EP0591309A1 - Procede d'autocontrole et d'asservissement de l'immunisation magnetique d'un batiment naval. - Google Patents
Procede d'autocontrole et d'asservissement de l'immunisation magnetique d'un batiment naval.Info
- Publication number
- EP0591309A1 EP0591309A1 EP92912953A EP92912953A EP0591309A1 EP 0591309 A1 EP0591309 A1 EP 0591309A1 EP 92912953 A EP92912953 A EP 92912953A EP 92912953 A EP92912953 A EP 92912953A EP 0591309 A1 EP0591309 A1 EP 0591309A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- immunization
- magnetic
- naval vessel
- circuits
- currents
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63G—OFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
- B63G9/00—Other offensive or defensive arrangements on vessels against submarines, torpedoes, or mines
- B63G9/06—Other offensive or defensive arrangements on vessels against submarines, torpedoes, or mines for degaussing vessels
Definitions
- the present invention relates to a self-monitoring and slaving method of magnetic immunization of a naval vessel provided with magnetic immunization circuits.
- some mines said to have magnetic influence, include sensors capable of detecting any variation in their magnetic environment caused by a naval vessel, allowing them to destroy or damage this vessel.
- Certain aircraft are also fitted with sensors of this type enabling them to detect the naval vessel in order to destroy it.
- the risk generated by the possibility of an aircraft detecting the magnetic signature of a naval vessel is called the MAD risk. (Magnetic Anomaly Detection).
- the magnetic signature of a building is constituted by its permanent magnetization and by its induced magnetization.
- the permanent magnetization of a structure is due to the ferromagnetic materials constituting it. This is substantially constant, fluctuates only over time and is linked to the nature of the material used.
- the induced magnetization is essentially variable. In the case of a ship, it depends on its orientation in the land field, its course and its inclination due to roll and pitch.
- the magnetic signature of the ship therefore makes it possible to locate it, to follow it, and possibly to guide or ignite devices intended to destroy it. It is therefore very important to minimize or even cancel this "magnetic signature”. that "to prevent its detection by magnetic method.
- Magnetic immunization is carried out, in a known manner, by creating in the volume of the building a magnetic field which compensates for that of the building, in order to cancel its magnetic signature.
- the building is provided with a set of circuits called “immunization loops" which are traversed by electric currents.
- the dimensions, the arrangement of the loops and the currents flowing therein are determined to best minimize the "magnetic signature" of the building, whatever its orientation in the earth's magnetic field, that is to say whatever its heading. and its inclination due to roll and pitch.
- These immunization loops are distributed in three directions corresponding to the roll, yaw and pitch axes, conventionally called “L, M, A” or even “L, V, T” (Longitudinal, Vertical, Transversal).
- the currents in the immunization loops are adjusted using values obtained by passing the naval vessel through a measuring station.
- This station may be placed at the bottom of the sea (at a depth generally varying from 8 m to 30 m) and made up of a line of magnetometers with regard to the risk caused by mines or other naval vessels, or be made up of magnetometers on board an aircraft for the MAD risk
- the readings obtained thanks to these magnetometers make it possible to obtain on land a setting of the value of the currents to be circulated in the immunization circuits whatever the heading of the vessel, in a plane at the depth or at the altitude of danger.
- the building goes on a mission without knowing precisely the map of the magnetic field it creates in the volume that surrounds it and for different heights of water. Indeed, such knowledge would require the transmission, from a land station, of too large a number of data.
- this vessel must be able to know its exact magnetic signature and the associated risk to it, at a point or on a given area. Indeed, it can be necessary to modify in intensity the currents flowing in the immunization circuits and to control the results of these modifications on the magnetic signature.
- An object of the present invention is to provide a method enabling a naval vessel to predict in real time its magnetic signature in a danger zone in order to allow it to very quickly deduce its risk with respect to a detection system. magnetic located in the risk zone.
- Another object of the present invention is to provide a method enabling the naval vessel to assess its magnetic signature even in the event of an anomaly detected in the immunization circuits, and thus to independently assess its vulnerability, possibly by redefining automatically the best combination of currents taking into account the new constraints generated by the detected fault (s).
- Another objective of the invention is to provide a method allowing the naval ship to test in simulation the modifications of the currents in the immunization circuits in order to better control the impact of the latter on its magnetic signature, then if necessary to modify his real signature.
- the method of self-monitoring and slaving of the magnetic immunization of a naval vessel provided with magnetic immunization circuits by means of a modeling system comprises the steps consisting in: - identify a danger zone against which we want to assess the magnetic risk;
- the method according to the invention comprises the steps consisting in:
- the self-monitoring and servo-control method further comprises the steps consisting in:
- This variant allows the naval vessel to independently estimate the consequences caused on its magnetic signature by an anomaly in a given circuit and to remedy it immediately by a new adjustment of the currents in the immunization circuits.
- the method according to the invention comprises an additional step consisting in testing in simulation the modifications of the currents in the immunization circuits, so as to control the validity of the information provided by the modeling system.
- the method comprises a periodic updating of the on-board models thanks to magnetic sensors installed on board the naval vessel.
- the method comprises a phase consisting in permanently updating the on-board models thanks to magnetic sensors installed on board the naval vessel.
- the method according to the invention can include a step consisting in using this information on a console or on a tactical table.
- the operator can thus quickly change the definition of the danger zone himself, for example switching from a mine risk to a MAD risk, assessing its vulnerability and ordering, if necessary, a temporary or permanent modification of the currents in the circuits 'immunization.
- FIG. 1 represents the three directions of arrangement of the immunization loops in a ship
- FIG. 2 represents a flow diagram of a method according to the invention.
- the building 21 comprises ferromagnetic structures surrounded by immunization loops 22, 23, 24. These loops are arranged in three separate planes.
- a loop 22 is used to compensate the longitudinal magnetization and is commonly called loop "L”
- another loop 23 is used to compensate the vertical magnetization and is denoted "V”
- the third loop 24 which has the function of compensating the magnetization transverse is noted T.
- Loops 22 and 23 are presented in perspective.
- a loop is characterized by its coordinates (x, y, z) relative to a given point, by its dimensions, by its resistance, by its shape, by the maximum current that can cross it, and by the number of available turns.
- a step prior to the method of controlling and controlling the magnetic immunization of a naval vessel consists of an operation comprising two steps.
- the first of these steps a consists in measuring the magnetic field of the ship on station at sea.
- This step consists in making the naval vessel cross the same path twice over networks of magnetic sensors in opposite directions.
- the permanent magnetization linked to the building rotates with it, while the induced magnetization does not rotate. To know the induced magnetization, it suffices to subtract the measurement results from the two opposite directions.
- the second step b consists in defining the representative models of the magnetizations of the naval vessel and of its loop effects. For example, it is possible to model the naval vessel or one of these "circuit effects" by a set of N ellipsoids.
- the magnetic field derives from a magnetic potential V; the components h ⁇ , h y , h z of the magnetic field are respectively equal to
- each ellipsoid being defined by 9 data: the position of the center x, y, z, the projections of the magnetizations on the 3 axes M ⁇ , My, M ⁇ and the dimensions a, b, c.
- the process of self-monitoring and control of the immunization consists, after having transferred all the models on board the naval vessel, c, to characterize a danger zone 2, by defining the type of risk 10 and the thresholds of dangers 11 so as to arrive at a precise definition of the danger zone 1 2.
- Steps 10 and 11 can be replaced by a step 19 for reading in real time the parameters relating to the danger zone (depth, C iole ... ).
- the process then consists in reading the on-board representative models of the magnetizations and circuit effects of the naval vessel 3 ' , these models being updated 8 by means of sensors installed on board, then in predicting in real time the magnetic field created by the vessel. naval in the defined danger zone 4, to use the results graphically 5 finally to interpret the vulnerability of the building and to decide whether or not to modify the values of the currents flowing in the building's immunization circuits 6 ,.
- the method according to the invention comprises an additional step 7 consisting in detecting any anomalies concerning the values of the immunization currents flowing in the immunization circuits.
- the real-time reading of the immunization currents flowing in the circuits 1 is followed by a step making it possible to detect any anomalies concerning the values of the immunization currents and to predict the magnetic field created by taking into account these possible anomalies.
- This step is divided into a step of detecting the anomaly 13 followed, if an anomaly is detected, by a step of predicting the magnetic field produced in the immunization loops taking into account the detected anomaly 14 and then of a step of calculating the optimum currents 15 followed by a validation 16 leading to the modification of these currents during a step 17.
- the step of reading in real time the currents flowing in the immunization circuits 1 followed by the step of detecting anomalies making it possible to modify these currents 7 results in knowing the currents in the immunization loops 18.
- the building has all the means necessary to calculate the magnetic field created at a point with any coordinates (x, y, z) in the frame centered on the building. Indeed this field can be described as the sum of the contributions:
- the coordinates (x, y, z) are defined by a hazard analysis.
- the parameter z is either the depth (mine risk) or the assumed altitude of the aircraft relative to the building (MAD risk).
- the x, y coordinates of the points for which the field is calculated define the length and width of the area that you want to cover.
- the module is calculated, for example, which is compared with a predefined limit value (threshold) not to be exceeded. If there is an overshoot, the captain orders a maneuver to move the vessel. The field is then recalculated to check if the building is still vulnerable. The captain can also order a calculation of the magnetic field with new values of currents in the circuits and modify these currents if the vessel has again become non-vulnerable.
- threshold a predefined limit value
- the system allows the building to assess almost instantaneously the consequence of this anomaly on its vulnerability and redefine the best combination of currents to minimize its signature.
- the danger zone and the values of the magnetic field are displayed on a console or a tactical table to aid in the decision.
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
Description
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9108006 | 1991-06-27 | ||
FR9108006A FR2678236B1 (fr) | 1991-06-27 | 1991-06-27 | Procede d'autocontrole et d'asservissement de l'immunisation magnetique d'un batiment naval. |
PCT/FR1992/000562 WO1993000257A1 (fr) | 1991-06-27 | 1992-06-19 | Procede d'autocontrole et d'asservissement de l'immunisation magnetique d'un batiment naval |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0591309A1 true EP0591309A1 (fr) | 1994-04-13 |
EP0591309B1 EP0591309B1 (fr) | 1995-06-07 |
Family
ID=9414414
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP92912953A Expired - Lifetime EP0591309B1 (fr) | 1991-06-27 | 1992-06-19 | Procede d'autocontrole et d'asservissement de l'immunisation magnetique d'un batiment naval |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP0591309B1 (fr) |
JP (1) | JPH06508582A (fr) |
DE (1) | DE69202861T2 (fr) |
FR (1) | FR2678236B1 (fr) |
WO (1) | WO1993000257A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111009379A (zh) * | 2019-11-18 | 2020-04-14 | 中国人民解放军海军潜艇学院 | 一种磁约束方法及自消磁舰艇 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5419122A (en) * | 1993-10-04 | 1995-05-30 | Ford Motor Company | Detection of catalytic converter operability by light-off time determination |
FR2825803B1 (fr) * | 2001-06-12 | 2003-08-22 | France Etat Armement | Procede de determination de l'aimantation et du champ rayonne par une tole |
KR20040036121A (ko) * | 2002-10-23 | 2004-04-30 | 현대자동차주식회사 | 숏 피닝 시스템 |
KR101222532B1 (ko) | 2010-07-16 | 2013-01-15 | 국방과학연구소 | 함정 전투 체계의 실장비와 기존 시뮬레이터를 연동하기 위한 실장비 연동 어댑터 및 방법 |
JP6616338B2 (ja) * | 2017-01-06 | 2019-12-04 | 東芝三菱電機産業システム株式会社 | 消磁装置 |
JP7115283B2 (ja) * | 2018-12-13 | 2022-08-09 | 東芝三菱電機産業システム株式会社 | 艦載消磁装置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE432087B (sv) * | 1977-10-18 | 1984-03-19 | Nils Borje Akesson | Sett for skyddsmagnetisering av fartyg |
US4358548A (en) * | 1980-01-14 | 1982-11-09 | Whitney & Company, Inc. | Cellular forming agent in resinous systems and resulting products |
SE8404402L (sv) * | 1984-09-04 | 1986-03-05 | Bofors Ab | Sett och anordning for reducering av magnetsignaturen for rorliga fartygsdetaljer |
DE3620402A1 (de) * | 1986-06-18 | 1987-12-23 | Bundesrep Deutschland | Vorrichtung zum steuern einer magnetischen eigenschutz-(mes) anlage |
-
1991
- 1991-06-27 FR FR9108006A patent/FR2678236B1/fr not_active Expired - Lifetime
-
1992
- 1992-06-19 JP JP5501221A patent/JPH06508582A/ja active Pending
- 1992-06-19 EP EP92912953A patent/EP0591309B1/fr not_active Expired - Lifetime
- 1992-06-19 DE DE69202861T patent/DE69202861T2/de not_active Expired - Fee Related
- 1992-06-19 WO PCT/FR1992/000562 patent/WO1993000257A1/fr active IP Right Grant
Non-Patent Citations (1)
Title |
---|
See references of WO9300257A1 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111009379A (zh) * | 2019-11-18 | 2020-04-14 | 中国人民解放军海军潜艇学院 | 一种磁约束方法及自消磁舰艇 |
CN111009379B (zh) * | 2019-11-18 | 2023-06-06 | 中国人民解放军海军潜艇学院 | 一种磁约束方法及自消磁舰艇 |
Also Published As
Publication number | Publication date |
---|---|
DE69202861T2 (de) | 1995-10-26 |
DE69202861D1 (de) | 1995-07-13 |
FR2678236A1 (fr) | 1992-12-31 |
JPH06508582A (ja) | 1994-09-29 |
EP0591309B1 (fr) | 1995-06-07 |
WO1993000257A1 (fr) | 1993-01-07 |
FR2678236B1 (fr) | 1998-01-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tamminga et al. | UAS‐based remote sensing of fluvial change following an extreme flood event | |
Curr et al. | Assessing anthropogenic impact on Mediterranean sand dunes from aerial digital photography | |
EP0388317B1 (fr) | Procédé et dispositif pour localiser un puits muni d'un tubage métallique à partir d'un autre puits | |
EP0591309B1 (fr) | Procede d'autocontrole et d'asservissement de l'immunisation magnetique d'un batiment naval | |
FR3057903A1 (fr) | Outils a courant de foucault a champ lointain | |
FR3057605A1 (fr) | Determination de la permeabilite dans les formations anisotropes de subsurface | |
FR3068067A1 (fr) | Diagraphie d'epaisseur totale basee sur un courant de foucault champ lointain | |
FR2795521A1 (fr) | Procede et dispositif pour determiner la resistivite d'une formation traversee par un puits tube | |
EP0775953A1 (fr) | Procédé de pilotage à basse altitude | |
RU2281534C1 (ru) | Способ диагностики состояния продуктопроводов | |
EP2875316B1 (fr) | Procede de determination de parametres d'observation d'une surface d'eau par imagerie | |
EP0597014B1 (fr) | Station portable de mesure et de reglage de la signature magnetique d'un batiment naval | |
FR2929395A1 (fr) | Methode d'estimation d'attitude d'un senseur stellaire | |
EP0682323B1 (fr) | Dispositif de substitution d'une image artificielle présentée à un pilote d'aéronef par l'image réelle correspondante | |
EP3556287B1 (fr) | Procédé de calibration d'un réseau de magnétomètres | |
EP3658853B1 (fr) | Procédé et dispositif de caractérisation d'un cap déterminé à partir de la mesure du champ magnétique | |
EP2279488B1 (fr) | Procédé de détermination d'une représentation tridimensionnelle d'un objet à partir de points, programme d'ordinateur et système d'imagerie correspondant | |
EP3814807A1 (fr) | Système de détection portable comprenant des capteurs magnétostatiques | |
WO2023148057A1 (fr) | Procédé de cartographie pour le contrôle d'état et/ou la géolocalisation d'une structure enterrée, semi-enterrée ou immergée et procédé de géolocalisation associé | |
EP3814808A1 (fr) | Système de détection portable comprenant des capteurs magnétostatiques | |
Segovia Ramírez et al. | Autonomous underwater vehicles inspection management: Optimization of field of view and measurement process | |
EP3814809B1 (fr) | Système de détection portable comprenant des capteurs magnétostatiques | |
FR2752295A1 (fr) | Procede et dispositif pour determiner les formes generales d'une cavite | |
FR2659787A1 (fr) | Procede de compensation automatique des aimantations induites par le champ magnetique terrestre dans les materiaux ferromagnetiques, notamment compris dans un batiment naval. | |
Gabellone et al. | CAIMAN experiment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19931206 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE GB SE |
|
17Q | First examination report despatched |
Effective date: 19940527 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE GB SE |
|
REF | Corresponds to: |
Ref document number: 69202861 Country of ref document: DE Date of ref document: 19950713 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19950628 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19980515 Year of fee payment: 7 Ref country code: DE Payment date: 19980515 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19980519 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990619 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19990629 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19990619 |
|
EUG | Se: european patent has lapsed |
Ref document number: 92912953.4 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000503 |