EP0581098A1 - Procedure for manufacturing of a ski - Google Patents
Procedure for manufacturing of a ski Download PDFInfo
- Publication number
- EP0581098A1 EP0581098A1 EP93111116A EP93111116A EP0581098A1 EP 0581098 A1 EP0581098 A1 EP 0581098A1 EP 93111116 A EP93111116 A EP 93111116A EP 93111116 A EP93111116 A EP 93111116A EP 0581098 A1 EP0581098 A1 EP 0581098A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- core
- mold
- assembly
- sub
- ski
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63C—SKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
- A63C5/00—Skis or snowboards
- A63C5/12—Making thereof; Selection of particular materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T156/00—Adhesive bonding and miscellaneous chemical manufacture
- Y10T156/10—Methods of surface bonding and/or assembly therefor
- Y10T156/1002—Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina
- Y10T156/1028—Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina by bending, drawing or stretch forming sheet to assume shape of configured lamina while in contact therewith
- Y10T156/103—Encasing or enveloping the configured lamina
Definitions
- the present invention relates to a method of manufacturing skis used in winter sports, and intended to slide on snow and ice such as alpine skis, monoskis and snowboards.
- the structure generally comprises decorative and peripheral protection elements, forming the upper face and the lateral faces of the ski, internal resistance elements or resistance blades, made of a material having high mechanical resistance and great stiffness.
- the structure also includes filling elements such as a honeycomb core, a sliding sole forming the underside of the ski and ensuring good sliding on the snow, and metal edges forming the lower edges of the ski.
- the manufacture of modern skis therefore uses very diverse materials: the gliding soles are generally made of polyethylene, the cellular cores are made of synthetic foam, the edges are made of steel, the upper surfaces of the ski are made of thermoplastic sheets, the resistance blades are metal or resin plates reinforced with fibers.
- a ski is subjected to severe mechanical stresses, requiring good adhesion between the various materials constituting the structure.
- the cores are prefabricated in their final configuration by machining. They then undergo a surface treatment by sanding or sanding so as to be able to adhere with the adhesive constituting the matrix of the internal resistance elements, generally of the epoxy type.
- the assembly of the core with the other elements of the ski is generally done during a subsequent molding step.
- the core of a ski is an essential element since it contributes to flexural rigidity and ensures filling of the spaces between the various internal resistance elements, upper, lower and lateral.
- the forms of modern skis have also evolved a lot to allow an improvement in the qualities of behavior, gliding or simply aesthetic. This is how skis with inclined, convex or concave side edges appeared, or skis with reliefs on their upper surface, etc.
- the shape of the cores has evolved with these new forms of skis and the traditional manufacturing method comprising stages of machining and surface preparation now turns out to be unsuitable, expensive and complex.
- its implementation leads to many problems.
- the machining step destroys the thin surface layer of higher density of the synthetic cores (what specialists call the "skin" of the core).
- the geometry is not reproducible from one nucleus to another.
- the object of the present invention is to avoid the drawbacks of known methods, by proposing a new method making it possible, in a minimum number of steps, to manufacture the core, without a surface preparation operation, and to on the other hand the positioning and assembly of all the elements around the core to obtain the ski.
- the qualities of adhesion of the core to the other elements of the ski can be easily adapted according to the nature of these elements.
- the prefabricated core is easy to handle and perhaps stored before use.
- the method of the invention comprises a first step of preparing a solid core of synthetic foam and a second step of assembling the core with the various elements constituting the ski.
- the first step consists in injecting or pouring into a mold having the final shape of the core to be obtained, the components of a hardenable and expandable foam.
- a solid bonding film having good adhesion properties with the foam as well as with the elements intended to come into contact during the second assembly step, is placed against the walls of said mold.
- the invention also relates to the core formed according to the first stage of production and used in the second stage of assembly.
- Figure 1 shows in cross section a ski (1) obtained according to the method of the invention. It consists of the following three main parts: a core (2), a first lower sub-assembly (3) and a second upper sub-assembly or shell (4) covering the core (2).
- the lower sub-assembly (3) comprises a sliding sole (30), such as in polyethylene, lateral metal edges (31) and an internal element of lower mechanical resistance (33), consisting of one or more layers of reinforcement (330, 331) of composite or metallic material, such as aluminum alloy for example.
- the upper sub-assembly (4) comprises one or more decorative and protective layers (40), generally made of thermoplastic material which may consist of a polyurethane, a polycarbonate, a polyamide or polyamide or other copolymer.
- the upper sub-assembly (4) may also include an internal upper mechanical resistance element (41) consisting of one or more reinforcing layers.
- the upper sub-assembly (4) constitutes a shell covering the upper face (20) as well as the two lateral faces (21, 22) of the core (2).
- the core is made of injected thermosetting synthetic foam and is surrounded by a bonding film (5) based on polymer bonding between the core and the elements in contact with it and in particular the lower mechanical strength elements (33) and above (41).
- the film can overflow on each side of the lower face (23) of the core to ensure the joining of the edges (42, 43) of the upper sub-assembly (4) with the lower sub-assembly (3).
- FIG. 2 to 4 the first step of preparing the solid core of synthetic foam according to a first embodiment.
- a mold (6) is provided for this in the shape and dimensions of the core (2) to be produced.
- the first operation consists in producing in this mold, a closed tubular compartment consisting of the adhesive bonding film (5) based on polymer.
- a first film (50) projecting on either side of the joint plane (61) is deposited in the interior cavity formed in the lower shell (60) of the mold (6).
- a second film (51) is placed under tension on the wall of the upper shell (62) of the mold: the second film also projecting on either side of the joint plane.
- the mold is closed: the lateral ends of each film being pinched against one another in the joint plane (61) to form a burr (70).
- the low pressure injection or the gravity casting of the constituents of a curable foam such as a polyurethane foam, a polyurea foam or a phenolic foam is carried out at inside the tubular compartment (7) thus formed.
- the foam (8) pushes back the tubular membrane which comes to marry perfectly the walls of the mold. The core is then removed from the mold.
- the foams used have a content of crosslinking polyol groups greater than or equal to 30% by mass of the total polyol content.
- This chemical characteristic gives the foam an improvement in the properties of resistance to hot compression: properties which are particularly sought after in the implementation of the process of the invention.
- the foams used can also be loaded with short glass fibers.
- the fiber content is of the order of 0 to 30% by mass relative to the total mass of the mixture.
- the mold is heated to a temperature of between 30 and 80 ° C. approximately.
- the exothermic reaction crosslinking of the foam is greater than 100 ° C. and can lead to an increase in the temperature of the mold of the order of 20 to 30 ° C., for a few minutes. At these temperatures, the adhesion of the foam to the membrane is perfectly achieved. Demoulding is also carried out hot.
- this variant requires to implement the casting manually. It is generally done by an operator who uses a pouring gun connected to a low pressure pump; itself connected to the various component tanks.
- the establishment and maintenance of the films (50, 51) on the walls of the mold is facilitated if a vacuum is created between the film and the walls of the mold thanks to orifices (63 ) provided through the mold and connected to a vacuum pump.
- Figures 7 and 8 illustrate a particular mode of the second step of assembling the core (2) with the various elements constituting the ski.
- a second mold (9) is provided in two parts (90, 91), the shape and dimensions of which correspond to those of the ski which it is desired to produce.
- the elements constituting the lower sub-assembly (3) are placed in the lower part (90) of the mold (9).
- This sub-assembly comprises a sliding sole (30) made of polyethylene, the lateral steel edges (31) and a lower mechanical resistance element (33) consisting of two reinforcing layers (330, 331).
- the reinforcing layers may be formed from textile layers of glass fibers or carbon pre-impregnated with thermosetting resin or thermoplastic, for example. It is also possible to use textile tablecloths with an already polymerized thermosetting resin matrix or metallic strips of steel or aluminum.
- the elements constituting the lower sub-assembly (3) can be assembled and joined together before they are placed in the mold. But it can be provided that the molding operation makes it possible to secure these elements together and in particular, the reinforcing layers on the sliding sole and the edges.
- the core is placed in the first part of the mold (90), so that its lower face (23) rests on the lower sub-assembly (3).
- the elements constituting the second upper sub-assembly (4) are then placed on the upper face (20).
- the sub-assembly is deposited in a planar configuration and can be kept centered by any suitable means.
- the upper sub-assembly (4) is produced by stacking one or more layers including at least one protective and decorative layer (40).
- This layer is intended to form the top of the ski. It is made of thermoplastic material such as polyurethane, polyamide PA11, PA12, PA6, PA6 / 6 or other, styrenic type ABS - SAN, polystyrene, block copolymer styrenic, or other, polypropylene, polycarbonate, acrylic material, polyester type PET or PBT, possibly modified. It can also be agreed that the top consists of several layers of the materials mentioned, in particular when the top is decorated by sublimation and must therefore comprise an opaque lower layer revealing the decoration and a transparent upper layer carrying the decoration. The top is cut in such a way that it covers the upper face (20) and the lateral faces (21, 22) of the core (2).
- the upper sub-assembly also includes a mechanical resistance element (41) comprising one or more reinforcing layers.
- a mechanical resistance element (41) comprising one or more reinforcing layers.
- textile reinforcing plies based on woven or non-woven fibers of glass, polyethylene carbon, kevlar or liquid crystal polymers (LCP), impregnated with a wet or non-tacky thermosetting resin, in a uncured state selected from the group consisting of polyester, epoxy and polyurethane or a thermoplastic resin selected from the group consisting of polyamides, polycarbonates, PEI (Polyether Imides), PPS, polypropylenes, and LCP.
- LCP liquid crystal polymers
- the reinforcing layer can also cover the core to form, after crosslinking, a shell of mechanical resistance in direct support on the ski edges. It is also possible to provide for reinforcing the upper sub-assembly with simple metal blades or fiber reinforcements with a crosslinked resin matrix and substantially the same width as that of the upper face (20) of the core.
- the second upper part (91) of the mold comprising the imprint of the external shape of the ski to be produced, is brought closer to the first lower part (90) for closing.
- the core (2) is used to deform the upper sub-assembly (4) which is pressed against the walls of the cavity of the upper part of the mold.
- the sub-assembly can be heated separately and beforehand by infrared, for example. But it is also possible, after preheating the mold (9), place the upper part (91) of the mold against the upper sub-assembly and it is the heat of the mold transmitted by conduction or radiation which will soften said sub-assembly to allow its deformation.
- a temperature of approximately 100 ° to 160 ° C. is maintained for 3 to 15 minutes to allow the crosslinking of the prepreg materials and the adhesion of the bonding film (5) to the elements surrounding the core (2 ). After hardening, you can get out of the mold, the ski in its final state.
- the membranes forming the tubular element (7) are made of a film of material chosen for its adhesion properties with on the one hand the foam constituting the core and on the other hand the walls of the peripheral elements against which the membrane must 'apply and stick.
- Polyurethane films, copolyamide films, ABS (Acrylonitrile Butadiene Styrene) films, copolymers of ethylene or modified EVA can advantageously be used.
- the films can have a thickness of a few hundredths to a few tenths of a millimeter, advantageously from one to ten tenths of a millimeter.
- FIG. 9 shows an example of a complex shape of nucleus that can be produced according to the method.
- the distance (l) between the upper (20) and lower (23) core surface can change to give the ski a variable thickness.
- the width (L) of the lower face (23) can be of variable width to give the ski its sideline.
- the lateral surfaces (21, 22) can be inclined relative to the lower surface (23) by an angle (A) variable along the core to obtain, in the same way on the finished ski, inclined lateral edges.
- FIG. 10 shows a ski obtained from such a core where the parameters (l ', L', A ') of the ski correspond to (l, L and A) of the core and vary along the ski.
- Figures 11 and 12 show a particular embodiment of the core comprising upper (410) and / or lower (332) mechanical resistance elements.
- these elements are inserted inside the mold (6) after the films (50, 51) have been placed on the walls of the mold and before the injection or casting operation of the foam.
- the elements may consist of reinforcing layers of the same kind as those previously described. They can complete the reinforcement of the lower (33) and upper (41) sub-assemblies, or even replace the mechanical resistance elements of the ski sub-assemblies (3, 4).
- FIG. 13 is a particular embodiment of the invention in which the tubular compartment (7) is produced from a tubular membrane closed in a single deformable and extensible piece.
- the injection of the foam is carried out in the same way inside the membrane and the injection pressure ensures the extension and the pressing of the membrane against the walls of the mold (6).
- Figures 14 to 16 show an exemplary embodiment of a rib (400) on the upper surface of the ski according to the method of the invention.
- a rib 400
- To obtain the rib it is necessary to initially provide a hollow (601) in the lower shell (60) of the mold (6) which will be filled by the foam during the injection of the core.
- the core thus removed from the mold has a rib (200) on its upper surface (20).
- the rib of the core will deform the upper sub-assembly inside a hollow (910) of complementary shape provided in the upper part (91) of the mold (9 ) ski.
- FIG. 17 shows conversely, the possibility of being able to produce, according to the method, a protrusion (401) on the upper surface of the ski by providing a protrusion (201) of substantially greater dimension on the core during the implementation of the first injection step.
- the core may include on each lower edge a groove (202) which will be provided during the implementation of the first step of the method.
- This groove (202) cooperates with a lateral rim (300) of the lower sub-assembly (3) to allow better holding and centering of the core during the second step of the process (FIG. 19).
- Figures 20 and 21 show a variant of the process and more particularly of the second step of assembling the core with the elements constituting the ski.
- the second sub-assembly is preformed before its introduction into the assembly mold (9, 90, 91).
- the upper sub-assembly (4) is arranged in the second mold (9, 90, 91) in a planar or substantially planar configuration and it is the core (2) which serves to deforming said sub-assembly (4) which is pressed against the walls of the cavity of the upper part (91) of the mold.
- the purpose of the preforming operation is to arrange the sub-assembly (4) in a geometric configuration close to that which one wishes to give to the ski, in the end. It is in fact a question of obtaining a draft of the shape of the top of the ski.
- this operation consists in pressing the sub-assembly into a mold (92) to give it a first geometric configuration (blank).
- This operation takes place cold when the reinforcing elements (41) are based on a matrix of thermosetting resin. It can take place when the reinforcing elements are exclusively based on a matrix of thermoplastic resin.
- the upper sub-assembly (4) thus preformed is placed on the core formed during the first step.
- the upper faces (20) and the lateral faces (21, 22) of the core are covered by the internal upper faces (44) and the internal lateral faces (45, 46) respectively of the preformed sub-assembly (4).
- the actual operation of final forming and assembling of the elements is obtained in the second mold (90, 91) (FIG. 21) by pressing and adding heat. It is the shape of the core which gives the upper subset its final configuration.
- the core is provided with two lateral ribs (203, 204) which will make it possible to obtain two lateral ribs (402, 403) on the top of the ski after demolding and deburring of the sides of the sub-frame. assembly (4) (figure 22). Preforming is recommended when the final shapes to be obtained are complex and / or very angular.
Landscapes
- Injection Moulding Of Plastics Or The Like (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
- Golf Clubs (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
- Polyurethanes Or Polyureas (AREA)
- Laminated Bodies (AREA)
Abstract
Description
La présente invention concerne un procédé de fabrication des skis utilisés en sport d'hiver, et destinés à glisser sur la neige et la glace tels que les skis alpins, les monoskis et surfs de neige.The present invention relates to a method of manufacturing skis used in winter sports, and intended to slide on snow and ice such as alpine skis, monoskis and snowboards.
Les skis actuels ont généralement une structure composite dans laquelle sont combinés différents matériaux de manière que chacun d'eux intervienne de façon optimale, compte-tenu de la distribution des contraintes mécaniques. Ainsi, la structure comprend généralement des éléments de décoration et de protection périphérique, formant la face supérieure et les faces latérales du ski, des éléments internes de résistance ou lames de résistance, constitués en un matériau ayant une grande résistance mécanique et une grande raideur. La structure comprend également des éléments de remplissage tels qu'un noyau en structure alvéolaire, une semelle de glissement formant la face inférieure du ski et assurant un bon glissement sur la neige, et des carres métalliques formant les arètes inférieures du ski.Current skis generally have a composite structure in which different materials are combined so that each of them intervenes optimally, taking into account the distribution of mechanical stresses. Thus, the structure generally comprises decorative and peripheral protection elements, forming the upper face and the lateral faces of the ski, internal resistance elements or resistance blades, made of a material having high mechanical resistance and great stiffness. The structure also includes filling elements such as a honeycomb core, a sliding sole forming the underside of the ski and ensuring good sliding on the snow, and metal edges forming the lower edges of the ski.
Pour obtenir les caractéristiques physiques appropriées, la fabrication des skis modernes fait donc appel à des matériaux très divers : les semelles de glisse sont généralement en polyéthylène, les noyaux alvéolaires sont en mousse synthétique, les carres sont en acier, les surfaces supérieures du ski sont réalisées en feuilles thermoplastiques, les lames de résistance sont des plaques de métal ou de résine armées de fibres.To obtain the appropriate physical characteristics, the manufacture of modern skis therefore uses very diverse materials: the gliding soles are generally made of polyethylene, the cellular cores are made of synthetic foam, the edges are made of steel, the upper surfaces of the ski are made of thermoplastic sheets, the resistance blades are metal or resin plates reinforced with fibers.
Un ski est soumis à des contraintes mécaniques sévères, nécessitant une bonne adhérence entre les divers matériaux constituant la structure. Dans les techniques traditionnelles de fabrication de skis, les noyaux sont préfabriqués dans leur configuration définitive par usinage. Ils subissent ensuite un traitement de surface par sablage ou ponçage de façon à pouvoir adhérer avec la colle constituant la matrice des éléments internes de résistance, généralement de type époxyde. L'assemblage du noyau avec les autres éléments du ski se fait généralement lors d'une étape ultérieure de moulage.A ski is subjected to severe mechanical stresses, requiring good adhesion between the various materials constituting the structure. In traditional ski manufacturing techniques, the cores are prefabricated in their final configuration by machining. They then undergo a surface treatment by sanding or sanding so as to be able to adhere with the adhesive constituting the matrix of the internal resistance elements, generally of the epoxy type. The assembly of the core with the other elements of the ski is generally done during a subsequent molding step.
Le noyau d'un ski est un élément essentiel puisqu'il contribue à la rigidité en flexion et assure un remplissage des espaces entre les différents éléments internes de résistance, supérieurs, inférieurs et latéraux. Les formes des skis modernes ont également beaucoup évoluées pour permettre une amélioration des qualités de comportement, de glisse ou simplement esthétiques. C'est ainsi, que sont apparus des skis à chants latéraux inclinés, convexes ou concaves ou encore des skis présentant des reliefs sur leur surface supérieure, etc. Ainsi, la forme des noyaux a évolué avec ces nouvelles formes de skis et la méthode traditionnelle de fabrication comprenant des étapes d'usinage et de préparation de surface se révèle maintenant inadaptée, coûteuse et complexe. De plus, sa mise en oeuvre conduit à de nombreux problèmes. En particulier, l'étape d'usinage détruit la fine couche de surface de densité supérieure des noyaux synthétiques (ce que les spécialistes appellent la "peau" du noyau). De plus, la géométrie n'est pas reproductible d'un noyau à l'autre.The core of a ski is an essential element since it contributes to flexural rigidity and ensures filling of the spaces between the various internal resistance elements, upper, lower and lateral. The forms of modern skis have also evolved a lot to allow an improvement in the qualities of behavior, gliding or simply aesthetic. This is how skis with inclined, convex or concave side edges appeared, or skis with reliefs on their upper surface, etc. Thus, the shape of the cores has evolved with these new forms of skis and the traditional manufacturing method comprising stages of machining and surface preparation now turns out to be unsuitable, expensive and complex. In addition, its implementation leads to many problems. In particular, the machining step destroys the thin surface layer of higher density of the synthetic cores (what specialists call the "skin" of the core). In addition, the geometry is not reproducible from one nucleus to another.
La présente invention a pour objet d'éviter les inconvénients des procédés connus, en proposant un nouveau procédé permettant de réaliser en un nombre d'étapes minimum, d'une part la fabrication du noyau, sans opération de préparation de surface, et d'autre part le positionnement et l'assemblage de tous les éléments autour du noyau pour obtenir le ski.The object of the present invention is to avoid the drawbacks of known methods, by proposing a new method making it possible, in a minimum number of steps, to manufacture the core, without a surface preparation operation, and to on the other hand the positioning and assembly of all the elements around the core to obtain the ski.
Selon l'invention, toutes les géométries du noyau peuvent être réalisées sans difficulté et avec un degré de reproductibilité excellent.According to the invention, all the geometries of the core can be produced without difficulty and with an excellent degree of reproducibility.
Selon un autre objet de l'invention, les qualités d'adhérence du noyau sur les autres éléments du ski peuvent être adaptées facilement en fonction de la nature de ces éléments.According to another object of the invention, the qualities of adhesion of the core to the other elements of the ski can be easily adapted according to the nature of these elements.
Selon un autre objet de l'invention, le noyau préfabriqué est facilement manipulable et peut-être stocké avant son emploi.According to another object of the invention, the prefabricated core is easy to handle and perhaps stored before use.
Pour atteindre ces objets ainsi que d'autres, le procédé de l'invention comprend une première étape de préparation d'un noyau solide en mousse synthétique et une seconde étape d'assemblage du noyau avec les différents éléments constituant le ski. La première étape consiste à injecter ou couler dans un moule ayant la forme finale du noyau à obtenir, les composants d'une mousse durcissable et expansible. Au cours de cette étape, un film solide de collage ayant de bonnes propriétés d'adhésion avec la mousse ainsi qu'avec les éléments destinés à entrer en contact lors de la seconde étape d'assemblage, est disposé contre les parois dudit moule.To achieve these and other objects, the method of the invention comprises a first step of preparing a solid core of synthetic foam and a second step of assembling the core with the various elements constituting the ski. The first step consists in injecting or pouring into a mold having the final shape of the core to be obtained, the components of a hardenable and expandable foam. During this step, a solid bonding film having good adhesion properties with the foam as well as with the elements intended to come into contact during the second assembly step, is placed against the walls of said mold.
La seconde étape d'assemblage comprend la succession des étapes suivantes :
- on dispose dans la première moitié d'un second moule, les éléments constituants un premier sous-ensemble inférieur comprenant, au moins, une semelle de glissement et des carres métalliques latérales,
- on applique sur ce premier sous-ensemble, la face inférieure du noyau formé lors de la première étape,
- on dispose sur le noyau un second sous-ensemble supérieur destiné à recouvrir lors de l'opération ultérieure de moulage la face supérieure et les faces latérales dudit noyau; ledit sous-ensemble comprenant au moins une couche de décoration et de protection,
- on réalise l'étape de moulage proprement dite en utilisant le noyau pour déformer le second sous-ensemble supérieur à l'intérieur de la seconde moitié du moule.
- there is in the first half of a second mold, the elements constituting a first lower sub-assembly comprising, at least, a sliding sole and lateral metal edges,
- the lower face of the core formed during the first step is applied to this first subset,
- there is on the core a second upper sub-assembly intended to cover during the subsequent molding operation the upper face and the lateral faces of said core; said subassembly comprising at least one decorative and protective layer,
- the actual molding step is carried out by using the core to deform the second upper sub-assembly inside the second half of the mold.
Dans un premier mode de réalisation, la première étape comprend la succession des opérations suivantes :
- on réalise dans l'espace intérieur d'un moule dont la forme correspond à celle du noyau à obtenir, un compartiment tubulaire fermé constitué du film solide,
- on procède à l'injection ou la coulée dans ledit compartiment tubulaire ainsi réalisé, des composants de la mousse qui s'expanse dans l'espace intérieur du moule pour venir plaquer le film solide contre les parois du moule,
- on procède au démoulage du noyau ainsi formé.
- a closed tubular compartment made of the solid film is produced in the interior space of a mold whose shape corresponds to that of the core to be obtained,
- injecting or pouring into said tubular compartment thus produced, the components of the foam which expands in the interior space of the mold to press the solid film against the walls of the mold,
- the core thus formed is removed from the mold.
Dans un second mode de réalisation, la première étape comprend la succession des opérations suivantes :
- on dispose dans la cavité intérieure ménagée dans la coquille inférieure du moule, un premier film,
- on procède ensuite à la coulée des composants de ladite mousse à l'intérieur de ladite cavité ainsi recouverte du film,
- avant l'expansion totale ou partielle de la mousse, on referme le moule en disposant sur la coquille inférieure, la coquille supérieure sur laquelle a été préalablement disposée sous-tension un second film,
- après l'expansion de la mousse à l'intérieur du moule, on procède au démoulage du noyau ainsi formé.
- a first film is placed in the inner cavity formed in the lower shell of the mold,
- the components of said foam are then poured inside said cavity thus covered with the film,
- before the total or partial expansion of the foam, the mold is closed by placing on the lower shell, the upper shell on which a second film has previously been placed under tension,
- after the foam has expanded inside the mold, the core thus formed is removed from the mold.
Selon une variante de l'invention, la seconde étape d'assemblage peut être sensiblement différente et comprendre la succession des étapes suivantes :
- on dispose dans la première moitié d'un second moule les éléments constituants un premier sous-ensemble inférieur comprenant au moins :
- une semelle de glissement,
- et des carres métalliques latérales.
- on applique sur ce premier sous-ensemble la face inférieure du noyau formé lors de la première étape,
- on dispose sur le noyau un second sous-ensemble préformé dans une première configuration géométrique lors d'une opération séparée préalable,
- on réalise l'opération de formage définitif du sous-ensemble et l'assemblage proprement dite du noyau avec chaque sous-ensemble après avoir refermé la seconde moitié du moule sur la première moitié.
- in the first half of a second mold, the elements constituting a first lower sub-assembly comprising at least:
- a slip sole,
- and lateral metal edges.
- the lower face of the core formed during the first step is applied to this first sub-assembly,
- a second sub-assembly preformed in a first geometrical configuration is placed on the core during a separate prior operation,
- the final forming operation of the sub-assembly is carried out and the actual assembly of the core with each sub-assembly after having closed the second half of the mold on the first half.
L'invention concerne également le noyau formé selon la première étape de réalisation et utilisé dans la seconde étape d'assemblage.The invention also relates to the core formed according to the first stage of production and used in the second stage of assembly.
D'autres objets, caractéristiques et avantages de la présente invention ressortiront de la description suivante de modes de réalisation particuliers, faite en relation avec les figures jointes, parmi lesquelles :
- la figure 1 est une vue en coupe du ski obtenu selon le procédé de l'invention,
- les figures 2 à 4 illustrent les opérations successives de préparation du noyau, mises en oeuvre dans la première étape du procédé de l'invention selon un premier mode de réalisation,
- les figures 5 et 6 illustrent les opérations successives de préparation du noyau, mises en oeuvre dans la première étape du procédé selon une variante de l'invention,
- les figures 7 à 8 illustrent les opérations d'assemblage du noyau avec les éléments constituant le ski, mises en oeuvre dans la seconde étape du procédé de l'invention,
- la figure 9 est une vue en perspective du noyau selon un mode de réalisation particulier,
- la figure 10 est une vue en perspective d'un exemple de ski fini utilisant le noyau de la figure 9,
- les figures 11 et 12 illustrent une variante de réalisation du noyau selon l'invention,
- la figure 13 illustre une variante de la figure 1 concernant la réalisation du compartiment tubulaire fermé,
- les figures 14 à 16 illustrent un mode de réalisation du procédé selon une variante,
- la figure 17 est une vue selon une variante de la figure 16,
- la figure 18 est une vue en coupe d'un noyau selon une variante de l'invention,
- la figure 19 montre un détail du sous-ensemble inférieur sur lequel est positionné le noyau de la figure 18 d'une variante de la figure 4,
- les figures 20 et 21 illustrent une variante de la mise en oeuvre de la seconde étape d'assemblage du noyau,
- la figure 22 est une vue en coupe du ski obtenu par le procédé selon la variante des figures 20
et 21.
- FIG. 1 is a sectional view of the ski obtained according to the method of the invention,
- FIGS. 2 to 4 illustrate the successive operations for preparing the core, implemented in the first step of the method of the invention according to a first embodiment,
- FIGS. 5 and 6 illustrate the successive operations for preparing the core, implemented in the first step of the method according to a variant of the invention,
- FIGS. 7 to 8 illustrate the operations of assembling the core with the elements constituting the ski, implemented in the second step of the method of the invention,
- FIG. 9 is a perspective view of the core according to a particular embodiment,
- FIG. 10 is a perspective view of an example of a finished ski using the core of FIG. 9,
- FIGS. 11 and 12 illustrate an alternative embodiment of the core according to the invention,
- FIG. 13 illustrates a variant of FIG. 1 concerning the production of the closed tubular compartment,
- FIGS. 14 to 16 illustrate an embodiment of the method according to a variant,
- FIG. 17 is a view according to a variant of FIG. 16,
- FIG. 18 is a sectional view of a core according to a variant of the invention,
- FIG. 19 shows a detail of the lower sub-assembly on which the core of FIG. 18 is positioned from a variant of FIG. 4,
- FIGS. 20 and 21 illustrate a variant of the implementation of the second step of assembling the core,
- FIG. 22 is a sectional view of the ski obtained by the method according to the variant of FIGS. 20 and 21.
La figure 1 représente en coupe transversale un ski (1) obtenu selon le procédé de l'invention. Il est constitué des trois parties principales suivantes : un noyau (2), un premier sous-ensemble inférieur (3) et un second sous-ensemble supérieur ou coque (4) recouvrant le noyau (2).Figure 1 shows in cross section a ski (1) obtained according to the method of the invention. It consists of the following three main parts: a core (2), a first lower sub-assembly (3) and a second upper sub-assembly or shell (4) covering the core (2).
Le sous-ensemble inférieur (3) comprend une semelle de glissement (30), telle qu'en polyéthylène, des carres métalliques latérales (31) et un élément interne de résistance mécanique inférieure (33), constitués d'une ou plusieurs couches de renfort (330, 331) en matériau composite ou métallique, tel qu'en alliage d'aluminium par exemple.The lower sub-assembly (3) comprises a sliding sole (30), such as in polyethylene, lateral metal edges (31) and an internal element of lower mechanical resistance (33), consisting of one or more layers of reinforcement (330, 331) of composite or metallic material, such as aluminum alloy for example.
Le sous-ensemble supérieur (4) comprend une ou plusieurs couches de décoration et de protection (40), généralement en matériau thermoplastique pouvant être constitué d'un polyuréthane, un polycarbonate, un polyamide ou copolymère de polyamide ou autre. Le sous-ensemble supérieur (4) peut également comprendre un élément interne de résistance mécanique supérieur (41) constitué d'une ou plusieurs couches de renfort. Le sous-ensemble supérieur (4) constitue une coque en recouvrant la face supérieure (20) ainsi que les deux faces latérales (21, 22) du noyau (2).The upper sub-assembly (4) comprises one or more decorative and protective layers (40), generally made of thermoplastic material which may consist of a polyurethane, a polycarbonate, a polyamide or polyamide or other copolymer. The upper sub-assembly (4) may also include an internal upper mechanical resistance element (41) consisting of one or more reinforcing layers. The upper sub-assembly (4) constitutes a shell covering the upper face (20) as well as the two lateral faces (21, 22) of the core (2).
Le noyau est réalisé en mousse synthétique thermodurcissable injectée et est entouré d'un film de collage (5) à base de polymère réalisant le collage entre le noyau et les éléments en contact avec lui et en particulier les éléments de résistance mécanique inférieurs (33) et supérieurs (41). Le film peut déborder de chaque côté de la face inférieure (23) du noyau pour assurer la solidarisation des bords (42, 43) du sous-ensemble supérieur (4) avec le sous-ensemble inférieur (3).The core is made of injected thermosetting synthetic foam and is surrounded by a bonding film (5) based on polymer bonding between the core and the elements in contact with it and in particular the lower mechanical strength elements (33) and above (41). The film can overflow on each side of the lower face (23) of the core to ensure the joining of the edges (42, 43) of the upper sub-assembly (4) with the lower sub-assembly (3).
L'un des modes de réalisation du procédé selon l'invention pour réaliser un tel ski va être décrit ci-après au regard des figures 2 à 6.One of the embodiments of the method according to the invention for producing such a ski will be described below with reference to FIGS. 2 to 6.
On a représenté aux figures 2 à 4, la première étape de préparation du noyau solide en mousse synthétique selon un premier mode de réalisation. On prévoit pour cela un moule (6) à la forme et aux dimensions du noyau (2) à réaliser. La première opération consiste à réaliser dans ce moule, un compartiment tubulaire fermé constitué du film de collage (5) solide à base de polymère. Pour cela, on dépose dans la cavité intérieure ménagée dans la coquille inférieure (60) du moule (6) un premier film (50) dépassant de part et d'autre du plan de joint (61). On dispose sous tension un second film (51) sur la paroi de la coquille supérieure (62) du moule : le second film débordant également de part et d'autre du plan de joint. On referme le moule : les extrémités latérales de chaque film étant pincées l'une contre l'autre dans le plan de joint (61) pour former une bavure (70).There is shown in Figures 2 to 4, the first step of preparing the solid core of synthetic foam according to a first embodiment. A mold (6) is provided for this in the shape and dimensions of the core (2) to be produced. The first operation consists in producing in this mold, a closed tubular compartment consisting of the adhesive bonding film (5) based on polymer. For this, a first film (50) projecting on either side of the joint plane (61) is deposited in the interior cavity formed in the lower shell (60) of the mold (6). A second film (51) is placed under tension on the wall of the upper shell (62) of the mold: the second film also projecting on either side of the joint plane. The mold is closed: the lateral ends of each film being pinched against one another in the joint plane (61) to form a burr (70).
Lors d'une seconde opération illustrée à la figure 3, on réalise l'injection à basse pression ou la coulée par gravité des constituants d'une mousse durcissable telle qu'une mousse de polyuréthane , une mousse polyurée ou une mousse phénolique, à l'intérieur du compartiment tubulaire (7) ainsi formé. Pendant son expansion, la mousse (8) repousse la membrane tubulaire qui vient épouser parfaitement les parois du moule. On opère ensuite le démoulage du noyau.During a second operation illustrated in FIG. 3, the low pressure injection or the gravity casting of the constituents of a curable foam such as a polyurethane foam, a polyurea foam or a phenolic foam is carried out at inside the tubular compartment (7) thus formed. During its expansion, the foam (8) pushes back the tubular membrane which comes to marry perfectly the walls of the mold. The core is then removed from the mold.
De préférence, les mousses utilisées ont une teneur en groupements polyols réticulants supérieure ou égale à 30% en masse de la teneur totale en polyols. Cette caractéristique chimique confère à la mousse une amélioration des propriétés de résistance à la compression à chaud : propriétés particulièrement recherchées dans la mise en oeuvre du procédé de l'invention. Les mousses utilisées peuvent également être chargées en fibres courtes de verre. La teneur en fibre est de l'ordre de 0 à 30% en masse par rapport à la masse totale du mélange.Preferably, the foams used have a content of crosslinking polyol groups greater than or equal to 30% by mass of the total polyol content. This chemical characteristic gives the foam an improvement in the properties of resistance to hot compression: properties which are particularly sought after in the implementation of the process of the invention. The foams used can also be loaded with short glass fibers. The fiber content is of the order of 0 to 30% by mass relative to the total mass of the mixture.
Durant toute cette étape de fabrication du noyau, le moule est chauffé à une température comprise entre 30 et 80°c environ. L'exothermie de la réaction de réticulation de la mousse est supérieure à 100°c et peut conduire à une augmentation de la température du moule de l'ordre de 20 à 30°c, durant quelques minutes. A ces températures, l'adhésion de la mousse sur la membrane est parfaitement réalisée. Le démoulage s'effectue également à chaud.During this entire step of manufacturing the core, the mold is heated to a temperature of between 30 and 80 ° C. approximately. The exothermic reaction crosslinking of the foam is greater than 100 ° C. and can lead to an increase in the temperature of the mold of the order of 20 to 30 ° C., for a few minutes. At these temperatures, the adhesion of the foam to the membrane is perfectly achieved. Demoulding is also carried out hot.
La première étape de préparation du noyau peut être mise en oeuvre selon une variante illustrée par les figures 5 et 6. En effet, on peut prévoir de ne réaliser le compartiment tubulaire fermé (7) décrit précédemment qu'après avoir préalablement réalisé la coulée des composants de la mousse durcissable dans l'une des deux coquilles du moule. Pour cela, on opère de la façon suivante :
- on dispose dans la cavité intérieure (600) ménagée dans la coquille inférieure (60) du moule (6), un premier film (50) dépassant de part et d'autre du plan de joint (61) du moule,
- on procède ensuite à la coulée des composants de ladite mousse à l'intérieur de la cavité (600),
- avant l'expansion totale ou partielle provenant de la réaction des composants entre eux, on referme le moule. Pour cela, on applique sur la coquille inférieure (60), la coquille supérieure (62) sur laquelle a été préalablement disposé sous-tension, un second film (51). On forme ainsi le compartiment tubulaire constitué des films (50, 51),
- après fermeture du moule, les composants réagissent 'in situ' provoquant l'expansion de la mousse qui vient adhérer contre le compartiment tubulaire.
- a first film (50) projecting on either side of the joint plane (61) of the mold is placed in the interior cavity (600) formed in the lower shell (60) of the mold (6),
- the components of said foam are then poured inside the cavity (600),
- before the total or partial expansion resulting from the reaction of the components together, the mold is closed. For this, a second film (51) is applied to the lower shell (60), the upper shell (62) on which has been previously placed under tension. The tubular compartment made up of the films (50, 51) is thus formed,
- after closing the mold, the components react 'in situ' causing the foam which expands to adhere against the tubular compartment.
A la différence du mode de réalisation des figures 2 à 4, cette variante impose de mettre en oeuvre la coulée de façon manuelle. Elle se fait généralement par un opérateur qui emploie un pistolet de coulée relié à une pompe basse pression ; elle-même reliée aux différentes cuves de composants.Unlike the embodiment of Figures 2 to 4, this variant requires to implement the casting manually. It is generally done by an operator who uses a pouring gun connected to a low pressure pump; itself connected to the various component tanks.
Dans chaque mode de réalisation décrit précédemment, la mise en place et le maintien des films (50, 51) sur les parois du moule est facilité si l'on crée une dépression entre le film et les parois du moule grâce à des orifices (63) prévus à travers le moule et relié à une pompe à vide.In each embodiment described above, the establishment and maintenance of the films (50, 51) on the walls of the mold is facilitated if a vacuum is created between the film and the walls of the mold thanks to orifices (63 ) provided through the mold and connected to a vacuum pump.
Les figures 7 et 8 illustrent un mode particulier de la seconde étape d'assemblage du noyau (2) avec les différents éléments constituant le ski. On prévoit pour cela un second moule (9) en deux parties (90, 91) et dont la forme et les dimensions correspondent à celles du ski que l'on souhaite réaliser. Dans une première opération, on dispose dans la partie inférieure (90) du moule (9) les éléments constituant le sous-ensemble inférieur (3). Ce sous-ensemble comprend une semelle de glissement (30) en polyéthylène, les carres latérales en acier (31) et un élément de résistance mécanique inférieur (33) constitué de deux couches de renfort (330, 331). Les couches de renfort peuvent être formées de nappes textiles de fibres de verre ou carbone préimprégnées de résine thermodurcissable ou thermoplastique, par exemple. On peut prévoir aussi d'utiliser des nappes textiles à matrice de résine thermodurcissable déjà polymérisée ou encore des lames métalliques en acier ou aluminium.Figures 7 and 8 illustrate a particular mode of the second step of assembling the core (2) with the various elements constituting the ski. For this, a second mold (9) is provided in two parts (90, 91), the shape and dimensions of which correspond to those of the ski which it is desired to produce. In a first operation, the elements constituting the lower sub-assembly (3) are placed in the lower part (90) of the mold (9). This sub-assembly comprises a sliding sole (30) made of polyethylene, the lateral steel edges (31) and a lower mechanical resistance element (33) consisting of two reinforcing layers (330, 331). The reinforcing layers may be formed from textile layers of glass fibers or carbon pre-impregnated with thermosetting resin or thermoplastic, for example. It is also possible to use textile tablecloths with an already polymerized thermosetting resin matrix or metallic strips of steel or aluminum.
Les éléments constituant le sous-ensemble inférieur (3) peuvent être assemblés et solidarisés entre eux avant leur disposition dans le moule. Mais on peut prévoir que l'opération de moulage permette de solidariser entre eux ces éléments et en particulier, les couches de renfort sur la semelle de glissement et les carres.The elements constituting the lower sub-assembly (3) can be assembled and joined together before they are placed in the mold. But it can be provided that the molding operation makes it possible to secure these elements together and in particular, the reinforcing layers on the sliding sole and the edges.
Dans certains cas, il peut être nécessaire de disposer un film de collage entre les éléments à coller dans l'étape ultérieure de moulage. Ainsi, l'emploi de couches en fibres et matrices prépolymérisées ou de lames métalliques pour constituer l'élément de résistance mécanique inférieur nécessite d'utiliser des films de collage entre chaque couche et entre la semelle de glissement (30) et la couche inférieure de renfort (330).In some cases, it may be necessary to have a bonding film between the elements to be bonded in the subsequent molding step. Thus, the use of layers of prepolymerized fibers and dies or of metal blades to constitute the element of lower mechanical resistance requires the use of bonding films between each layer and between the sliding sole (30) and the lower layer of reinforcement (330).
Dans un second temps, on dispose le noyau dans la première partie du moule (90), de telle façon que sa face inférieure (23) repose sur le sous-ensemble inférieur (3). On dispose ensuite sur la face supérieure (20) les éléments constituants le second sous-ensemble supérieur (4). Dans le cas de la figure 5, le sous-ensemble est déposé dans une configuration plane et peut-être maintenu centré par tout moyen adéquat.In a second step, the core is placed in the first part of the mold (90), so that its lower face (23) rests on the lower sub-assembly (3). The elements constituting the second upper sub-assembly (4) are then placed on the upper face (20). In the case of Figure 5, the sub-assembly is deposited in a planar configuration and can be kept centered by any suitable means.
Le sous-ensemble supérieur (4) est réalisé par empilage de une ou plusieurs couches dont au moins une couche de protection et décoration (40). Cette couche est destinée à former le dessus du ski. Elle est en matériau thermoplastique tel que polyuréthane, polyamide PA11, PA12, PA6, PA6/6 ou autre, styrénique de type ABS - SAN, polystyrène, bloc-copolymère styrénique, ou autre, polypropylène, polycarbonate, matière acrylique, polyester de type PET ou PBT, éventuellement modifié. On peut convenir également que le dessus soit constitué de plusieurs couches des matériaux cités, notamment lorsque le dessus est décoré par sublimation et doit donc comprendre une couche inférieure opaque révélatrice du décor et une couche supérieure transparente portant le décor. Le dessus est découpé de telle façon qu'il recouvre la face supérieure (20) et les faces latérales (21, 22) du noyau (2).The upper sub-assembly (4) is produced by stacking one or more layers including at least one protective and decorative layer (40). This layer is intended to form the top of the ski. It is made of thermoplastic material such as polyurethane, polyamide PA11, PA12, PA6, PA6 / 6 or other, styrenic type ABS - SAN, polystyrene, block copolymer styrenic, or other, polypropylene, polycarbonate, acrylic material, polyester type PET or PBT, possibly modified. It can also be agreed that the top consists of several layers of the materials mentioned, in particular when the top is decorated by sublimation and must therefore comprise an opaque lower layer revealing the decoration and a transparent upper layer carrying the decoration. The top is cut in such a way that it covers the upper face (20) and the lateral faces (21, 22) of the core (2).
Le sous-ensemble supérieur comprend également un élément de résistance mécanique (41) comprenant une ou plusieurs couches de renfort. On peut notamment utiliser des nappes textiles de renfort à base de fibres tissées ou non tissées en verre, en carbone polyéthylène, en kevlar ou en polymères à cristaux liquides (LCP), imprégnées d'une résine thermodurcissable humide ou non-pégueuse, dans un état non polymérisée choisie dans le groupe constitué parles polyester, époxyde et polyuréthane ou encore une résine thermoplastique choisie dans le groupe constitué par les polyamides, les polycarbonates, les PEI (Polyéther Imides), les PPS, les polypropylènes, et LCP. Dans ce cas, la couche de renfort peut également recouvrir le noyau pour former après réticulation, une coque de résistance mécanique en appui direct sur les carres du ski. On peut aussi prévoir de renforcer le sous-ensemble supérieur par de simples lames métalliques ou renforts de fibres à matrice de résine réticulée et sensiblement de même largeur que celle de la face supérieure (20) du noyau.The upper sub-assembly also includes a mechanical resistance element (41) comprising one or more reinforcing layers. It is possible in particular to use textile reinforcing plies based on woven or non-woven fibers of glass, polyethylene carbon, kevlar or liquid crystal polymers (LCP), impregnated with a wet or non-tacky thermosetting resin, in a uncured state selected from the group consisting of polyester, epoxy and polyurethane or a thermoplastic resin selected from the group consisting of polyamides, polycarbonates, PEI (Polyether Imides), PPS, polypropylenes, and LCP. In this case, the reinforcing layer can also cover the core to form, after crosslinking, a shell of mechanical resistance in direct support on the ski edges. It is also possible to provide for reinforcing the upper sub-assembly with simple metal blades or fiber reinforcements with a crosslinked resin matrix and substantially the same width as that of the upper face (20) of the core.
Après disposition du sous-ensemble supérieur (4), la seconde partie supérieure (91) du moule comprenant l'empreinte de la forme extérieure du ski à réaliser, est rapprochée de la première partie inférieure (90) pour la fermeture. Le noyau (2) sert à déformer le sous-ensemble supérieur (4) qui est plaqué contre les parois de l'empreinte de la partie supérieure du moule.After arrangement of the upper sub-assembly (4), the second upper part (91) of the mold comprising the imprint of the external shape of the ski to be produced, is brought closer to the first lower part (90) for closing. The core (2) is used to deform the upper sub-assembly (4) which is pressed against the walls of the cavity of the upper part of the mold.
Dans certains cas, il peut être utile de ramollir certaines couches de ce sous-ensemble pour qu'il puisse être ensuite facilement déformé. Cette mise en température peut être faite de différentes façons. On peut chauffer séparément et préalablement le sous-ensemble par infrarouge, par exemple. Mais on peut aussi, après préchauffage du moule (9), placer la partie supérieure (91) du moule contre le sous-ensemble supérieur et c'est la chaleur du moule transmise par conduction ou rayonnement qui ramollira ledit sous-ensemble pour permettre sa déformation.In some cases, it may be useful to soften certain layers of this subset so that it can then be easily deformed. This warming up can be done in different ways. The sub-assembly can be heated separately and beforehand by infrared, for example. But it is also possible, after preheating the mold (9), place the upper part (91) of the mold against the upper sub-assembly and it is the heat of the mold transmitted by conduction or radiation which will soften said sub-assembly to allow its deformation.
Après fermeture complète du moule, une température d'environ 100° à 160°c est maintenue pendant 3 à 15 mn pour permettre la réticulation des matériaux préimprégnés et l'adhérence du film de collage (5) sur les éléments entourants le noyau (2). Après durcissement, on peut sortir du moule, le ski dans son état final.After complete closure of the mold, a temperature of approximately 100 ° to 160 ° C. is maintained for 3 to 15 minutes to allow the crosslinking of the prepreg materials and the adhesion of the bonding film (5) to the elements surrounding the core (2 ). After hardening, you can get out of the mold, the ski in its final state.
Les membranes réalisant l'élément tubulaire (7) sont réalisées en un film de matière choisie pour ses propriétés d'adhérence avec d'une part la mousse constituant le noyau et d'autre part les parois des éléments périphériques contre lesquelles la membrane doit s'appliquer et se coller.The membranes forming the tubular element (7) are made of a film of material chosen for its adhesion properties with on the one hand the foam constituting the core and on the other hand the walls of the peripheral elements against which the membrane must 'apply and stick.
On peut avantageusement utiliser des films en polyuréthane, des films en copolyamide, en ABS (Acrylonitrile Butadiène Styrène), des copolymères d'éthylène ou d'EVA modifiés. Les films peuvent avoir une épaisseur de quelques centièmes à quelques dixièmes de millimètre, avantageusement de un à dix dixièmes de millimètre.Polyurethane films, copolyamide films, ABS (Acrylonitrile Butadiene Styrene) films, copolymers of ethylene or modified EVA can advantageously be used. The films can have a thickness of a few hundredths to a few tenths of a millimeter, advantageously from one to ten tenths of a millimeter.
La figure 9 montre un exemple de forme complexe de noyau réalisable selon le procédé. La distance (l) entre la surface supérieure (20) et inférieure (23) de noyau peut évoluer pour conférer au ski une épaisseur variable. De même, la largeur (L) de la face inférieure (23) peut être de largeur variable pour conférer au ski sa ligne de côte. Enfin les surfaces latérales (21, 22) peuvent être inclinées par rapport à la surface inférieure (23) d'un angle (A) variable le long du noyau pour obtenir de la même façon sur le ski fini des chants latéraux inclinés.FIG. 9 shows an example of a complex shape of nucleus that can be produced according to the method. The distance (l) between the upper (20) and lower (23) core surface can change to give the ski a variable thickness. Likewise, the width (L) of the lower face (23) can be of variable width to give the ski its sideline. Finally, the lateral surfaces (21, 22) can be inclined relative to the lower surface (23) by an angle (A) variable along the core to obtain, in the same way on the finished ski, inclined lateral edges.
La figure 10 montre un ski obtenu à partir d'un tel noyau où les paramètres (l', L', A') du ski correspondent à (l, L et A) du noyau et varient le long du ski.FIG. 10 shows a ski obtained from such a core where the parameters (l ', L', A ') of the ski correspond to (l, L and A) of the core and vary along the ski.
Les figures 11 et 12 montrent un mode particulier de réalisation du noyau comprenant des éléments de résistance mécanique supérieurs (410) et/ou inférieurs (332). Lors de la première étape de préparation du noyau, ces éléments sont insérés à l'intérieur du moule (6) après la disposition des films (50, 51) sur les parois du moule et avant l'opération d'injection ou de coulée de la mousse. Les éléments peuvent être constitués de couches de renfort de même nature que ceux précédemment décrits. Ils peuvent compléter le renforcement des sous-ensembles inférieurs (33) et supérieurs (41), ou encore remplacer les éléments de résistance mécanique des sous-ensembles (3, 4) du ski.Figures 11 and 12 show a particular embodiment of the core comprising upper (410) and / or lower (332) mechanical resistance elements. During the first step of preparing the core, these elements are inserted inside the mold (6) after the films (50, 51) have been placed on the walls of the mold and before the injection or casting operation of the foam. The elements may consist of reinforcing layers of the same kind as those previously described. They can complete the reinforcement of the lower (33) and upper (41) sub-assemblies, or even replace the mechanical resistance elements of the ski sub-assemblies (3, 4).
La figure 13 est un mode de réalisation particulier de l'invention dans lequel le compartiment tubulaire (7) est réalisé à partir d'une membrane tubulaire fermée d'une seule pièce déformable et extensible. L'injection de la mousse est réalisée de la même façon à l'intérieur de la membrane et la pression d'injection assure l'extension et le plaquage de la membrane contre les parois du moule (6).FIG. 13 is a particular embodiment of the invention in which the tubular compartment (7) is produced from a tubular membrane closed in a single deformable and extensible piece. The injection of the foam is carried out in the same way inside the membrane and the injection pressure ensures the extension and the pressing of the membrane against the walls of the mold (6).
Les figures 14 à 16 montrent un exemple de réalisation d'une nervure (400) sur la surface supérieure du ski selon le procédé de l'invention. Pour obtenir la nervure, il faut prévoir au départ un creux (601) dans la coquille inférieure (60) du moule (6) qui va être remplie par la mousse lors de l'injection du noyau. Le noyau ainsi démoulé, présente une nervure (200) sur sa surface supérieure (20). Lors de la seconde étape d'assemblage (figure 13), la nervure du noyau va déformer le sous-ensemble supérieur à l'intérieur d'un creux (910) de forme complémentaire prévu dans la partie supérieure (91) du moule (9) du ski.Figures 14 to 16 show an exemplary embodiment of a rib (400) on the upper surface of the ski according to the method of the invention. To obtain the rib, it is necessary to initially provide a hollow (601) in the lower shell (60) of the mold (6) which will be filled by the foam during the injection of the core. The core thus removed from the mold has a rib (200) on its upper surface (20). During the second assembly step (Figure 13), the rib of the core will deform the upper sub-assembly inside a hollow (910) of complementary shape provided in the upper part (91) of the mold (9 ) ski.
La figure 17 montre de façon inverse, la possibilité de pouvoir réaliser, selon le procédé, une saillie (401) sur la surface supérieure du ski en prévoyant une saillie (201) de dimension sensiblement supérieure sur le noyau lors de la mise en oeuvre de la première étape d'injection.FIG. 17 shows conversely, the possibility of being able to produce, according to the method, a protrusion (401) on the upper surface of the ski by providing a protrusion (201) of substantially greater dimension on the core during the implementation of the first injection step.
Comme le montre la figure 18, le noyau peut comprendre sur chaque bord inférieur une rainure (202) qui sera prévue lors de la mise en oeuvre de la première étape du procédé. Cette rainure (202) coopère avec un rebord (300) latéral du sous-ensemble inférieur (3) pour permettre une meilleure tenue et un centrage du noyau lors de la seconde étape du procédé (figure 19).As shown in Figure 18, the core may include on each lower edge a groove (202) which will be provided during the implementation of the first step of the method. This groove (202) cooperates with a lateral rim (300) of the lower sub-assembly (3) to allow better holding and centering of the core during the second step of the process (FIG. 19).
Les figures 20 et 21 montrent une variante du procédé et plus particulièrement de la seconde étape d'assemblage du noyau avec les éléments constituant le ski. Ainsi on peut prévoir que le second sous-ensemble soit préformé avant son introduction dans le moule d'assemblage (9, 90, 91). Dans le cas des figures 7 et 8, le sous-ensemble supérieur (4) est disposé dans le second moule (9, 90, 91) dans une configuration plane ou sensiblement plane et c'est le noyau (2) qui sert à déformer ledit sous-ensemble (4) qui est plaqué contre les parois de l'empreinte de la partie supérieure (91) du moule.Figures 20 and 21 show a variant of the process and more particularly of the second step of assembling the core with the elements constituting the ski. Thus it can be provided that the second sub-assembly is preformed before its introduction into the assembly mold (9, 90, 91). In the case of FIGS. 7 and 8, the upper sub-assembly (4) is arranged in the second mold (9, 90, 91) in a planar or substantially planar configuration and it is the core (2) which serves to deforming said sub-assembly (4) which is pressed against the walls of the cavity of the upper part (91) of the mold.
L'opération de préformage a pour but de disposer le sous-ensemble (4) dans une configuration géométrique proche de celle que l'on souhaite donner au ski, en final. Il s'agit en fait d'obtenir une ébauche de la forme du dessus du ski. Ainsi, cette opération consiste à presser le sous-ensemble dans un moule (92) pour lui donner une première configuration géométrique (ébauche). Cetie opération se déroule à froid lorsque les éléments de renfort (41) sont à base de matrice en résine thermodurcissable. Elle peut se dérouler à chaud lorsque les éléments de renfort sont exclusivement à base de matrice en résine thermoplastique. Ensuite, le sous-ensemble supérieur (4) ainsi préformé est disposé sur le noyau formé lors de la première étape. Les faces supérieures (20) et les faces latérales (21, 22) du noyau sont recouvertes par les faces supérieures internes (44) et les faces latérales internes (45, 46) respectivement du sous-ensemble (4) préformé. L'opération proprement dite de formage définitif et d'assemblage des éléments est obtenue dans le second moule (90, 91) (figure 21) par pressage et apport de chaleur. C'est la forme du noyau qui confère au sous-ensemble supérieur sa configuration définitive. Dans le cas illustré à titre d'exemple, le noyau est muni de deux nervures latérales (203, 204) qui permettront d'obtenir deux nervures latérales (402, 403) sur le dessus du ski après démoulage et ébarbage des côtés du sous-ensemble (4) (figure 22). Le préformage est recommandé lorsque les formes finales à obtenir sont complexes et/ou très anguleuses.The purpose of the preforming operation is to arrange the sub-assembly (4) in a geometric configuration close to that which one wishes to give to the ski, in the end. It is in fact a question of obtaining a draft of the shape of the top of the ski. Thus, this operation consists in pressing the sub-assembly into a mold (92) to give it a first geometric configuration (blank). This operation takes place cold when the reinforcing elements (41) are based on a matrix of thermosetting resin. It can take place when the reinforcing elements are exclusively based on a matrix of thermoplastic resin. Then, the upper sub-assembly (4) thus preformed is placed on the core formed during the first step. The upper faces (20) and the lateral faces (21, 22) of the core are covered by the internal upper faces (44) and the internal lateral faces (45, 46) respectively of the preformed sub-assembly (4). The actual operation of final forming and assembling of the elements is obtained in the second mold (90, 91) (FIG. 21) by pressing and adding heat. It is the shape of the core which gives the upper subset its final configuration. In the case illustrated by way of example, the core is provided with two lateral ribs (203, 204) which will make it possible to obtain two lateral ribs (402, 403) on the top of the ski after demolding and deburring of the sides of the sub-frame. assembly (4) (figure 22). Preforming is recommended when the final shapes to be obtained are complex and / or very angular.
Bien entendu, l'invention n'est pas limitée aux modes de réalisation décrits et représentés à titre d'exemples, mais elle comprend aussi tous les équivalents techniques ainsi que leurs combinaisons.Of course, the invention is not limited to the embodiments described and shown by way of examples, but it also includes all the technical equivalents and their combinations.
Claims (21)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9209735A FR2694201B1 (en) | 1992-07-31 | 1992-07-31 | Method of manufacturing a ski. |
FR9209735 | 1992-07-31 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0581098A1 true EP0581098A1 (en) | 1994-02-02 |
EP0581098B1 EP0581098B1 (en) | 1995-10-04 |
Family
ID=9432654
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP93111116A Expired - Lifetime EP0581098B1 (en) | 1992-07-31 | 1993-07-12 | Procedure for manufacturing of a ski |
Country Status (6)
Country | Link |
---|---|
US (1) | US5449425A (en) |
EP (1) | EP0581098B1 (en) |
JP (1) | JPH06154385A (en) |
AT (1) | ATE128632T1 (en) |
DE (1) | DE69300586T2 (en) |
FR (1) | FR2694201B1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2720289A1 (en) * | 1994-05-31 | 1995-12-01 | Gaillon | Ski with transparent upper surface with decoration underneath |
FR2731159A1 (en) * | 1995-03-02 | 1996-09-06 | Dynastar Skis Sa | Ski with reinforcing in hollows in upper surface |
EP0798021A1 (en) * | 1996-03-27 | 1997-10-01 | Salomon S.A. | Snowboard surrounded by a continuous ski-edge |
EP2556864A3 (en) * | 2011-08-11 | 2013-06-12 | ATOMIC Austria GmbH | Ski or snow board and method for its manufacture |
CN104689958A (en) * | 2013-12-06 | 2015-06-10 | 通用电气公司 | Coating methods and a coated substrate |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4325091A1 (en) * | 1993-07-27 | 1995-02-02 | Uwe Emig | Ski composed of several elements |
DE4342729C2 (en) * | 1993-12-15 | 1995-10-26 | Moeller Werke Gmbh | Process for the production of molded plastic parts with lamination from decorative material |
US5888332A (en) * | 1996-09-10 | 1999-03-30 | Ciriello; Gene | Method of applying snow board surface covers |
US6105991A (en) * | 1997-11-20 | 2000-08-22 | The Burton Corporation | Core for a gliding board |
US6309586B1 (en) * | 1999-06-15 | 2001-10-30 | Jumbo Snowboards, Llc | Use of co-injection molding to produce composite parts including a molded snowboard with metal edges |
US6502850B1 (en) | 1999-10-12 | 2003-01-07 | The Burton Corporation | Core for a gliding board |
GB9924414D0 (en) * | 1999-10-16 | 1999-12-15 | New Transducers Ltd | Panels |
WO2002070761A2 (en) | 2001-03-07 | 2002-09-12 | Liquidmetal Technologies | Amorphous alloy gliding boards |
US20030215662A1 (en) * | 2002-05-15 | 2003-11-20 | John Stenke | Ornamental molding and method of manufacture |
AU2003233611A1 (en) * | 2002-05-20 | 2003-12-12 | Liquidmetal Technologies, Inc. | Foamed structures of bulk-solidifying amorphous alloys |
AUPS303202A0 (en) * | 2002-06-20 | 2002-07-11 | Pacific Biolink Pty Limited | Protein based oral lubricant |
WO2004012620A2 (en) * | 2002-08-05 | 2004-02-12 | Liquidmetal Technologies | Metallic dental prostheses made of bulk-solidifying amorphous alloys and method of making such articles |
DE10236959B4 (en) * | 2002-08-13 | 2004-10-07 | Leonhard Kurz Gmbh & Co. Kg | Multi-layer film for the construction of skis |
EP1534175B1 (en) * | 2002-08-19 | 2011-10-12 | Crucible Intellectual Property, LLC | Medical implants made of amorphous alloys |
US7500987B2 (en) * | 2002-11-18 | 2009-03-10 | Liquidmetal Technologies, Inc. | Amorphous alloy stents |
FR2847483B1 (en) * | 2002-11-22 | 2004-12-24 | Rossignol Sa | SLIDING BOARD AND METHOD FOR MANUFACTURING SUCH A SLIDING BOARD |
US7412848B2 (en) * | 2002-11-22 | 2008-08-19 | Johnson William L | Jewelry made of precious a morphous metal and method of making such articles |
KR100525946B1 (en) * | 2002-11-28 | 2005-11-03 | 전두찬 | The manufacturing process of phylon unnecessary UV treatment process |
WO2005034590A2 (en) * | 2003-02-21 | 2005-04-14 | Liquidmetal Technologies, Inc. | Composite emp shielding of bulk-solidifying amorphous alloys and method of making same |
WO2004083472A2 (en) | 2003-03-18 | 2004-09-30 | Liquidmetal Technologies, Inc. | Current collector plates of bulk-solidifying amorphous alloys |
US7575040B2 (en) * | 2003-04-14 | 2009-08-18 | Liquidmetal Technologies, Inc. | Continuous casting of bulk solidifying amorphous alloys |
WO2004091828A1 (en) * | 2003-04-14 | 2004-10-28 | Liquidmetal Technologies, Inc. | Continuous casting of foamed bulk amorphous alloys |
FR2854334A1 (en) * | 2003-05-02 | 2004-11-05 | Gaillon | Sliding surface for ski, snowboard or similar is made from or has layer of reticulated polyethylene. |
WO2005053803A1 (en) * | 2003-11-24 | 2005-06-16 | Tyrolia Technology Gmbh | Sliding board, in particular skis and the method for the production thereof |
CN100463794C (en) * | 2003-12-10 | 2009-02-25 | 玉环县苏泊尔橡塑制品有限公司 | Process for combining phenolic plastics with elastic bodies |
US7413698B2 (en) * | 2004-06-01 | 2008-08-19 | Novo Foam Products Llc | Method of molding load-bearing articles from compressible cores and heat malleable coverings |
WO2006045106A1 (en) * | 2004-10-15 | 2006-04-27 | Liquidmetal Technologies, Inc | Au-base bulk solidifying amorphous alloys |
US20090114317A1 (en) * | 2004-10-19 | 2009-05-07 | Steve Collier | Metallic mirrors formed from amorphous alloys |
CN101496223B (en) | 2005-02-17 | 2017-05-17 | 科卢斯博知识产权有限公司 | Antenna structures made of bulk-solidifying amorphous alloys |
US7416401B2 (en) * | 2005-06-13 | 2008-08-26 | The Boeing Company | Lightweight composite fairing bar and method for manufacturing the same |
FR2947182B1 (en) * | 2009-06-26 | 2011-09-09 | Salomon Sas | BOARD OF SLIDERS |
US11371108B2 (en) | 2019-02-14 | 2022-06-28 | Glassimetal Technology, Inc. | Tough iron-based glasses with high glass forming ability and high thermal stability |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2627700A1 (en) * | 1988-02-25 | 1989-09-01 | Salomon Sa | METHOD FOR ASSEMBLING A SKI BY WELDING, AND SKI STRUCTURE THUS OBTAINED |
EP0428886A1 (en) * | 1989-11-22 | 1991-05-29 | Salomon S.A. | Method of fabrication of an injected ski and structure of a ski |
EP0429851A1 (en) * | 1989-11-22 | 1991-06-05 | Salomon S.A. | Process for preparing a ski by sticking, and ski structure obtained by this process |
EP0430824A2 (en) * | 1989-11-23 | 1991-06-05 | Skis Rossignol S.A. | Method of producing a complex moulded structure, in particular ski and complex moulded structure so obtained |
EP0442262A1 (en) * | 1990-02-15 | 1991-08-21 | Salomon S.A. | Ski and process for manufacturing same by moulding |
EP0428887B1 (en) * | 1989-11-22 | 1994-10-05 | Salomon S.A. | Process for producing a bonded ski |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3771805A (en) * | 1970-02-19 | 1973-11-13 | Nippon Musical Instruments Mfg | Ski body |
JPS5137741A (en) * | 1974-09-25 | 1976-03-30 | Nippon Musical Instruments Mfg | SUKIINOSEIZOHO |
JPS53734A (en) * | 1976-06-23 | 1978-01-06 | Nippon Gakki Seizo Kk | Ski plate |
JPS59166174A (en) * | 1983-02-04 | 1984-09-19 | 美津濃株式会社 | Ski board |
JPS6161824A (en) * | 1984-08-31 | 1986-03-29 | Toyoda Gosei Co Ltd | Method of bending work of resin extruded article |
US4731038A (en) * | 1985-05-01 | 1988-03-15 | Kendal Hancock | Preformed core and molded product and method of manufacture |
FR2620628B2 (en) * | 1987-02-27 | 1994-08-19 | Salomon Sa | PROCESS FOR REALIZING A SKI AND SKIING DOES ACCORDING TO THIS PROCESS |
US4953885A (en) * | 1987-10-21 | 1990-09-04 | Norton Company | Ski construction |
FR2629352B1 (en) * | 1988-03-29 | 1990-12-28 | Salomon Sa | PROCESS FOR REALIZING A SKI, AND SKI REALIZED ACCORDING TO THIS PROCESS |
US4973371A (en) * | 1988-07-28 | 1990-11-27 | Davidson Textron Inc. | Method for forming foamed parts and a multiple layer release adhesion paper therefor |
-
1992
- 1992-07-31 FR FR9209735A patent/FR2694201B1/en not_active Expired - Fee Related
-
1993
- 1993-07-12 EP EP93111116A patent/EP0581098B1/en not_active Expired - Lifetime
- 1993-07-12 DE DE69300586T patent/DE69300586T2/en not_active Expired - Fee Related
- 1993-07-12 AT AT93111116T patent/ATE128632T1/en not_active IP Right Cessation
- 1993-07-30 JP JP5189680A patent/JPH06154385A/en active Pending
- 1993-07-30 US US08/099,537 patent/US5449425A/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2627700A1 (en) * | 1988-02-25 | 1989-09-01 | Salomon Sa | METHOD FOR ASSEMBLING A SKI BY WELDING, AND SKI STRUCTURE THUS OBTAINED |
EP0428886A1 (en) * | 1989-11-22 | 1991-05-29 | Salomon S.A. | Method of fabrication of an injected ski and structure of a ski |
EP0429851A1 (en) * | 1989-11-22 | 1991-06-05 | Salomon S.A. | Process for preparing a ski by sticking, and ski structure obtained by this process |
EP0428887B1 (en) * | 1989-11-22 | 1994-10-05 | Salomon S.A. | Process for producing a bonded ski |
EP0430824A2 (en) * | 1989-11-23 | 1991-06-05 | Skis Rossignol S.A. | Method of producing a complex moulded structure, in particular ski and complex moulded structure so obtained |
EP0442262A1 (en) * | 1990-02-15 | 1991-08-21 | Salomon S.A. | Ski and process for manufacturing same by moulding |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2720289A1 (en) * | 1994-05-31 | 1995-12-01 | Gaillon | Ski with transparent upper surface with decoration underneath |
FR2731159A1 (en) * | 1995-03-02 | 1996-09-06 | Dynastar Skis Sa | Ski with reinforcing in hollows in upper surface |
EP0798021A1 (en) * | 1996-03-27 | 1997-10-01 | Salomon S.A. | Snowboard surrounded by a continuous ski-edge |
FR2746662A1 (en) * | 1996-03-27 | 1997-10-03 | Salomon Sa | SKI BOARD SURROUNDED BY A CONTINUOUS SQUARE |
US6059308A (en) * | 1996-03-27 | 2000-05-09 | Salomon S.A. | Gliding board surrounded with a continuous running edge, and method of making same |
EP2556864A3 (en) * | 2011-08-11 | 2013-06-12 | ATOMIC Austria GmbH | Ski or snow board and method for its manufacture |
CN104689958A (en) * | 2013-12-06 | 2015-06-10 | 通用电气公司 | Coating methods and a coated substrate |
Also Published As
Publication number | Publication date |
---|---|
EP0581098B1 (en) | 1995-10-04 |
DE69300586T2 (en) | 1996-05-15 |
FR2694201B1 (en) | 1994-09-23 |
US5449425A (en) | 1995-09-12 |
ATE128632T1 (en) | 1995-10-15 |
FR2694201A1 (en) | 1994-02-04 |
JPH06154385A (en) | 1994-06-03 |
DE69300586D1 (en) | 1995-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0581098B1 (en) | Procedure for manufacturing of a ski | |
EP0428885B1 (en) | Process for making a ski by injection, and ski structure | |
EP0428886B1 (en) | Method of fabrication of an injected ski and structure of a ski | |
EP0042782B1 (en) | Protective helmet with a shell made of injection moulded thermoplastic material, and method of manufacturing said helmet | |
EP0770472B1 (en) | Process for manufacturing a panel in a composite material by resin transfer moulding | |
EP1642706B1 (en) | Very hard material sports boot | |
EP0442262B1 (en) | Ski and process for manufacturing same by moulding | |
EP0865892B1 (en) | Process for manufacturing precision hollow articles made of composite material | |
EP0526353B1 (en) | Method for manufacturing a complex moulded structure, especially a ski, and structure obtained with such a method | |
EP0650747A1 (en) | Method for molding a ski | |
WO2006024753A1 (en) | Method of producing a device for sliding on snow or ice and structure of device thus produced | |
EP1884268B1 (en) | Method of manufacturing a glide board | |
EP0558009B1 (en) | Process of manufacturing a ski | |
FR2683763A1 (en) | Method of obtaining articles, ready for use, made of composite materials, by moulding | |
FR2611519A1 (en) | Method for producing a ski and ski produced according to this method | |
FR2679820A1 (en) | Process for the manufacture of a composite (complex) moulded structure, especially a ski, and composite moulded structure thus obtained | |
EP2620067A1 (en) | Sports footwear with parts made of a very rigid material | |
FR2677918A1 (en) | Process for the manufacture of a composite (complex) moulded structure including a foam core made of plastic and ski obtained by the implementation of this process | |
FR2863582A1 (en) | Sports board manufacturing procedure uses foam core blank thermoformed and compressed before covering with outer skin | |
FR2640909A1 (en) | Reinforced thermoformed shell and its method of manufacture | |
EP1095840B1 (en) | Steering wheel for motor vehicle and method for its manufacture | |
FR2721525A1 (en) | Ski moulding process allowing for ski surface of variable shape | |
FR3127151A1 (en) | Mould, in particular for producing a composite part, and process for manufacturing such a mold | |
FR2683731A1 (en) | Method for manufacturing a complex moulded structure and, in particular, a ski | |
EP0712721A1 (en) | Method for manufacturing bonded skis including a wet preparation step of the reinforcement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT DE FR |
|
17P | Request for examination filed |
Effective date: 19940722 |
|
17Q | First examination report despatched |
Effective date: 19950123 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT DE FR |
|
REF | Corresponds to: |
Ref document number: 128632 Country of ref document: AT Date of ref document: 19951015 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 69300586 Country of ref document: DE Date of ref document: 19951109 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20030711 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20030724 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040712 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050201 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20070710 Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20090331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080731 |