EP0586831B1 - Sound absorption method for motor vehicles - Google Patents

Sound absorption method for motor vehicles Download PDF

Info

Publication number
EP0586831B1
EP0586831B1 EP93111202A EP93111202A EP0586831B1 EP 0586831 B1 EP0586831 B1 EP 0586831B1 EP 93111202 A EP93111202 A EP 93111202A EP 93111202 A EP93111202 A EP 93111202A EP 0586831 B1 EP0586831 B1 EP 0586831B1
Authority
EP
European Patent Office
Prior art keywords
hollow body
helmholtz resonator
loudspeaker
noise
helmholtz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93111202A
Other languages
German (de)
French (fr)
Other versions
EP0586831A3 (en
EP0586831A2 (en
Inventor
Raymond Dr. Freymann
Helmut Spannheimer
Rainer Beer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayerische Motoren Werke AG
Original Assignee
Bayerische Motoren Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke AG filed Critical Bayerische Motoren Werke AG
Publication of EP0586831A2 publication Critical patent/EP0586831A2/en
Publication of EP0586831A3 publication Critical patent/EP0586831A3/xx
Application granted granted Critical
Publication of EP0586831B1 publication Critical patent/EP0586831B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/172Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using resonance effects
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/321Physical
    • G10K2210/3227Resonators
    • G10K2210/32272Helmholtz resonators

Definitions

  • the invention relates to a sound absorption method for motor vehicles according to the preamble of the claim 1.
  • DE 37 29 765 A1 describes a sound absorption process known in which several Helmholtz resonators, especially for low-frequency attenuation Cavity vibrations, connected in parallel and space-saving are housed in the vehicle body. At damping of sound pressure vibrations by Helmholtz resonators are in with lower frequencies usually larger hollow body volumes of the Helmholtz resonators required. That known from DE 37 29 765 A1 Sound absorption system tries the problem of large hollow body volumes only by the type of To solve accommodation in the motor vehicle.
  • the hollow body volume of a Helmholtz resonator works in the form of the prevailing sound pressure behavior on sound absorption.
  • the invention lies the thought is based in a relatively small Hollow body of a Helmholtz resonator has a sound pressure behavior to generate that the sound pressure behavior of the usual each necessary volume for the desired resonance frequency of the Helmholtz resonator, where the sound pressure is at least predominantly Dimensions is absorbed corresponds.
  • a loudspeaker attached through which the hollow body is exposed to sound is that the volume of hollow body required for the desired resonance frequency in the hollow body is faked. Only a single hollow body volume can be used as well as sequentially or simulates several hollow body volumes simultaneously will. The simulation is particularly advantageous many hollow body volumes that a broadband resonance behavior in the form of an acoustic bandpass filter is produced.
  • this invention provides sound absorption through Helmholtz resonators with a relative small volume possible.
  • Helmholtz resonator both consecutively in time as well as being tuned to several resonance frequencies at the same time will.
  • the following is the invention with a loudspeaker sounded Helmholtz resonator also as active Helmholtz resonator, while conventional Helmholtz resonators with specified real volumes passive Helmholtz resonators are also called.
  • the loudspeaker is controlled by a Transmission system that takes place between those in the area prevailing sound pressure recording microphone and the one in the active Helmholtz resonator Speaker is arranged.
  • the transmission system is designed such that the sound absorption system consisting of the microphone, the transmission system and the same transmission behavior to the active Helmholtz resonator has like a passive Helmholtz resonator that required for the desired resonance frequency real volume.
  • the transmission system is, for example, by the structure an electrical switching arrangement with digital or analogous means realizable on the desired acoustic transmission behavior through electrical analogies is tunable.
  • This passive comparison Helmholtz resonator is also matched to the absorption of the sound pressure at the desired resonance frequency.
  • Such an electro-acoustic device is easier to set up and adapts to interference in the form of superimposed external pressure fluctuations better than an electrical switching arrangement based on an electrical analogy to an idealized acoustic arrangement.
  • Fig. 1 On the left in Fig. 1 is the section in side view consisting of a conventional Helmholtz resonator of a hollow body with the volume V and an air passage opening with a neck of length 1 and Diameter d shown. On the right side of the Fig. 1 is the top view of the Helmholtz resonator with the air passage opening of the cross-sectional area a is shown.
  • f C. 2 ⁇ * ( a l * V ) 1 ⁇ 2 with the speed of sound c, with the neck length l and the cross-sectional area a of the air passage opening and with the volume V of the hollow body.
  • the dependence of the resonance frequency f solely on the volume V will be discussed below.
  • the length l and the cross-sectional area a of the air passage opening are constant.
  • the volume V must increase as the frequencies f decrease. This connection creates the problem of the large space requirement when using a Helmholtz resonator in motor vehicles, since in particular the sound pressure at low frequencies must be absorbed there.
  • FIG. 2 presents two possible embodiments for an active Helmholtz resonator AHR1 and AHR2, the real volumes of which are each determined by the hollow body H.
  • the air passage openings D are also firmly defined.
  • the wall of the hollow body H opposite the air passage opening D is replaced by a loudspeaker L.
  • the sound pressure values in the hollow body H are changed by the loudspeaker L, so that other imaginary volumes in the hollow body H are simulated than the volume that is actually present.
  • the loudspeaker L fulfills the same function inside the hollow body H of the active Helmholtz resonator AHR2 is arranged. With this arrangement option the loudspeaker L is not part of a hollow body wall, but is at least almost complete in the hollow body H. sealed to the environment. Such an arrangement is needed, for example, when special measures against unwanted interference caused by overlapping Pressure fluctuations from outside the hollow body H should be taken.
  • a microphone M is outside the active Helmholtz resonator AHR via an input line with a Transmission system Ü connected.
  • the transmission system Ü is via an output line on the loudspeaker L of the active Helmholtz resonators AHR connected.
  • the microphone M picks up the sound pressure values p a prevailing outside the hollow body H and converts them into a corresponding electrical signal which is passed on to the transmission system Ü.
  • the transmission system Ü is an electronic switching arrangement with PD 2 T 2 transmission behavior.
  • the loudspeaker L is driven by the electrical current I from the transmission system Ü.
  • the transmission system U shown in FIG. 3 can be used for any number of resonance frequencies. In a further embodiment of the invention, it can accordingly also be used simultaneously for a large number of different desired resonance frequencies, the sound pressures of which are to be absorbed. For example, for a number n of desired resonance frequencies, the transmission system can be represented mathematically as follows:
  • FIG. 4 shows an active Helmholtz resonator AHR and a passive comparative Helmholtz resonator PHR.
  • a microphone M 1 outside the two Helmholtz resonators and a microphone M 2 inside the passive comparison Helmholtz resonator PHR are connected to a computing unit R via input lines.
  • An output line of the computing unit R is connected to the loudspeaker L of the active Helmholtz resonator AHR.
  • the passive comparative Helmholtz resonator PHR should be designed in miniature design at the same resonance frequency or for absorption of the sound pressure of the same frequency that is also to be absorbed by the active Helmholtz resonator AHR.
  • the passive comparative Helmholtz resonator PHR has the same transmission behavior, which is also the basis for a passive Helmholtz resonator with the real hollow body volume, which corresponds to the hollow body volume required to be simulated for the sound pressure to be absorbed at the desired resonance frequency.
  • the microphone M 1 records the sound pressure values outside the two Helmholtz resonators AHR and PHR in the vicinity of their air passage openings D1 and D2.
  • the microphone M 2 detects the sound pressure values within the passive Helmholtz resonator PHR.
  • the signals from the microphones M 1 and M 2 are fed to the computing unit R.
  • the only difference between the two Helmholtz resonators AHR and PHR is that due to the differences in the volume of the hollow body, the active Helmholtz resonator AHR absorbs a sound energy many times greater than the passive comparison Helmholtz resonator PHR with the same frequency and damping. This absorption amplification takes place in the computing unit R and has an effect on the active Helmholtz resonator AHR by activating the loudspeaker L via the output line of the computing unit R.
  • FIG. 1 The embodiment of the invention according to FIG.
  • the invention can be applied to Helmholtz resonators with hollow bodies of any shape and air passage openings of any shape.
  • an air passage opening in the form of a large-area sieve-like cover of the hollow body has proven to be particularly advantageous.
  • An arrangement of several loudspeakers within the active Helmholtz resonator is also conceivable.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Description

Die Erfindung bezieht sich auf ein Schallabsorptionsverfahren für Kraftfahrzeuge nach dem Oberbegriff des Patentanspruchs 1.The invention relates to a sound absorption method for motor vehicles according to the preamble of the claim 1.

Ein derartiges Schallabsorptionsverfahren ist beispielsweise aus der US 5,119,427 bekannt. Bei diesem bekannten Verfahren wird jedoch offen gelassen, auf welche Weise ein zu simulierender Helmholtz-Resonator konkret nachgebildet werden soll.Such a sound absorption method is, for example known from US 5,119,427. In this well-known However, proceedings are left open in which way specifically simulated a Helmholtz resonator to be simulated shall be.

Aus der DE 37 29 765 A1 ist beispielsweise ein Schallabsorptionsverfahren bekannt, bei dem mehrere Helmholtz-Resonatoren, insbesondere zur Dämpfung tieffrequenter Hohlraumschwingungen, parallel geschaltet und platzsparend in der Fahrzeugkarosserie untergebracht sind. Bei einer Dämpfung von Schalldruckschwingungen durch Helmholtz-Resonatoren sind mit tiefer werdenden Frequenzen in der Regel größere Hohlkörpervolumina der Helmholtz-Resonatoren erforderlich. Das aus der DE 37 29 765 A1 bekannte Schallabsorptionssystem versucht das Problem der großen Hohlkörpervolumina lediglich durch die Art der Unterbringung im Kraftfahrzeug zu lösen.DE 37 29 765 A1, for example, describes a sound absorption process known in which several Helmholtz resonators, especially for low-frequency attenuation Cavity vibrations, connected in parallel and space-saving are housed in the vehicle body. At damping of sound pressure vibrations by Helmholtz resonators are in with lower frequencies usually larger hollow body volumes of the Helmholtz resonators required. That known from DE 37 29 765 A1 Sound absorption system tries the problem of large hollow body volumes only by the type of To solve accommodation in the motor vehicle.

Es ist Aufgabe der Erfindung,ein Schallabsorptionssystem zu schaffen, das bei Einsatz von Helmholtz-Resonatoren auch zur Absorption von tieffrequenten Schalldruckschwingungen keine großen Hohlkörpervolumina benötigt.It is an object of the invention to provide a sound absorption system to create that when using Helmholtz resonators also for the absorption of low-frequency sound pressure vibrations no large hollow body volumes required.

Diese Aufgabe wird durch die Merkmale des Patentanspruchs 1 gelöst.This object is achieved through the features of the patent claim 1 solved.

Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben. Advantageous developments of the invention are specified in the subclaims.

Das Hohlkörpervolumen eines Helmholtz-Resonators wirkt sich in Form des in ihm vorherrschenden Schalldruckverhaltens auf die Schallabsorption aus. Der Erfindung liegt der Gedanke zugrunde, in einem verhältnismäßig kleinen Hohlkörper eines Helmholtz-Resonators ein Schalldruckverhalten zu erzeugen, das dem Schalldruckverhalten des üblicherweise jeweils notwendigen Hohlkörpervolumens für die jeweils gewünschte Resonanzfrequenz des Helmholtz-Resonators, bei der der Schalldruck zumindest in überwiegendem Maße absorbiert wird, entspricht. Dazu ist im Hohlkörper eines Helmholtz-Resonators ein Lautsprecher angebracht, durch den der Hohlkörper derart beschallt wird, daß das jeweils erforderliche Hohlkörpervolumen für die jeweils gewünschte Resonanzfrequenz im Hohlkörper vorgetäuscht wird. Dabei kann nur ein einziges Hohlkörpervolumen sowie aber auch zeitlich aufeinanderfolgend oder gleichzeitig mehrere Hohlköpervolumina simuliert werden. Besonders vorteilhaft ist die Simulation derart vieler Hohlkörpervolumina, daß ein breitbandiges Resonanzverhalten in Form eines akustischen Bandpaßfilters erzeugt wird.The hollow body volume of a Helmholtz resonator works in the form of the prevailing sound pressure behavior on sound absorption. The invention lies the thought is based in a relatively small Hollow body of a Helmholtz resonator has a sound pressure behavior to generate that the sound pressure behavior of the usual each necessary volume for the desired resonance frequency of the Helmholtz resonator, where the sound pressure is at least predominantly Dimensions is absorbed corresponds. This is in Hollow body of a Helmholtz resonator a loudspeaker attached through which the hollow body is exposed to sound is that the volume of hollow body required for the desired resonance frequency in the hollow body is faked. Only a single hollow body volume can be used as well as sequentially or simulates several hollow body volumes simultaneously will. The simulation is particularly advantageous many hollow body volumes that a broadband resonance behavior in the form of an acoustic bandpass filter is produced.

Durch diese Erfindung ist zum einen eine Schallabsorption durch Helmholtz-Resonatoren mit einem verhältnismäßig kleinen Volumen möglich. Zum anderen kann ein einziger Helmholtz-Resonator sowohl zeitlich aufeinanderfolgend als auch gleichzeitig auf mehrere Resonanzfrequenzen abgestimmt werden.On the one hand, this invention provides sound absorption through Helmholtz resonators with a relative small volume possible. On the other hand, one can Helmholtz resonator both consecutively in time as well as being tuned to several resonance frequencies at the same time will.

Im folgenden wird der erfindungsgemäß mit einem Lautsprecher beschallte Helmholtz-Resonator auch als aktiver Helmholtz-Resonator bezeichnet, während herkömmliche Helmholtz-Resonatoren mit vorgegebenen realen Volumina auch passive Helmholtz-Resonatoren genannt werden. The following is the invention with a loudspeaker sounded Helmholtz resonator also as active Helmholtz resonator, while conventional Helmholtz resonators with specified real volumes passive Helmholtz resonators are also called.

Durch das erfindungsgemäße Verfahren wird eine von den aktuellen in der Umgebung des aktiven Helmholtz-Resonators vorherrschenden Schalldruckwerten abhängige Ansteuerung des Lautsprechers erreicht. Die Ansteuerung des Lautsprechers findet durch ein Übertragungssystem statt, das zwischen dem die in der Umgebung vorherrschenden Schalldruckwerte aufnehmenden Mikrofon und dem im aktiven Helmholtz-Resonator befindlichen Lautsprecher angeordnet ist. Das Übertragungssystem ist derart ausgebildet, daß das Schallabsorptionssystem bestehend aus dem Mikrofon, dem Übertragungssystem und dem aktiven Helmholtz-Resonator dasselbe Übertragungsverhalten aufweist wie ein passiver Helmholtz-Resonator mit dem für die jeweils gewünschte Resonanzfrequenz erforderlichen realen Volumen.By the method according to the invention one of the current ones in the area of the active Helmholtz resonators prevailing sound pressure values dependent control of the speaker reached. The loudspeaker is controlled by a Transmission system that takes place between those in the area prevailing sound pressure recording microphone and the one in the active Helmholtz resonator Speaker is arranged. The transmission system is designed such that the sound absorption system consisting of the microphone, the transmission system and the same transmission behavior to the active Helmholtz resonator has like a passive Helmholtz resonator that required for the desired resonance frequency real volume.

Das Übertragungssystem ist beispielsweise durch den Aufbau einer elektrischen Schaltanordnung mit digitalen oder analogen Mitteln realisierbar, die auf das gewünschte akustische Übertragungsverhalten durch elektrische Analogien abstimmbar ist.The transmission system is, for example, by the structure an electrical switching arrangement with digital or analogous means realizable on the desired acoustic transmission behavior through electrical analogies is tunable.

Das Übertragungsverhalten des Übertragungssystems nach dem abhängigen Anspruch 2 bildet, insbesondere mit PD2T2-Gliedern, das Übertragungsverhalten eines passiven Helmholtz-Resonators mit einem realen, dem jeweils simulierten entsprechenden Volumen optimal nach.The transmission behavior of the transmission system according to the dependent claim 2, especially with PD 2 T 2 elements, optimally simulates the transmission behavior of a passive Helmholtz resonator with a real volume that is simulated in each case.

Mit der Vorrichtung nach dem abhängigen Anspruch 3 ist die Ansteuerung des Lautspreches zur Anpassung des aktiven Helmholtz-Resonators auf eine gewünschte Resonanzfrequenz mittels der gemessenen Schalldruckwerte innerhalb eines kleinen passiven Vergleichs-Helmholtz-Resonators möglich. With the device according to the dependent claim 3 is the control of the loudspeaker to adapt the active Helmholtz resonator to a desired resonance frequency by means of the measured sound pressure values within a small passive comparison Helmholtz resonators possible.

Das Übertragungsverhalten dieses passiven Vergleichs-Helmholtz-Resonators ist ebenfalls auf die Absorption des Schalldruckes bei der gewünschten Resonanzfrequenz abgestimmt.
Eine derartige elektro-akustische Vorrichtung ist einfacher aufzubauen und paßt sich Störeinflüssen in Form von sich überlagernden äußeren Druckschwankungen besser an als eine elektrische Schaltanordnung auf der Basis einer elektrischen Analogie zu einer idealisierten akustischen Anordnung.
The transmission behavior of this passive comparison Helmholtz resonator is also matched to the absorption of the sound pressure at the desired resonance frequency.
Such an electro-acoustic device is easier to set up and adapts to interference in the form of superimposed external pressure fluctuations better than an electrical switching arrangement based on an electrical analogy to an idealized acoustic arrangement.

In der Zeichnung sind Ausführungsbeispiele der Erfindung dargestellt. Es zeigen

Fig. 1
den schematischen Aufbau eines bekannten passiven Helmholtz-Resonators
Fig. 2
zwei mögliche Ausgestaltungen für einen aktiven Helmholtz-Resonator
Fig. 3
eine erfindungsgemäße Ansteuerung des Lautsprechers über ein elektronisch ausgebildetes Übertragungssystem und
Fig. 4
eine erfindungsgemäße Ansteuerung des Lautsprechers über ein elektro-akustisch ausgebildetes Übertragungssystem
Exemplary embodiments of the invention are shown in the drawing. Show it
Fig. 1
the schematic structure of a known passive Helmholtz resonator
Fig. 2
two possible configurations for an active Helmholtz resonator
Fig. 3
an inventive control of the speaker via an electronically trained transmission system and
Fig. 4
an inventive control of the speaker via an electro-acoustically designed transmission system

Gleiche Bauteile in den Figuren 1 bis 4 sind mit gleichen Bezugszeichen versehen.The same components in Figures 1 to 4 are the same Provide reference numerals.

Links in Fig. 1 ist in der Seitenansicht der Schnitt durch einen herkömmlichen Helmholtz-Resonator bestehend aus einem Hohlkörper mit dem Volumen V und einer Luftdurchtrittsöffnung mit einem Hals der Länge 1 und des Durchmessers d dargestellt. Auf der rechten Seite der Fig. 1 ist die Draufsicht des Helmholtz-Resonators mit der Luftdurchtrittsöffnung der Querschnittsfläche a gezeigt.On the left in Fig. 1 is the section in side view consisting of a conventional Helmholtz resonator of a hollow body with the volume V and an air passage opening with a neck of length 1 and Diameter d shown. On the right side of the Fig. 1 is the top view of the Helmholtz resonator with the air passage opening of the cross-sectional area a is shown.

Für die Resonanzfrequenz eines Helmholtz-Resonators, bei der der Schalldruck zumindest in überwiegendem Maße absorbiert wird, gilt die Beziehung: f= C * ( al*V )½ mit der Schallgeschwindigkeit c, mit der Halslänge l und der Querschnittsfläche a der Luftdurchtrittöffnung sowie mit dem Volumen V des Hohlkörpers.
Im folgenden soll auf die Abhängigkeit der Resonanzfrequenz f allein vom Volumen V eingegangen werden. Die Länge l und die Querschnittsfläche a der Luftdurchtrittsöffnung seien konstant. Wie aus der Formel ersichtlich ist, muß mit tiefer werdenden Frequenzen f das Volumen V größer werden. Dieser Zusammenhang bildet die Problematik des großen Platzbedarfs bei der Anwendung eines Helmholtz-Resonators in Kraftfahrzeugen, da dort insbesondere die Schalldrücke tiefer Frequenzen absorbiert werden müssen.
The following applies to the resonance frequency of a Helmholtz resonator, at which the sound pressure is at least predominantly absorbed: f = C. * ( a l * V ) ½ with the speed of sound c, with the neck length l and the cross-sectional area a of the air passage opening and with the volume V of the hollow body.
The dependence of the resonance frequency f solely on the volume V will be discussed below. The length l and the cross-sectional area a of the air passage opening are constant. As can be seen from the formula, the volume V must increase as the frequencies f decrease. This connection creates the problem of the large space requirement when using a Helmholtz resonator in motor vehicles, since in particular the sound pressure at low frequencies must be absorbed there.

Fig. 2 stellt zwei mögliche Ausführungsformen für einen aktiven Helmholtz-Resonator AHR1 und AHR2 vor, deren reale Volumina jeweils durch den Hohlkörper H festgelegt sind. Auch die Luftdurchtrittsöffnungen D seien jeweils fest definiert.
Bei dem aktiven Helmholtz-Resonator AHR1 ist die der Luftdurchtrittsöffnung D gegenüberliegende Wand des Hohlkörpers H durch einen Lautsprecher L ersetzt. Durch den Lautsprecher L werden die Schalldruckwerte im Hohlkörper H verändert, so daß andere imaginäre Volumina im Hohlkörper H simuliert werden als das Volumen, das real vorhanden ist.
2 presents two possible embodiments for an active Helmholtz resonator AHR1 and AHR2, the real volumes of which are each determined by the hollow body H. The air passage openings D are also firmly defined.
In the active Helmholtz resonator AHR1, the wall of the hollow body H opposite the air passage opening D is replaced by a loudspeaker L. The sound pressure values in the hollow body H are changed by the loudspeaker L, so that other imaginary volumes in the hollow body H are simulated than the volume that is actually present.

Dieselbe Funktion erfüllt auch der Lautsprecher L, der innerhalb des Hohlkörpers H des aktiven Helmholtz-Resonators AHR2 angeordnet ist. Bei dieser Anordnungsmöglichkeit ist der Lautsprecher L nicht Teil einer Hohlkörperwand, sondern ist im Hohlkörper H zumindest nahezu vollständig zur Umgebung hin abgedichtet. Eine derartige Anordnung wird beispielsweise benötigt, wenn besondere Maßnahmen gegen unerwünschte Störeinflüsse durch sich überlagernde Druckschwankungen von außerhalb des Hohlkörpers H ergriffen werden sollen.The loudspeaker L fulfills the same function inside the hollow body H of the active Helmholtz resonator AHR2 is arranged. With this arrangement option the loudspeaker L is not part of a hollow body wall, but is at least almost complete in the hollow body H. sealed to the environment. Such an arrangement is needed, for example, when special measures against unwanted interference caused by overlapping Pressure fluctuations from outside the hollow body H should be taken.

In Fig. 3 und 4 ist der Einfachheit halber jeweils nur ein aktiver Helmholtz-Resonator AHR in Form des Helmholtz-Resonators AHR1 dargestellt. Dies ist jedoch nicht einschränkend, sondern lediglich beispielhaft gemeint.3 and 4 is only for the sake of simplicity an active Helmholtz resonator AHR in the form of the Helmholtz resonator AHR1 shown. However, this is not restrictive, but only meant as an example.

In Fig. 3 ist ein Mikrofon M außerhalb des aktiven Helmholtz-Resonators AHR über eine Eingangsleitung mit einem Übertragungssystem Ü verbunden. Das Übertragungssystem Ü ist Über eine Ausgangsleitung am Lautsprecher L des aktiven Helmholtz-Resonators AHR angeschlossen.In Fig. 3, a microphone M is outside the active Helmholtz resonator AHR via an input line with a Transmission system Ü connected. The transmission system Ü is via an output line on the loudspeaker L of the active Helmholtz resonators AHR connected.

Das Mikrofon M nimmt in der Nähe der Luftdurchtrittsöffnung D des Hohlkörpers H die außerhalb des Hohlkörpers H vorherrschenden Schalldruckwerte pa auf und setzt diese in ein entsprechendes elektrisches Signal um, das an das übertragungssystem Ü weitergegeben wird. Das Übertragungssystem Ü sei eine elektronische Schaltanordnung mit PD2T2 Übertragungsverhalten. Der Lautsprecher L wird durch den elektrischen Strom I vom Übertragungsystem Ü angesteuert. In the vicinity of the air passage opening D of the hollow body H, the microphone M picks up the sound pressure values p a prevailing outside the hollow body H and converts them into a corresponding electrical signal which is passed on to the transmission system Ü. The transmission system Ü is an electronic switching arrangement with PD 2 T 2 transmission behavior. The loudspeaker L is driven by the electrical current I from the transmission system Ü.

Das PD2T2-Übertragungsverhalten kann beispielsweise für eine einzige gewünschte Resonanzfrequenz mathematisch durch folgende Formel entsprechend der Laplace-Transformation Ipa = - C0 * C1*s2+C2*s+1C3*s2+C4*s+1 ausgedrückt werden, wobei C0, C1, C2, C3 und C4 Konstanten sind, die von der Form des Hohlkörpers H, von der gewünschten Resonanzfrequenz f sowie vom Frequenz-Leistungs-Verlauf des Lautsprechers L abhängen, und wobei s der Imaginäranteil der komplexen Frequenz p=σ+jw mit s=jw als Laplace-Variablen ist.The PD 2 T 2 transmission behavior can, for example, mathematically for a single desired resonance frequency by the following formula according to the Laplace transform I. p a = - C 0 * C. 1 * s 2nd + C 2nd * s + 1 C. 3rd * s 2nd + C 4th * s + 1 are expressed, where C 0 , C 1 , C 2 , C 3 and C 4 are constants which depend on the shape of the hollow body H, on the desired resonance frequency f and on the frequency-power curve of the loudspeaker L, and where s is the Imaginary part of the complex frequency p = σ + jw with s = jw as Laplace variables.

Das in Fig. 3 dargestellte Übertragungssystem Ü ist für beliebig viele Resonanzfrequenzen anwendbar. Es kann in einer weiteren Ausgestaltung der Erfindung demnach auch für eine Vielzahl verschiedener gewünschter Resonanzfrequenzen, deren Schalldrücke zu absorbieren sind, gleichzeitig angewendet werden.
Beispielsweise ist für eine Anzahl n von gewünschten Resonanzfrequenzen das übertragungssystem mathematisch wie folgt darstellbar:

Figure 00080001
The transmission system U shown in FIG. 3 can be used for any number of resonance frequencies. In a further embodiment of the invention, it can accordingly also be used simultaneously for a large number of different desired resonance frequencies, the sound pressures of which are to be absorbed.
For example, for a number n of desired resonance frequencies, the transmission system can be represented mathematically as follows:
Figure 00080001

Danach kann eine frequenzbreitbandige Wirksamkeit der Schalldruckabsorption erreicht werden, da sich der Helmholtz-Resonator gleichzeitig bei vielen Frequenzen in Eigenresonanz befindet. Then a broadband effectiveness of the Sound pressure absorption can be achieved because of the Helmholtz resonator at the same time at many frequencies in natural resonance located.

In Fig. 4 sind ein aktiver Helmholtz-Resonator AHR und ein passiver Vergleichs-Helmholtz-Resonator PHR dargestellt. Ein Mikrofon M1 außerhalb der beiden Helmholtz-Resonatoren und ein Mikrofon M2 innerhalb des passiven Vergleichs-Helmholtz-Resonators PHR sind über Eingangsleitungen mit einer Recheneinheit R verbunden. Eine Ausgangsleitung der Recheneinheit R ist am Lautsprecher L des aktiven Helmholtz-Resonators AHR angeschlossen.4 shows an active Helmholtz resonator AHR and a passive comparative Helmholtz resonator PHR. A microphone M 1 outside the two Helmholtz resonators and a microphone M 2 inside the passive comparison Helmholtz resonator PHR are connected to a computing unit R via input lines. An output line of the computing unit R is connected to the loudspeaker L of the active Helmholtz resonator AHR.

Der passive Vergleichs-Helmholtz-Resonator PHR soll in Miniaturbauform auf dieselbe Resonanzfrequenz bzw. zur Absorption des Schalldruckes derselben Frequenz ausgebildet sein, der auch vom aktiven Helmholtz-Resonator AHR absorbiert werden soll. Dazu besitzt der passive Vergleichs-Helmholtz-Resonator PHR dasselbe Übertragungsverhalten, das auch einem passiven Helmholtz-Resonator mit dem realen Hohlköpervolumen, das dem für den zu absorbierenden Schalldruck bei gewünschter Resonanzfrequenz erforderlichen zu simulierenden Hohlköpervolumen entspricht, zugrunde liegt.
Das Mikrofon M1 nimmt die Schalldruckwerte außerhalb der beiden Helmholtz-Resonatoren AHR und PHR in der Nähe derer Luftdurchtrittsöffnungen D1 und D2 auf. Das Mikrofon M2 erfaßt die Schalldruckwerte innerhalb des passiven Helmholtz-Resonators PHR. Die Signale der Mikrofone M1 und M2 werden der Recheneinheit R zugeführt. Die Recheneinheit R ist kein frequenzabhängiges übertragungssystem Ü (≠f(p), mit p=σ+jw), sondern lediglich eine additive und/oder multiplikative Verstärkungsschaltung unter Berücksichtigung der Konstanten C0, C1, C2, C3 und/oder C4, die von der Form des Hohlkörpers H des AHR, von der gewünschten Resonanzfrequenz f sowie vom Frequenz-Leistungs-Verlauf des Lautsprechers L abhängen.
Die beiden Helmholtz-Resonatoren AHR und PHR unterscheiden sich lediglich darin, daß aufgrund der Hohlkörpervolumenunterschiede durch den aktiven Helmholtz-Resonator AHR bei gleicher Freuqunz und gleicher Dämpfung eine um ein Vielfaches größere Schallenergie absorbiert wird als durch den passiven Vergleichs-Helmholtz-Resonator PHR. Diese Absorptionsverstärkung findet in der Recheneinheit R statt und wirkt sich über die Ansteuerung des Lautsprechers L über die Ausgangsleitung der Recheneinheit R auf den aktiven Helmholtz-Resonator AHR aus.
Auch die Ausgestaltung der Erfindung gemäß Fig. 4 ist auf mehrere gewünschte Resonanzfrequenzen gleichzeitig anwendbar, indem mehrere Vergleichs-Helmholtz-Resonatoren, d.h. je ein jeder gewünschten Resonanzfrequenz zugeordneter Vergleichs-Helmholtz-Resonator, in Parallelschaltung zur Ansteuerung des Lautsprechers verwendet werden.
The passive comparative Helmholtz resonator PHR should be designed in miniature design at the same resonance frequency or for absorption of the sound pressure of the same frequency that is also to be absorbed by the active Helmholtz resonator AHR. For this purpose, the passive comparative Helmholtz resonator PHR has the same transmission behavior, which is also the basis for a passive Helmholtz resonator with the real hollow body volume, which corresponds to the hollow body volume required to be simulated for the sound pressure to be absorbed at the desired resonance frequency.
The microphone M 1 records the sound pressure values outside the two Helmholtz resonators AHR and PHR in the vicinity of their air passage openings D1 and D2. The microphone M 2 detects the sound pressure values within the passive Helmholtz resonator PHR. The signals from the microphones M 1 and M 2 are fed to the computing unit R. The computing unit R is not a frequency-dependent transmission system Ü (≠ f (p), with p = σ + jw), but merely an additive and / or multiplicative amplification circuit, taking into account the constants C 0 , C 1 , C 2 , C 3 and / or C 4 , which depend on the shape of the hollow body H of the AHR, on the desired resonance frequency f and on the frequency-power curve of the loudspeaker L.
The only difference between the two Helmholtz resonators AHR and PHR is that due to the differences in the volume of the hollow body, the active Helmholtz resonator AHR absorbs a sound energy many times greater than the passive comparison Helmholtz resonator PHR with the same frequency and damping. This absorption amplification takes place in the computing unit R and has an effect on the active Helmholtz resonator AHR by activating the loudspeaker L via the output line of the computing unit R.
The embodiment of the invention according to FIG. 4 can also be applied to a plurality of desired resonance frequencies at the same time, in that a plurality of comparison Helmholtz resonators, that is to say a comparison Helmholtz resonator assigned to each desired resonance frequency, are used in parallel for driving the loudspeaker.

Darüber hinaus sei darauf hingewiesen, daß die Erfindung auf Helmholtz-Resonatoren mit beliebig geformten Hohlkörpern und beliebig ausgebildeten Luftdurchtrittsöffnungen anwendbar ist. Beispielsweise hat sich eine Luftdurchtrittsöffnung in Form einer größerflächigen siebartigen Abdeckung des Hohlkörpers als besonders vorteilhaft erwiesen.
Auch ist eine Anordnung von mehreren Lautsprechern innerhalb des aktiven Helmholtz-Resonators denkbar.
In addition, it should be pointed out that the invention can be applied to Helmholtz resonators with hollow bodies of any shape and air passage openings of any shape. For example, an air passage opening in the form of a large-area sieve-like cover of the hollow body has proven to be particularly advantageous.
An arrangement of several loudspeakers within the active Helmholtz resonator is also conceivable.

Claims (3)

  1. A noise absorption method for motor vehicles, in which noise pressures are generated by means of a loudspeaker and in which by means of a Helmholtz resonator noise pressure at its resonant frequency is absorbed,
    characterised in that, by means of the loudspeaker (L) positioned in the hollow body (H) of the Helmholtz resonator (AHR, AHR1, AHR2) noise pressures are generated in the hollow body (H), by which simultaneously or in time sequence, hollow body volumes, differing from the actual hollow body volume (H) are simulated, whereby the hollow body volumes to be simulated are determined, based on any desired resonant frequencies for the Helmholtz resonator (AHR, AHR1, AHR2), whereby by means of a first microphone (M, M1) the noise pressure values (pa) prevailing outside the Helmholtz resonator (AHR, AHR1, AHR2) are accepted and passed to a transmission system (Ü), by which the loudspeaker (L) is driven such that through the whole of the noise absorption method the transmission relationships of Helmholtz resonators with actual volumes are simulated by corresponding simulated volumes.
  2. A noise absorption method according to claim 1, characterised in that to each of the desired resonant frequencies in the transmission system (Ü) a PDiTk element, with i and k greater than or equal to 1, advantageously 1 or 2, is allocated and that the transmission system (Ü) is created from the sum of all the PDiTk elements.
  3. A noise absorption method according to claim 1 or 2, characterised in that the loudspeaker (L) for the generation of desired resonant frequency by the simulation of the necessary hollow body volume for it is driven by means of the noise pressure signal from a further microphone (M2) within a reference Helmholtz resonator (PHR), constructed in miniature form, which has the same transmission characteristic referred to the desired resonant frequency as a Helmholtz resonator with an actual hollow body volume corresponding to the simulated hollow body volume.
EP93111202A 1992-08-13 1993-07-13 Sound absorption method for motor vehicles Expired - Lifetime EP0586831B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4226885 1992-08-13
DE4226885A DE4226885C2 (en) 1992-08-13 1992-08-13 Sound absorption process for motor vehicles

Publications (3)

Publication Number Publication Date
EP0586831A2 EP0586831A2 (en) 1994-03-16
EP0586831A3 EP0586831A3 (en) 1994-03-30
EP0586831B1 true EP0586831B1 (en) 1998-09-02

Family

ID=6465521

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93111202A Expired - Lifetime EP0586831B1 (en) 1992-08-13 1993-07-13 Sound absorption method for motor vehicles

Country Status (2)

Country Link
EP (1) EP0586831B1 (en)
DE (2) DE4226885C2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004016689A1 (en) * 2004-04-05 2005-10-27 Volkswagen Ag Improvement of acoustic situation in passenger cabin of vehicle, comprising use of Helmholtz-resonators

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4446080B4 (en) * 1994-12-22 2004-03-18 Bayerische Motoren Werke Ag Sound absorption system for motor vehicles
EP0916817B1 (en) 1997-11-18 2006-02-08 Faurecia Abgastechnik GmbH Active silencer
DE19861018C2 (en) 1998-12-15 2001-06-13 Fraunhofer Ges Forschung Controlled acoustic waveguide for sound absorption
EP1085201B1 (en) * 1999-09-16 2003-11-19 Siemens VDO Automotive Inc. Tuned active helmholtz resonator with forced response
GB2387522B (en) * 2002-04-10 2005-09-28 Hobelsberger Max Tunable active sound absorbers
FR2899011B1 (en) * 2006-03-24 2008-07-18 Eurocopter France METHOD AND DEVICE FOR PROCESSING NOISE ON BOARD AN AIRCRAFT
WO2013064602A1 (en) 2011-11-04 2013-05-10 Empa Eidgenössische Materialprüfungs- Und Forschungsanstalt Adaptive helmholtz resonator
DE102017115271B4 (en) * 2017-07-07 2019-04-18 Tenneco Gmbh Method for operating a motor vehicle noise suppression system
WO2019007700A1 (en) 2017-07-07 2019-01-10 Tenneco Gmbh Noise cancellation system
CN111720189B (en) * 2019-03-22 2024-01-23 广州汽车集团股份有限公司 Exhaust system sound quality adjusting device and method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3412432A1 (en) * 1984-04-03 1985-10-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 8000 München Sound-absorbing building element
DE3720946A1 (en) * 1986-07-03 1988-01-07 Volkswagen Ag Body platform for a motor vehicle
DE3729765A1 (en) * 1987-09-05 1989-03-16 Bayerische Motoren Werke Ag Sound absorption system
US5119427A (en) * 1988-03-14 1992-06-02 Hersh Alan S Extended frequency range Helmholtz resonators
DE3816921A1 (en) * 1988-05-18 1989-11-30 Bayerische Motoren Werke Ag ARRANGEMENT FOR REDUCING NOISE LEVEL IN THE INTERIOR OF A MOTOR VEHICLE
DE4011705A1 (en) * 1990-04-11 1991-10-17 Freudenberg Carl Fa AIR SOUND ABSORBING MOLDED PART
US5119902A (en) * 1990-04-25 1992-06-09 Ford Motor Company Active muffler transducer arrangement
DE4027511C1 (en) * 1990-08-30 1991-10-02 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V., 8000 Muenchen, De

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004016689A1 (en) * 2004-04-05 2005-10-27 Volkswagen Ag Improvement of acoustic situation in passenger cabin of vehicle, comprising use of Helmholtz-resonators

Also Published As

Publication number Publication date
DE4226885A1 (en) 1994-02-17
DE4226885C2 (en) 2001-04-19
DE59308951D1 (en) 1998-10-08
EP0586831A3 (en) 1994-03-30
EP0586831A2 (en) 1994-03-16

Similar Documents

Publication Publication Date Title
DE2815051C2 (en) Closed design headphones
DE69503659T2 (en) BROADBAND NOISE AND VIBRATION REDUCTION
DE69522708T2 (en) FREQUENCY-FOCUSED VIBRATORS FOR ACTIVE SYSTEMS TO REDUCE VIBRATION ENERGY
EP0586831B1 (en) Sound absorption method for motor vehicles
EP0007436B1 (en) Electro-acoustic transducer with a membrane having a piezoelectric layer
DE3706481A1 (en) EARPHONES
DE3512999A1 (en) DIFFERENTIAL HEARING AID WITH PROGRAMMABLE FREQUENCY GEAR
DE3525724A1 (en) PIEZOELECTRIC ELECTROACOUSTIC CONVERTER
DE69912416T2 (en) DEVICE WITH A HOUSING THAT CONTAINS A TON CONVERTER AND WITH A CARRIER
EP2743725B1 (en) Ultrasound device
EP3070964B1 (en) Hearing device, in particular hearing aid
DE2813628A1 (en) FILTER CIRCUIT
EP3189673B1 (en) Loudspeaker arrangement
EP0342353B1 (en) Arrangement for diminishing the noise level within a motor car
EP0280907B1 (en) Circuit arrangement for suppressing oscillations
DE10154168B4 (en) electronic component
DE102020002996A1 (en) Motor vehicle with vehicle warning signal generator device
DE3916031A1 (en) Active damping (absorbing, attenuating) device for vibrations, in particular in the form of noise, without acoustic delay
EP1078615A1 (en) Hearing protector
DE2552591C3 (en) Principle of a loudspeaker housing for the low frequency range
EP0247569A1 (en) Clock recovery circuit
DE102008059239A1 (en) Loudspeaker device for use in three-way system of vehicle, has low-, middle- and high tone loud speakers arranged in carcass body element of vehicle, where loudspeakers exhibit different frequency characteristics
DE4125379C1 (en) Hearing aid device with amplitude limitation - has limiting circuit inserted in feedback path for amplifier stage for matching frequency characteristic to each individual user
DE102017206360B4 (en) Housing for a pneumatic control unit and pneumatic control unit
DE3830783C1 (en) Acoustic signal transmitter, particularly chime signal transmitter, for motor vehicles

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19940305

17Q First examination report despatched

Effective date: 19961105

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980903

REF Corresponds to:

Ref document number: 59308951

Country of ref document: DE

Date of ref document: 19981008

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020711

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020730

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030713

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040331

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050713

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060830

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080201