110574 A EP 93110574A EP 0598183 A1 EP0598183 A1 EP 0598183A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- turbine
- generation system
- generator
- magnetic bearing
- rotor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005291 magnetic effect Effects 0.000 claims abstract description 70
- 239000007789 gas Substances 0.000 claims description 68
- 239000000112 cooling gas Substances 0.000 claims description 43
- 238000010248 power generation Methods 0.000 claims description 26
- 238000000034 method Methods 0.000 claims description 13
- 238000001816 cooling Methods 0.000 claims description 10
- 230000005294 ferromagnetic effect Effects 0.000 claims description 5
- 230000001360 synchronised effect Effects 0.000 claims description 4
- 230000005484 gravity Effects 0.000 claims description 2
- 230000005611 electricity Effects 0.000 claims 17
- 238000009434 installation Methods 0.000 abstract 3
- 230000000694 effects Effects 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 239000000498 cooling water Substances 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
- H02K1/2706—Inner rotors
- H02K1/272—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
- H02K1/274—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
- H02K1/2753—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
- H02K1/278—Surface mounted magnets; Inset magnets
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D15/00—Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
- F01D15/10—Adaptations for driving, or combinations with, electric generators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/04—Bearings not otherwise provided for using magnetic or electric supporting means
- F16C32/0406—Magnetic bearings
- F16C32/044—Active magnetic bearings
- F16C32/0459—Details of the magnetic circuit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/04—Bearings not otherwise provided for using magnetic or electric supporting means
- F16C32/0406—Magnetic bearings
- F16C32/044—Active magnetic bearings
- F16C32/0459—Details of the magnetic circuit
- F16C32/0468—Details of the magnetic circuit of moving parts of the magnetic circuit, e.g. of the rotor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C37/00—Cooling of bearings
- F16C37/005—Cooling of bearings of magnetic bearings
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/08—Structural association with bearings
- H02K7/09—Structural association with bearings with magnetic bearings
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/18—Structural association of electric generators with mechanical driving motors, e.g. with turbines
- H02K7/1807—Rotary generators
- H02K7/1823—Rotary generators structurally associated with turbines or similar engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/50—Bearings
- F05D2240/51—Magnetic
- F05D2240/515—Electromagnetic
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2380/00—Electrical apparatus
- F16C2380/26—Dynamo-electric machines or combinations therewith, e.g. electro-motors and generators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
- H02K1/2706—Inner rotors
- H02K1/272—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
- H02K1/274—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K5/00—Casings; Enclosures; Supports
- H02K5/04—Casings or enclosures characterised by the shape, form or construction thereof
- H02K5/22—Auxiliary parts of casings not covered by groups H02K5/06-H02K5/20, e.g. shaped to form connection boxes or terminal boxes
- H02K5/225—Terminal boxes or connection arrangements
Definitions
- the invention relates to a power generation system comprising a gas turbine with a turbine wheel and a generator with a rotor driven by the turbine wheel.
- the object of the invention is therefore to create a power generation system in which the known storage problems are reduced or even eliminated.
- the rotor unit can be supported in that the rotor unit is supported by two magnetic bearing units arranged at an axial distance from one another.
- the rotor unit viewed axially, is mounted on both sides of the rotor, each with a magnetic bearing unit.
- a magnetic bearing unit is advantageously arranged between the rotor and the turbine wheel, so that the turbine wheel is seated on an end of the rotor unit which projects freely above this magnetic bearing unit.
- each magnetic bearing unit comprises at least one magnetic radial bearing.
- each magnetic bearing unit magnetically supports the rotor unit against movement of the rotor in opposite axial directions, that is to say that each magnetic bearing unit comprises half of a magnetic axial bearing.
- the magnetic bearing through the magnetic bearing units is an active magnetic bearing.
- a position control with sensors, which guides the rotor unit in a specific position, is preferably provided for the active magnetic bearing.
- the bearing is designed such that an axis of rotation of the rotor unit can be defined by actuating the stator of the radial bearings.
- the position control selects the center of gravity axis as the axis of rotation for the rotor unit above a certain speed.
- the position control regulates below a certain speed to a geometric axis of the rotor as the axis of rotation.
- the radial bearing comprises laminated cores shrunk onto a shaft of the rotor unit and a stand arranged in the system housing.
- the axial bearings it is advantageous if they comprise a ferromagnetic disk seated on a shaft of the rotor unit and a stand arranged in the system housing.
- catch bearings which are effective if the magnetic bearing unit fails.
- These catch bearings are preferably mechanical bearings, which are designed either as ball bearings or as plain bearings.
- the backup bearings preferably also effect radial and axial mounting of the rotor unit when it is running in the backup bearings and not in the magnetic bearings.
- An advantageous exemplary embodiment provides that the system housing encloses a turbine interior of the turbine and a generator interior of the generator in a gas-tight manner.
- leakages of the process gas can be controlled particularly advantageously, since leakage gas entering the generator interior cannot flow out in an uncontrolled manner.
- the system housing also encloses the generator interior in a pressure-tight and gas-tight manner in addition to the turbine interior, so that there is the possibility of keeping the gas present in the generator interior under defined pressure conditions and, by correspondingly lowering the pressure at the required high speeds, the gas friction to reduce.
- a particularly advantageous solution provides that a connecting channel through which the rotor unit passes leads from the generator interior to the turbine interior and that the generator interior, the connecting channel and the turbine interior are enclosed gas-tight and pressure-tight by the system housing.
- the turbine interior with the connecting duct and the generator interior form a unit which is enclosed as such in a gas-tight and pressure-tight manner, so that on the one hand no problems occur with a leak gas flow from the turbine interior into the generator interior and on the other hand defined pressure ratios can be set in the generator interior in order to achieve the To reduce gas friction and either the leak gas flow from the Suppress the turbine interior into the generator interior by appropriate pressure or to discharge the leak gas flowing from the turbine interior into the generator interior in a defined manner.
- this embodiment of the solution according to the invention advantageously complements the use of the magnetic bearing units, since gas flowing from the gas turbine into the generator and in particular the generator interior is not contaminated by the bearings either in the region of the bearing of the turbine wheel or in the region of the rotor, and in addition the advantages mentioned above occur.
- a cooling gas can flow through the magnetic bearing units.
- the cooling gas could flow through the magnetic bearing units in different directions. It when the cooling gas flows through the magnetic bearing units essentially in the axial direction is particularly advantageous.
- the cooling of the magnetic bearing units can be carried out even more advantageously when a cooling gas flows through the interior of the generator, this cooling gas advantageously flowing through the interior of the generator in a region surrounding the rotor unit and thus flowing superficially along the corresponding sections of the rotor unit.
- cooling gas Any gas can in principle be used as the cooling gas. However, it is particularly advantageous if the cooling gas is identical to the process gas driving the turbine, since in this case a leak gas flow through the connecting channel does not cause any problems and, in particular, does not contaminate the process gas.
- the cooling gas used to cool the magnetic bearing units can come from a wide variety of sources. In the simplest case, it is provided that the cooling gas comes from the process gas stream flowing through the turbine.
- cooling gas is the leakage gas flowing from the turbine interior into the generator interior through the connecting channel.
- This leakage gas can then be collected and discharged, for example, in the generator interior in an area facing away from the gas turbine.
- the guidance of the external cooling gas through the magnetic bearing units and possibly also through the generator interior can be done in many different ways carry out. For example, it would in principle be possible for the cooling gas to flow in the axial direction either towards the gas turbine or away from the gas turbine.
- the external cooling gas is intended to supplement the cooling effect of the leakage gas, it is advantageous, however, if the external cooling gas flows through the magnetic bearing units in the axial direction away from the turbine.
- a particularly advantageous solution provides that the external cooling gas is supplied between the turbine wheel and the magnetic bearing unit closest to the turbine wheel and flows through the generator interior in the axial direction away from the turbine.
- the cooling gas can be removed from the generator interior on a side facing away from the turbine.
- cooling gas can be supplied in the region of the connecting channel.
- This gas flow reducing element is designed, for example, as a non-contact seal, preferably as a labyrinth seal.
- the pressure level in the interior of the generator is preferably selected so that it is below the pressure at a gas inlet of the turbine.
- a particularly advantageous solution provides that the pressure level in the interior of the generator corresponds to a pressure level at a gas outlet of the turbine.
- the generator is a permanently excited synchronous generator.
- the rotor is an electrically passive rotor, so that no current leads have to be fed to the rotor, but only to a stator of the generator.
- the stator is cooled.
- the stator could also be cooled by cooling gas, which expediently flows through cooling gas channels provided in the stator.
- cooling gas expediently flows through cooling gas channels provided in the stator.
- the power generation system according to the invention can be used particularly advantageously if the generator is followed by a converter for generating a customary standardized mains voltage with a standardized mains frequency for a public power supply network, since the generator has an alternating voltage with a strongly changing frequency and the speed of rotation due to the rotor sitting on the rotor unit Generated rotor unit of the appropriate frequency, which is not suitable for feeding into a public network.
- a particularly advantageous field of application of the power generation system according to the invention provides that the turbine is an expansion turbine in order to recover the energy released during the expansion of gases, which can be, for example, natural gas expansion in long-distance lines or gas expansion in cryogenics.
- FIG. 1 An embodiment of a power generation system according to the invention, shown in FIG. 1, comprises a system housing, designated as a whole by 10, in which a gas turbine 12 and a generator 14 are combined to form a unit.
- the gas turbine 12 comprises a turbine housing 16, which is designed as a gas expansion turbine and has an inlet channel 18 for the process gas to be expanded, which leads to an interior 20 of the gas turbine, in which a turbine wheel 22 is rotatably arranged. From this turbine interior 20 in turn leads an outlet duct 24, in which the expanded gas flows out.
- the turbine wheel 22 is part of a rotor unit, designated as a whole by 26, which comprises a shaft 28 carrying the turbine wheel 22 and a rotor 30 of the generator 14 seated on the shaft 28.
- a rotor unit designated as a whole by 26
- the entire rotor unit 26 is set in rotation and thus the rotor 30 of the generator 14 is also driven to rotate about an axis of rotation 32 at the speed of the turbine wheel 22.
- the rotor unit 26 is mounted in the system housing 10 in a contactless manner by two magnetic bearing units 34, 36 arranged at a distance from one another in the direction of the axis of rotation 32, the magnetic bearing units 34 and 36 being arranged on both sides of the rotor 30 as seen in the direction of the axis of rotation 32.
- Each of the magnetic bearing units 34, 36 comprises a magnetic radial bearing 38, which on the one hand has an annular laminated core 40 shrunk onto the shaft 28 and on the other hand a stator 41 with a stator 42 made of laminated electrical sheets, the poles of which are surrounded by coils 43. Electromagnetically, each stator 42 is divided into 4 quadrants, each with a north and south pole, so that each radial bearing 38 has two active axes, each of which is formed by two opposite quadrants. The weight forces acting on the rotor unit 26 are absorbed by the two upper quadrants of each radial bearing 38, since this radial bearing can only develop tensile forces.
- each radial bearing 38 comprises a sensor ring, not shown in the drawing in FIG. 1, the signals of which are evaluated by a position control 44 which controls the axes in such a way that the rotor 26 rotates about the defined axis of rotation 32.
- each magnetic bearing unit 34, 36 also comprises a half 48 of an axial bearing, each half 48 of the axial bearing comprising a ferromagnetic disk 50 seated on the shaft 28 and a stand 52 seated in the system housing 10, in which the windings of an electromagnetic coil 54 are let in.
- Each half 48 of the axial bearing acts in such a way that tensile forces are exerted on the ferromagnetic disk 50 by the stator 52, which force the ferromagnetic disk 50 in the direction of the stator 52.
- the respective halves 48 of the thrust bearings are arranged in the magnetic bearing units 34 and 36 so that they exert opposing axial forces 56 and 58 on the rotor unit 26 and thus stabilize the rotor unit, the two halves 48 of the thrust bearings also each having sensors and via a common position control 60 are regulated.
- Each of the magnetic bearing units 34 and 36 is also additionally provided with a catch bearing 62, the catch bearing 62 being designed as a radial and axial bearing and serving to catch the rotor unit 26 when the magnetic bearing units 34, 36 are switched off or failing and collisions, for example in the To prevent gas turbine 12 or the generator 14.
- the position controls 44 of the radial bearings 38 of the magnetic bearing units 34 and 36 are preferably further designed such that they support the rotor unit 26 rotating about their geometric central axis as the axis of rotation 32 below a defined speed. If the specified speed is exceeded, the axis of rotation of the rotor unit 26 is supported as the axis of rotation 32, so that in this state a virtually force-free and self-centered bearing of the rotor unit 26 can be achieved.
- the generator 14 also comprises a stator 70 and is designed as a permanently excited synchronous generator, the rotor being electrically passive and, as shown in FIG. 2, carrying high-energy magnets 72 which are seated on the shaft 28 and arranged as segments and which are radial are secured to the axis of rotation 32 by a bandage 74.
- the stator 70 To cool the stator 70, which in turn carries coil windings 76, the stator 70 is provided with cooling channels 78 which rotate in the stator 70 about the axis of rotation 32 and which are connected to a cooling water supply line 80 and a cooling water discharge line 82 and thus through which cooling water can flow.
- the system housing 10 forms, with a first section 90, a turbine housing for the gas turbine 12 and encloses the turbine interior 20 in a gas-tight and pressure-tight manner.
- system housing 10 forms, with a second section, a generator housing 92, which likewise encloses a generator interior 94 in a pressure-tight and gas-tight manner.
- the stator 70, the rotor 30 and the magnetic bearing units 34 and 36 are arranged in this generator interior 94. All electrical leads leading in the generator interior are guided through pressure-resistant cable bushings 95.
- a connecting duct 96 leads from the generator interior 94 to the turbine interior 20, the shaft 28 of the rotor unit extending through this connecting duct 96 and carrying the turbine wheel 22 on its free end which extends into the turbine interior 20.
- the turbine interior 20 forms a gas-tight and pressure-tight closed space via the connecting channel 96 with the generator interior 94, in which the rotor unit 26 rotates without contact when the power generation system is operating.
- a labyrinth seal 98 is also provided in the connecting duct 96, so that only a small part of the process gas flows from the turbine interior 20 into the generator interior 94.
- the leakage gas flow entering the turbine interior 20 into the generator interior 94 serves as cooling gas, which flows through the generator interior 94 in the axial direction away from the gas turbine 12, flowing around the rotor unit 26 and cooling the magnetic bearing units 34, 36.
- a cooling gas inlet channel 100 is provided, which opens between the labyrinth seal 98 and the magnetic bearing unit 34 facing the turbine wheel 22 and allows cooling gas to flow onto the rotor unit 26 in this area.
- This cooling gas first flows through the magnetic bearing unit 34 essentially in the axial direction 102, then a gap between the rotor 30 and the stator 70 and then likewise in the axial direction 102 away from the gas turbine 12, the magnetic bearing unit 36 and, like the leakage gas flow, collects in a rear section 104 of the generator interior 94, from which it is discharged via a cooling gas outlet channel 106 and fed to a gas recirculation 108, which supplies the cooling gas to the cooling gas inlet channel 100 again.
- the same gas as the process gas driving the gas turbine 12 is preferably used as the cooling gas, so that excess cooling gas can be fed back into the process gas and also from the turbine interior 20 into the Process gas entering the generator interior 94 is not contaminated, on the contrary, the leakage gas entering the generator interior 94 from the turbine interior 20 is also used as cooling gas, the cooling effect of which is optionally supplemented by the cooling gas supplied externally via the cooling gas inlet duct.
- the cooling gas is preferably supplied in such a way that there is a pressure in the generator interior which corresponds approximately to the pressure of the process gas in the outlet channel 24 in order to keep the gas friction in the generator interior as low as possible.
- the current generated by the permanently excited synchronous generator is finally fed to a converter 110, which converts it into an alternating current with a grid frequency and a grid voltage which allows feeding into a public power supply network.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Power Engineering (AREA)
- Magnetic Bearings And Hydrostatic Bearings (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
- Motor Or Generator Cooling System (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
- Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
Abstract
Description
Die Erfindung betrifft eine Stromgewinnungsanlage, umfassend eine Gasturbine mit einem Turbinenrad und einen Generator mit einem vom Turbinenrad angetriebenen Rotor.The invention relates to a power generation system comprising a gas turbine with a turbine wheel and a generator with a rotor driven by the turbine wheel.
Bei den bislang bekannten Stromgewinnungsanlagen, welche beispielsweise bei der Expansion von Kryogas oder Erdgas eingesetzt werden, um die beim Expandieren der Gase freiwerdende Energie zurückzugewinnen, werden üblicherweise eine Turbine und ein von dieser angetriebener, aber getrennter Generator eingesetzt.In the power generation plants known hitherto, which are used, for example, in the expansion of cryogas or natural gas in order to recover the energy released when the gases expand, a turbine and a generator which is driven but separated from it are usually used.
Da die Turbine mit hohen Drehzahlen läuft und außerdem hohe Temperaturgradienten möglich sein müssen, treten im Bereich der Lagerungen der bekannten Anlagen Probleme insbesondere durch Reibung und/oder Leckage und/oder Verschmutzung des die Gasturbine durchströmenden Gases auf.Since the turbine runs at high speeds and high temperature gradients must also be possible, problems occur in the area of the bearings of the known systems, in particular due to friction and / or leakage and / or contamination of the gas flowing through the gas turbine.
Der Erfindung liegt daher die Aufgabe zugrunde, eine Stromgewinnungsanlage zu schaffen, bei welcher die bekannten Lagerprobleme reduziert sind oder gar wegfallen.The object of the invention is therefore to create a power generation system in which the known storage problems are reduced or even eliminated.
Diese Aufgabe wird bei einer Stromgewinnungsanlage der eingangs beschriebenen Art erfindungsgemäß dadurch gelöst, daß die Turbine und der Generator in einem Anlagengehäuse zu einer Einheit zusammengefaßt sind, daß das Turbinenrad und der Rotor eine sich als Ganzes drehende Rotoreinheit bilden und daß die Rotoreinheit in dem Anlagengehäuse durch Magnetlagereinheiten berührungslos drehbar gelagert ist.This object is achieved according to the invention in a power generation plant of the type described in the introduction in that the turbine and the generator are combined in one unit housing to form a unit, in that the turbine wheel and the rotor form a rotor unit which rotates as a whole and in that the rotor unit in the unit housing Magnetic bearing units is rotatably mounted contactless.
Der Vorteil der erfindungsgemäßen Lösung ist somit darin zu sehen, daß durch die Zusammenfassung von Turbinenrad und Rotor zu einer sich als Ganzes drehenden Rotoreinheit eine einfache Konstruktion möglich ist, und daß durch die Verwendung von Magnetlagereinheiten zur Lagerung der Rotoreinheit die Reibungsverluste entscheidend verringert werden und somit hohe Drehzahlen problemlos möglich werden und darüber hinaus auch keine Verunreinigung des die Gasturbine treibenden Prozeßgases durch aus den Lagern austretende Schmier- oder Schmutzstoffe erfolgt.The advantage of the solution according to the invention is thus to be seen in the fact that the combination of the turbine wheel and rotor to form a rotor unit rotating as a whole enables a simple construction, and that the use of magnetic bearing units for mounting the rotor unit significantly reduces the friction losses and thus high speeds are possible without any problems and, moreover, the process gas driving the gas turbine is not contaminated by lubricants or contaminants escaping from the bearings.
Grundsätzlich ist eine Lagerung der Rotoreinheit dadurch möglich, daß die Rotoreinheit durch zwei in axialem Abstand voneinander angeordnete Magnetlagereinheiten gelagert ist.In principle, the rotor unit can be supported in that the rotor unit is supported by two magnetic bearing units arranged at an axial distance from one another.
Insbesondere für hohe Drehzahlen ist es besonders vorteilhaft, wenn die Rotoreinheit axial gesehen beiderseits des Rotors mit jeweils einer Magnetlagereinheit gelagert ist.For high speeds in particular, it is particularly advantageous if the rotor unit, viewed axially, is mounted on both sides of the rotor, each with a magnetic bearing unit.
In diesem Fall ist eine Magnetlagereinheit vorteilhafterweise zwischen dem Rotor und dem Turbinenrad angeordnet, so daß das Turbinenrad auf einem frei über diese Magnetlagereinheit überstehenden Ende der Rotoreinheit sitzt.In this case, a magnetic bearing unit is advantageously arranged between the rotor and the turbine wheel, so that the turbine wheel is seated on an end of the rotor unit which projects freely above this magnetic bearing unit.
Hinsichtlich der Ausbildung der Magnetlagereinheiten wurden bislang keine näheren Angaben gemacht. So sieht ein vorteilhaftes Ausführungsbeispiel vor, daß jede Magnetlagereinheit mindestens ein magnetisches Radiallager umfaßt.No details have so far been given regarding the design of the magnetic bearing units. An advantageous exemplary embodiment provides that each magnetic bearing unit comprises at least one magnetic radial bearing.
Um zusätzlich auch eine axiale Lagerung der Rotoreinheit zu erreichen, ist es möglich, einer der Magnetlagereinheiten ein magnetisches Axiallager zuzuordnen.In order to additionally achieve an axial bearing of the rotor unit, it is possible to assign a magnetic axial bearing to one of the magnetic bearing units.
Aus Gründen einer kompakten Konstruktion ist es jedoch noch vorteilhafter, wenn jede Magnetlagereinheit die Rotoreinheit gegen eine Bewegung des Rotors in jeweils entgegengesetzte axiale Richtungen magnetisch lagert, das heißt daß jede Magnetlagereinheit die Hälfte eines magnetischen Axiallagers umfaßt.For reasons of a compact construction, however, it is even more advantageous if each magnetic bearing unit magnetically supports the rotor unit against movement of the rotor in opposite axial directions, that is to say that each magnetic bearing unit comprises half of a magnetic axial bearing.
Hinsichtlich der Art der magnetischen Lagerung wurden bislang keine näheren Angaben gemacht. So ist es besonders vorteilhaft, wenn die magnetische Lagerung durch die Magnetlagereinheiten eine aktive magnetische Lagerung darstellt.No details have so far been given regarding the type of magnetic storage. It is particularly advantageous if the magnetic bearing through the magnetic bearing units is an active magnetic bearing.
Vorzugsweise ist dabei für die aktive magnetische Lagerung eine Lageregelung mit Sensoren vorgesehen, welche die Rotoreinheit in einer bestimmten Position führt.A position control with sensors, which guides the rotor unit in a specific position, is preferably provided for the active magnetic bearing.
Insbesondere bei den magnetischen Radiallagern ist die Lagerung so ausgebildet, daß durch Ansteuerung des Stators der Radiallager eine Drehachse der Rotoreinheit festlegbar ist.In the case of magnetic radial bearings in particular, the bearing is designed such that an axis of rotation of the rotor unit can be defined by actuating the stator of the radial bearings.
Um die hohen Drehzahlen zu realisieren ist es besonders vorteilhaft, wenn die Lageregelung oberhalb einer bestimmten Drehzahl als Drehachse für die Rotoreinheit die Schwerpunktachse auswählt.In order to realize the high speeds, it is particularly advantageous if the position control selects the center of gravity axis as the axis of rotation for the rotor unit above a certain speed.
Um auch bei niederen Drehzahlen eine vorteilhafte Lagerung zu erhalten ist es ferner zweckmäßig, wenn die Lageregelung unterhalb der bestimmten Drehzahl auf eine geometrische Achse des Rotors als Drehachse regelt.In order to obtain an advantageous bearing even at low speeds, it is also expedient if the position control regulates below a certain speed to a geometric axis of the rotor as the axis of rotation.
Hinsichtlich der Ausbildung der Radiallager wurden bislang ebenfalls keine näheren Angaben gemacht. So sieht ein vorteilhaftes Ausführungsbeispiel vor, daß das Radiallager auf eine Welle der Rotoreinheit aufgeschrumpfte Blechpakete und einen im Anlagengehäuse angeordneten Ständer umfaßt.No details have yet been given regarding the design of the radial bearings. An advantageous exemplary embodiment provides that the radial bearing comprises laminated cores shrunk onto a shaft of the rotor unit and a stand arranged in the system housing.
Hinsichtlich der Ausbildung der Axiallager ist es vorteilhaft, wenn diese eine auf einer Welle der Rotoreinheit sitzende ferromagnetische Scheibe und einen im Anlagengehäuse angeordnete Ständer umfassen.With regard to the design of the axial bearings, it is advantageous if they comprise a ferromagnetic disk seated on a shaft of the rotor unit and a stand arranged in the system housing.
Um sicherzustellen, daß bei abgeschalteten Magnetlagereinheiten oder bei einem Ausfall der Magnetlagereinheiten keine Zerstörung des Generators erfolgt, ist vorteilhafterweise vorgesehen, daß die Rotoreinheit noch zusätzlich durch bei Ausfall der Magnetlagereinheit wirksame Fanglager gelagert ist. Diese Fanglager sind vorzugsweise mechanische Lager, die entweder als Kugellager oder als Gleitlager ausgebildet sind.In order to ensure that the generator is not destroyed when the magnetic bearing units are switched off or in the event of a failure of the magnetic bearing units, provision is advantageously made for the rotor unit to be additionally supported by catch bearings which are effective if the magnetic bearing unit fails. These catch bearings are preferably mechanical bearings, which are designed either as ball bearings or as plain bearings.
Darüber hinaus bewirken die Fanglager vorzugsweise ebenfalls eine radiale und axiale Lagerung der Rotoreinheit, wenn diese in den Fanglagern und nicht in den Magnetlagern läuft.In addition, the backup bearings preferably also effect radial and axial mounting of the rotor unit when it is running in the backup bearings and not in the magnetic bearings.
Hinsichtlich der Ausbildung des Anlagengehäuses wurden im vorstehenden keine näheren Angaben gemacht. So sieht ein vorteilhaftes Ausführungsbeispiel vor, daß das Anlagengehäuse ein Turbineninnenraum der Turbine und einen Generatorinnenraum des Generators gasdicht umschließt.With regard to the design of the system housing, no further details have been given above. An advantageous exemplary embodiment provides that the system housing encloses a turbine interior of the turbine and a generator interior of the generator in a gas-tight manner.
Mit einer derartigen Ausbildung des Anlagengehäuses lassen sich insbesondere Leckagen des Prozeßgases besonders vorteilhaft beherrschen, da in den Generatorinnenraum eintretendes Leckgas nicht unkontrolliert abströmen kann.With such a design of the system housing, in particular leakages of the process gas can be controlled particularly advantageously, since leakage gas entering the generator interior cannot flow out in an uncontrolled manner.
Besonders vorteilhaft ist es weiter, wenn das Anlagengehäuse neben dem Turbineninnenraum auch den Generatorinnenraum druckfest und gasdicht umschließt, so daß die Möglichkeit gegeben ist, in dem Generatorinnenraum vorliegendes Gas unter definierten Druckverhältnissen zu halten und durch entsprechende Absenkung des Drucks bei den erforderlichen hohen Drehzahlen die Gasreibung zu reduzieren.It is also particularly advantageous if the system housing also encloses the generator interior in a pressure-tight and gas-tight manner in addition to the turbine interior, so that there is the possibility of keeping the gas present in the generator interior under defined pressure conditions and, by correspondingly lowering the pressure at the required high speeds, the gas friction to reduce.
Eine besonders vorteilhafte Lösung sieht vor, daß vom Generatorinnenraum ein von der Rotoreinheit durchsetzter Verbindungskanal zum Turbineninnenraum führt und daß der Generatorinnenraum, der Verbindungskanal und der Turbineninnenraum von dem Anlagengehäuse gasdicht und druckfest umschlossen sind. In diesem Fall bilden der Turbineninnenraum mit dem Verbindungskanal und dem Generatorinnenraum eine Einheit, die als solche gasdicht und druckfest umschlossen ist, so daß einerseits keine Probleme bei einem Leckgasstrom vom Turbineninnenraum in den Generatorinnenraum auftreten und andererseits in dem Generatorinnenraum definierte Druckverhältnisse einstellbar sind, um die Gasreibung zu reduzieren und entweder den Leckgasstrom vom Turbineninnenraum in den Generatorinnenraum durch entsprechenden Druck zu unterdrücken oder das vom Turbineninnenraum in den Generatorinnenraum strömende Leckgas definiert abzuführen.A particularly advantageous solution provides that a connecting channel through which the rotor unit passes leads from the generator interior to the turbine interior and that the generator interior, the connecting channel and the turbine interior are enclosed gas-tight and pressure-tight by the system housing. In this case, the turbine interior with the connecting duct and the generator interior form a unit which is enclosed as such in a gas-tight and pressure-tight manner, so that on the one hand no problems occur with a leak gas flow from the turbine interior into the generator interior and on the other hand defined pressure ratios can be set in the generator interior in order to achieve the To reduce gas friction and either the leak gas flow from the Suppress the turbine interior into the generator interior by appropriate pressure or to discharge the leak gas flowing from the turbine interior into the generator interior in a defined manner.
Insbesondere diese Ausbildung der erfindungsgemäßen Lösung ergänzt sich vorteilhaft mit der Verwendung der Magnetlagereinheiten, da von der Gasturbine in den Generator und insbesondere den Generatorinnenraum strömendes Gas weder im Bereich der Lagerung des Turbinenrads noch im Bereich der Lagerung des Rotors durch die Lager eine Verschmutzung erfährt und zusätzlich die vorstehend genannten Vorteile auftreten.In particular, this embodiment of the solution according to the invention advantageously complements the use of the magnetic bearing units, since gas flowing from the gas turbine into the generator and in particular the generator interior is not contaminated by the bearings either in the region of the bearing of the turbine wheel or in the region of the rotor, and in addition the advantages mentioned above occur.
Um aufgrund der hohen Drehzahlen im Bereich der Magnetlagereinheiten auftretende Wärme abzuführen, ist vorteilhafterweise vorgesehen, daß die Magnetlagereinheiten von einem Kühlgas durchströmbar sind.In order to dissipate heat occurring due to the high speeds in the area of the magnetic bearing units, it is advantageously provided that a cooling gas can flow through the magnetic bearing units.
Das Kühlgas könnte rein theoretisch die Magnetlagereinheiten in unterschiedlichen Richtungen durchströmen. Besonders vorteilhaft ist es, wenn das Kühlgas die Magnetlagereinheiten im wesentlichen in axialer Richtung durchströmt.Theoretically, the cooling gas could flow through the magnetic bearing units in different directions. It when the cooling gas flows through the magnetic bearing units essentially in the axial direction is particularly advantageous.
Noch vorteilhafter läßt sich die Kühlung der Magnetlagereinheiten dann ausführen, wenn der Generatorinnenraum von einem Kühlgas durchströmt ist, wobei dieses Kühlgas vorteilhafterweise den Generatorinnenraum in einem die Rotoreinheit umgebenden Bereich durchströmt und somit an den entsprechenden Abschnitten der Rotoreinheit oberflächlich entlangströmt.The cooling of the magnetic bearing units can be carried out even more advantageously when a cooling gas flows through the interior of the generator, this cooling gas advantageously flowing through the interior of the generator in a region surrounding the rotor unit and thus flowing superficially along the corresponding sections of the rotor unit.
Als Kühlgas kann grundsätzlich ein beliebiges Gas Verwendung finden. Besonders vorteilhaft ist es jedoch, wenn das Kühlgas mit dem die Turbine treibenden Prozeßgas identisch ist, da in diesem Fall ein Leckgasstrom durch den Verbindungskanal hindurch keinerlei Probleme verursacht und insbesondere keinerlei Verunreinigungen beim Prozeßgas.Any gas can in principle be used as the cooling gas. However, it is particularly advantageous if the cooling gas is identical to the process gas driving the turbine, since in this case a leak gas flow through the connecting channel does not cause any problems and, in particular, does not contaminate the process gas.
Das zum Kühlen der Magnetlagereinheiten verwendete Kühlgas kann dabei unterschiedlichster Herkunft sein. Im einfachsten Fall ist vorgesehen, daß das Kühlgas aus dem die Turbine durchströmenden Prozeßgasstrom stammt.The cooling gas used to cool the magnetic bearing units can come from a wide variety of sources. In the simplest case, it is provided that the cooling gas comes from the process gas stream flowing through the turbine.
Dies ist beispielsweise dadurch erreichbar, daß das Kühlgas das vom Turbineninnenraum in den Generatorinnenraum durch den Verbindungskanal einströmende Leckgas ist.This can be achieved, for example, in that the cooling gas is the leakage gas flowing from the turbine interior into the generator interior through the connecting channel.
Dieses Leckgas läßt sich dann beispielsweise im Generatorinnenraum in einem der Gasturbine abgewandten Bereich sammeln und abführen.This leakage gas can then be collected and discharged, for example, in the generator interior in an area facing away from the gas turbine.
Um eine definierte Kühlung der Magnetlagereinheiten zu erreichen, und insbesondere in dem Fall, daß das von dem Turbineninnenraum kommende Leckgas keine ausreichende Kühlwirkung hat, da dieses vor Einströmen in die Gasturbine beispielsweise aufgeheizt wurde, ist vorgesehen, daß zur Kühlung der Magnetlagereinheiten externes Kühlgas zugeführt und wieder abgeführt wird.In order to achieve a defined cooling of the magnetic bearing units, and in particular in the event that the leakage gas coming from the turbine interior does not have a sufficient cooling effect, since this was heated up, for example, before flowing into the gas turbine, it is provided that external cooling gas is supplied for cooling the magnetic bearing units and is discharged again.
Die Führung des externen Kühlgases durch die Magnetlagereinheiten und gegebenenfalls auch durch den Generatorinnenraum läßt sich in unterschiedlichster Art und Weise durchführen. So wäre es beispielsweise grundsätzlich möglich, das Kühlgas in axialer Richtung entweder in Richtung auf die Gasturbine zu oder von der Gasturbine weg strömen zu lassen.The guidance of the external cooling gas through the magnetic bearing units and possibly also through the generator interior can be done in many different ways carry out. For example, it would in principle be possible for the cooling gas to flow in the axial direction either towards the gas turbine or away from the gas turbine.
Insbesondere dann, wenn das externe Kühlgas zur Ergänzung der Kühlwirkung des Leckgases dienen soll, ist es jedoch vorteilhaft, wenn das externe Kühlgas in axialer Richtung von der Turbine weg die Magnetlagereinheiten durchströmt.In particular, if the external cooling gas is intended to supplement the cooling effect of the leakage gas, it is advantageous, however, if the external cooling gas flows through the magnetic bearing units in the axial direction away from the turbine.
Eine besonders vorteilhafte Lösung sieht dabei vor, daß das externe Kühlgas zwischen dem Turbinenrad und der dem Turbinenrad nächstliegenden Magnetlagereinheit zugeführt wird und in axialer Richtung von der Turbine weg den Generatorinnenraum durchströmt.A particularly advantageous solution provides that the external cooling gas is supplied between the turbine wheel and the magnetic bearing unit closest to the turbine wheel and flows through the generator interior in the axial direction away from the turbine.
In diesem Fall ist dann vorteilhafterweise vorgesehen, daß das Kühlgas auf einer der Turbine abgewandten Seite aus dem Generatorinnenraum abführbar ist.In this case, it is advantageously provided that the cooling gas can be removed from the generator interior on a side facing away from the turbine.
Besonders vorteilhaft ist es dabei, wenn das Kühlgas im Bereich des Verbindungskanals zuführbar ist.It is particularly advantageous if the cooling gas can be supplied in the region of the connecting channel.
Um im Falle einer zu hohen Temperatur des von dem Turbineninnenraum in den Generatorinnenraum einströmenden Leckgasstromes den Leckgasstrom möglichst klein zu halten ist vorteilhafterweise vorgesehen, daß in dem Verbindungskanal ein gasstromreduzierendes Element angeordnet ist.In order to keep the leakage gas flow as small as possible in the event of an excessively high temperature of the leakage gas flow flowing from the turbine interior into the generator interior, provision is advantageously made for a gas flow-reducing element to be arranged in the connecting duct.
Dieses gasstromreduzierende Element ist beispielsweise als berührungslose Dichtung, vorzugsweise als Labyrinthdichtung, ausgeführt.This gas flow reducing element is designed, for example, as a non-contact seal, preferably as a labyrinth seal.
Wie bereits vorstehend erwähnt, ist es vorteilhaft, um die Gasreibung im Generatorinnenraum zu reduzieren, den Generatorinnenraum auf einem definierten Druckniveau zu halten.As already mentioned above, in order to reduce the gas friction in the generator interior, it is advantageous to keep the generator interior at a defined pressure level.
Vorzugsweise ist dabei das Druckniveau im Generatorinnenraum so gewählt, daß es unter dem Druck an einem Gaseinlaß der Turbine liegt.The pressure level in the interior of the generator is preferably selected so that it is below the pressure at a gas inlet of the turbine.
Eine besonders vorteilhafte Lösung sieht vor, daß das Druckniveau im Generatorinnenraum einem Druckniveau an einem Gasauslaß der Turbine entspricht.A particularly advantageous solution provides that the pressure level in the interior of the generator corresponds to a pressure level at a gas outlet of the turbine.
Um durch den Generator möglichst wenig Wärme zu erzeugen, die wiederum aus dem Generatorinnenraum abgeführt werden muß, ist vorteilhafterweise vorgesehen, daß der Generator ein permanent erregter Synchrongenerator ist.In order to generate as little heat as possible from the generator, which in turn has to be dissipated from the interior of the generator, it is advantageously provided that the generator is a permanently excited synchronous generator.
Insbesondere ist es dabei zweckmäßig, wenn der Rotor ein elektrisch passiver Rotor ist, so daß zum Rotor keine Stromzuführungen hingeführt werden müssen, sondern lediglich zu einem Stator des Generators.In particular, it is expedient if the rotor is an electrically passive rotor, so that no current leads have to be fed to the rotor, but only to a stator of the generator.
Um auch die im Stator auftretende Wärme optimal abführen zu können, ist vorzugsweise vorgesehen, daß der Stator gekühlt ist. Beispielsweise könnte auch der Stator durch Kühlgas gekühlt werden, welches zweckmäßigerweise durch im Stator vorgesehene Kühlgaskanäle strömt. Noch vorteilhafter ist es jedoch, insbesondere aufgrund der besseren Ankopplungen, wenn der Stator flüssigkeitsgekühlt ist.In order to be able to optimally dissipate the heat occurring in the stator, it is preferably provided that the stator is cooled. For example, the stator could also be cooled by cooling gas, which expediently flows through cooling gas channels provided in the stator. However, it is even more advantageous, in particular because of the better couplings, if the stator is liquid-cooled.
Die erfindungsgemäße Stromgewinnungsanlage läßt sich besonders vorteilhaft dann einsetzen, wenn dem Generator ein Umrichter zur Erzeugung einer üblichen standardisierten Netzspannung mit standardisierter Netzfrequenz für ein öffentliches Stromversorgungsnetz nachgeschaltet ist, da der Generator aufgrund des auf der Rotoreinheit sitzenden Rotors eine Wechselspannung mit stark wechselnder und der Drehzahl der Rotoreinheit entsprechender Frequenz erzeugt, welche nicht zur Einspeisung in ein öffentliches Netz geeignet ist.The power generation system according to the invention can be used particularly advantageously if the generator is followed by a converter for generating a customary standardized mains voltage with a standardized mains frequency for a public power supply network, since the generator has an alternating voltage with a strongly changing frequency and the speed of rotation due to the rotor sitting on the rotor unit Generated rotor unit of the appropriate frequency, which is not suitable for feeding into a public network.
Darüber hinaus sieht ein besonders vorteilhaftes Einsatzfeld der erfindungsgemäßen Stromgewinnungsanlage vor, daß die Turbine eine Expansionsturbine ist, um die bei der Expansion von Gasen frei werdende Energie zurückzugewinnen, wobei es sich beispielsweise um die Erdgasexpansion bei Fernleitungen oder um die Gasexpansion in der Kryotechnik handeln kann.In addition, a particularly advantageous field of application of the power generation system according to the invention provides that the turbine is an expansion turbine in order to recover the energy released during the expansion of gases, which can be, for example, natural gas expansion in long-distance lines or gas expansion in cryogenics.
Weitere Merkmale und Vorteile sind Gegenstand der nachfolgenden Beschreibung sowie der zeichnerischen Darstellung eines Ausführungsbeispiels.Further features and advantages are the subject of the following description and the drawing of an exemplary embodiment.
In der Zeichnung zeigen:
- Fig. 1
- einen schematischen Längsschnitt durch eine erfindungsgemäße Stromgewinnungsanlage und
- Fig. 2
- einen Schnitt durch einen Rotor längs Linie 2-2.
- Fig. 1
- a schematic longitudinal section through a power generation system according to the invention and
- Fig. 2
- a section through a rotor along line 2-2.
Ein Ausführungsbeispiel einer erfindungsgemäßen Stromgewinnungsanlage, dargestellt in Fig. 1, umfaßt ein als Ganzes mit 10 bezeichnetes Anlagengehäuse, in welchem eine Gasturbine 12 und ein Generator 14 zu einer Einheit zusammengefaßt sind.An embodiment of a power generation system according to the invention, shown in FIG. 1, comprises a system housing, designated as a whole by 10, in which a
Die Gasturbine 12 umfaßt ein Turbinengehäuse 16, welche als Gasexpansionsturbine ausgebildet ist und einen Einlaßkanal 18 für das zu expandierende Prozeßgas aufweist, welcher zu einem Innenraum 20 der Gasturbine führt, in welchem ein Turbinenrad 22 drehbar angeordnet ist. Von diesem Turbineninnenraum 20 führt wiederum ein Auslaßkanal 24 weg, in welchem das expandierte Gas abströmt.The
Das Turbinenrad 22 ist Teil einer als Ganzes mit 26 bezeichneten Rotoreinheit, welche eine das Turbinenrad 22 tragende Welle 28 und einen auf der Welle 28 sitzenden Rotor 30 des Generators 14 umfaßt. So wird bei Antrieb des Turbinenrads 22 die gesamte Rotoreinheit 26 in Drehung versetzt und damit auch der Rotor 30 des Generators 14 um eine Drehachse 32 mit der Drehzahl des Turbinenrades 22 rotierend angetrieben.The
Die Rotoreinheit 26 ist dabei im Anlagengehäuse 10 durch zwei in Richtung der Drehachse 32 im Abstand voneinander angeordnete Magnetlagereinheiten 34, 36 berührungslos gelagert, wobei die Magnetlagereinheiten 34 und 36 in Richtung der Drehachse 32 gesehen beiderseits des Rotors 30 angeordnet sind.The
Jede der Magnetlagereinheiten 34, 36 umfaßt ein magnetisches Radiallager 38, welches einerseits ein auf die Welle 28 aufgeschrumpftes ringförmiges Blechpaket 40 aufweist und andererseits einen Ständer 41 mit einem Stator 42 aus geschichteten Elektroblechen, deren Pole von Spulen 43 umgeben sind. Elektromagnetisch ist dabei jeder Stator 42 in 4 Quadranten mit je einem Nord- und Südpol aufgeteilt, so daß jedes Radiallager 38 zwei aktive Achsen aufweist, von denen jede von zwei gegenüberliegenden Quadranten gebildet wird. Die auf die Rotoreinheit 26 wirkenden Gewichtskräfte werden durch die zwei oberen Quadranten jedes Radiallagers 38 aufgefangen, da dieses Radiallager nur Zugkräfte entwickeln kann.Each of the
Ferner umfaßt jedes Radiallager 38 einen zeichnerisch in Fig. 1 nicht dargestellten Sensorring, dessen Signale von einer Lageregelung 44 ausgewertet werden, die die Achsen so steuert, daß der Rotor 26 um die festgelegte Drehachse 32 rotiert.Furthermore, each
Neben dem Radiallager 38 umfaßt jede Magnetlagereinheit 34, 36 noch eine Hälfte 48 eines Axiallagers, wobei jede Hälfte 48 des Axiallagers eine auf der Welle 28 sitzende ferromagnetische Scheibe 50 und einen im Anlagengehäuse 10 sitzenden Ständer 52 umfaßt, in welchen die Windungen einer elektromagnetischen Spule 54 eingelassen sind.In addition to the
Jede Hälfte 48 des Axiallagers wirkt dabei so, daß auf die ferromagnetische Scheibe 50 von dem Ständer 52 Zugkräfte ausgeübt werden, welche die ferromagnetische Scheibe 50 in Richtung des Ständers 52 mit einer Kraft beaufschlagen.Each
Die jeweiligen Hälften 48 der Axiallager sind in den Magnetlagereinheiten 34 und 36 dabei so angeordnet, daß sie gegeneinander wirkende Axialkräfte 56 bzw. 58 auf die Rotoreinheit 26 ausüben und somit die Rotoreinheit stabilisieren, wobei die beiden Hälften 48 der Axiallager ebenfalls jeweils Sensoren aufweisen und über eine gemeinsame Lageregelung 60 geregelt sind.The respective halves 48 of the thrust bearings are arranged in the
Jede der Magnetlagereinheiten 34 und 36 ist zusätzlich noch jeweils mit einem Fanglager 62 versehen, wobei das Fanglager 62 jeweils als Radial- und Axiallager ausgeführt ist und dazu dient, die Rotoreinheit 26 bei abgeschalteten oder ausfallenden Magnetlagereinheiten 34, 36 aufzufangen und Kollisionen, beispielsweise in der Gasturbine 12 oder dem Generator 14 zu verhindern.Each of the
Die Lageregelungen 44 der Radiallager 38 der Magnetlagereinheiten 34 und 36 sind vorzugsweise ferner so ausgebildet, daß sie unterhalb einer festgelegten Drehzahl die Rotoreinheit 26 um ihre geometrische Mittelachse als Drehachse 32 rotierend lagern. Bei Überschreiten der festgelegten Drehzahl erfolgt eine Lagerung um die Schwerpunktachse der Rotoreinheit 26 als Drehachse 32, so daß in diesem Zustand eine quasi kräftefreie und selbstzentrierte Lagerung der Rotoreinheit 26 erreichbar ist.The position controls 44 of the
Der Generator 14 umfaßt neben dem Rotor 30 noch einen Stator 70 und ist als permanent erregter Synchrongenerator ausgebildet, wobei der Rotor elektrisch passiv ist und, wie in Fig. 2 dargestellt, auf der Welle 28 sitzende und als Segmente angeordnete Hochenergiemagnete 72 trägt, welche radial zur Drehachse 32 durch eine Bandage 74 gesichert sind.In addition to the
Zur Kühlung des Stators 70, welcher seinerseits Spulenwicklungen 76 trägt, ist der Stator 70 mit im Stator 70 um die Drehachse 32 umlaufenden Kühlkanälen 78 versehen, welche mit einer Kühlwasserzuleitung 80 und einer Kühlwasserableitung 82 verbunden und somit von Kühlwasser durchströmbar sind.To cool the
Das Anlagengehäuse 10 bildet mit einem ersten Abschnitt 90 ein Turbinengehäuse für die Gasturbine 12 und umschließt den Turbineninnenraum 20 gasdicht und druckfest.The
Darüber hinaus bildet das Anlagengehäuse 10 mit einem zweiten Abschnitt ein Generatorgehäuse 92, welches einen Generatorinnenraum 94 ebenfalls druckfest und gasdicht umschließt. In diesem Generatorinnenraum 94 sind der Stator 70, der Rotor 30 sowie die Magnetlagereinheiten 34 und 36 angeordnet. Alle in dem Generatorinnenraum führenden elektrischen Zuleitungen sind dabei durch druckfeste Kabeldurchführungen 95 geführt.In addition, the
Ferner führt vom Generatorinnenraum 94 ein Verbindungskanal 96 zum Turbineninnenraum 20, wobei sich durch diesen Verbindungskanal 96 die Welle 28 der Rotoreinheit hindurcherstreckt, welche auf ihrem freien, sich in den Turbineninnenraum 20 hineinerstreckenden Ende das Turbinenrad 22 trägt.Furthermore, a connecting
Dabei bildet der Turbineninnenraum 20 über den Verbindungskanal 96 mit dem Generatorinnenraum 94 einen gasdicht und druckfest abgeschlossenen Raum, in welchem sich die Rotoreinheit 26 beim Betrieb der Stromgewinnungsanlage berührungslos dreht.In this case, the
Um einen Leckgasstrom von dem Turbineninnenraum 20 in den Generatorinnenraum 94 zu drosseln, ist in dem Verbindungskanal 96 noch eine Labyrinthdichtung 98 vorgesehen, so daß nur ein geringer Teil des Prozeßgases vom Turbineninnenraum 20 in den Generatorinnenraum 94 strömt.In order to throttle a leakage gas flow from the
Im einfachsten Fall dient der vom Turbineninnenraum 20 in den Generatorinnenraum 94 eintretende Leckgasstrom als Kühlgas, welches den Generatorinnenraum 94 in axialer Richtung von der Gasturbine 12 weg durchströmt, dabei die Rotoreinheit 26 umströmt und die Magnetlagereinheiten 34, 36 kühlt.In the simplest case, the leakage gas flow entering the
Zur zusätzlichen oder alternativen Kühlung der Magnetlagereinheiten 34, 36 ist ein Kühlgaseinlaßkanal 100 vorgesehen, welcher zwischen der Labyrinthdichtung 98 und der dem Turbinenrad 22 zugewandten Magnetlagereinheit 34 mündet und Kühlgas auf die Rotoreinheit 26 in diesem Bereich strömen läßt. Dieses Kühlgas durchströmt zunächst die Magnetlagereinheit 34 im wesentlichen in axialer Richtung 102 dann einen Spalt zwischen dem Rotor 30 und dem Stator 70 und daraufhin ebenfalls in axialer Richtung 102 von der Gasturbine 12 weg die Magnetlagereinheit 36 und sammelt sich wie auch der Leckgasstrom in einem hinteren Abschnitt 104 des Generatorinnenraums 94, von welchem es über einen Kühlgasauslaßkanal 106 abgeführt und einer Gasrückführung 108 zugeführt wird, welche das Kühlgas wieder dem Kühlgaseinlaßkanal 100 zuführt.For additional or alternative cooling of the
Vorzugsweise wird als Kühlgas dasselbe Gas wie das die Gasturbine 12 antreibende Prozeßgas eingesetzt, so daß überschüssiges Kühlgas dem Prozeßgas wieder zuführbar ist und außerdem von dem Turbineninnenraum 20 in den Generatorinnenraum 94 eintretendes Prozeßgas keinerlei Verunreinigung erfährt, sondern im Gegenteil das von dem Turbineninnenraum 20 in den Generatorinnenraum 94 eintretende Leckgas ebenfalls als Kühlgas eingesetzt wird, dessen Kühlwirkung fakultativ durch das über den Kühlgaseinlaßkanal extern zugeführte Kühlgas ergänzt wird.The same gas as the process gas driving the
Die Zufuhr des Kühlgases erfolgt vorzugsweise so, daß in dem Generatorinnenraum ein Druck vorliegt, welcher ungefähr dem Druck des Prozeßgases im Auslaßkanal 24 entspricht, um die Gasreibung im Generatorinnenraum möglichst niedrig zu halten.The cooling gas is preferably supplied in such a way that there is a pressure in the generator interior which corresponds approximately to the pressure of the process gas in the
Der von dem permanent erregten Synchrongenerator erzeugte Strom wird schließlich einem Umrichter 110 zugeführt, welcher diesen in einen Wechselstrom mit einer Netzfrequenz und einer Netzspannung umsetzt, welche eine Einspeisung in ein öffentliches Stromversorgungsnetz erlaubt.The current generated by the permanently excited synchronous generator is finally fed to a
Claims (34)
dadurch gekennzeichnet,
daß die Turbine (12) und der Generator (14) in einem Anlagengehäuse (10) zu einer Einheit zusammengefaßt sind, daß das Turbinenrad (22) und der Rotor (30) eine sich als Ganzes drehende Rotoreinheit (26) bilden und daß die Rotoreinheit (26) in dem Anlagengehäuse (10) durch Magnetlagereinheiten (34, 36) berührungslos drehbar gelagert ist.Power generation plant comprising a gas turbine with a turbine wheel and a generator with a rotor driven by the turbine wheel,
characterized,
that the turbine (12) and the generator (14) are combined in a unit housing (10) to form a unit, that the turbine wheel (22) and the rotor (30) form a rotating rotor unit (26) and that the rotor unit (26) is rotatably supported in the system housing (10) by means of magnetic bearing units (34, 36) without contact.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE9215696U | 1992-11-18 | ||
DE9215696U DE9215696U1 (en) | 1992-11-18 | 1992-11-18 | Power generation plant |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0598183A1 true EP0598183A1 (en) | 1994-05-25 |
EP0598183B1 EP0598183B1 (en) | 1999-10-06 |
Family
ID=6886160
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP93110574A Expired - Lifetime EP0598183B1 (en) | 1992-11-18 | 1993-07-02 | Turbogenerator set |
Country Status (4)
Country | Link |
---|---|
US (1) | US5481145A (en) |
EP (1) | EP0598183B1 (en) |
JP (1) | JP3459443B2 (en) |
DE (2) | DE9215696U1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0713001A1 (en) * | 1994-11-15 | 1996-05-22 | Energieversorgung Leverkusen Gmbh | Gas turbine expander |
DE19804208A1 (en) * | 1998-02-03 | 1999-08-05 | Frank Belitz | Electric turbo generator |
EP2017435A3 (en) * | 2007-07-14 | 2013-05-22 | Atlas Copco Energas Gmbh | Turbo engine with electric machine and magnetic bearings |
Families Citing this family (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4444587A1 (en) * | 1994-12-14 | 1996-06-20 | Siemens Ag | Turbine with a magnetically supported shaft |
DE19613802B4 (en) * | 1996-04-04 | 2005-10-27 | Forschungszentrum Jülich GmbH | House or room heating system |
US5749700A (en) * | 1996-07-17 | 1998-05-12 | Allison Engine Company, Inc. | High speed, high temperature hybrid magnetic thrust bearing |
US5848089A (en) * | 1997-07-11 | 1998-12-08 | Cymer, Inc. | Excimer laser with magnetic bearings supporting fan |
DE19833420C1 (en) * | 1998-07-24 | 1999-10-28 | Piller Gmbh | Emergency current supply method using electromechanical energy converter e.g. for submarine |
GB9904221D0 (en) * | 1999-02-25 | 1999-04-21 | Rolls Royce Plc | Gas turbine engine bearing arrangement |
US6232688B1 (en) * | 1999-04-28 | 2001-05-15 | Allison Advanced Development Company | High speed magnetic thrust disk |
US6261699B1 (en) | 1999-04-28 | 2001-07-17 | Allison Advanced Development Company | Fiber reinforced iron-cobalt composite material system |
US6247638B1 (en) | 1999-04-28 | 2001-06-19 | Allison Advanced Development Company | Selectively reinforced member and method of manufacture |
DE19924852A1 (en) * | 1999-05-31 | 2000-12-07 | Abb Alstom Power Ch Ag | Storage of rotors of generators in a magnetic field |
DE10333733A1 (en) * | 2003-07-23 | 2005-02-24 | Forschungszentrum Jülich GmbH | Magnetic bearing element for machines with high numbers of revolutions, has ring-shaped permanent magnets encased in a carbon fiber binding band and separated at several points |
FR2860576A1 (en) * | 2003-10-01 | 2005-04-08 | Air Liquide | APPARATUS AND METHOD FOR SEPARATING A GAS MIXTURE BY CRYOGENIC DISTILLATION |
DE10358953A1 (en) | 2003-12-15 | 2005-07-28 | Man Turbo Ag | Storage of the rotor of a gas turbine |
US8395288B2 (en) * | 2005-09-21 | 2013-03-12 | Calnetix Technologies, L.L.C. | Electric machine with centrifugal impeller |
EP1905948B1 (en) * | 2006-09-12 | 2012-10-24 | Cryostar SAS | Power recovery machine |
US7841306B2 (en) * | 2007-04-16 | 2010-11-30 | Calnetix Power Solutions, Inc. | Recovering heat energy |
US8839622B2 (en) * | 2007-04-16 | 2014-09-23 | General Electric Company | Fluid flow in a fluid expansion system |
US7638892B2 (en) * | 2007-04-16 | 2009-12-29 | Calnetix, Inc. | Generating energy from fluid expansion |
DE102007027349B4 (en) * | 2007-06-14 | 2009-02-05 | Conpower Energieanlagen Gmbh & Co Kg. | Device and method for generating electricity from heat |
DE102007035058A1 (en) * | 2007-07-26 | 2009-01-29 | Conpower Energieanlagen Gmbh & Co Kg | Device and method for generating electricity |
US8102088B2 (en) * | 2008-01-25 | 2012-01-24 | Calnetix Technologies, L.L.C. | Generating electromagnetic forces with flux feedback control |
US20090241595A1 (en) * | 2008-03-27 | 2009-10-01 | Praxair Technology, Inc. | Distillation method and apparatus |
JP2008175212A (en) * | 2008-04-09 | 2008-07-31 | Ebara Corp | Turbine generator |
US8169118B2 (en) * | 2008-10-09 | 2012-05-01 | Calnetix Technologies, L.L.C. | High-aspect-ratio homopolar magnetic actuator |
US8183854B2 (en) * | 2008-11-07 | 2012-05-22 | Calnetix Technologies, L.L.C. | Measuring linear velocity |
US8004102B2 (en) * | 2009-04-03 | 2011-08-23 | Praxair Technology, Inc. | Refrigeration generation method and system |
US8564281B2 (en) * | 2009-05-29 | 2013-10-22 | Calnetix Technologies, L.L.C. | Noncontact measuring of the position of an object with magnetic flux |
US8378543B2 (en) * | 2009-11-02 | 2013-02-19 | Calnetix Technologies, L.L.C. | Generating electromagnetic forces in large air gaps |
US8796894B2 (en) | 2010-01-06 | 2014-08-05 | Calnetix Technologies, L.L.C. | Combination radial/axial electromagnetic actuator |
US8847451B2 (en) | 2010-03-23 | 2014-09-30 | Calnetix Technologies, L.L.C. | Combination radial/axial electromagnetic actuator with an improved axial frequency response |
US8400005B2 (en) | 2010-05-19 | 2013-03-19 | General Electric Company | Generating energy from fluid expansion |
US8415847B2 (en) | 2010-05-21 | 2013-04-09 | Siemens Industry, Inc. | Induction machine bearing system |
US8739538B2 (en) | 2010-05-28 | 2014-06-03 | General Electric Company | Generating energy from fluid expansion |
DE102011005347B4 (en) * | 2011-03-10 | 2013-11-07 | Siemens Aktiengesellschaft | Turbine with a magnetic bearing and method of operating the turbine |
DE102011001530A1 (en) * | 2011-03-24 | 2012-09-27 | Atlas Copco Energas Gmbh | turbomachinery |
US8482174B2 (en) | 2011-05-26 | 2013-07-09 | Calnetix Technologies, Llc | Electromagnetic actuator |
US9531236B2 (en) | 2011-06-02 | 2016-12-27 | Calnetix Technologies, Llc | Arrangement of axial and radial electromagnetic actuators |
US8984884B2 (en) | 2012-01-04 | 2015-03-24 | General Electric Company | Waste heat recovery systems |
US9018778B2 (en) | 2012-01-04 | 2015-04-28 | General Electric Company | Waste heat recovery system generator varnishing |
US9024460B2 (en) | 2012-01-04 | 2015-05-05 | General Electric Company | Waste heat recovery system generator encapsulation |
KR101306057B1 (en) * | 2012-04-13 | 2013-09-09 | 에스티엑스중공업 주식회사 | Gas turbine having multi-functional structure for connecting engine module and generator module |
US9024494B2 (en) | 2013-01-07 | 2015-05-05 | Calnetix Technologies, Llc | Mechanical backup bearing arrangement for a magnetic bearing system |
US9683601B2 (en) | 2013-03-14 | 2017-06-20 | Calnetix Technologies, Llc | Generating radial electromagnetic forces |
US9559565B2 (en) | 2013-08-22 | 2017-01-31 | Calnetix Technologies, Llc | Homopolar permanent-magnet-biased action magnetic bearing with an integrated rotational speed sensor |
US10280796B2 (en) | 2015-02-09 | 2019-05-07 | Nuovo Pignone Tecnologie Srl | Integrated turboexpander-generator with gas-lubricated bearings |
DE102016203423A1 (en) | 2016-03-02 | 2017-09-07 | Dürr Systems Ag | Gas Turbine System |
US10811884B2 (en) | 2018-03-16 | 2020-10-20 | Uop Llc | Consolidation and use of power recovered from a turbine in a process unit |
US10745631B2 (en) | 2018-03-16 | 2020-08-18 | Uop Llc | Hydroprocessing unit with power recovery turbines |
US10871085B2 (en) | 2018-03-16 | 2020-12-22 | Uop Llc | Energy-recovery turbines for gas streams |
US10753235B2 (en) | 2018-03-16 | 2020-08-25 | Uop Llc | Use of recovered power in a process |
US11507031B2 (en) | 2018-03-16 | 2022-11-22 | Uop Llc | Recovered electric power measuring system and method for collecting data from a recovered electric power measuring system |
DE102018206158B4 (en) * | 2018-04-20 | 2020-02-06 | Deprag Schulz Gmbh U. Co | Turbine generator and method for operating a turbine generator |
US11002146B1 (en) * | 2020-10-26 | 2021-05-11 | Antheon Research, Inc. | Power generation system |
CN114575938A (en) * | 2022-03-11 | 2022-06-03 | 天津大学 | Double-turbine expansion generator |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH344128A (en) * | 1955-11-05 | 1960-01-31 | Sulzer Ag | Machine group consisting of a turbine and an electric generator driven by it |
DE2515315A1 (en) * | 1975-04-08 | 1976-10-21 | Borsig Gmbh | Drive shaft seal and bearing for turbine - has magnet type combined bearing and seal device |
FR2336550A1 (en) * | 1975-12-24 | 1977-07-22 | Europ Propulsion | LONG SHAFT MOUNTING, ESPECIALLY FOR TURBOMACHINE |
GB1491710A (en) * | 1974-08-15 | 1977-11-16 | Howarth A | Induction machines |
EP0009843A1 (en) * | 1978-10-05 | 1980-04-16 | ATELIERS DE CONSTRUCTIONS ELECTRIQUES DE CHARLEROI (ACEC) Société Anonyme | Expansion turbine/generator unit |
EP0462724A1 (en) * | 1990-06-07 | 1991-12-27 | General Electric Company | Integrated turbine generator |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2010805A1 (en) * | 1970-03-07 | 1971-09-23 | Kraftwerk Union Ag | Turbo generator |
SU641839A1 (en) * | 1975-07-10 | 1981-09-07 | Научно-Производственное Объединение Автоматгормаш | Converter of pneumatic to electric energy |
DE2544726C2 (en) * | 1975-10-07 | 1983-08-18 | Teldix Gmbh, 6900 Heidelberg | Interference component suppression in the magnetic radial bearing of a rotor |
DE2823261C2 (en) * | 1978-05-27 | 1985-05-23 | Robert Bosch Gmbh, 7000 Stuttgart | Electric machine |
EP0141634A3 (en) * | 1983-10-29 | 1986-07-30 | Isuzu Motors Limited | Engine with exhaust energy recovery device and generator device for use with the engine |
FR2613791B1 (en) * | 1987-04-09 | 1992-03-13 | Europ Propulsion | RADIAL MAGNETIC BEARING WITH EMERGENCY LANDING AND APPLICATION TO AN ACTIVE MAGNETIC SUSPENSION TURBOMACHINE |
JPS63277443A (en) * | 1987-05-07 | 1988-11-15 | Fuji Electric Co Ltd | Generator with built-in piping |
JPH0192526A (en) * | 1987-09-30 | 1989-04-11 | Isuzu Motors Ltd | Turbocharger provided with electric rotary machine |
JPH02241339A (en) * | 1989-03-14 | 1990-09-26 | Hitachi Ltd | Permanent magnet rotor for turbo-charger directly-connecting rotary machine |
DE4105258A1 (en) * | 1991-02-20 | 1992-08-27 | Abb Patent Gmbh | Radial magnetic bearing for rotor with shaft seal and or bearing mounting - provides integrated structure with both stator carrying coils of magnetic bearing and rotor having laminated cores |
US5220232A (en) * | 1991-09-03 | 1993-06-15 | Allied Signal Aerospace | Stacked magnet superconducting bearing |
US5310311A (en) * | 1992-10-14 | 1994-05-10 | Barber-Colman Company | Air cycle machine with magnetic bearings |
US5380170A (en) * | 1993-10-12 | 1995-01-10 | Copeland Corporation | Scroll compressor oil pumping system |
-
1992
- 1992-11-18 DE DE9215696U patent/DE9215696U1/en not_active Expired - Lifetime
-
1993
- 1993-07-02 EP EP93110574A patent/EP0598183B1/en not_active Expired - Lifetime
- 1993-07-02 DE DE59309824T patent/DE59309824D1/en not_active Expired - Lifetime
- 1993-07-20 US US08/094,853 patent/US5481145A/en not_active Expired - Lifetime
- 1993-07-27 JP JP18496493A patent/JP3459443B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH344128A (en) * | 1955-11-05 | 1960-01-31 | Sulzer Ag | Machine group consisting of a turbine and an electric generator driven by it |
GB1491710A (en) * | 1974-08-15 | 1977-11-16 | Howarth A | Induction machines |
DE2515315A1 (en) * | 1975-04-08 | 1976-10-21 | Borsig Gmbh | Drive shaft seal and bearing for turbine - has magnet type combined bearing and seal device |
FR2336550A1 (en) * | 1975-12-24 | 1977-07-22 | Europ Propulsion | LONG SHAFT MOUNTING, ESPECIALLY FOR TURBOMACHINE |
EP0009843A1 (en) * | 1978-10-05 | 1980-04-16 | ATELIERS DE CONSTRUCTIONS ELECTRIQUES DE CHARLEROI (ACEC) Société Anonyme | Expansion turbine/generator unit |
EP0462724A1 (en) * | 1990-06-07 | 1991-12-27 | General Electric Company | Integrated turbine generator |
Non-Patent Citations (1)
Title |
---|
"suspending rotating shafts in midair", COMPRESSED AIR, vol. 90, no. 4, 1 April 1985 (1985-04-01), PHILLIPSBURG US, pages 30 - 33 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0713001A1 (en) * | 1994-11-15 | 1996-05-22 | Energieversorgung Leverkusen Gmbh | Gas turbine expander |
DE19804208A1 (en) * | 1998-02-03 | 1999-08-05 | Frank Belitz | Electric turbo generator |
WO1999040670A1 (en) * | 1998-02-03 | 1999-08-12 | Frank Belitz | Electric turbogenerator |
EP2017435A3 (en) * | 2007-07-14 | 2013-05-22 | Atlas Copco Energas Gmbh | Turbo engine with electric machine and magnetic bearings |
Also Published As
Publication number | Publication date |
---|---|
JPH06173709A (en) | 1994-06-21 |
DE9215696U1 (en) | 1994-03-17 |
DE59309824D1 (en) | 1999-11-11 |
US5481145A (en) | 1996-01-02 |
EP0598183B1 (en) | 1999-10-06 |
JP3459443B2 (en) | 2003-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0598183B1 (en) | Turbogenerator set | |
EP1313959B1 (en) | Magnetic bearing for suspending a rotating shaft using high tc superconducting material | |
DE102005030139B4 (en) | Device for the magnetic bearing of a rotor shaft with radial guidance and axial control | |
EP3491724B1 (en) | Rotor with coil arrangement and winding support | |
EP0332979B1 (en) | Magnetic support with permanent magnets for absorption of the radial bearing stresses | |
DE2339772C3 (en) | Arrangement for fastening a superconducting excitation winding in the rotor of a turbo generator | |
DE10303307B4 (en) | Machine with a rotor and a supraleltende rotor winding | |
WO2016119968A1 (en) | Cooling device for cooling a high-pole-count rotor | |
EP2850723B1 (en) | Scalable device and arrangement for storing and releasing energy | |
DE60210704T2 (en) | Coil carrier for high-temperature superconducting synchronous rotor with tie rods | |
EP0041190A2 (en) | Device for cooling a superconducting exciting winding and a damper shield of the rotor of an electric machine | |
EP0797725B1 (en) | Turbine with shaft mounted on magnetic bearings | |
DE102014216241A1 (en) | Electric machine with cooling | |
DE102010041456A1 (en) | Rotor for an electric machine | |
DE10063724A1 (en) | Machine with a superconducting winding arranged in a winding support and with means for axial expansion compensation of the winding support | |
DE102007036603B4 (en) | High temperature superconductor bearing with improved bearing tracking | |
EP0038504A1 (en) | Arrangement for cooling a superconductive magnet winding | |
DE102006032344B3 (en) | synchronous machine | |
DE19938079C1 (en) | Superconducting magnetic bearing, e.g. for a flywheel energy storage unit, has a rotor disk of coaxial radially clamped permanent magnet rings forming gaps with high temperature superconductor stator rings | |
DE102022116463B4 (en) | Superconducting bearing arrangement | |
DE9403202U1 (en) | Magnetic storage device with high-Tc superconductor material | |
DE19804208A1 (en) | Electric turbo generator | |
CH516250A (en) | Alternating current synchronous machine system | |
DE102021002523B4 (en) | Device and method for winding and twisting fiber material in ring spinning or ring twisting machines | |
DE202012003348U1 (en) | Scalable device and arrangement for storage and delivery of energy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE FR GB IT LI NL SE |
|
17P | Request for examination filed |
Effective date: 19941122 |
|
17Q | First examination report despatched |
Effective date: 19950710 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: BOC AG Owner name: PILLER-GMBH |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE FR GB IT LI NL SE |
|
ITF | It: translation for a ep patent filed | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 59309824 Country of ref document: DE Date of ref document: 19991111 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: KIRKER & CIE SA |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20000106 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20100707 Year of fee payment: 18 Ref country code: CH Payment date: 20100714 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20100708 Year of fee payment: 18 Ref country code: IT Payment date: 20100723 Year of fee payment: 18 Ref country code: GB Payment date: 20100630 Year of fee payment: 18 Ref country code: FR Payment date: 20100805 Year of fee payment: 18 Ref country code: DE Payment date: 20100827 Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V1 Effective date: 20120201 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20110702 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20120330 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110801 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120201 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110731 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110731 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 59309824 Country of ref document: DE Effective date: 20120201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120201 Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110702 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110702 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110703 |