EP0591309B1 - Verfahren zur Eigenüberwachung und Steuerung der magnetischen Immunisations eines Schiffes - Google Patents

Verfahren zur Eigenüberwachung und Steuerung der magnetischen Immunisations eines Schiffes Download PDF

Info

Publication number
EP0591309B1
EP0591309B1 EP92912953A EP92912953A EP0591309B1 EP 0591309 B1 EP0591309 B1 EP 0591309B1 EP 92912953 A EP92912953 A EP 92912953A EP 92912953 A EP92912953 A EP 92912953A EP 0591309 B1 EP0591309 B1 EP 0591309B1
Authority
EP
European Patent Office
Prior art keywords
immunization
circuits
magnetic
naval vessel
currents
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92912953A
Other languages
English (en)
French (fr)
Other versions
EP0591309A1 (de
Inventor
Paul Penven
Jean-Jacques Periou
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0591309A1 publication Critical patent/EP0591309A1/de
Application granted granted Critical
Publication of EP0591309B1 publication Critical patent/EP0591309B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G9/00Other offensive or defensive arrangements on vessels against submarines, torpedoes, or mines
    • B63G9/06Other offensive or defensive arrangements on vessels against submarines, torpedoes, or mines for degaussing vessels

Definitions

  • the present invention relates to a method of self-monitoring and slaving of the magnetic immunization of a naval vessel provided with magnetic immunization circuits.
  • some mines said to have magnetic influence, include sensors capable of detecting any variation in their magnetic environment caused by a naval vessel, allowing them to destroy or damage this vessel.
  • Some aircraft are also fitted with sensors of this type enabling them to detect the naval vessel in order to destroy it.
  • the risk generated by the possibility of detection by an aircraft of the magnetic signature of a naval vessel is called the risk M.A.D. (Magnetic Anomaly Detection).
  • the magnetic signature of a building is constituted by its permanent magnetization and by its induced magnetization.
  • the permanent magnetization of a structure is due to the ferromagnetic materials constituting it. This is substantially constant, fluctuates only over time and is linked to the nature of the material used.
  • the induced magnetization is essentially variable. In the case of a ship, it depends on its orientation in the land field, its course and its inclination due to roll and pitch.
  • the magnetic signature of the ship therefore makes it possible to locate it, to follow it, and possibly to guide or ignite devices intended to destroy it. It is therefore very important to minimize or even cancel this "magnetic signature" to prevent its detection by magnetic method.
  • Magnetic immunization is carried out, in a known manner, by creating in the volume of the building a magnetic field which compensates for that of the building, in order to cancel its magnetic signature.
  • the building is provided with a set of circuits called “immunization loops" which are traversed by electric currents.
  • the dimensions, the arrangement of the loops and the currents flowing therein are determined to best minimize the "magnetic signature" of the building, whatever its orientation in the earth's magnetic field, that is to say whatever its heading. and its inclination due to roll and pitch.
  • These immunization loops are distributed in three directions corresponding to the roll, yaw and pitch axes, conventionally called “L, M, A” or even “L, V, T” (Longitudinal, Vertical, Transversal).
  • the currents in the immunization loops are adjusted using values obtained by passing the naval vessel through a measuring station.
  • This station may be placed at the bottom of the sea (at a depth generally varying from 8 m to 30 m) and made up of a line of magnetometers with regard to the risk caused by mines or other naval vessels, or be made up of magnetometers on board an aircraft for the MAD risk
  • the readings obtained thanks to these magnetometers make it possible to obtain on land a setting of the value of the currents to be circulated in the immunization circuits whatever the heading of the vessel, in a plane at the depth or at the altitude of danger.
  • the building goes on a mission without knowing precisely the map of the magnetic field it creates in the volume that surrounds it and for different heights of water. Indeed, such knowledge would suppose transmission, to from a ground station, from too much data.
  • this vessel must be able to know its exact magnetic signature and the associated risk to it, at a point or on a given area. Indeed, it can be necessary to modify in intensity the currents flowing in the immunization circuits and to control the results of these modifications on the magnetic signature.
  • An object of the present invention is to provide a method enabling a naval vessel to predict in real time its magnetic signature in a danger zone in order to allow it to very quickly deduce its risk with respect to a detection system. magnetic located in the risk zone.
  • Another object of the present invention is to provide a method enabling the naval vessel to assess its magnetic signature even in the event of an anomaly detected in the immunization circuits, and thus to independently assess its vulnerability, possibly by redefining automatically the best combination of currents taking into account the new constraints generated by the detected fault (s).
  • Another objective of the invention is to provide a method allowing the naval ship to test in simulation the modifications of the currents in the immunization circuits in order to better control the impact of the latter on its magnetic signature, then if necessary to modify his real signature.
  • This variant allows the naval vessel to independently estimate the consequences caused on its magnetic signature by an anomaly in a given circuit and to remedy it immediately by a new adjustment of the currents in the immunization circuits.
  • the method according to the invention comprises an additional step consisting in testing in simulation the modifications of the currents in the immunization circuits, so as to control the validity of the information provided by the modeling system.
  • the method comprises a periodic updating of the on-board models thanks to magnetic sensors installed on board the naval vessel.
  • the method comprises a phase consisting in permanently updating the on-board models thanks to magnetic sensors installed on board the naval vessel.
  • the method according to the invention can include a step consisting in using this information on a console or on a tactical table.
  • the operator can thus quickly change the definition of the danger zone himself, for example switching from a mine risk to a MAD risk, assessing its vulnerability and ordering, if necessary, a temporary or permanent modification of the currents in the circuits 'immunization.
  • the building 21 comprises ferromagnetic structures surrounded by immunization loops 22, 23, 24. These loops are arranged in three separate planes.
  • a loop 22 is used to compensate the longitudinal magnetization and is commonly called loop “L”
  • another loop 23 is used to compensate the vertical magnetization and is denoted "V”
  • the third loop 24 which has the function of compensating the magnetization transverse is noted “T”.
  • Loops 22 and 23 are presented in perspective.
  • a loop is characterized by its coordinates (x, y, z) relative to a given point, by its dimensions, by its resistance, by its shape, by the maximum current that can cross it, and by the number of available turns.
  • FIG. 1 is only indicative, the immunization of all the ferromagnetic structures included in a ship implying the arrangement of numerous loops in the different planes around the structures to be compensated.
  • a step prior to the method of controlling and controlling the magnetic immunization of a naval vessel consists of an operation comprising two steps.
  • the first of these steps a consists in measuring the magnetic field of the ship on station at sea.
  • This step consists in making the naval vessel cross the same path twice over networks of magnetic sensors in opposite directions.
  • the permanent magnetization linked to the building rotates with it, while the induced magnetization does not rotate. To know the induced magnetization, it suffices to subtract the measurement results from the two opposite directions.
  • the second step b consists in defining the representative models of the magnetizations of the naval vessel and of its loop effects. For example, it is possible to model the naval vessel or one of these "circuit effects" by a set of N ellipsoids.
  • the magnetic field derives from a magnetic potential V; the components h x , h y , h z of the magnetic field are respectively equal to 0 being permeability.
  • each ellipsoid being defined by 9 data: the position of the center x, y, z, the projections of the magnetizations on the 3 axes M x , M y , M z , and the dimensions a, b, c.
  • the process of self-monitoring and control of the immunization consists, after having transferred on board the naval vessel all the models, c, to characterize a danger zone 2, by defining the type of risk 10 and the thresholds of dangers 11 so as to arrive at a precise definition of the danger zone 12. Steps 10 and 11 can be replaced by a step 19 for reading in real time the parameters relating to the danger zone (depth, target, etc.).
  • the method then consists in reading the representative models in boat of the magnetizations and effects of circuits of the naval vessel 3, these models being updated 8 by means of sensors installed on board, then in predicting in real time the magnetic field created by the vessel naval in the defined danger zone 4, to use the results graphically 5 finally to interpret the vulnerability of the building and to decide whether or not to modify the values of the currents flowing in the building's immunization circuits 6.
  • the method according to the invention comprises an additional step 7 consisting in detecting any anomalies concerning the values of the immunization currents flowing in the immunization circuits.
  • the real-time reading of the immunization currents flowing in the circuits 1 is followed by a step making it possible to detect any anomalies concerning the values of the immunization currents and to predict the magnetic field created by taking into account these possible anomalies.
  • This step is divided into a step of detecting the anomaly 13 followed, if an anomaly is detected, by a step of predicting the magnetic field produced in the immunization loops taking into account the detected anomaly 14 and then of a step of calculating the optimum currents 15 followed by a validation 16 leading to the modification of these currents during a step 17.
  • the step of reading in real time the currents flowing in the immunization circuits 1 followed by the step of detecting anomalies making it possible to modify these currents 7 results in knowing the currents in the immunization loops 18.
  • the building has all the means necessary to calculate the magnetic field created at a point with any coordinates (x, y, z) in the frame centered on the building.
  • the coordinates (x, y, z) are defined by a hazard analysis.
  • the parameter z is either the depth (mine risk) or the assumed altitude of the aircraft relative to the building (MAD risk).
  • the x, y coordinates of the points for which the field is calculated define the length and width of the area that you want to cover.
  • the module is calculated for example, which is compared with a predefined limit value (threshold) not to be exceeded. If there is an overshoot, the captain orders a maneuver to move the vessel. The field is then recalculated to check if the building is still vulnerable. The captain can also order a calculation of the magnetic field with new values of currents in the circuits and modify these currents if the vessel has again become non-vulnerable.
  • the system allows the building to assess almost instantaneously the consequence of this anomaly on its vulnerability and redefine the best combination of currents to minimize its signature.
  • the danger zone and the values of the magnetic field are displayed on a console or a tactical table to aid in the decision.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Geophysics And Detection Of Objects (AREA)

Claims (8)

  1. Verfahren zur automatischen Kontrolle und Regelung der magnetischen Immunisierung eines Schiffes, das magnetische Immunisierungskreise besitzt, dadurch gekennzeichnet, daß es folgende Verfahrensschritte aufweist:
    - Bestimmung einer Gefahrenzone, bezüglich der das magnetische Risiko bestimmt werden soll,
    - Bestimmung der räumlichen Koordinaten dieser Zone bezüglich eines Bezugskoordinatensystems des Schiffes,
    - Bestimmung des magnetischen Risikos des Schiffes bezüglich dieser Zone in Echtzeit unter Verwendung eines Modellbildungssystems, das sich auf dem Schiff befindet.
  2. Verfahren zur automatischen Kontrolle und Regelung der magnetischen Immunisierung nach Anspruch 1, dadurch gekennzeichnet, daß es folgende Verfahrensschritte aufweist:
    - Lesen der Stromwerte in den Immunisierungskreisen des Schiffes in Echtzeit;
    - Definition einer Gefahrenart und einer Gefahrenschwelle in der Gefahrenzone;
    - Lesen der auf dem Schiff vorliegenden repräsentativen Modelle für die Magnetisierungen und die Wirkungen der Immunisierungskreise des Schiffes;
    - Vorhersage des magnetischen Felds in Echtzeit, das vom Schiff in der Gefahrenzone erzeugt wird;
    - Bewertung der Verletzbarkeit des Schiffes gemäß der erhaltenen Vorhersage und Veränderung der Werte der in den Immunisierungskreisen des Schiffes fließenden Ströme, um diese Verletzbarkeit zu verringern.
  3. Verfahren zur automatischen Kontrolle und Regelung nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß es außerdem die folgenden Verfahrensschritte aufweist:
    - Erfassung der eventuellen Störungen betreffend die Werte der Immunisierungsströme;
    - Vorhersage des vom Schiff unter Berücksichtigung dieser Störungen erzeugten Magnetfelds;
    - Veränderung der Ströme in den Immunisierungskreisen, um die Verletzbarkeit aufgrund dieser Störungen zu verringern.
  4. Verfahren zur automatischen Kontrolle und Regelung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß ein zusätzlicher Schritt vorgesehen ist, der darin besteht, im Rahmen einer Simulation die Veränderungen der Ströme in den Immunisierungskreisen zu überprüfen, um die Wirkung dieser Veränderungen auf die Verletzbarkeit zu bestimmen.
  5. Verfahren zur automatischen Kontrolle und Regelung nach einem der Ansprüche 1 oder 4, dadurch gekennzeichnet, daß der letzte Schritt, bei dem die Werte der Ströme in den Immunisierungskreisen des Schiffes verändert werden, automatisch gemäß der Vorhersage der erhaltenen magnetischen Handschrift erfolgt.
  6. Verfahren zur automatischen Kontrolle nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß weiter periodisch die auf dem Schiff verfügbaren Modelle mit Hilfe von magnetischen Sonden aktualisiert werden, die an Bord des Schiffes installiert sind.
  7. Verfahren zur Kontrolle und Regelung nach einem beliebigen der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß weiter permanent die auf dem Schiff verfügbaren Modelle mit Hilfe von an Bord des Schiffes installierten magnetischen Sonden aktualisiert werden.
  8. Verfahren zur Kontrolle und Regelung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Informationen an einem Pult oder einem taktischen Tisch ausgewertet werden.
EP92912953A 1991-06-27 1992-06-19 Verfahren zur Eigenüberwachung und Steuerung der magnetischen Immunisations eines Schiffes Expired - Lifetime EP0591309B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9108006 1991-06-27
FR9108006A FR2678236B1 (fr) 1991-06-27 1991-06-27 Procede d'autocontrole et d'asservissement de l'immunisation magnetique d'un batiment naval.
PCT/FR1992/000562 WO1993000257A1 (fr) 1991-06-27 1992-06-19 Procede d'autocontrole et d'asservissement de l'immunisation magnetique d'un batiment naval

Publications (2)

Publication Number Publication Date
EP0591309A1 EP0591309A1 (de) 1994-04-13
EP0591309B1 true EP0591309B1 (de) 1995-06-07

Family

ID=9414414

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92912953A Expired - Lifetime EP0591309B1 (de) 1991-06-27 1992-06-19 Verfahren zur Eigenüberwachung und Steuerung der magnetischen Immunisations eines Schiffes

Country Status (5)

Country Link
EP (1) EP0591309B1 (de)
JP (1) JPH06508582A (de)
DE (1) DE69202861T2 (de)
FR (1) FR2678236B1 (de)
WO (1) WO1993000257A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5419122A (en) * 1993-10-04 1995-05-30 Ford Motor Company Detection of catalytic converter operability by light-off time determination
FR2825803B1 (fr) * 2001-06-12 2003-08-22 France Etat Armement Procede de determination de l'aimantation et du champ rayonne par une tole
KR20040036121A (ko) * 2002-10-23 2004-04-30 현대자동차주식회사 숏 피닝 시스템
KR101222532B1 (ko) 2010-07-16 2013-01-15 국방과학연구소 함정 전투 체계의 실장비와 기존 시뮬레이터를 연동하기 위한 실장비 연동 어댑터 및 방법
JP6616338B2 (ja) * 2017-01-06 2019-12-04 東芝三菱電機産業システム株式会社 消磁装置
JP7115283B2 (ja) * 2018-12-13 2022-08-09 東芝三菱電機産業システム株式会社 艦載消磁装置
CN111009379B (zh) * 2019-11-18 2023-06-06 中国人民解放军海军潜艇学院 一种磁约束方法及自消磁舰艇

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE432087B (sv) * 1977-10-18 1984-03-19 Nils Borje Akesson Sett for skyddsmagnetisering av fartyg
US4358548A (en) * 1980-01-14 1982-11-09 Whitney & Company, Inc. Cellular forming agent in resinous systems and resulting products
SE8404402L (sv) * 1984-09-04 1986-03-05 Bofors Ab Sett och anordning for reducering av magnetsignaturen for rorliga fartygsdetaljer
DE3620402A1 (de) * 1986-06-18 1987-12-23 Bundesrep Deutschland Vorrichtung zum steuern einer magnetischen eigenschutz-(mes) anlage

Also Published As

Publication number Publication date
DE69202861T2 (de) 1995-10-26
DE69202861D1 (de) 1995-07-13
FR2678236A1 (fr) 1992-12-31
JPH06508582A (ja) 1994-09-29
WO1993000257A1 (fr) 1993-01-07
FR2678236B1 (fr) 1998-01-02
EP0591309A1 (de) 1994-04-13

Similar Documents

Publication Publication Date Title
Woodget et al. Subaerial gravel size measurement using topographic data derived from a UAV‐SfM approach
Tamminga et al. UAS‐based remote sensing of fluvial change following an extreme flood event
Overstreet et al. Removing sun glint from optical remote sensing images of shallow rivers
EP0388317B1 (de) Verfahren und Anlage für das Lokalisieren eines Bohrlochs mit Metallwand von einem anderen Bohrloch aus
EP0591309B1 (de) Verfahren zur Eigenüberwachung und Steuerung der magnetischen Immunisations eines Schiffes
EP2506073A1 (de) Vorrichtung zur Zustandsüberwachung eines Bauwerks
FR2913266A1 (fr) Procede de determination des dimensions et/ou du volume d'un objet a distance,et dispositif concu pour la mise en oeuvre dudit procede.
FR3068067A1 (fr) Diagraphie d'epaisseur totale basee sur un courant de foucault champ lointain
KR20190000151A (ko) 기름유출 탐지 기반 선박추적방법
RU2281534C1 (ru) Способ диагностики состояния продуктопроводов
FR2795521A1 (fr) Procede et dispositif pour determiner la resistivite d'une formation traversee par un puits tube
EP2875316B1 (de) Verfahren zur bestimmung von parametern einer wasseroberflächenbeobachtung durch abbildung
EP0597014B1 (de) Tragbare station zur messung und regelung der magnetischen unterschrift eines wasserfahrzeuges
FR2929395A1 (fr) Methode d'estimation d'attitude d'un senseur stellaire
EP3556287B1 (de) Kalibrierungsverfahren eines magnetometernetzwerks
EP0682323B1 (de) Vorrichtung zum Ersetzen eines einem Flugzeugpilot vorgezeigten künstlichen Bildes durch das korrespondierende reelle Bild
WO2023148057A1 (fr) Procédé de cartographie pour le contrôle d'état et/ou la géolocalisation d'une structure enterrée, semi-enterrée ou immergée et procédé de géolocalisation associé
Segovia Ramírez et al. Autonomous underwater vehicles inspection management: Optimization of field of view and measurement process
EP1341094B1 (de) Verfahren zur Ermittlung eines räumlichen Qualitätsindexes für Regionaldaten
FR2752295A1 (fr) Procede et dispositif pour determiner les formes generales d'une cavite
FR2807603A1 (fr) Procede et systeme pour effectuer des releves de caracteristiques visibles sur des parois
EP2491424A1 (de) Verfahren zur simultanen ortung und kartierung über elastische nichtlineare filterung
Gabellone et al. CAIMAN experiment
FR2659787A1 (fr) Procede de compensation automatique des aimantations induites par le champ magnetique terrestre dans les materiaux ferromagnetiques, notamment compris dans un batiment naval.
Baschek et al. Remote sensing as input and validation tool for oil spill drift modeling

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19931206

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB SE

17Q First examination report despatched

Effective date: 19940527

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB SE

REF Corresponds to:

Ref document number: 69202861

Country of ref document: DE

Date of ref document: 19950713

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950628

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19980515

Year of fee payment: 7

Ref country code: DE

Payment date: 19980515

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980519

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19990629

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990619

EUG Se: european patent has lapsed

Ref document number: 92912953.4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000503