EP0581635B1 - Process for preparing an article of composite material with a non-organic matrix - Google Patents

Process for preparing an article of composite material with a non-organic matrix Download PDF

Info

Publication number
EP0581635B1
EP0581635B1 EP93401806A EP93401806A EP0581635B1 EP 0581635 B1 EP0581635 B1 EP 0581635B1 EP 93401806 A EP93401806 A EP 93401806A EP 93401806 A EP93401806 A EP 93401806A EP 0581635 B1 EP0581635 B1 EP 0581635B1
Authority
EP
European Patent Office
Prior art keywords
stack
process according
preform
temporary binder
tubular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93401806A
Other languages
German (de)
French (fr)
Other versions
EP0581635A1 (en
Inventor
Eric Sixdeniers
Dario Forti
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Group SAS
Original Assignee
Airbus Group SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR9208725A external-priority patent/FR2694553B1/en
Application filed by Airbus Group SAS filed Critical Airbus Group SAS
Publication of EP0581635A1 publication Critical patent/EP0581635A1/en
Application granted granted Critical
Publication of EP0581635B1 publication Critical patent/EP0581635B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/02Pretreatment of the fibres or filaments
    • C22C47/06Pretreatment of the fibres or filaments by forming the fibres or filaments into a preformed structure, e.g. using a temporary binder to form a mat-like element
    • C22C47/062Pretreatment of the fibres or filaments by forming the fibres or filaments into a preformed structure, e.g. using a temporary binder to form a mat-like element from wires or filaments only
    • C22C47/064Winding wires
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/02Pretreatment of the fibres or filaments
    • C22C47/06Pretreatment of the fibres or filaments by forming the fibres or filaments into a preformed structure, e.g. using a temporary binder to form a mat-like element
    • C22C47/062Pretreatment of the fibres or filaments by forming the fibres or filaments into a preformed structure, e.g. using a temporary binder to form a mat-like element from wires or filaments only
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/14Making alloys containing metallic or non-metallic fibres or filaments by powder metallurgy, i.e. by processing mixtures of metal powder and fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/20Making alloys containing metallic or non-metallic fibres or filaments by subjecting to pressure and heat an assembly comprising at least one metal layer or sheet and one layer of fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy

Definitions

  • the invention relates to a manufacturing process. of a piece of composite material, from wicks formed from filaments of an organic material such as carbon or ceramic, and inorganic material such as a metal or a metal alloy, with a view to make a part of composite material with a non-matrix organic.
  • wicks wound on spools with separators dividers. These spread wicks are formed parallel filaments of organic material such as carbon or ceramic, coated with a material not organic intended to form the matrix of the composite material.
  • This non-organic material consists either of a metal, either by a metal alloy.
  • the substantially parallel filaments which form the spread wick give it a discontinuous nature which makes it particularly difficult its grip and, consequently, its implementation during of the production of a composite material part. In particular, it is difficult, if not impossible, to cut and drape spread carbon wicks and metallic.
  • the thickness reduction that accompanies the thermomechanical cycle final to obtain the material part composite from the stack of spread wicks inevitably leads, in the case of non-planar parts, at the breaking of part of the filaments. Therefore, the composite part obtained is damaged and does not does not meet the required quality requirements.
  • the polymer constitutes a temporary binder which makes it possible to obtain a precomposite leaf-shaped with handling and cutting are facilitated.
  • a binder temporary to form an extremely thin film from a wick of filaments, spread out is not envisaged.
  • the laminated is obtained by cold rolling the stack of leaves.
  • the temporary binder remains rigid during of this cold rolling operation. Therefore, filaments may break if the workpiece has a complex shape (half-shell, cap, etc.).
  • document FR-A-2 366 904 proposes to place in a mold heated a stack of sheets formed of fibers refractories embedded in a metallic matrix.
  • the mold includes an expandable internal bladder and a non-deformable female imprint, allowing to apply a thermomechanical cycle determined on the stack.
  • the filaments of each of the sheets in the stack can be bonded together by a polymerized glue.
  • the glue Prior to the application of the thermomechanical cycle, the glue is pyrolyzed by a first heating of the mold.
  • the main object of the invention is a process for manufacturing parts from material non-organic matrix composite of any shape, possibly complex, preserving continuity filaments and, therefore, the characteristics mechanical parts.
  • the binder When the draping has been carried out, the binder temporary, heated to a suitable temperature when thermal cycle, behaves like an adhesive which allows to make a preform, in one or more steps, before bringing the part to its final form when due final thermomechanical cycle.
  • the passage of the room through one or more intermediate forms before its implementation final shape allows the filaments to take their place gradually, which allows the production of parts of complex shapes, without breaking of filaments and allows the use of less expensive tools to apply the final thermomechanical cycle.
  • the impregnation of the locks by a temporary binder allows to condition these wicks under the shape of a flexible sheet formed of several wicks juxtaposed, which makes cutting and draping extremely easy.
  • the impregnation step is advantageously preceded by a winding step of wicks spread on a mandrel, to form a layer of parallel filaments juxtaposed.
  • thermomechanical cycle which allows to get the final piece also has has the effect of degrading the temporary binder, i.e. to break it down in order to facilitate its suction out of the part by a gas sweep or by vacuum.
  • the degraded temporary binder may also stay trapped in the room. However, he does not play then no role.
  • the temporary binder is a thermoplastic binder such as polystyrene.
  • Heating of the stack is then carried out at a bonding temperature between approximately 160 ° and around 280 ° C.
  • the mechanical action exerted on the stack in order to achieve the preform can be different natures. So it can be one or several compacting actions, whether or not followed by one or more several shaping actions.
  • the part to be produced is tubular in shape
  • the preform by exerting a mechanical compaction action on a first tubular stack, at the temperature of bonding of the temporary binder, cooling the first tubular stack thus compacted, having coaxially this first compacted tubular stack and a second tubular stack, exercising a new mechanical action of compaction at the temperature of the bonding of the temporary binder, cooling the first and the second tubular stacks thus compacted, and repeating these operations until all tubular stacks made previously to be compacted.
  • the material intended to form the matrix of the play justifies it, in particular because of its oxidisable nature, it is integrated into the stack at minus a surface protection sheet, when draping.
  • the provisional binder strands spread with parallel filaments, such that the evaporation of the solvent conditions these wicks spread in the form of a flexible film in which the parallel filaments are connected by the binder provisional stiffened.
  • the impregnation step is preceded by a winding step of the strands spread over a mandrel, to form a layer of parallel filaments juxtaposed.
  • the thermomechanical cycle comprises a first phase of degradation of the temporary binder, at during which the temperature is brought and maintained at a first bearing, without mechanical action on the preform, and a second consolidation phase, during from which the temperature is brought to and maintained at a second level, higher than the first, and an action mechanical compression is applied to the preform.
  • the temporary binder is advantageously evacuated from the room either by a gas sweep, either by vacuum.
  • the process of manufacture according to the invention applies to the manufacture of parts from matrix composite material inorganic, from wicks spread with filaments organic such as carbon or ceramic filaments, coated with inorganic material such as metal or a metal alloy intended to form the matrix composite material.
  • the first phase of this manufacturing process allows to condition the spread wicks, in the form a flexible film, in order to facilitate cutting and subsequent draping of these locks.
  • wicks 10 formed for example of carbon filaments 11 substantially parallel between them and metallized. These spread wicks are wound on storage coils, along with a separator interlayer which prevents the filaments of successive layers to get tangled.
  • the width of the spread wick can be about 40 mm.
  • a first step consists in coating a mandrel 12 an interface plate 13.
  • the spread wick 10 is wound edge to edge or overlapped on the mandrel 12, coated with interface plate 13, as illustrated schematically Figure 1. This gives a sheet of parallel filaments 11 juxtaposed, forming a layer single filaments on the mandrel 12.
  • the interface sheet 13 carrying the layer of filaments 11 is deployed and flattened. To allow this operation, the sheet and filaments are cut according to a generator of the mandrel.
  • the sheet of filaments 11 resting on the sheet interface 13 is then impregnated with a temporary binder, dissolved in a solvent.
  • a temporary binder is a thermoplastic type binder such as polystyrene, which has the advantages to use a solvent (toluene) of reduced toxicity, allow the viscosity of the solution to be controlled obtained, to be able to be used at low temperature and be sufficiently rigid at room temperature.
  • solvent toluene
  • approximately 100 g of polystyrene can be dissolved in one liter of toluene.
  • the impregnated sheet is subjected to a thermal cycle as illustrated by the arrow 16 in FIG. 1.
  • This thermal cycle carried out at atmospheric pressure, has to evaporate the solvent, i.e. toluene in the example considered. It consists of heating the layer of filaments 11 impregnated with the polystyrene solution at a temperature of about 120 ° C.
  • the second phase of the manufacturing process according to the invention consists in making a preform at using the flexible film obtained previously. Obtaining of this preform is permitted for shaped parts any, possibly complex, by the presence temporary binder such as polystyrene which is associated to the filaments 11 in the flexible film 18. Indeed, when the polystyrene is heated to a temperature between about 160 ° C and about 280 ° C, it behaves like a glue that keeps the relative to each other the different layers cut from the flexible film and give to the stack thus formed the desired thickness and shape.
  • temporary binder such as polystyrene which is associated to the filaments 11 in the flexible film 18.
  • This phase of manufacturing a preform begins with film cutting and draping steps 18, to form a stack 20 of superimposed layers. More precisely, each of the layers of the stack is cut from the flexible film 18 and the filaments it contains are oriented in a specific direction, which takes into account the mechanical characteristics of the piece you want to make. In a layout conventional, the filaments of the adjacent layers can especially be oriented at angles which differ by about 45 ° from one layer to another.
  • the stack 20 can be achieved either by draping on a flat surface as illustrated schematically Figure 1, either by draping over a surface of different shape, such as a cylindrical mandrel when you want to make a tubular part, as we will see later.
  • the preform to be produced differs from the stack 20 both by its thickness and by its shape, as in the example of embodiment illustrated in Figure 1, the realization of the preform advantageously takes place in two successive stages.
  • the first of these steps consists of a compacting operation to transform the stack 20 into a blank 22 which has the same shape as stack 20 (i.e. a planar shape in the example shown) but whose thickness is equal to that of the preform that we want to achieve.
  • this compacting operation involves reduce the thickness of the stack 20 in order to give the blank 22 a thickness intermediate between that of the stack 20 and that of the part to be produced.
  • the creation of the blank 22 from stacking 20 is carried out by subjecting the latter to a thermal cycle at a temperature sufficient to give with the provisional binder the characteristics of an adhesive.
  • this temperature is at least equal to 160 ° C and must be kept at this level for a duration of at least 15 min.
  • the temperature should however stay below about 280 ° C, to avoid any degradation or decomposition of the polystyrene at this manufacturing stage.
  • a heating of stacking 20 at about 180 ° C for about 30 min. ensures the bonding of the layers constituting the stack.
  • this thermal cycle is accompanied a mechanical compaction action, obtained in subjecting the stack to a pressure greater than 1 bar (for example, about 20 bars) when stacking is at 180 ° C, then during cooling up to a temperature close to 70 ° C.
  • the hardening polystyrene then allows the stack not to resume its initial thickness.
  • This compacting operation can be performed placing stack 20 in a press heated or in an autoclave.
  • the preform 24 is then produced during of a second shaping operation.
  • the thickness of the blank 22 is practically not modified, but we give it a shape comparable to that of the part to be produced but whose contours are less accentuated, so that this shape is substantially intermediate between that of the blank 22 and that of the final part.
  • the thermal cycle gives the binder the characteristics of an adhesive when the shaping is performed. So we heat the blank 22 in an oven up to a temperature of about 180 ° C, then maintain the temperature at this level for about 30 min.
  • the mechanical action of shaping the blank 22 is exercised by placing the latter between a punch whose active part is preferably relatively flexible and a rigid matrix. To ensure shaping, a pressure of at least about 20 bars is applied between the punch and the die when the temperature reaches about 180 ° C and this pressure is held until the temperature has dropped up to a value close to 70 ° C. The provisional binder is then stiffened and maintains the preform in the final form obtained.
  • the preform 24 is placed between a punch 28a and a die 28b whose surfaces are complementary to the opposite faces of the part 26 to achieve.
  • the punch 28a as the die 28b have shapes different from those of the punch and the matrix used previously, during the second shaping operation, to make the preform 24. Indeed, we have seen previously that the shape of the final part 26 is different from that of the preform 24.
  • the material which constitutes the punch 28a is different from that which constitutes the punch used during this second setting operation form.
  • thermomechanical cycle final is applied up to a temperature allowing welding-diffusion of non-organic material which coating the filaments contained in the preform, so that this material fills most of the inter-filament spaces and forms the matrix of the composite material. It is important to observe that this temperature is always higher than the degradation temperature or decomposition of the provisional binder, i.e. about 400 ° C in the case of polystyrene.
  • the final thermomechanical cycle corresponds to heating of the preform 24 to a temperature about 600 ° C for about 1 hour, a pressure relatively large, for example between about 100 bars and about 250 bars, being applied between the punch 28a and the die 28b.
  • the decomposed polystyrene residues during the final thermomechanical cycle can remain trapped in the composite material or at otherwise be flushed out of this material during the cycle thermomechanical.
  • evacuation is obtained by vacuuming residues, either by performing a gas sweep, either by vacuum.
  • the first phase of the process leading to obtaining a flexible film 18 formed from organic filaments 11 juxtaposed parallels, coated with a material inorganic and linked together by a binder stiffened temporary such as polystyrene, is identical to that previously described with reference to in Figure 1.
  • the second phase of the process consists in this case of making a preform tubular whose thickness is greater than that of the part to be produced.
  • the thickness of the preform obtained at the end of this second phase is intermediate between that of a stack or a winding initial of pieces cut from the flexible film 18 and draped over a mandrel, and the thickness of the workpiece to achieve.
  • the outside diameter of the preform is substantially equal to or barely less than that of the part to be produced, while its diameter interior is less than that of this room.
  • the second phase of the process begins with a step of cutting pieces of appropriate sizes in the flexible film 18.
  • This cutting step is followed by a step layup, performed in this case on a cylindrical mandrel.
  • a single draping operation followed by a single compaction step, or several operations of layup each followed by a compaction step can be performed, as shown schematically in figure 2.
  • the pieces of the film flexible 18 previously cut are draped in a single operation on an expandable cylindrical mandrel consisting of an inflatable elastomeric bladder.
  • This bladder forms the internal element of a compaction mold, comparable in structure to the consolidation mold used during the final thermomechanical cycle, which will be described thereafter with reference to FIG. 3.
  • the outside diameter of the inflatable bladder is significantly smaller than the inside diameter of the preform that we want to obtain, while the diameter outside of the stack or winding formed on the bladder is practically equal or very slightly lower the outside diameter of this preform.
  • the inflatable bladder carrying the stack or the winding is then placed in a rigid tube constituting the external element of the compaction mold.
  • the compaction mold is then introduced into a oven or in an autoclave for applying a thermal cycle during compaction.
  • the temperature is raised to a value sufficient to give the provisional binder of the characteristics of an adhesive, without cause its degradation or decomposition.
  • heating at around 180 ° C, or more, for about 30 min ensures the bonding of the layers of the stack.
  • a compaction pressure is applied to the stack, by inflating the bladder inflatable.
  • This compaction pressure is at least equal to approximately 20 bars. It is maintained during the preform cooling to a temperature of which the temporary binder is hardened. In the case of polystyrene, compaction pressure is maintained until the temperature has dropped to approximately 70 ° C.
  • Depressurization of the elastomeric bladder causes its removal and promotes the release of the preform thus obtained.
  • Figure 2 illustrates the case where two cycles of successive compaction are applied in order to obtain the preform.
  • a stack is produced on the one hand external 20a on a first elastomeric bladder inflatable and, on the other hand, an internal stack 20b on a second inflatable elastomeric bladder.
  • the inflatable metal bladders form the elements internal of two compaction molds similar to the mold of consolidation of figure 3.
  • the outer diameter of the outer stack 20a is practically equal or very slightly lower to the external diameter of the preform to be obtained.
  • the outside diameter of the internal stack 20b is practically equal or very slightly lower the inside diameter of the external stack 20a, when the latter has been compacted.
  • the compacting of the stack is carried out. external 20a according to a compaction process analogous to that previously described in the case where only one compaction step is necessary.
  • a compaction pressure is applied to stacking, by means of the first bladder. This pressure is maintained after sufficient cooling so that the temporary binder is hardened.
  • Stacking compacted external 22a is then removed from the mold.
  • the temporary binder is first brought to its temperature of collage.
  • a compaction pressure is applied to the assembly formed by the non-compacted internal stack 20b and by the compacted external stack 22a, by means of the second bladder. This pressure is maintained until that the assembly is sufficiently cooled to ensure hardening of the temporary binder.
  • cooling we get a tubular preform 24 whose outside diameter is close to that of the part to be produced, but whose thickness is greater.
  • the production phase tubular preform 24, including one or more several compaction operations is followed by a thermomechanical consolidation cycle allowing give the room its final dimensions.
  • the inorganic material which coats the filaments is brought to its temperature of welding-diffusion, allowing it to fill spaces inter-filaments and form the matrix of the material composite.
  • This consolidation cycle is obtained by placing the tubular preform 24 in a consolidation mold 30 illustrated diagrammatically in FIG. 3.
  • the compaction mold (s) used during necessary compaction operations to the manufacturing of the preform do differ from this mold 30 only by their dimensions.
  • the consolidation mold 30 has a inflatable metal bladder 32, tubular in shape and uniform circular section, on which the tubular preform 24.
  • This bladder is made in a metal or a sufficiently resistant metal alloy so that it can withstand the compaction pressure applied during consolidation, which can reach 100 to 250 bars. Under these conditions, the use of a bladder 32 made of thin stainless steel, is recommended, in particular by the fact that this material is inert from a physico-chemical point of view, for materials constituting the composite material part to to manufacture.
  • the bladder 32 has a closed end and an open end, provided with a flange 32a.
  • the external element of the mold 30 is constituted by a rigid tube 34, for example of steel.
  • This tube is made in two parts whose joint plane passes through its longitudinal axis, so as to allow demolding when the consolidation is complete.
  • the rigid tube 34 is itself placed in a non-deformable external security enclosure 36, tubular shape and very thick.
  • This enclosure made for example of refractory steel, takes up the forces applied to the tube 34 during inflation of the bladder 32. It has a frustoconical inner surface, complementary to a frustoconical exterior surface of tube 34. This characteristic makes it possible to extract the tube 34 containing the part and the bladder 32, when consolidation is complete.
  • the flange 32a is sealed between the corresponding ends of the rigid tube 34 and security enclosure 36 on the one hand and the cap 38 screwed onto the safety enclosure 36, on the other go.
  • This plug 38 is crossed axially by a conduit 40 connected to a pressure source and opening inside the bladder 32.
  • the other plug 38 is crossed by a conduit 42 adapted to be connected by a valve V1 either to a vacuum source 44 of a gas conditioning, i.e. to a sewer 46.
  • a inside the mold 30, the duct 42 opens into the annular space 48 formed between the bladder 32 and the rigid tube 34.
  • Another conduit 50 passes radially the security enclosure and communicates with space 48 by a passage 52 formed in the rigid tube 34.
  • a outside the mold 30, the conduit 50 communicates with a source of neutral gas 54 from the gas conditioning, through a valve V2.
  • the mold 30 is itself placed in an oven tubular (not shown) for applying to the tubular preform 24 a determined temperature cycle.
  • the pressure necessary for consolidation is applied on the preform 24, by means of the bladder 32.
  • the interior of the mold 30 is subjected to a sweeping of a neutral gas such as argon, via lines 42 and 56, valve V2 being open and the valve V1 open on the sewer 46.
  • the temperature is then gradually raised to a first level, ensuring degradation or decomposition of the temporary binder. It is gradually removed from the preform by scanning gaseous.
  • the mold is evacuated through line 42 (valve V2 closed and valve V1 open on the vacuum source 44) and the temperature is gradually raised again up to a second level, corresponding to the welding-diffusion temperature of the material intended for form the matrix.
  • the bladder is then put under pressure to reduce the porosity of the room to a minimum value. The dimensions of the room then correspond to the desired value.
  • the mold After cooling, the mold is removed of the room. For this, we extract the tube 34, containing the part and the bladder 32, of the enclosure 36, which is facilitated by the taper of the surfaces in contact with the tube 34 and enclosure 36. The tube 34 is then dismantled two parts. The extraction of bladder 32 is finally performed either by electrochemical machining or by chemical machining, either by machining one or several grooves along the entire length of the bladder, then “peeling" of the latter by thermomechanical traction.
  • preform 24 can be coated with a protective metal sheet on its interior and exterior surfaces, when the material intended to form the matrix requires it, for example in because of its oxidizable nature. So if this material is magnesium, preform 24 is coated with sheets titanium.
  • the protective sheets are put in place when or drapes, on the surfaces intended to form the interior and exterior surfaces of the preform.
  • a protective sheet is placed around the external stack 20a and another protective sheet is placed inside of the internal stack 20b.
  • the main benefit stems from manufacturing an intermediate preform, thanks to the application mechanical action on the stack, after it has been heated to a temperature such that the temporary binder behaves like an adhesive which ensures the connection between the filaments of the different layers, while allowing their relative displacement. Because the mechanical action is maintained during cooling, until the temporary binder hardens, this then ensures cohesion and maintenance in the state of the preform thus produced.
  • This technique makes it possible to obtain shaped parts complex with practically no filament breakage, which was not possible with prior techniques.
  • the preform which is performed before applying the thermomechanical cycle final can be obtained either directly, in one single operation, from the stack of layers, either in two or more operations, depending on the complexity of the shape of the part to be obtained and according to the reduction thickness that must be performed. In all cases, the quality of the part obtained is very appreciably improved compared to current techniques, without that it is necessary to use tools complex and expensive.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Reinforced Plastic Materials (AREA)

Description

L'invention concerne un procédé de fabrication d'une pièce en matériau composite, à partir de mèches formées de filaments d'un matériau organique tel que du carbone ou une céramique, et d'un matériau non organique tel qu'un métal ou un alliage métallique, en vue de réaliser une pièce en matériau composite à matrice non organique.The invention relates to a manufacturing process. of a piece of composite material, from wicks formed from filaments of an organic material such as carbon or ceramic, and inorganic material such as a metal or a metal alloy, with a view to make a part of composite material with a non-matrix organic.

Pour réaliser des pièces en matériau composite à matrice non organique, on dispose habituellement de mèches étalées, enroulées sur des bobines avec des séparateurs intercalaires. Ces mèches étalées sont formées de filaments parallèles en un matériau organique tel que du carbone ou une céramique, revêtus d'un matériau non organique destiné à former la matrice du matériau composite. Ce matériau non organique est constitué soit par un métal, soit par un alliage métallique.To make parts from composite material non-organic matrix, we usually have spread wicks, wound on spools with separators dividers. These spread wicks are formed parallel filaments of organic material such as carbon or ceramic, coated with a material not organic intended to form the matrix of the composite material. This non-organic material consists either of a metal, either by a metal alloy.

Les filaments sensiblement parallèles qui forment la mèche étalée donnent à cette dernière un caractère discontinu qui rend particulièrement difficile sa préhension et, par conséquent, sa mise en oeuvre lors de la fabrication d'une pièce en matériau composite. En particulier, il est difficile, sinon impossible, de découper et de draper des mèches de carbone étalées et métallisées.The substantially parallel filaments which form the spread wick give it a discontinuous nature which makes it particularly difficult its grip and, consequently, its implementation during of the production of a composite material part. In particular, it is difficult, if not impossible, to cut and drape spread carbon wicks and metallic.

Par ailleurs, en supposant que la découpe et le drapage des mèches étalées puissent être réalisés, la réduction d'épaisseur qui accompagne le cycle thermomécanique final permettant d'obtenir la pièce en matériau composite à partir de l'empilement de mèches étalées conduit inévitablement, dans le cas de pièces non planes, à la rupture d'une partie des filaments. Par conséquent, la pièce composite obtenue est endommagée et ne répond pas aux exigences de qualité requises.By the way, assuming that cutting and the draping of the spread wicks can be carried out, the thickness reduction that accompanies the thermomechanical cycle final to obtain the material part composite from the stack of spread wicks inevitably leads, in the case of non-planar parts, at the breaking of part of the filaments. Therefore, the composite part obtained is damaged and does not does not meet the required quality requirements.

On connaít du document FR-A-2 437 296 un procédé de fabrication d'un matériau composite à matrice métallique, dans lequel on enroule, en hélice sur un mandrin, une mèche de filaments, non étalée, puis on plonge le mandrin dans une suspension de poudre métallique dans un solvant pur. Après séchage à température ambiante, le mandrin est immergé dans un bain d'une poudre métallique dispersée dans une solution polymère-solvant. Un séchage à l'air permet d'obtenir un précomposite en forme de feuille, que l'on découpe et que l'on empile. L'empilement est ensuite laminé à froid pour former un feuilleté. Ce feuilleté est placé dans le moule d'une presse où il est chauffé sous vide, de façon à éliminer le solvant et à décomposer le polymère. L'application d'un cycle thermomécanique permet d'obtenir la pièce désirée.We know from document FR-A-2 437 296 a process for manufacturing a matrix composite material metallic, in which we wind, helically on a mandrel, a strand of filaments, not spread out, then immerses the mandrel in a suspension of metallic powder in a pure solvent. After drying at temperature ambient, the mandrel is immersed in a metallic powder dispersed in a polymer-solvent solution. Air drying provides a sheet-shaped precomposite, which is cut and that we stack. The stack is then cold rolled to form a puff pastry. This laminate is placed in the mold of a press where it is heated under vacuum, so as to remove the solvent and decompose the polymer. The application of a thermomechanical cycle makes it possible to obtain the desired part.

Dans ce procédé connu, le polymère constitue un liant provisoire qui permet d'obtenir un précomposite en forme de feuille dont la manutention et la découpe sont facilitées. Cependant, l'utilisation d'un tel liant provisoire pour former un film extrêmement mince à partir d'une mèche de filaments, étalée, n'est pas envisagée.In this known process, the polymer constitutes a temporary binder which makes it possible to obtain a precomposite leaf-shaped with handling and cutting are facilitated. However, the use of such a binder temporary to form an extremely thin film from a wick of filaments, spread out, is not envisaged.

Dans le document FR-A-2 437 296, le feuilleté est obtenu par laminage à froid de l'empilement de feuilles. Le liant provisoire reste à l'état rigide lors de cette opération de laminage à froid. Par conséquent, les filaments risquent de se rompre si la pièce à fabriquer présente une forme complexe (demi-coquille, calotte, etc.).In document FR-A-2 437 296, the laminated is obtained by cold rolling the stack of leaves. The temporary binder remains rigid during of this cold rolling operation. Therefore, filaments may break if the workpiece has a complex shape (half-shell, cap, etc.).

Dans le cas particulier d'une pièce tubulaire, le document FR-A-2 366 904 propose de placer dans un moule chauffé un empilement de feuilles formées de fibres réfractaires noyées dans une matrice métallique. Le moule comprend une vessie interne expansible et une empreinte femelle indéformable, permettant d'appliquer un cycle thermomécanique déterminé sur l'empilement. Les filaments de chacune des feuilles de l'empilement peuvent être liés entre eux par une colle polymérisée. Préalablement à l'application du cycle thermomécanique, la colle est pyrolysée par un premier chauffage du moule.In the particular case of a tubular part, document FR-A-2 366 904 proposes to place in a mold heated a stack of sheets formed of fibers refractories embedded in a metallic matrix. The mold includes an expandable internal bladder and a non-deformable female imprint, allowing to apply a thermomechanical cycle determined on the stack. The filaments of each of the sheets in the stack can be bonded together by a polymerized glue. Prior to the application of the thermomechanical cycle, the glue is pyrolyzed by a first heating of the mold.

L'invention a principalement pour objet un procédé permettant de fabriquer des pièces en matériau composite à matrice non organique de formes quelconques, éventuellement complexes, en préservant la continuité des filaments et, par conséquent, les caractéristiques mécaniques des pièces.The main object of the invention is a process for manufacturing parts from material non-organic matrix composite of any shape, possibly complex, preserving continuity filaments and, therefore, the characteristics mechanical parts.

Conformément à l'invention, ce résultat est obtenu au moyen d'un procédé de fabrication d'une pièce en matériau composite à matrice non organique, comprenant les étapes suivantes :

  • formation d'une nappe à partir de mèches de filaments et d'un matériau apte à former ladite matrice ;
  • imprégnation des mèches de la nappe par un liant provisoire, dissous dans un solvant ;
  • évaporation du solvant par chauffage, de façon à conditionner la nappe sous la forme d'une feuille souple ;
  • découpage de morceaux dans la feuille souple ;
  • drapage de ces morceaux, de façon à former au moins un empilement ;
  • réalisation d'une préforme d'épaisseur et de forme intermédiaires entre l'épaisseur et la forme de l'empilement et l'épaisseur et la forme de la pièce à fabriquer ;
  • application d'un cycle thermomécanique sur la préforme, de façon à donner à cette dernière l'épaisseur et la forme de la pièce à fabriquer, et à dégrader le liant provisoire ;
caractérisé par le fait qu'on réalise la préforme en chauffant l'empilement jusqu'à une température de collage du liant provisoire, en exerçant une action mécanique sur l'empilement, puis en refroidissant ce dernier jusqu'à une température de durcissement du liant provisoire.In accordance with the invention, this result is obtained by means of a process for manufacturing a part made of a composite material with a non-organic matrix, comprising the following steps:
  • forming a sheet from strands of filaments and a material capable of forming said matrix;
  • impregnation of the strands of the sheet with a temporary binder, dissolved in a solvent;
  • evaporation of the solvent by heating, so as to condition the sheet in the form of a flexible sheet;
  • cutting pieces in the flexible sheet;
  • draping of these pieces, so as to form at least one stack;
  • production of a preform of thickness and intermediate shape between the thickness and the shape of the stack and the thickness and the shape of the part to be manufactured;
  • application of a thermomechanical cycle on the preform, so as to give the latter the thickness and the shape of the part to be manufactured, and to degrade the temporary binder;
characterized by the fact that the preform is produced by heating the stack to a bonding temperature of the temporary binder, by exerting a mechanical action on the stack, then by cooling the latter to a curing temperature of the binder provisional.

Lorsque le drapage a été effectué, le liant provisoire, chauffé à une température appropriée lors du cycle thermique, se comporte comme une colle qui permet de réaliser une préforme, en une ou plusieurs étapes, avant d'amener la pièce à sa forme définitive lors dû cycle thermomécanique final. Le passage de la pièce par une ou plusieurs formes intermédiaires avant sa mise en forme finale permet aux filaments de prendre leur place progressivement, ce qui autorise la fabrication de pièces de formes complexes, sans rupture de filaments et permet d'utiliser un outillage moins coûteux pour appliquer le cycle thermomécanique final.When the draping has been carried out, the binder temporary, heated to a suitable temperature when thermal cycle, behaves like an adhesive which allows to make a preform, in one or more steps, before bringing the part to its final form when due final thermomechanical cycle. The passage of the room through one or more intermediate forms before its implementation final shape allows the filaments to take their place gradually, which allows the production of parts of complex shapes, without breaking of filaments and allows the use of less expensive tools to apply the final thermomechanical cycle.

Par ailleurs, l'imprégnation des mèches par un liant provisoire, permet de conditionner ces mèches sous la forme d'une feuille souple formée de plusieurs mèches juxtaposées, qui rend la découpe et le drapage extrêmement faciles. Pour permettre la réalisation d'un film souple de grande largeur, l'étape d'imprégnation est précédée avantageusement d'une étape de bobinage de mèches étalées sur un mandrin, pour former une couche de filaments parallèles juxtaposés.Furthermore, the impregnation of the locks by a temporary binder, allows to condition these wicks under the shape of a flexible sheet formed of several wicks juxtaposed, which makes cutting and draping extremely easy. To allow the production of a film flexible, very wide, the impregnation step is advantageously preceded by a winding step of wicks spread on a mandrel, to form a layer of parallel filaments juxtaposed.

On observe également que le cycle thermomécanique qui permet d'obtenir la pièce définitive a aussi pour effet de dégrader le liant provisoire, c'est-à-dire de le décomposer afin de faciliter son aspiration hors de la pièce par un balayage gazeux ou par du vide. Dans certains cas, le liant provisoire dégradé peut aussi rester emprisonné dans la pièce. Toutefois, il n'y joue alors aucun rôle.We also observe that the thermomechanical cycle which allows to get the final piece also has has the effect of degrading the temporary binder, i.e. to break it down in order to facilitate its suction out of the part by a gas sweep or by vacuum. In in some cases, the degraded temporary binder may also stay trapped in the room. However, he does not play then no role.

Dans un mode de réalisation préféré de l'invention, le liant provisoire est un liant thermoplastique tel que du polystyrène.In a preferred embodiment of the invention, the temporary binder is a thermoplastic binder such as polystyrene.

Le chauffage de l'empilement est alors effectué à une température de collage comprise entre environ 160° et environ 280°C.Heating of the stack is then carried out at a bonding temperature between approximately 160 ° and around 280 ° C.

Selon la forme et l'épaisseur de la pièce que l'on désire réaliser, l'action mécanique exercée sur l'empilement afin de réaliser la préforme peut être de différentes natures. Ainsi, il peut s'agir d'une ou plusieurs actions de compactage, suivies ou non d'une ou plusieurs actions de mise en forme.Depending on the shape and thickness of the piece that one wishes to achieve, the mechanical action exerted on the stack in order to achieve the preform can be different natures. So it can be one or several compacting actions, whether or not followed by one or more several shaping actions.

Dans le cas particulier où la pièce à réaliser est de forme tubulaire, on peut réaliser soit un empilement tubulaire unique, soit au moins deux empilement tubulaires séparés. Dans ce dernier cas, on réalise la préforme en exerçant une action mécanique de compactage sur un premier empilement tubulaire, à la température de collage du liant provisoire, en refroidissant le premier empilement tubulaire ainsi compacté, en disposant coaxialement ce premier empilement tubulaire compacté et un deuxième empilement tubulaire, en exerçant une nouvelle action mécanique de compactage à la température du collage du liant provisoire, en refroidissant le premier et le deuxième empilements tubulaires ainsi compactés, et en renouvelant ces opérations jusqu'à ce que tous les empilements tubulaires réalisés précédemment soient compactés.In the particular case where the part to be produced is tubular in shape, you can either make a stack single tubular, i.e. at least two stacking separate tubulars. In the latter case, the preform by exerting a mechanical compaction action on a first tubular stack, at the temperature of bonding of the temporary binder, cooling the first tubular stack thus compacted, having coaxially this first compacted tubular stack and a second tubular stack, exercising a new mechanical action of compaction at the temperature of the bonding of the temporary binder, cooling the first and the second tubular stacks thus compacted, and repeating these operations until all tubular stacks made previously to be compacted.

Toujours dans le cas d'une pièce tubulaire, on réalise le drapage sur une vessie expansible formant l'élément intérieur d'un moule de compactage, et on exerce une action mécanique de compactage sur l'empilement par gonflage de ladite vessie. En outre, on applique une action mécanique de compactage sur la préforme en plaçant cette dernière sur une vessie expansible formant l'élément intérieur d'un moule de consolidation, et en gonflant ladite vessie. La vessie expansible du moule de consolidation est avantageusement réalisée en acier inoxydable, afin de pouvoir supporter les fortes pressions mises en oeuvre sans risque d'éclatement.Still in the case of a tubular part, we drapes over an expandable bladder forming the inner element of a compaction mold, and exerts a mechanical compaction action on the stack by inflating said bladder. In addition, we apply mechanical compacting action on the preform by placing the latter on an expandable bladder forming the inner element of a consolidation mold, and inflating said bladder. The expandable bladder of the consolidation mold is advantageously made in stainless steel, in order to be able to withstand strong pressures implemented without risk of bursting.

Lorsque le matériau destiné à former la matrice de la pièce le justifie, notamment en raison de son caractère oxydable, on intègre à l'empilement au moins une feuille de protection superficielle, lors du drapage.When the material intended to form the matrix of the play justifies it, in particular because of its oxidisable nature, it is integrated into the stack at minus a surface protection sheet, when draping.

De préférence, on imprègne par le liant provisoire des mèches étalées de filaments parallèles, de telle sorte que l'évaporation du solvant conditionne ces mèches étalées sous la forme d'un film souple dans lequel les filaments parallèles sont reliés par le liant provisoire rigidifié.Preferably, it is impregnated with the provisional binder strands spread with parallel filaments, such that the evaporation of the solvent conditions these wicks spread in the form of a flexible film in which the parallel filaments are connected by the binder provisional stiffened.

Avantageusement, l'étape d'imprégnation est précédée d'une étape de bobinage des mèches étalées sur un mandrin, pour former une couche de filaments parallèles juxtaposés.Advantageously, the impregnation step is preceded by a winding step of the strands spread over a mandrel, to form a layer of parallel filaments juxtaposed.

Dans une forme de réalisation préférentielle de l'invention, le cycle thermomécanique comprend une première phase de dégradation du liant provisoire, au cours de laquelle la température est amenée et maintenue à un premier palier, sans action mécanique sur la préforme, et une deuxième phase de consolidation, au cours de laquelle la température est amenée et maintenue à un deuxième palier, supérieur au premier, et une action mécanique de compression est appliquée sur la préforme. In a preferred embodiment of the invention, the thermomechanical cycle comprises a first phase of degradation of the temporary binder, at during which the temperature is brought and maintained at a first bearing, without mechanical action on the preform, and a second consolidation phase, during from which the temperature is brought to and maintained at a second level, higher than the first, and an action mechanical compression is applied to the preform.

Lorsqu'il a été dégradé, le liant provisoire est avantageusement évacué hors de la pièce soit par un balayage gazeux, soit par le vide.When it has been degraded, the temporary binder is advantageously evacuated from the room either by a gas sweep, either by vacuum.

On décrira à présent, de façon non limitative, deux exemples de mise en oeuvre du procédé de fabrication selon l'invention, en se référant aux dessins annexés, dans lesquels :

  • la figure 1 illustre schématiquement les étapes successives du procédé selon l'invention, dans le cas où la pièce à fabriquer est une demi-coquille présentant une section en forme d'Ω ;
  • la figure 2 illustre schématiquement la phase de compactage du procédé selon l'invention, dans le cas où la pièce à fabriquer est de forme tubulaire ; et
  • la figure 3 est une vue en coupe longitudinale représentant un moule utilisable lors du cycle thermomécanique final qui suit la phase de compactage illustrée sur la figure 2.
We will now describe, without limitation, two examples of implementation of the manufacturing method according to the invention, with reference to the accompanying drawings, in which:
  • Figure 1 schematically illustrates the successive steps of the method according to the invention, in the case where the part to be manufactured is a half-shell having a section in the form of Ω;
  • FIG. 2 schematically illustrates the compacting phase of the method according to the invention, in the case where the part to be manufactured is of tubular shape; and
  • FIG. 3 is a view in longitudinal section showing a mold usable during the final thermomechanical cycle which follows the compaction phase illustrated in FIG. 2.

Comme on l'a indiqué précédemment, le procédé de fabrication conforme à l'invention s'applique à la fabrication de pièces en matériau composite à matrice non organique, à partir de mèches étalées de filaments organiques tels que des filaments de carbone ou de céramique, revêtus d'un matériau non organique tels qu'un métal ou un alliage métallique destiné à former la matrice du matériau composite.As previously indicated, the process of manufacture according to the invention applies to the manufacture of parts from matrix composite material inorganic, from wicks spread with filaments organic such as carbon or ceramic filaments, coated with inorganic material such as metal or a metal alloy intended to form the matrix composite material.

La première phase de ce procédé de fabrication permet de conditionner les mèches étalées, sous forme d'un film souple, en vue de faciliter la découpe et le drapage ultérieurs de ces mèches.The first phase of this manufacturing process allows to condition the spread wicks, in the form a flexible film, in order to facilitate cutting and subsequent draping of these locks.

Pour réaliser ce conditionnement préalable, on dispose de mèches étalées 10, formées par exemple de filaments 11 de carbone sensiblement parallèles entre eux et métallisés. Ces mèches étalées sont enroulées sur des bobines de stockage, en même temps qu'un séparateur intercalaire qui empêche les filaments des couches successives de s'emmêler. A titre d'exemple, la largeur de la mèche étalée peut être d'environ 40 mm.To carry out this pre-conditioning, we has spread wicks 10, formed for example of carbon filaments 11 substantially parallel between them and metallized. These spread wicks are wound on storage coils, along with a separator interlayer which prevents the filaments of successive layers to get tangled. For example, the width of the spread wick can be about 40 mm.

Comme l'illustre schématiquement la figure 1, une première étape consiste à revêtir un mandrin 12 d'une tôle d'interface 13.As shown schematically in Figure 1, a first step consists in coating a mandrel 12 an interface plate 13.

Au cours d'une deuxième étape visant à obtenir une nappe de grande largeur, la mèche étalée 10 est bobinée bord à bord ou avec recouvrement sur le mandrin 12, revêtu de la tôle d'interface 13, comme l'illustre schématiquement la figure 1. On obtient ainsi une nappe de filaments 11 parallèles juxtaposés, formant une couche unique de filaments sur le mandrin 12.During a second stage aimed at obtaining a very wide tablecloth, the spread wick 10 is wound edge to edge or overlapped on the mandrel 12, coated with interface plate 13, as illustrated schematically Figure 1. This gives a sheet of parallel filaments 11 juxtaposed, forming a layer single filaments on the mandrel 12.

Au cours d'une troisième étape de la première phase du procédé de fabrication selon l'invention, la tôle d'interface 13 portant la nappe de filaments 11 est déployée et mise à plat. Pour permettre cette opération, la tôle et les filaments sont coupés selon une génératrice du mandrin.During a third stage of the first phase of the manufacturing process according to the invention, the interface sheet 13 carrying the layer of filaments 11 is deployed and flattened. To allow this operation, the sheet and filaments are cut according to a generator of the mandrel.

Comme on l'a illustré schématiquement sur la figure 1, la nappe de filaments 11 reposant sur la tôle d'interface 13 est ensuite imprégnée par un liant provisoire, dissous dans un solvant. On peut utiliser à cet effet une buse 14. Dans l'exemple de réalisation considéré, le liant provisoire est un liant de type thermoplastique tel que du polystyrène, qui a pour avantages d'utiliser un solvant (le toluène) de toxicité réduite, de permettre le contrôle de la viscosité de la solution obtenue, de pouvoir être mis en oeuvre à basse température et d'être suffisamment rigide à température ambiante. A titre d'exemple, environ 100 g de polystyrène peuvent être dissous dans un litre de toluène.As illustrated schematically on the Figure 1, the sheet of filaments 11 resting on the sheet interface 13 is then impregnated with a temporary binder, dissolved in a solvent. We can use this effect a nozzle 14. In the embodiment considered, the temporary binder is a thermoplastic type binder such as polystyrene, which has the advantages to use a solvent (toluene) of reduced toxicity, allow the viscosity of the solution to be controlled obtained, to be able to be used at low temperature and be sufficiently rigid at room temperature. For example, approximately 100 g of polystyrene can be dissolved in one liter of toluene.

Lorsque l'imprégnation de la nappe de filaments 11 reposant sur la tôle d'interface 13 est terminée, la nappe imprégnée est soumise à un cycle thermique comme on l'a illustré par la flèche 16 sur la figure 1. Ce cycle thermique, effectué à pression atmosphérique, a pour but d'évaporer le solvant, c'est- à-dire le toluène dans l'exemple considéré. Il consiste à chauffer la nappe de filaments 11 imprégnés de la solution de polystyrène à une température d'environ 120°C.When the impregnation of the layer of filaments 11 resting on the interface sheet 13 is finished, the impregnated sheet is subjected to a thermal cycle as illustrated by the arrow 16 in FIG. 1. This thermal cycle, carried out at atmospheric pressure, has to evaporate the solvent, i.e. toluene in the example considered. It consists of heating the layer of filaments 11 impregnated with the polystyrene solution at a temperature of about 120 ° C.

L'évaporation du toluène a pour conséquence de redonner au polystyrène sa rigidité lorsqu'on redescend à la température ambiante. Le polystyrène assure alors une cohésion entre les filaments 11 de la nappe reposant sur la tôle d'interface 13. Par conséquent, lorsque le cycle thermique est terminé, la nappe de filaments 11 séparée de la tôle d'interface 13 se comporte comme un film souple 18, de très faible épaisseur, formé de filaments parallèles juxtaposés 11, reliés entre eux par le polystyrène. Ce conditionnement des filaments sous la forme d'un film souple permet de les découper et de les manipuler facilement lors de la mise en oeuvre ultérieure du procédé, ce qui n'était pratiquement pas possible auparavant.The evaporation of toluene results in restore the polystyrene its rigidity when descending at room temperature. The polystyrene then ensures cohesion between the filaments 11 of the sheet resting on the interface plate 13. Consequently, when the thermal cycle is complete, the layer of filaments 11 separated from the interface plate 13 behaves like a flexible film 18, of very small thickness, formed of filaments juxtaposed parallels 11, interconnected by the polystyrene. This conditioning of the filaments under the shape of a flexible film makes it possible to cut them and to easy to handle during subsequent processing of the process, which was practically not possible before.

La deuxième phase du procédé de fabrication selon l'invention consiste à réaliser une préforme à l'aide du film souple obtenu précédemment. L'obtention de cette préforme est permise pour des pièces de formes quelconques, éventuellement complexes, par la présence du liant provisoire tel que du polystyrène qui est associé aux filaments 11 dans le film souple 18. En effet, lorsque le polystyrène est chauffé à une température comprise entre environ 160°C et environ 280°C, il se comporte comme une colle qui permet de maintenir les unes par rapport aux autres les différentes nappes superposées découpées dans le film souple et de donner à l'empilement ainsi formé l'épaisseur et la forme désirées. On comprend que la réalisation d'une préforme d'épaisseur et de forme intermédiaires entre l'épaisseur et la forme de l'empilement initial et l'épaisseur et la forme de la pièce à fabriquer facilite la mise en forme des filaments et limite donc très sensiblement les risques de rupture de ces filaments lors de la fabrication de la pièce, même lorsque cette dernière est de forme complexe (demi-coquille, calotte, etc.).The second phase of the manufacturing process according to the invention consists in making a preform at using the flexible film obtained previously. Obtaining of this preform is permitted for shaped parts any, possibly complex, by the presence temporary binder such as polystyrene which is associated to the filaments 11 in the flexible film 18. Indeed, when the polystyrene is heated to a temperature between about 160 ° C and about 280 ° C, it behaves like a glue that keeps the relative to each other the different layers cut from the flexible film and give to the stack thus formed the desired thickness and shape. We understand that the realization of a preform thickness and shape intermediate between the thickness and the shape of the initial stack and the thickness and the shape of the workpiece facilitates shaping filaments and therefore very significantly limits the risks breakage of these filaments during manufacture of the part, even when the latter is shaped complex (half-shell, cap, etc.).

Cette phase de fabrication d'une préforme débute par des étapes de découpe et de drapage du film 18, pour former un empilement 20 de nappes superposées. Plus précisément, chacune des nappes de l'empilement est découpée dans le film souple 18 et les filaments qu'elle contient sont orientés selon une direction déterminée, qui prend en compte les caractéristiques mécaniques de la pièce que l'on désire réaliser. Dans une disposition classique, les filaments des couches adjacentes peuvent notamment être orientés à des angles qui diffèrent d'environ 45° d'une couche à l'autre.This phase of manufacturing a preform begins with film cutting and draping steps 18, to form a stack 20 of superimposed layers. More precisely, each of the layers of the stack is cut from the flexible film 18 and the filaments it contains are oriented in a specific direction, which takes into account the mechanical characteristics of the piece you want to make. In a layout conventional, the filaments of the adjacent layers can especially be oriented at angles which differ by about 45 ° from one layer to another.

Selon la forme de la pièce que l'on désire réaliser, l'empilement 20 peut être réalisé soit par drapage sur une surface plane comme l'illustre schématiquement la figure 1, soit par drapage sur une surface de forme différente, telle qu'un mandrin cylindrique lorsqu'on désire réaliser une pièce de forme tubulaire, comme on le verra ultérieurement.Depending on the shape of the room you want achieve, the stack 20 can be achieved either by draping on a flat surface as illustrated schematically Figure 1, either by draping over a surface of different shape, such as a cylindrical mandrel when you want to make a tubular part, as we will see later.

Lorsque cette opération de drapage est terminée, on procède à la réalisation d'une préforme en soumettant l'empilement 20 à un cycle thermique accompagné d'une action mécanique de compactage et/ou de mise en forme.When this draping operation is finished, we proceed to the realization of a preform by submitting stacking 20 to an accompanied thermal cycle a mechanical action of compacting and / or placing form.

Lorsque la préforme à réaliser diffère de l'empilement 20 à la fois par son épaisseur et par sa forme, comme c'est le cas dans l'exemple de réalisation illustré sur la figure 1, la réalisation de la préforme s'effectue avantageusement en deux étapes successives. When the preform to be produced differs from the stack 20 both by its thickness and by its shape, as in the example of embodiment illustrated in Figure 1, the realization of the preform advantageously takes place in two successive stages.

La première de ces étapes consiste en une opération de compactage permettant de transformer l'empilement 20 en une ébauche 22 qui a la même forme que l'empilement 20 (c'est-à-dire une forme plane dans l'exemple représenté) mais dont l'épaisseur est égale à celle de la préforme que l'on désire réaliser. En d'autres termes, cette opération de compactage consiste à réduire l'épaisseur de l'empilement 20 afin de donner à l'ébauche 22 une épaisseur intermédiaire entre celle de l'empilement 20 et celle de la pièce à réaliser.The first of these steps consists of a compacting operation to transform the stack 20 into a blank 22 which has the same shape as stack 20 (i.e. a planar shape in the example shown) but whose thickness is equal to that of the preform that we want to achieve. In others terms, this compacting operation involves reduce the thickness of the stack 20 in order to give the blank 22 a thickness intermediate between that of the stack 20 and that of the part to be produced.

La réalisation de l'ébauche 22 à partir de l'empilement 20 s'effectue en soumettant ce dernier à un cycle thermique à une température suffisante pour donner au liant provisoire les caractéristiques d'une colle. Dans l'exemple décrit où le liant provisoire est constitué par du polystyrène, cette température est au moins égale à 160°C et doit être maintenue à ce niveau pendant une durée d'au moins 15 min. La température doit cependant rester inférieure à environ 280°C, afin d'éviter toute dégradation ou décomposition du polystyrène à ce stade de la fabrication. Concrètement, un chauffage de l'empilement 20 à environ 180°C pendant environ 30 min. assure le collage des nappes constituant l'empilement.The creation of the blank 22 from stacking 20 is carried out by subjecting the latter to a thermal cycle at a temperature sufficient to give with the provisional binder the characteristics of an adhesive. In the example described where the temporary binder is constituted by polystyrene, this temperature is at least equal to 160 ° C and must be kept at this level for a duration of at least 15 min. The temperature should however stay below about 280 ° C, to avoid any degradation or decomposition of the polystyrene at this manufacturing stage. Concretely, a heating of stacking 20 at about 180 ° C for about 30 min. ensures the bonding of the layers constituting the stack.

Afin de réduire l'épaisseur de l'empilement 20 pour obtenir l'ébauche 22, ce cycle thermique s'accompagne d'une action mécanique de compactage, obtenue en soumettant l'empilement à une pression supérieure à 1 bar (par exemple, environ 20 bars) lorsque l'empilement se trouve à 180°C, puis pendant son refroidissement jusqu'à une température voisine de 70°C. Le durcissement du polystyrène permet alors à l'empilement de ne pas reprendre son épaisseur initiale.In order to reduce the thickness of the stack 20 to obtain the blank 22, this thermal cycle is accompanied a mechanical compaction action, obtained in subjecting the stack to a pressure greater than 1 bar (for example, about 20 bars) when stacking is at 180 ° C, then during cooling up to a temperature close to 70 ° C. The hardening polystyrene then allows the stack not to resume its initial thickness.

Cette opération de compactage peut être réalisée en plaçant l'empilement 20 dans une presse chauffante ou dans un autoclave. This compacting operation can be performed placing stack 20 in a press heated or in an autoclave.

Dans l'exemple de réalisation illustré sur la figure 1, on réalise ensuite la préforme 24 au cours d'une deuxième opération de mise en forme. Au cours de cette opération, l'épaisseur de l'ébauche 22 n'est pratiquement pas modifiée, mais on donne à celle-ci une forme comparable à celle de la pièce à réaliser mais dont les contours sont moins accentués, de telle sorte que cette forme soit sensiblement intermédiaire entre celle de l'ébauche 22 et celle de la pièce finale.In the embodiment illustrated on the FIG. 1, the preform 24 is then produced during of a second shaping operation. During this operation, the thickness of the blank 22 is practically not modified, but we give it a shape comparable to that of the part to be produced but whose contours are less accentuated, so that this shape is substantially intermediate between that of the blank 22 and that of the final part.

Pour effectuer cette opération de mise en forme de l'ébauche 22, on soumet cette dernière à un cycle thermique comparable à celui qui a été appliqué sur l'empilement pendant l'opération de compactage. Ce cycle thermique permet, ici encore, de donner au liant provisoire les caractéristiques d'une colle lorsque la mise en forme est effectuée. Ainsi, on chauffe l'ébauche 22 dans une étuve jusqu'à une température d'environ 180°C, puis on maintient la température à ce niveau pendant environ 30 min.To perform this setting operation form of the blank 22, it is subjected to a thermal cycle comparable to that which was applied on the stack during the compacting operation. This here again, the thermal cycle gives the binder the characteristics of an adhesive when the shaping is performed. So we heat the blank 22 in an oven up to a temperature of about 180 ° C, then maintain the temperature at this level for about 30 min.

L'action mécanique de mise en forme de l'ébauche 22 est exercée en plaçant cette dernière entre un poinçon dont la partie active est de préférence relativement souple et une matrice rigide. Pour assurer la mise en forme, une pression d'au moins environ 20 bars est appliquée entre le poinçon et la matrice lorsque la température atteint environ 180°C et cette pression est maintenue jusqu'à ce que la température soit redescendue jusqu'à une valeur voisine de 70°C. Le liant provisoire est alors rigidifié et maintient la préforme dans la forme finale obtenue.The mechanical action of shaping the blank 22 is exercised by placing the latter between a punch whose active part is preferably relatively flexible and a rigid matrix. To ensure shaping, a pressure of at least about 20 bars is applied between the punch and the die when the temperature reaches about 180 ° C and this pressure is held until the temperature has dropped up to a value close to 70 ° C. The provisional binder is then stiffened and maintains the preform in the final form obtained.

Lorsque la préforme 24 a été obtenue, la fabrication de la pièce en matériau composite est terminée en mettant en oeuvre un cycle thermomécanique final permettant d'obtenir la pièce définitive illustrée en 26 sur la figure. Ce cycle thermomécanique final est parfois appelé "consolidation".When the preform 24 has been obtained, the manufacturing of the composite material part is finished by implementing a final thermomechanical cycle to obtain the final part illustrated in 26 on the face. This final thermomechanical cycle is sometimes called "consolidation".

Comme l'illustre schématiquement la figure 1, afin de réaliser la pièce 26, la préforme 24 est placée entre un poinçon 28a et une matrice 28b dont les surfaces sont complémentaires des faces opposées de la pièce 26 à réaliser. Le poinçon 28a comme la matrice 28b ont des formes différentes de celles du poinçon et de la matrice utilisées précédemment, lors de la deuxième opération de mise en forme, pour réaliser la préforme 24. En effet, on a vu précédemment que la forme de la pièce définitive 26 est différente de celle de la préforme 24. De plus, le matériau qui constitue le poinçon 28a est différent de celui qui constitue le poinçon utilisé lors de cette deuxième opération de mise en forme.As shown schematically in Figure 1, in order to produce the part 26, the preform 24 is placed between a punch 28a and a die 28b whose surfaces are complementary to the opposite faces of the part 26 to achieve. The punch 28a as the die 28b have shapes different from those of the punch and the matrix used previously, during the second shaping operation, to make the preform 24. Indeed, we have seen previously that the shape of the final part 26 is different from that of the preform 24. In addition, the material which constitutes the punch 28a is different from that which constitutes the punch used during this second setting operation form.

Après que la préforme 24 ait été placée entre le poinçon 28a et la matrice 28b, le cycle thermomécanique final est appliqué jusqu'à une température permettant le soudage-diffusion du matériau non organique qui revêt les filaments contenus dans la préforme, afin que ce matériau remplisse la majorité des espaces inter-filaments et forme la matrice du matériau composite. Il est important d'observer que cette température est toujours supérieure à la température de dégradation ou de décomposition du liant provisoire c'est-à-dire à environ 400°C dans le cas du polystyrène. A titre d'exemple non limitatif, lorsque le matériau composite est formé de filaments de carbone noyés dans une matrice d'aluminium, le cycle thermomécanique final correspond à un échauffement de la préforme 24 jusqu'à une température d'environ 600°C pendant environ 1 h, une pression relativement importante, comprise par exemple entre environ 100 bars et environ 250 bars, étant appliquée entre le poinçon 28a et la matrice 28b. After the preform 24 has been placed between the punch 28a and the die 28b, the thermomechanical cycle final is applied up to a temperature allowing welding-diffusion of non-organic material which coating the filaments contained in the preform, so that this material fills most of the inter-filament spaces and forms the matrix of the composite material. It is important to observe that this temperature is always higher than the degradation temperature or decomposition of the provisional binder, i.e. about 400 ° C in the case of polystyrene. As non-limiting example, when the composite material is made of carbon filaments embedded in a matrix aluminum, the final thermomechanical cycle corresponds to heating of the preform 24 to a temperature about 600 ° C for about 1 hour, a pressure relatively large, for example between about 100 bars and about 250 bars, being applied between the punch 28a and the die 28b.

Lorsque cette étape finale est terminée, on obtient une pièce 26 dont l'épaisseur est sensiblement réduite par rapport à celle de la préforme 24, elle-même inférieure à celle de l'empilement initial 20. Le passage par la préforme 24 permet cependant d'améliorer les conditions de mise en forme des filaments à l'intérieur de la pièce lors de sa fabrication, de sorte que les risques de rupture de ces filaments sont pratiquement supprimés et que la pièce obtenue satisfait aux exigences de qualité.When this final step is completed, we obtains a part 26 whose thickness is substantially reduced compared to that of the preform 24, itself lower than that of the initial stack 20. The passage by the preform 24, however, improves the conditions for forming the filaments inside of the part during its manufacture, so that the risks of rupture of these filaments are practically removed and the part obtained meets the requirements quality.

Selon le cas, les résidus de polystyrène décomposés lors du cycle thermomécanique final peuvent rester emprisonnés dans le matériau composite ou au contraire être évacués hors de ce matériau lors du cycle thermomécanique. Dans ce dernier cas, l'évacuation est obtenue par aspiration des résidus, soit en effectuant un balayage gazeux, soit par le vide.Depending on the case, the decomposed polystyrene residues during the final thermomechanical cycle can remain trapped in the composite material or at otherwise be flushed out of this material during the cycle thermomechanical. In the latter case, evacuation is obtained by vacuuming residues, either by performing a gas sweep, either by vacuum.

On décrira à présent, en se référant aux figures 2 et 3, la fabrication d'une pièce de forme tubulaire par le procédé selon l'invention.We will now describe, with reference to the figures 2 and 3, the manufacture of a tubular part by the method according to the invention.

La première phase du procédé, conduisant à l'obtention d'un film souple 18 formé de filaments organiques 11 parallèles juxtaposés, revêtus d'un matériau non organique et reliés entre eux par un liant provisoire rigidifié tel que du polystyrène, est identique à celle qui a été décrite précédemment en se référant à la figure 1.The first phase of the process, leading to obtaining a flexible film 18 formed from organic filaments 11 juxtaposed parallels, coated with a material inorganic and linked together by a binder stiffened temporary such as polystyrene, is identical to that previously described with reference to in Figure 1.

La deuxième phase du procédé, illustrée sur la figure 2, consiste dans ce cas à réaliser une préforme tubulaire dont l'épaisseur est supérieure à celle de la pièce à réaliser.The second phase of the process, illustrated on the Figure 2, consists in this case of making a preform tubular whose thickness is greater than that of the part to be produced.

De façon plus précise, l'épaisseur de la préforme obtenue à la fin de cette deuxième phase est intermédiaire entre celle d'un empilement ou d'un enroulement initial de morceaux découpés dans le film souple 18 et drapés sur un mandrin, et l'épaisseur de la pièce à réaliser. Par ailleurs, le diamètre extérieur de la préforme est sensiblement égal ou à peine inférieur à celui de la pièce à réaliser, alors que son diamètre intérieur est inférieur à celui de cette pièce.More precisely, the thickness of the preform obtained at the end of this second phase is intermediate between that of a stack or a winding initial of pieces cut from the flexible film 18 and draped over a mandrel, and the thickness of the workpiece to achieve. Furthermore, the outside diameter of the preform is substantially equal to or barely less than that of the part to be produced, while its diameter interior is less than that of this room.

La deuxième phase du procédé débute par une étape de découpe de morceaux de tailles appropriées dans le film souple 18.The second phase of the process begins with a step of cutting pieces of appropriate sizes in the flexible film 18.

Cette étape de découpe est suivie d'une étape de drapage, réalisée dans ce cas sur un mandrin cylindrique.This cutting step is followed by a step layup, performed in this case on a cylindrical mandrel.

Selon l'épaisseur de la pièce que l'on désire obtenir, une seule opération de drapage suivie d'une étape de compactage unique, ou plusieurs opérations de drapage suivies chacune d'une étape de compactage peuvent être réalisées, comme on l'a représenté schématiquement sur la figure 2.Depending on the thickness of the piece you want obtain, a single draping operation followed by a single compaction step, or several operations of layup each followed by a compaction step can be performed, as shown schematically in figure 2.

Lorsque l'épaisseur de la pièce est suffisamment faible pour que la préforme puisse être obtenue par une étape de compactage unique, les morceaux du film souple 18 préalablement découpés sont drapés en une seule opération sur un mandrin cylindrique expansible constitué par une vessie élastomère gonflable. Cette vessie forme l'élément interne d'un moule de compactage, de structure comparable au moule de consolidation utilisé lors du cycle thermomécanique final, qui sera décrit par la suite en se référant à la figure 3.When the thickness of the part is sufficient weak so that the preform can be obtained by a single compaction step, the pieces of the film flexible 18 previously cut are draped in a single operation on an expandable cylindrical mandrel consisting of an inflatable elastomeric bladder. This bladder forms the internal element of a compaction mold, comparable in structure to the consolidation mold used during the final thermomechanical cycle, which will be described thereafter with reference to FIG. 3.

Le diamètre extérieur de la vessie gonflable est sensiblement inférieur au diamètre intérieur de la préforme que l'on désire obtenir, alors que le diamètre extérieur de l'empilement ou de l'enroulement formé sur la vessie est pratiquement égal ou très légèrement inférieur au diamètre extérieur de cette préforme.The outside diameter of the inflatable bladder is significantly smaller than the inside diameter of the preform that we want to obtain, while the diameter outside of the stack or winding formed on the bladder is practically equal or very slightly lower the outside diameter of this preform.

La vessie gonflable portant l'empilement ou l'enroulement est ensuite placée dans un tube rigide constituant l'élément extérieur du moule de compactage. Le moule de compactage est alors introduit dans une étuve ou dans un autoclave permettant d'appliquer un cycle thermique lors du compactage.The inflatable bladder carrying the stack or the winding is then placed in a rigid tube constituting the external element of the compaction mold. The compaction mold is then introduced into a oven or in an autoclave for applying a thermal cycle during compaction.

Dans un premier temps, la température est élevée jusqu'à une valeur suffisante pour donner au liant provisoire les caractéristiques d'une colle, sans provoquer sa dégradation ou sa décomposition. Dans le cas du polystyrène, on a déjà vu qu'un chauffage à environ 180°C, ou plus, pendant environ 30 min assure le collage des nappes de l'empilement.At first, the temperature is raised to a value sufficient to give the provisional binder of the characteristics of an adhesive, without cause its degradation or decomposition. In the case of polystyrene, we have already seen that heating at around 180 ° C, or more, for about 30 min ensures the bonding of the layers of the stack.

Lorsque la température de collage (par exemple 180°C) est atteinte, une pression de compactage est appliquée sur l'empilement, par gonflage de la vessie gonflable. Cette pression de compactage est au moins égale à environ 20 bars. Elle est maintenue pendant le refroidissement de la préforme jusqu'à une température à laquelle le liant provisoire est durci. Dans le cas du polystyrène, la pression de compactage est maintenue jusqu'à ce que la température soit redescendue à environ 70°C.When the bonding temperature (e.g. 180 ° C) is reached, a compaction pressure is applied to the stack, by inflating the bladder inflatable. This compaction pressure is at least equal to approximately 20 bars. It is maintained during the preform cooling to a temperature of which the temporary binder is hardened. In the case of polystyrene, compaction pressure is maintained until the temperature has dropped to approximately 70 ° C.

La dépressurisation de la vessie élastomère entraíne son retrait et favorise le démoulage de la préforme ainsi obtenue.Depressurization of the elastomeric bladder causes its removal and promotes the release of the preform thus obtained.

Lorsque l'épaisseur de la pièce à réaliser est trop importante, la préforme est fabriquée en plusieurs étapes. La figure 2 illustre le cas où deux cycles de compactage successifs sont appliqués afin d'obtenir la préforme.When the thickness of the part to be produced is too large, the preform is produced in several steps. Figure 2 illustrates the case where two cycles of successive compaction are applied in order to obtain the preform.

Dans ce cas, on réalise d'une part un empilement externe 20a sur une première vessie élastomère gonflable et, d'autre part, un empilement interne 20b sur une deuxième vessie élastomère gonflable. Comme lorsqu'un seul cycle de compactage est appliqué, les vessies métalliques gonflables forment les éléments internes de deux moules de compactage analogues au moule de consolidation de la figure 3.In this case, a stack is produced on the one hand external 20a on a first elastomeric bladder inflatable and, on the other hand, an internal stack 20b on a second inflatable elastomeric bladder. As when only one compaction cycle is applied, the inflatable metal bladders form the elements internal of two compaction molds similar to the mold of consolidation of figure 3.

Le diamètre extérieur de l'empilement externe 20a est pratiquement égal ou très légèrement inférieur au diamètre externe de la préforme à obtenir. Par ailleurs, le diamètre extérieur de l'empilement interne 20b est pratiquement égal ou très légèrement inférieur au diamètre intérieur de l'empilement externe 20a, lorsque ce dernier a été compacté.The outer diameter of the outer stack 20a is practically equal or very slightly lower to the external diameter of the preform to be obtained. By elsewhere, the outside diameter of the internal stack 20b is practically equal or very slightly lower the inside diameter of the external stack 20a, when the latter has been compacted.

On réalise tout d'abord le compactage de l'empilement externe 20a selon un procédé de compactage analogue à celui qui a été décrit précédemment dans le cas où une seule étape de compactage est nécessaire. Pour cela, on place la première vessie portant l'empilement externe 20a dans un tube rigide et on place le moule ainsi formé dans une étuve ou dans un autoclave. Lorsque la température de collage du liant provisoire est atteinte, on applique une pression de compactage sur l'empilement, au moyen de la première vessie. Cette pression est maintenue après un refroidissement suffisant pour que le liant provisoire soit durci. L'empilement externe compacté 22a est alors démoulé.First of all, the compacting of the stack is carried out. external 20a according to a compaction process analogous to that previously described in the case where only one compaction step is necessary. For this, we place the first bladder carrying the stack external 20a in a rigid tube and the mold thus formed in an oven or in an autoclave. When the bonding temperature of the temporary binder is reached, a compaction pressure is applied to stacking, by means of the first bladder. This pressure is maintained after sufficient cooling so that the temporary binder is hardened. Stacking compacted external 22a is then removed from the mold.

Avant de procéder au deuxième cycle de compactage, on place l'empilement externe compacté 22a autour de l'empilement interne 20b, non encore compacté, formé sur la deuxième vessie. L'ensemble est ensuite introduit dans un tube rigide, et le moule ainsi formé est placé dans un moule ou dans un autoclave.Before proceeding to the second compaction cycle, placing the compacted external stack 22a around of the internal stack 20b, not yet compacted, formed on the second bladder. The assembly is then introduced in a rigid tube, and the mold thus formed is placed in a mold or in an autoclave.

Comme lors du premier cycle de compactage, le liant provisoire est d'abord amené à sa température de collage. Lorsque cette température est atteinte, une pression de compactage est appliquée sur l'ensemble formé par l'empilement interne 20b non compacté et par l'empilement externe compacté 22a, au moyen de la deuxième vessie. Cette pression est maintenue jusqu'à ce que l'ensemble soit suffisamment refroidi pour assurer un durcissement du liant provisoire. Lorsque le refroidissement est terminé, on obtient une préforme tubulaire 24 dont le diamètre extérieur est proche de celui de la pièce à réaliser, mais dont l'épaisseur est plus importante.As in the first compaction cycle, the temporary binder is first brought to its temperature of collage. When this temperature is reached, a compaction pressure is applied to the assembly formed by the non-compacted internal stack 20b and by the compacted external stack 22a, by means of the second bladder. This pressure is maintained until that the assembly is sufficiently cooled to ensure hardening of the temporary binder. When cooling is finished, we get a tubular preform 24 whose outside diameter is close to that of the part to be produced, but whose thickness is greater.

Conformément à l'invention, la phase de réalisation de la préforme tubulaire 24, incluant une ou plusieurs opérations de compactage, est suivie d'un cycle thermomécanique de consolidation permettant de donner à la pièce ses dimensions définitives. Au cours de ce cycle de consolidation, le matériau non organique qui revêt les filaments est amené à sa température de soudage-diffusion, lui permettant de remplir les espaces inter-filaments et de former la matrice du matériau composite.In accordance with the invention, the production phase tubular preform 24, including one or more several compaction operations, is followed by a thermomechanical consolidation cycle allowing give the room its final dimensions. During of this consolidation cycle, the inorganic material which coats the filaments is brought to its temperature of welding-diffusion, allowing it to fill spaces inter-filaments and form the matrix of the material composite.

Ce cycle de consolidation est obtenu en plaçant la préforme tubulaire 24 dans un moule de consolidation 30 illustré schématiquement sur la figure 3. Comme on l'a déjà mentionné, le ou les moules de compactage utilisés lors des opérations de compactage nécessaires à la fabrication de la préforme ne diffèrent de ce moule 30 que par leurs dimensions.This consolidation cycle is obtained by placing the tubular preform 24 in a consolidation mold 30 illustrated diagrammatically in FIG. 3. As already mentioned, the compaction mold (s) used during necessary compaction operations to the manufacturing of the preform do differ from this mold 30 only by their dimensions.

Le moule de consolidation 30 comporte une vessie métallique gonflable 32, de forme tubulaire et de section circulaire uniforme, sur laquelle est placée la préforme tubulaire 24. Cette vessie est réalisée en un métal ou un alliage métallique suffisamment résistant pour qu'il puisse supporter la pression de compactage appliquée lors de la consolidation, qui peut atteindre 100 à 250 bars. Dans ces conditions, l'utilisation d'une vessie 32 en acier inoxydable de faible épaisseur, est conseillée, notamment par le fait que ce matériau est inerte d'un point de vue physico-chimique, pour les matériaux constituant la pièce en matériau composite à fabriquer. La vessie 32 comporte une extrémité fermée et une extrémité ouverte, pourvue d'un flasque 32a.The consolidation mold 30 has a inflatable metal bladder 32, tubular in shape and uniform circular section, on which the tubular preform 24. This bladder is made in a metal or a sufficiently resistant metal alloy so that it can withstand the compaction pressure applied during consolidation, which can reach 100 to 250 bars. Under these conditions, the use of a bladder 32 made of thin stainless steel, is recommended, in particular by the fact that this material is inert from a physico-chemical point of view, for materials constituting the composite material part to to manufacture. The bladder 32 has a closed end and an open end, provided with a flange 32a.

L'élément extérieur du moule 30 est constitué par un tube rigide 34, par exemple en acier. Ce tube est réalisé en deux parties dont le plan de joint passe par son axe longitudinal, de façon à permettre le démoulage de la pièce, lorsque la consolidation est terminée.The external element of the mold 30 is constituted by a rigid tube 34, for example of steel. This tube is made in two parts whose joint plane passes through its longitudinal axis, so as to allow demolding when the consolidation is complete.

Le tube rigide 34 est lui-même placé dans une enceinte de sécurité extérieure indéformable 36, de forme tubulaire et de forte épaisseur. Cette enceinte, réalisée par exemple en acier réfractaire, reprend les efforts appliqués sur le tube 34 lors du gonflage de la vessie 32. Elle comporte une surface intérieure tronconique, complémentaire d'une surface extérieure tronconique du tube 34. Cette caractéristique permet d'extraire le tube 34 contenant la pièce et la vessie 32, lorsque la consolidation est terminée.The rigid tube 34 is itself placed in a non-deformable external security enclosure 36, tubular shape and very thick. This enclosure, made for example of refractory steel, takes up the forces applied to the tube 34 during inflation of the bladder 32. It has a frustoconical inner surface, complementary to a frustoconical exterior surface of tube 34. This characteristic makes it possible to extract the tube 34 containing the part and the bladder 32, when consolidation is complete.

Le flasque 32a est emprisonné de façon étanche entre les extrémités correspondantes du tube rigide 34 et de l'enceinte de sécurité 36, d'une part et le bouchon 38 vissé sur l'enceinte de sécurité 36, d'autre part. Ce bouchon 38 est traversé axialement par un conduit 40 relié à une source de pression et débouchant à l'intérieur de la vessie 32. L'autre bouchon 38 est traversé par un conduit 42 apte à être relié par une vanne V1 soit à une source de vide 44 d'un système de conditionnement gazeux, soit à un égout 46. A l'intérieur du moule 30, le conduit 42 débouche dans l'espace annulaire 48 formé entre la vessie 32 et le tube rigide 34. Un autre conduit 50 traverse radialement l'enceinte de sécurité et communique avec l'espace 48 par un passage 52 formé dans le tube rigide 34. A l'extérieur du moule 30, le conduit 50 communique avec une source de gaz neutre 54 du système de conditionnement gazeux, au travers d'une vanne V2. The flange 32a is sealed between the corresponding ends of the rigid tube 34 and security enclosure 36 on the one hand and the cap 38 screwed onto the safety enclosure 36, on the other go. This plug 38 is crossed axially by a conduit 40 connected to a pressure source and opening inside the bladder 32. The other plug 38 is crossed by a conduit 42 adapted to be connected by a valve V1 either to a vacuum source 44 of a gas conditioning, i.e. to a sewer 46. A inside the mold 30, the duct 42 opens into the annular space 48 formed between the bladder 32 and the rigid tube 34. Another conduit 50 passes radially the security enclosure and communicates with space 48 by a passage 52 formed in the rigid tube 34. A outside the mold 30, the conduit 50 communicates with a source of neutral gas 54 from the gas conditioning, through a valve V2.

Le moule 30 est lui-même placé dans un four tubulaire (non représenté) permettant d'appliquer à la préforme tubulaire 24 un cycle de température déterminé. Lorsque la température de soudage-diffusion du matériau non organique destiné à former la matrice est atteinte, la pression nécessaire à la consolidation est appliquée sur la préforme 24, au moyen de la vessie 32.The mold 30 is itself placed in an oven tubular (not shown) for applying to the tubular preform 24 a determined temperature cycle. When the welding-diffusion temperature of the material non-organic intended to form the matrix is reached, the pressure necessary for consolidation is applied on the preform 24, by means of the bladder 32.

De façon plus précise, avant toute application de pression sur la préforme tubulaire 24, l'intérieur du moule 30 est soumis à un balayage d'un gaz neutre tel que de l'argon, par les conduits 42 et 56, la vanne V2 étant ouverte et la vanne V1 ouverte sur l'égout 46. La température est alors élevée progressivement jusqu'à un premier palier, assurant la dégradation ou la décomposition du liant provisoire. Celui-ci est progressivement évacué de la préforme par le balayage gazeux.More precisely, before any application pressure on the tubular preform 24, the interior of the mold 30 is subjected to a sweeping of a neutral gas such as argon, via lines 42 and 56, valve V2 being open and the valve V1 open on the sewer 46. The temperature is then gradually raised to a first level, ensuring degradation or decomposition of the temporary binder. It is gradually removed from the preform by scanning gaseous.

Lorsque tout le liant provisoire a été évacué, le moule est mis sous vide par le conduit 42 (vanne V2 fermée et vanne V1 ouverte sur la source de vide 44) et la température est à nouveau élevée progressivement jusqu'à un deuxième palier, correspondant à la température de soudage-diffusion du matériau destiné à former la matrice. La vessie est alors mise sous pression de façon à réduire la porosité de la pièce à une valeur minimale. Les dimensions de la pièce correspondent alors à la valeur désirée.When all the temporary binder has been removed, the mold is evacuated through line 42 (valve V2 closed and valve V1 open on the vacuum source 44) and the temperature is gradually raised again up to a second level, corresponding to the welding-diffusion temperature of the material intended for form the matrix. The bladder is then put under pressure to reduce the porosity of the room to a minimum value. The dimensions of the room then correspond to the desired value.

Après refroidissement, on procède au démoulage de la pièce. Pour cela, on extrait le tube 34, contenant la pièce et la vessie 32, de l'enceinte 36, ce qui est facilité par la conicité des surfaces en contact du tube 34 et de l'enceinte 36. On démonte ensuite le tube 34 en deux parties. L'extraction de la vessie 32 est enfin effectuée soit par usinage électrochimique, soit par usinage chimique, soit encore par usinage d'une ou plusieurs rainures sur toute la longueur de la vessie, puis "pelage" de celle-ci par traction thermomécanique.After cooling, the mold is removed of the room. For this, we extract the tube 34, containing the part and the bladder 32, of the enclosure 36, which is facilitated by the taper of the surfaces in contact with the tube 34 and enclosure 36. The tube 34 is then dismantled two parts. The extraction of bladder 32 is finally performed either by electrochemical machining or by chemical machining, either by machining one or several grooves along the entire length of the bladder, then "peeling" of the latter by thermomechanical traction.

Il est à noter que la préforme 24 peut être revêtue d'une feuille de protection métallique sur ses surfaces intérieure et extérieure, lorsque le matériau destiné à former la matrice le nécessite, par exemple en raison de son caractère oxydable. Ainsi, si ce matériau est du magnésium, la préforme 24 est revêtue de feuilles de titane.It should be noted that the preform 24 can be coated with a protective metal sheet on its interior and exterior surfaces, when the material intended to form the matrix requires it, for example in because of its oxidizable nature. So if this material is magnesium, preform 24 is coated with sheets titanium.

Dans le cas d'une préforme tubulaire, les feuilles de protection sont mises en place lors du ou des drapages, sur les surfaces destinées à former les surfaces intérieure et extérieure de la préforme. Lorsqu'un empilement externe 20a et un empilement externe 20b sont réalisés séparément, une feuille de protection est placée autour de l'empilement externe 20a et une autre feuille de protection est placée à l'intérieur de l'empilement interne 20b.In the case of a tubular preform, the protective sheets are put in place when or drapes, on the surfaces intended to form the interior and exterior surfaces of the preform. When an external stack 20a and an external stack 20b are produced separately, a protective sheet is placed around the external stack 20a and another protective sheet is placed inside of the internal stack 20b.

Les deux exemples de mise en oeuvre qui viennent d'être décrits en se référant à la figure 1, puis aux figures 2 et 3, mettent en lumière les avantages qui découlent de l'utilisation du procédé de fabrication selon l'invention.The two examples of implementation which come to be described with reference to Figure 1, then Figures 2 and 3 highlight the advantages which arise from the use of the manufacturing process according to the invention.

Le principal avantage découle de la fabrication d'une préforme intermédiaire, grâce à l'application d'une action mécanique sur l'empilement, après que celui-ci ait été chauffé à une température telle que le liant provisoire se comporte comme une colle qui assure la liaison entre les filaments des différentes couches, tout en permettant leur déplacement relatif. Du fait que l'action mécanique est maintenue pendant le refroidissement, jusqu'au durcissement du liant provisoire, celui-ci assure ensuite la cohésion et le maintien en l'état de la préforme ainsi réalisée. L'utilisation de cette technique permet d'obtenir des pièces de formes complexes pratiquement sans rupture des filaments, ce qui n'était pas possible avec les techniques antérieures.The main benefit stems from manufacturing an intermediate preform, thanks to the application mechanical action on the stack, after it has been heated to a temperature such that the temporary binder behaves like an adhesive which ensures the connection between the filaments of the different layers, while allowing their relative displacement. Because the mechanical action is maintained during cooling, until the temporary binder hardens, this then ensures cohesion and maintenance in the state of the preform thus produced. The use of this technique makes it possible to obtain shaped parts complex with practically no filament breakage, which was not possible with prior techniques.

Comme on l'a déjà mentionné, la préforme qui est réalisée avant l'application du cycle thermomécanique final peut être obtenue soit directement, en une seule opération, à partir de l'empilement de nappes, soit en deux opérations ou plus, selon la complexité de la forme de la pièce à obtenir et selon la réduction d'épaisseur qui doit être effectuée. Dans tous les cas, la qualité de la pièce obtenue est très sensiblement améliorée par rapport aux techniques actuelles, sans qu'il soit nécessaire de mettre en oeuvre des outillages complexes et coûteux.As already mentioned, the preform which is performed before applying the thermomechanical cycle final can be obtained either directly, in one single operation, from the stack of layers, either in two or more operations, depending on the complexity of the shape of the part to be obtained and according to the reduction thickness that must be performed. In all cases, the quality of the part obtained is very appreciably improved compared to current techniques, without that it is necessary to use tools complex and expensive.

Dans le cas particulier des pièces tubulaires, le passage par une préforme intermédiaire selon la technique décrite précédemment permet de fabriquer de telles pièces à partir de mèches étalées dont les filaments sont preimprégnés d'un matériau non organique, ce qui n'était pas possible avec les techniques existantes. En effet, la très forte porosité de l'empilement nécessite de réduire très sensiblement l'épaisseur de ce dernier pour obtenir la pièce tubulaire désirée, et d'appliquer des pressions très élevées. Il en résulte inévitablement un éclatement de la vessie expansible du moule, quel que soit le matériau constituant cette vessie, si les techniques existantes sont utilisées.In the particular case of tubular parts, passing through an intermediate preform according to the technique described above makes it possible to manufacture such parts from spread wicks with filaments are prepreg of inorganic material, which was not possible with existing techniques. In indeed, the very high porosity of the stack requires very significantly reduce the thickness of the latter to get the desired tubular piece, and apply very high pressures. This inevitably results bursting of the expanding mold bladder, whatever either the material constituting this bladder, if the techniques are used.

Un autre avantage est procuré par le conditionnement des mèches étalées sous la forme d'un film souple 18, de très faible épaisseur, qui peut être aisément découpé, manipulé et mis en oeuvre pour réaliser ensuite sans difficulté particulière des pièces de formes quelconques.Another benefit is provided by packaging wicks spread in the form of a film flexible 18, very thin, which can be easily cut, manipulated and implemented to achieve then without particular difficulty of the shaped parts any.

Claims (17)

  1. Process for manufacturing a component (26) made of a composite having a non-organic matrix, comprising the following steps:
    formation of a web from rovings (10) of filaments (11) and of a material capable of forming the said matrix;
    impregnation of the rovings (10) of the web by a temporary binder dissolved in a solvent;
    evaporation of the solvent by heating, so as to package the web in the form of a flexible sheet (18);
    cutting of pieces from the flexible sheet;
    laying-up of these pieces, so as to form at least one stack (20);
    production of a preform (24) having a thickness and a shape which are intermediate between the thickness and the shape of the stack (20) and the thickness and the shape of the component (26) to be manufactured;
    application of a thermomechanical cycle to the preform (24), so as to give the latter the thickness and the shape of the component (26) to be manufactured, and to degrade the temporary binder;
    characterized in that the preform is produced by heating the stack (20) up to a bonding temperature of the temporary binder, by exerting a mechanical action on the stack (20) and then by cooling the latter down to a temperature for hardening the temporary binder.
  2. Process according to Claim 1, characterized in that the temporary binder is of the thermoplastic type.
  3. Process according to Claim 2, characterized in that the thermoplastic binder is polystyrene.
  4. Process according to Claim 3, characterized in that the heating of the stack (20) is carried out at a bonding temperature of the polystyrene at least equal to approximately 160°C and at most equal to approximately 280°C.
  5. Process according to any one of the preceding claims, characterized in that at least one mechanical compacting action is exerted on the stack (20).
  6. Process according to any one of Claims 1 to 4, characterized in that at least one mechanical compacting action and at least one mechanical shaping action are exerted on the stack (20).
  7. Process according to any one of Claims 1 to 4, applied to the manufacture of a tubular component, characterized in that at least two separate tubular stacks (20a, 20b) are produced and in that the preform is produced by exerting a mechanical compacting action on a first tubular stack (20a), at the bonding temperature of the temporary binder, by cooling the first tubular stack (20a) thus compacted, by placing this first compacted tubular stack (20a) coaxially with a second tubular stack (20b), by exerting a new mechanical compacting action at the bonding temperature of the temporary binder, by cooling the first and second tubular stacks (20a, 20b) thus compacted and by repeating these operations until all the tubular stacks produced previously are compacted.
  8. Process according to any one of Claims 1 to 4 and 7, applied to the manufacture of a tubular component, characterized in that the laying-up is done over an expandable bladder forming the internal element of a compacting mould and in that a mechanical compacting action is exerted on the stack (20a, 20b) by inflating the said bladder.
  9. Process according to Claim 8, characterized in that, during the thermomechanical cycle, a mechanical compacting action is applied to the preform (24) by placing the latter over an expandable bladder (32) forming the internal element of a consolidation mould (30) and by inflating the said bladder.
  10. Process according to Claims 8 and 9 together, characterized in that the expandable bladder (32) of the consolidation mould (30) is made of stainless steel.
  11. Process according to any one of the preceding claims, characterized in that at least one superficial protective sheet is integrated into the stack during the laying-up.
  12. Process according to any one of the preceding claims, characterized in that spread-out rovings (10) of parallel filaments (11) are impregnated by the temporary binder in such a way that the evaporation of the solvent packages these spread-out rovings in the form of a flexible film (18) in which the parallel filaments are connected by the rigidified temporary binder.
  13. Process according to Claim 12, characterized in that the impregnation step is preceded by a step in which the spread-out rovings (10) are wound over a mandrel (12) in order to form a layer of juxtaposed parallel filaments (11).
  14. Process according to any one of the preceding claims, characterized in that the thermomechanical cycle comprises a first phase of degradation of the temporary binder, during which the temperature is brought to and held at a first level, without any mechanical action on the preform (24), and a second phase of consolidation, during which the temperature is brought to and held at a second level, greater than the first, and a mechanical compression action is applied to the preform (24).
  15. Process according to Claim 14, characterized in that the degraded temporary binder is removed from the preform (24).
  16. Process according to Claim 15, characterized in that the degraded temporary binder is removed by a gas purge.
  17. Process according to Claim 15, characterized in that the degraded temporary binder is removed by vacuum.
EP93401806A 1992-07-15 1993-07-12 Process for preparing an article of composite material with a non-organic matrix Expired - Lifetime EP0581635B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR9208725 1992-07-15
FR9208725A FR2694553B1 (en) 1992-07-15 1992-07-15 Method for manufacturing a part made of a composite material with an inorganic matrix.
FR9307623A FR2694931B1 (en) 1992-07-15 1993-06-23 PROCESS FOR THE MANUFACTURE OF A PART IN NON-ORGANIC MATRIX COMPOSITE MATERIAL.
FR9307623 1993-06-23

Publications (2)

Publication Number Publication Date
EP0581635A1 EP0581635A1 (en) 1994-02-02
EP0581635B1 true EP0581635B1 (en) 1998-05-20

Family

ID=26229595

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93401806A Expired - Lifetime EP0581635B1 (en) 1992-07-15 1993-07-12 Process for preparing an article of composite material with a non-organic matrix

Country Status (3)

Country Link
EP (1) EP0581635B1 (en)
DE (1) DE69318639T2 (en)
FR (1) FR2694931B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10005250B4 (en) 1999-02-09 2004-10-28 Mtu Aero Engines Gmbh Process for the production of fiber-reinforced metallic components

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1249291A (en) * 1967-03-29 1971-10-13 Nat Res Dev Improvements in or relating to composite materials
FR2366904A1 (en) * 1976-10-11 1978-05-05 Armines PROCESS AND APPARATUS FOR THE MANUFACTURE OF TUBES FROM COMPOSITE MATERIALS
JPS5547335A (en) * 1978-09-27 1980-04-03 Sumitomo Chem Co Ltd Manufacturing method of fiber reinforced metal based composite material

Also Published As

Publication number Publication date
EP0581635A1 (en) 1994-02-02
DE69318639T2 (en) 1998-12-03
FR2694931B1 (en) 1996-10-25
DE69318639D1 (en) 1998-06-25
FR2694931A1 (en) 1994-02-25

Similar Documents

Publication Publication Date Title
EP0984853B1 (en) Equipment for on-site repair of a composite structure with a damaged zone and corresponding method
EP2262637B1 (en) Method for manufacturing a blank made of a thermoplastic composite, associated manufacturing tool and application of the method to the production of structural aircraft parts
EP2064050B1 (en) Process for manufacturing a panel made of a thermoplastic composite
EP1086801B1 (en) Method for manufacturing a composite sandwich panel and panel obtained thereby
CA2930813A1 (en) Method for impregnation of a fibrous preform and device for implementation of the said method
EP2334486B1 (en) Method for producing a concave-shaped in particular u-shaped piece in a composite material and device for carrying out the same
EP2640566B1 (en) Process for manufacturing a spring made of a composite material, such as a suspension spring in particular for a motor vehicle
CA2043095C (en) Mandrel for producing composite material hollow bodies; hollow bodies thus obtained
WO1998039151A1 (en) Method for making hollow parts of composite material
EP0659541B1 (en) Process and apparatus for manufacturing multilayered, low pressure impregnated articles particularly having deep undercuts
EP0549468A1 (en) Method of manufacturing a composite material fan blade and moulding device
EP0010024B1 (en) Process for manufacturing conduits of resin-impregnated fabric and conduits so obtained
FR2995244A1 (en) METHOD FOR MAKING A COMPOSITE MATERIAL PROFILE HAVING A RETRACTING ANGLE FROM A STACK OF FIBER LAYERS
EP0557140B1 (en) Method for hot contact depositing of fibrous composite material with glass matrix and device for carrying out the method
EP1054091A1 (en) Unidirectional web of carbon fibers
EP0581635B1 (en) Process for preparing an article of composite material with a non-organic matrix
WO2003008854A2 (en) Compressed heat insulation housing
FR2818578A1 (en) METHOD FOR MANUFACTURING HONEYCOMB STRUCTURES AND TOOLS FOR SUCH MANUFACTURE
EP3233444B1 (en) Method for manufacturing a composite component with impressions in relief and composite component derived from such a method
FR3059934A1 (en) A NEEDLE IMPREGNATION MOLD FOR PRODUCING A WORKPIECE FROM A WOVEN PREFORM
EP3079886B1 (en) Method for production of a part from thermoplastic composite material
FR2694553A1 (en) Fabrication of components from a composite material
FR3053622A1 (en) PROCESS FOR MANUFACTURING A PIECE OF COMPOSITE MATERIAL, AND LINK MANUFACTURED ACCORDING TO SAID METHOD
FR2490993A3 (en) Reusable mould for making complex hollow reinforced profiles - using an inflatable core in split rigid external mould
FR2597395A1 (en) Process for manufacturing fibre-composite components using a demoulding agent

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB IT

17P Request for examination filed

Effective date: 19940707

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19970521

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT

REF Corresponds to:

Ref document number: 69318639

Country of ref document: DE

Date of ref document: 19980625

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980722

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990707

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990726

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000712

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050712