EP0577304B1 - Stereoselective anion glycosylation process - Google Patents

Stereoselective anion glycosylation process Download PDF

Info

Publication number
EP0577304B1
EP0577304B1 EP93304822A EP93304822A EP0577304B1 EP 0577304 B1 EP0577304 B1 EP 0577304B1 EP 93304822 A EP93304822 A EP 93304822A EP 93304822 A EP93304822 A EP 93304822A EP 0577304 B1 EP0577304 B1 EP 0577304B1
Authority
EP
European Patent Office
Prior art keywords
group
halo
alkyl
deoxy
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93304822A
Other languages
German (de)
French (fr)
Other versions
EP0577304A1 (en
Inventor
Ta-Sen Chou
Cora Sue Grossman
Larry Wayne Hertel
Richard Elmer Holmes
Charles David Jones
Thomas Edward Mabry
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eli Lilly and Co
Original Assignee
Eli Lilly and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26721394&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0577304(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Eli Lilly and Co filed Critical Eli Lilly and Co
Publication of EP0577304A1 publication Critical patent/EP0577304A1/en
Application granted granted Critical
Publication of EP0577304B1 publication Critical patent/EP0577304B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals
    • C07H19/073Pyrimidine radicals with 2-deoxyribosyl as the saccharide radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/048Pyridine radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/056Triazole or tetrazole radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/12Triazine radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/16Purine radicals
    • C07H19/173Purine radicals with 2-deoxyribosyl as the saccharide radical

Definitions

  • the invention relates to a stereoselective anion glycosylation process for preparing 2'-deoxyfluoro- ⁇ -nucleosides.
  • a critical step in the synthesis of 2'-deoxyfluoronucleosides is the condensation or glycosylation of the nucleobase and carbohydrate to form a N-glycoside bond.
  • processes for synthesis of 2'-deoxynucleosides are typically non-stereoselective forming mixtures of ⁇ and ⁇ nucleosides.
  • U.S. Patent 4,526,988 did not stereoselectively produce 2-deoxy-2,2-difluoro- ⁇ -nucleosides but instead produced a 4:1 ⁇ to ⁇ anomer ratio of 2-deoxy-2,2-difluoronucleoside.
  • Even optimizing the protecting groups could not increase the ⁇ to ⁇ ratio beyond 1:1; see U.S. Patent No. 4,965,374 which utilized benzoyl protecting groups.
  • R is a nucleobase selected from the group consisting of wherein R 1 is selected from the group consisting of hydrogen, alkyl, substituted alkyl and halo; R 2 is selected from the group consisting of hydroxy, halo, cyano, azido, primary amino and secondary amino; R 3 is selected from the group consisting of hydrogen, alkyl, substituted alkyl and halo; R 4 , R 5 and R 6 are independently selected from the group consisting of hydrogen, -OH, -NH 2 , N(alkyl), halo, cyano, azido, alkoxy and thioalkyl; R 7 is selected from the group consisting of hydrogen, halo, cyano, alkyl, alkoxy, alkoxycarbonyl, thioalkyl,
  • xylenes alone or in combination refers to all isomers of xylene and mixtures thereof.
  • lactol alone or in combination refers to a 2-deoxy-2,2-difluoro-D-ribofuranose or 2-deoxy-2-fluoro-D-ribofuranose.
  • carbohydrate alone or in combination refers to a lactol wherein the hydroxy group at the C-1 position has been replaced by a desirable leaving group.
  • halo- alone or in combination refers to chloro, iodo, fluoro and bromo.
  • alkyl alone or in combination refers to straight, cyclic and branched chain aliphatic hydrocarbon groups which contain up to 7 carbon atoms and more preferably contain up to 4 carbon atoms such as, methyl, ethyl, n-propyl, isopropyl, n-butyl, t-butyl, n-pentyl, n-hexyl, 3-methylpentyl groups and the like or substituted straight and branched chain aliphatic hydrocarbons such as chloroethyl, 1,2-dichloroethyl and the like.
  • alkoxy alone or in combination refers to the general formula AO; wherein A is alkyl.
  • aryl alone or in combination refers to carbocyclic or heterocyclic groups such as phenyl, naphthyl, thienyl and substituted derivatives thereof.
  • thioalkyl alone or in combination refers to the general formula BS; wherein B is alkyl or hydrogen.
  • esteer alone or in combination refers to the general formula EOOC; wherein E is alkyl or aryl.
  • aromatic alone or in combination refers to benzene like structures containing (4n+2) ⁇ delocalized electrons.
  • sulfonate or “sulfonyloxy” alone or in combination refer to the general formula GSO 3 ; wherein G is alkyl, substituted alkyl, aryl or substituted aryl.
  • substituted alone or in combination refers to substitution by at least one or more of the groups selected from cyano, halo, carboalkoxy, toluoyl, nitro, alkoxy, hydroxy and dialkylamino.
  • anomer enriched alone or in combination refers to an anomeric mixture wherein the ratio of a specified anomer is greater than 1:1 and includes a substantially pure anomer.
  • b anomer enriched 2'-deoxy-2',2'-difluoronucleosides and 2'-deoxy-2'-fluoronucleosides of formula (I) are prepared by reacting an ⁇ anomer enriched carbohydrate of formula (II) with at least a molar equivalent of a nucleobase salt, in an inert solvent as shown by the following reaction scheme: wherein X, T, R' and R are as defined above.
  • ⁇ anomer enriched nucleosides of the present invention are derived from ⁇ anomer enriched carbohydrates.
  • lactol starting materials suitable for use in the present anion glycosylation process are commonly known in the art and can be readily synthesized by standard procedures commonly employed by those of ordinary skill in the art.
  • U.S. Patent 4,526,988 teaches the synthesis of 2,2-difluoro-2-deoxy-D-ribofuranoses having the formula wherein X is a hydroxy protecting group.
  • Reichman, et al., Carbohydr . Res ., 42 , 233 (1975) teaches the synthesis of 2-deoxy-2-fluoro-D-ribofuranoses of the formula wherein X is a hydroxy protecting group.
  • a preferred embodiment of the present invention employs 2-deoxy-2,2-difluoro-D-ribofuranose-3,5-dibenzoate as the lactol starting material.
  • Glycosylation reactions typically require protecting the hydroxy groups of the lactol of formulas (III) and (IV) to prevent the hydroxy groups from reacting with the nucleobase derivative, or being decomposed in some manner.
  • Hydroxy protecting groups (X) suitable for use in the present glycosylation process may be chosen from known protecting groups used in synthetic organic chemistry. The hydroxy protecting group selected is preferably capable of being efficiently placed on the lactol and easily removed therefrom once the glycosylation reaction is completed. Hydroxy protecting groups known in the art are described in Chapter 3 of Protective Groups in Organic Chemistry , McOmie Ed., Plenum Press, New York (1973), and Chapter 2 of Protective Groups in Organic Synthesis , Green, John, J.
  • ester forming groups such as formyl, acetyl, substituted acetyl, propionyl, butanoyl, pivalamido, 2-chloroacetyl, benzoyl, substituted benzoyl, phenoxycarbonyl, methoxyacetyl; carbonate derivatives such as phenoxycarbonyl, ethoxycarbonyl, t-butoxycarbonyl, vinyloxycarbonyl, 2,2,2-trichloroethoxycarbonyl and benzyloxycarbonyl; alkyl ether forming groups such as benzyl, diphenylmethyl, triphenylmethyl, t-butyl, methoxymethyl, tetrahydropyranyl, allyl, tetrahydrothienyl, 2-methoxyethoxy methyl; and silyl ether forming groups such as trialkylsilyl, trimethylsilyl, isopropyldialky
  • an appropriate leaving group is stereoselectively attached to the lactol at the C-1 position to activate the lactol and generate the ⁇ anomer enriched carbohydrate of formula (II).
  • the leaving group is iodo.
  • nucleobases employed herein are commonly known to organic chemist and no discussion of their synthesis is necessary. However, in order to be useful in the present glycosylation process the nucleobases or their tautomeric equivalents bearing amino or hydroxy groups preferably contain protecting groups such as amino protecting groups (W) and/or hydroxy protecting groups (Z), depending on the nature of the nucleobase derivative selected.
  • the protecting group prevents the hydroxy or amino groups from providing a competing reaction site for the ⁇ anomer enriched carbohydrate of formula (II).
  • the protecting groups are attached to the nucleobase before it is reacted with the ⁇ anomer enriched carbohydrate of formula (II) and are removable subsequent thereto.
  • a procedure for protecting nucleobases is described in U.S. Patent 4,526,988.
  • Preferred amino protecting groups (W) for pyrimidine nucleobases are selected from the group consisting of silyl ether forming groups such as trialkylsilyl, t-butyldialkylsilyl and t-butyldiarylsilyl; carbamates such as t-butoxycarbonyl, benzyloxycarbonyl, 4-methoxybenzyloxycarbonyl, and 4-nitrobenzyloxycarbonyl; formyl, acetyl, benzoyl and pivalamido; ether forming groups such as methoxymethyl, t-butyl, benzyl, allyl and tetrahydropyranyl; more preferred is trimethylsilyl.
  • silyl ether forming groups such as trialkylsilyl, t-butyldialkylsilyl and t-butyldiarylsilyl
  • carbamates such as t-butoxycarbonyl, benzyloxycarbonyl,
  • Preferred amino protecting groups (W) for purine nucleobases are selected from the group consisting of alkylcarboxamides, haloalkylcarboxamides and arylcarboxamides such as 2-trialkylsilylethoxymethyl, 4-methoxybenzyl, 3,4-dimethoxybenzyl, t-butyl, phthalamido, tetrahydropyranyl, tetrahydrofuranyl, methoxymethyl ether, methoxythiomethyl, trityl, pivalamido, t-butyldimethylsilyl, t-hexyldimethylsilyl, triisopropylsilyl, trichloroethoxycarbonyl, trifluoroacetyl, naphthoyl, formyl, acetyl; sulfonamides such as alkylsulfonamido and arylsulfonamido, and more preferred is pival
  • the pivalamido protecting group increases the solubility of notoriously insoluble purine nucleobase derivatives and directs the N-glycosidic coupling of the purine base to the 9 regioisomer as opposed to the 7 regioisomer.
  • Preferred hydroxy protecting groups (Z) for pyrimidine nucleobases are selected from silyl ether forming groups such as trialkylsilyl; carbamates such as t-butoxycarbonyl, benzyloxycarbonyl, 4-methoxybenzyloxycarbonyl and 4-nitrobenzyloxycarbonyl; carbocyclic esters such as formyl, acetyl, and pivalamido; preferred is trimethylsilyl.
  • Preferred hydroxy protecting groups (Z) for purine nucleobases are selected from the group consisting of ether forming groups such as benzyl, t-butyl, trityl, tetrahydropyranyl, tetrahydrofuranyl, methoxymethyl, trityl; esters such as formyl, acetylpropionyl, pivalamido, benzoyl, substituted benzoyl; carbonates such as carbobenzoxy, t-butoxycarbonyl, carbethoxy, vinyloxycarbonyl; carbamates, such as N,N-dialkylcarbamoyl; trialkylsilyl ethers such as t-butyltrimethylsilyl, t-hexyldimethylsilyl, triisopropylsilyl; more preferred is pivalamido.
  • ether forming groups such as benzyl, t-butyl, trityl, tetrahydr
  • the protecting group itself may be protected.
  • any keto oxygen atoms on the nucleobases it is often advisable to convert any keto oxygen atoms on the nucleobases to a protected enol form. This makes the nucleobases more nucleophilic and enhances the reactivity of the nucleobase with the ⁇ anomer enriched carbohydrate of formula (II). It is most convenient to enolize the keto oxygens and provide silyl protecting groups for them.
  • the nucleobases employed in the present process are converted to anions (salts) to further enhance their reactivity with the ⁇ anomer enriched carbohydrate of formula (II).
  • the formation of the nucleobase anions involve adding a base to the nucleobase in a solvent.
  • the base may be selected from the group consisting of sodium t-butoxide, potassium hydroxide, potassium-t-butoxide, potassium ethoxide, potassium methoxide, sodium ethoxide, sodium methoxide, sodium hydride, lithium hydride and potassium hydride.
  • the base may be selected from trialkylamine or tetraalkylammonium.
  • the solvent may be selected from the group consisting of acetonitrile, dimethylformamide, dimethylacetamide, 1,3-dimethyl-2-imidazolidinone, N-methylpyrrolidinone, sulfolane, dimethylsulfoxide, and mixtures thereof.
  • the solvent used to prepare the nucleobase may be removed prior to the glycosylation reaction or admixed with the reaction solvent, provided the admixture is inert to the glycosylation reaction.
  • reaction solvents suitable for use in the present glycosylation process must be inert to the glycosylation reaction conditions.
  • Preferred reaction solvents are selected from the group consisting of dichloromethane, 1,2-dichloroethane, dichlorofluoromethane, acetone, toluene, anisole, chlorobenzene, dimethylformamide, acetonitrile, N,N-dimethylacetamide, methanol, tetrahydrofuran, ethyl acetate, dimethoxymethane, 1,2-dimethoxyethane, dimethylsulfoxide, and mixtures thereof.
  • nucleobase salt at least an equimolar amount of nucleobase salt is employed, relative to the total amount of carbohydrate employed. However, more preferably an excess of nucleobase salt is used in an amount from greater than 1 equivalent to about 10 equivalents and more preferably from about 2 equivalents to about 4 equivalents.
  • the glycosylation reaction temperature employed in the present process is from 23°C to 170°C; more preferably from 23°C to 130°C, and most preferably 23°C to 50°C.
  • the glycosylation reaction is preferably carried out under atmospheric conditions and is substantially complete in about 5 minutes to about 6 hours.
  • reaction between the ⁇ anomer enriched carbohydrate of formula (II) and the nucleobase salt be carried out in a dry atmosphere, e.g. in the presence of dry air, nitrogen, or argon. This is because certain nucleobase salts are moisture sensitive.
  • the ⁇ anomer enriched nucleosides are prepared in a ⁇ to ⁇ anomer ratio of greater than 1:1 to about 10:1.
  • the final phase of the reaction sequence is the removal of the protecting groups X, Z and/or W from the blocked nucleoside of formula (II).
  • the same anomeric ratio of unprotected nucleoside is obtained by removal of the protecting groups.
  • silyl and silyl-amino protecting groups are easily cleaved by use of a protic solvent, such as water or an alcohol.
  • the acyl protecting groups such as benzoyl and the acyl-amino protecting groups, are removed by hydrolysis with a strong base at a temperature from about 0°C to about 100°C.
  • Strong or moderately strong bases suitable for use in this reaction are bases which have a pKa (at 25°C) of about 8.5 to about 20.0.
  • Such bases include alkali metal hydroxides such as sodium or potassium hydroxide; alkali metal alkoxides such as sodium methoxide or potassium t -butoxide; alkali metal amides; amines such as diethylamine, hydroxylamine, ammonia and the like; and other common bases such as hydrazine and the like. At least one equivalent of base is needed for each protecting group.
  • the acyl protecting groups can also be removed with acid catalysts, such as methanesulfonic acid, hydrochloric acid, hydrobromic acid, sulfuric acid, or with acidic ion exchange resins. It is preferred to carry out such hydrolysis at relatively high temperature, such as the reflux temperature of the mixture, but temperatures as low as ambient may be used when particularly strong acids are used.
  • acid catalysts such as methanesulfonic acid, hydrochloric acid, hydrobromic acid, sulfuric acid, or with acidic ion exchange resins. It is preferred to carry out such hydrolysis at relatively high temperature, such as the reflux temperature of the mixture, but temperatures as low as ambient may be used when particularly strong acids are used.
  • ether protecting groups are carried out by known methods, for example, with ethanethiol and aluminum chloride.
  • the t -butyldimethylsilyl protecting group requires acid conditions, such as contact with gaseous hydrogen halide, for its removal.
  • Removal of the protecting groups may be conveniently carried out in alcoholic solvents, especially aqueous alkanols such as methanol.
  • the deblocking reaction may also be carried out in any convenient solvent, such as polyols including ethylene glycol, ethers such as tetrahydrofuran, ketones such as acetone and methyl ethyl ketone, or dimethylsulfoxide.
  • the deblocking reaction employs ammonia to remove a benzoyl hydroxy-protecting group at a temperature of about 10°C. It is preferable, however, to use an excess of base in this reaction, although the amount of excess base used is not crucial.
  • the ⁇ anomer enriched nucleosides of the present invention may be extracted and/or isolated from the reaction mixture by the procedure described in U.S. Patent 4,965,374, Chou, or by conventional methods known in the art such as extraction, crystallization, etc.
  • N-pivaloylcytosine (0.098 g, 0.5 mmol) was suspended in acetonitrile (1.5 ml) and treated with potassium t-butoxide (0.062 g, 0.55 mmol) and stirred under a nitrogen atmosphere at 25°C to form the potassium salt of N-pivaloylcytosine.
  • 1,2,4-triazole-3-carbonitrile (0.101 g, 1.03 mmol) was suspended in acetonitrile (10 ml) and treated with sodium hydride (0.0445 g, 1.12 mmol) and stirred under a nitrogen atmosphere at 25°C to form the corresponding sodium salt of the triazole.
  • 2-deoxy-2,2-difluoro-D-ribofuranosyl-3,5-dibenzoyl-1- ⁇ -bromo (0.451 g, 1.02 mmol), in acetonitrile (10 ml), was added to the above salt and the entire mixture was reacted for 78 hours at 82°C to form a blocked nucleoside.
  • HPLC analysis confirmed completion of the reaction and indicated a beta to alpha anomeric ratio of 1.2:1.
  • 1,2,4-triazole-3-carbonitrile (0.272 g, 2.89 mmol) was suspended in acetonitrile (20 ml), treated with sodium hydride (0.094 g, 2.7 mmol) and stirred under a nitrogen atmosphere at 25°C to form the sodium salt of the triazole.
  • 6-cyanopurine (0.92 g, 6.35 mmol) was suspended in N,N-dimethylacetamide (12 ml) and treated with sodium hydride (0.396 g, 8.25 mmol) and stirred under a nitrogen atmosphere at 25°C to form the sodium salt of 6-cyanopurine.
  • 2,6-(dipivalamido)diaminopurine (0.159 g, 0.5 mmol) was suspended in acetonitrile (1.5 ml) and treated with potassium t-butoxide (0.062 g, 0.55 mmol) and stirred under a nitrogen atmosphere at 25°C to form the potassium salt of 2,6-(dipivalamido)diaminopurine.
  • N-benzylcytosine (0.099 g, 0.493 mmol) was suspended in N,N-dimethylacetamide (2.0 ml) and treated with sodium hydride (0.0256 g, 0.534 mmol) and stirred under a nitrogen atmosphere at 25°C to form the sodium salt of N-benzylcytosine.
  • Ethyl 1,2,4-triazole-3-carboxylate (0.723 g, 5.13 mmol) was suspended in N,N-dimethylacetamide (2.5 ml), treated with sodium hydride (0.123 g, 5.13 mmol) and stirred under a nitrogen atmosphere at 25°C to form the sodium salt of the triazole.
  • the crude reaction mixture was purified by removing the solvent under reduced pressure and employing column chromatography (silica gel, toluene/ethyl acetate 9:1).
  • the combined theoretical yield of alpha and beta regioisomers (A and B below) of blocked nucleosides was 67 percent.
  • the product was extracted by adding ethyl acetate and brine.
  • the organic layer was washed successively with 1N HCl, saturated sodium bicarbonate solution, H 2 O, and brine.
  • the organic layer was then dried over sodium sulfate and evaporated in vacuo.
  • the dibenzoyl intermediate (.49 mmol, 260 mg) was deprotected by suspending it in methanol at 0°C and saturating the mixture with anhydrous ammonia. The resulting solution was warmed to room temperature and stirred overnight. The solution was then purged with nitrogen and evaporated. The titled product was then purified by washing with a non-polar solvent such as methylene chloride to remove the benzoate by products. The beta anomer was separated by reversed phase HPLC.

Description

  • The invention relates to a stereoselective anion glycosylation process for preparing 2'-deoxyfluoro-β -nucleosides.
  • The continued interest in the synthesis of 2'-deoxyfluoronucleosides and their analogues is predicated on their successful use as therapeutic agents for treating viral and cancerous diseases. A compound of particular interest is gemcitabine; see European Patent Specification No. 211354 and U.S. Patent No. 4,526,988. Since these compounds are β nucleosides, there is a need to provide such compounds in high yield.
  • A critical step in the synthesis of 2'-deoxyfluoronucleosides is the condensation or glycosylation of the nucleobase and carbohydrate to form a N-glycoside bond. However, processes for synthesis of 2'-deoxynucleosides are typically non-stereoselective forming mixtures of α and β nucleosides. For instance, U.S. Patent 4,526,988 did not stereoselectively produce 2-deoxy-2,2-difluoro-β -nucleosides but instead produced a 4:1 α to β anomer ratio of 2-deoxy-2,2-difluoronucleoside. Even optimizing the protecting groups could not increase the α to β ratio beyond 1:1; see U.S. Patent No. 4,965,374 which utilized benzoyl protecting groups.
  • The synthesis of 2'-fluoroarabinofuranosyl compounds is described in EP-A-428109 and WO-A-9201700.
  • According to the present invention there is provided a stereoselective anion glycosylation process for preparing a β anomer enriched nucleoside of the formula
    Figure imgb0001
    wherein T is selected from fluoro and hydrogen and R is a nucleobase selected from the group consisting of
    Figure imgb0002
    Figure imgb0003
    wherein R1 is selected from the group consisting of hydrogen, alkyl, substituted alkyl and halo; R2 is selected from the group consisting of hydroxy, halo, cyano, azido, primary amino and secondary amino; R3 is selected from the group consisting of hydrogen, alkyl, substituted alkyl and halo; R4, R5 and R6 are independently selected from the group consisting of hydrogen, -OH, -NH2, N(alkyl), halo, cyano, azido, alkoxy and thioalkyl; R7 is selected from the group consisting of hydrogen, halo, cyano, alkyl, alkoxy, alkoxycarbonyl, thioalkyl, thiocarboxamide and carboxamide; Q is selected from the group consisting of CH, CR8 and N; wherein R8 is halo, carboxamide, thiocarboxamide, alkoxycarbonyl and nitrile; comprising reacting an α anomer enriched fluorocarbohydrate of the formula
    Figure imgb0004
    wherein T is as defined above; X is a hydroxy protecting group; with at least a molar equivalent of a nucleobase salt (R') selected from the group consisting of
    Figure imgb0005
    Figure imgb0006
    wherein R1 through R7 and Q are as defined above; Z is a hydroxy protecting group; W is an amino protecting group; and M+ is a cation; in an inert solvent; and deblocking to form a compound of formula (I).
  • Throughout this document, all temperatures are in degrees Celsius, all proportions, percentages and the like, are in weight units and all mixtures are in volume units, except where otherwise indicated. Anomeric mixtures are expressed as a weight/weight ratio or as a percent. The term "xylenes" alone or in combination refers to all isomers of xylene and mixtures thereof. The term "lactol" alone or in combination refers to a 2-deoxy-2,2-difluoro-D-ribofuranose or 2-deoxy-2-fluoro-D-ribofuranose. The term "carbohydrate" alone or in combination refers to a lactol wherein the hydroxy group at the C-1 position has been replaced by a desirable leaving group. The term "halo-" alone or in combination refers to chloro, iodo, fluoro and bromo. The term "alkyl" alone or in combination refers to straight, cyclic and branched chain aliphatic hydrocarbon groups which contain up to 7 carbon atoms and more preferably contain up to 4 carbon atoms such as, methyl, ethyl, n-propyl, isopropyl, n-butyl, t-butyl, n-pentyl, n-hexyl, 3-methylpentyl groups and the like or substituted straight and branched chain aliphatic hydrocarbons such as chloroethyl, 1,2-dichloroethyl and the like. The term "alkoxy" alone or in combination refers to the general formula AO; wherein A is alkyl. The term "aryl" alone or in combination refers to carbocyclic or heterocyclic groups such as phenyl, naphthyl, thienyl and substituted derivatives thereof. The term "thioalkyl" alone or in combination refers to the general formula BS; wherein B is alkyl or hydrogen. The term "ester" alone or in combination refers to the general formula EOOC; wherein E is alkyl or aryl. The term "aromatic" alone or in combination refers to benzene like structures containing (4n+2) π delocalized electrons. The terms "sulfonate" or "sulfonyloxy" alone or in combination refer to the general formula GSO3; wherein G is alkyl, substituted alkyl, aryl or substituted aryl. The term "substituted" alone or in combination refers to substitution by at least one or more of the groups selected from cyano, halo, carboalkoxy, toluoyl, nitro, alkoxy, hydroxy and dialkylamino. The phrase "anomer enriched" alone or in combination refers to an anomeric mixture wherein the ratio of a specified anomer is greater than 1:1 and includes a substantially pure anomer.
  • According to the present anion glycosylation process, b anomer enriched 2'-deoxy-2',2'-difluoronucleosides and 2'-deoxy-2'-fluoronucleosides of formula (I) are prepared by reacting an α anomer enriched carbohydrate of formula (II) with at least a molar equivalent of a nucleobase salt, in an inert solvent as shown by the following reaction scheme:
    Figure imgb0007
    wherein X, T, R' and R are as defined above.
  • The glycosylation reaction proceeds via SN2 displacement. Therefore, β anomer enriched nucleosides of the present invention are derived from α anomer enriched carbohydrates.
  • The lactol starting materials suitable for use in the present anion glycosylation process are commonly known in the art and can be readily synthesized by standard procedures commonly employed by those of ordinary skill in the art. For example, U.S. Patent 4,526,988 teaches the synthesis of 2,2-difluoro-2-deoxy-D-ribofuranoses having the formula
    Figure imgb0008
    wherein X is a hydroxy protecting group. In addition, Reichman, et al., Carbohydr. Res., 42, 233 (1975) teaches the synthesis of 2-deoxy-2-fluoro-D-ribofuranoses of the formula
    Figure imgb0009
    wherein X is a hydroxy protecting group. A preferred embodiment of the present invention employs 2-deoxy-2,2-difluoro-D-ribofuranose-3,5-dibenzoate as the lactol starting material.
  • Glycosylation reactions typically require protecting the hydroxy groups of the lactol of formulas (III) and (IV) to prevent the hydroxy groups from reacting with the nucleobase derivative, or being decomposed in some manner. Hydroxy protecting groups (X) suitable for use in the present glycosylation process may be chosen from known protecting groups used in synthetic organic chemistry. The hydroxy protecting group selected is preferably capable of being efficiently placed on the lactol and easily removed therefrom once the glycosylation reaction is completed. Hydroxy protecting groups known in the art are described in Chapter 3 of Protective Groups in Organic Chemistry, McOmie Ed., Plenum Press, New York (1973), and Chapter 2 of Protective Groups in Organic Synthesis, Green, John, J. Wiley and Sons, New York (1981); preferred are ester forming groups such as formyl, acetyl, substituted acetyl, propionyl, butanoyl, pivalamido, 2-chloroacetyl, benzoyl, substituted benzoyl, phenoxycarbonyl, methoxyacetyl; carbonate derivatives such as phenoxycarbonyl, ethoxycarbonyl, t-butoxycarbonyl, vinyloxycarbonyl, 2,2,2-trichloroethoxycarbonyl and benzyloxycarbonyl; alkyl ether forming groups such as benzyl, diphenylmethyl, triphenylmethyl, t-butyl, methoxymethyl, tetrahydropyranyl, allyl, tetrahydrothienyl, 2-methoxyethoxy methyl; and silyl ether forming groups such as trialkylsilyl, trimethylsilyl, isopropyldialkylsilyl, alkyldiisopropylsilyl, triisopropylsilyl, t-butyldialkylsilyl and 1,1,3,3-tetraisopropyldisloxanyl; carbamates such as N-phenylcarbamate and N-imidazoylcarbamate; however more preferred are benzoyl, mono-substituted benzoyl and disubstituted benzoyl, acetyl, pivaloyl, triphenylmethyl ethers, and silyl ether forming groups, especially t-butyldimethylsilyl; while most preferred is benzoyl.
  • In attaching the hydroxy protecting groups to the lactol, typical reaction conditions are employed and depend on the nature of the protecting group chosen. Suitable reaction conditions are discussed in U.S. Patent 4,526,988.
  • To obtain an efficient reaction of the nucleobase salt and carbohydrate, an appropriate leaving group is stereoselectively attached to the lactol at the C-1 position to activate the lactol and generate the α anomer enriched carbohydrate of formula (II). The leaving group is iodo.
  • The preparation of the α anomer enriched carbohydrates of formula (II) is described in our co-pending application of even date, EP-A-576 231. It requires contacting a hydroxy protected 2-deoxy-2,2-difluoro-D-ribofuranoysl-1-β-sulfonate with a halide source in an inert solvent to form α anomer enriched 2-deoxy-2,2-difluoro-D-1-α-halo-ribofuranosyl.
  • The nucleobases employed herein are commonly known to organic chemist and no discussion of their synthesis is necessary. However, in order to be useful in the present glycosylation process the nucleobases or their tautomeric equivalents bearing amino or hydroxy groups preferably contain protecting groups such as amino protecting groups (W) and/or hydroxy protecting groups (Z), depending on the nature of the nucleobase derivative selected. The protecting group prevents the hydroxy or amino groups from providing a competing reaction site for the α anomer enriched carbohydrate of formula (II). The protecting groups are attached to the nucleobase before it is reacted with the α anomer enriched carbohydrate of formula (II) and are removable subsequent thereto. A procedure for protecting nucleobases is described in U.S. Patent 4,526,988.
  • Preferred amino protecting groups (W) for pyrimidine nucleobases are selected from the group consisting of silyl ether forming groups such as trialkylsilyl, t-butyldialkylsilyl and t-butyldiarylsilyl; carbamates such as t-butoxycarbonyl, benzyloxycarbonyl, 4-methoxybenzyloxycarbonyl, and 4-nitrobenzyloxycarbonyl; formyl, acetyl, benzoyl and pivalamido; ether forming groups such as methoxymethyl, t-butyl, benzyl, allyl and tetrahydropyranyl; more preferred is trimethylsilyl. Preferred amino protecting groups (W) for purine nucleobases are selected from the group consisting of alkylcarboxamides, haloalkylcarboxamides and arylcarboxamides such as 2-trialkylsilylethoxymethyl, 4-methoxybenzyl, 3,4-dimethoxybenzyl, t-butyl, phthalamido, tetrahydropyranyl, tetrahydrofuranyl, methoxymethyl ether, methoxythiomethyl, trityl, pivalamido, t-butyldimethylsilyl, t-hexyldimethylsilyl, triisopropylsilyl, trichloroethoxycarbonyl, trifluoroacetyl, naphthoyl, formyl, acetyl; sulfonamides such as alkylsulfonamido and arylsulfonamido, and more preferred is pivalamido. Besides serving as an amino protecting group, the pivalamido protecting group increases the solubility of notoriously insoluble purine nucleobase derivatives and directs the N-glycosidic coupling of the purine base to the 9 regioisomer as opposed to the 7 regioisomer.
  • Preferred hydroxy protecting groups (Z) for pyrimidine nucleobases are selected from silyl ether forming groups such as trialkylsilyl; carbamates such as t-butoxycarbonyl, benzyloxycarbonyl, 4-methoxybenzyloxycarbonyl and 4-nitrobenzyloxycarbonyl; carbocyclic esters such as formyl, acetyl, and pivalamido; preferred is trimethylsilyl. Preferred hydroxy protecting groups (Z) for purine nucleobases are selected from the group consisting of ether forming groups such as benzyl, t-butyl, trityl, tetrahydropyranyl, tetrahydrofuranyl, methoxymethyl, trityl; esters such as formyl, acetylpropionyl, pivalamido, benzoyl, substituted benzoyl; carbonates such as carbobenzoxy, t-butoxycarbonyl, carbethoxy, vinyloxycarbonyl; carbamates, such as N,N-dialkylcarbamoyl; trialkylsilyl ethers such as t-butyltrimethylsilyl, t-hexyldimethylsilyl, triisopropylsilyl; more preferred is pivalamido.
  • In providing protecting groups to the nucleobases of the present process, the protecting group itself may be protected.
  • In addition, it is often advisable to convert any keto oxygen atoms on the nucleobases to a protected enol form. This makes the nucleobases more nucleophilic and enhances the reactivity of the nucleobase with the α anomer enriched carbohydrate of formula (II). It is most convenient to enolize the keto oxygens and provide silyl protecting groups for them.
  • The nucleobases employed in the present process are converted to anions (salts) to further enhance their reactivity with the α anomer enriched carbohydrate of formula (II). The formation of the nucleobase anions involve adding a base to the nucleobase in a solvent. The base may be selected from the group consisting of sodium t-butoxide, potassium hydroxide, potassium-t-butoxide, potassium ethoxide, potassium methoxide, sodium ethoxide, sodium methoxide, sodium hydride, lithium hydride and potassium hydride. Alternatively the base may be selected from trialkylamine or tetraalkylammonium. The solvent may be selected from the group consisting of acetonitrile, dimethylformamide, dimethylacetamide, 1,3-dimethyl-2-imidazolidinone, N-methylpyrrolidinone, sulfolane, dimethylsulfoxide, and mixtures thereof. The solvent used to prepare the nucleobase may be removed prior to the glycosylation reaction or admixed with the reaction solvent, provided the admixture is inert to the glycosylation reaction.
  • The reaction solvents suitable for use in the present glycosylation process must be inert to the glycosylation reaction conditions. Preferred reaction solvents are selected from the group consisting of dichloromethane, 1,2-dichloroethane, dichlorofluoromethane, acetone, toluene, anisole, chlorobenzene, dimethylformamide, acetonitrile, N,N-dimethylacetamide, methanol, tetrahydrofuran, ethyl acetate, dimethoxymethane, 1,2-dimethoxyethane, dimethylsulfoxide, and mixtures thereof.
  • In accordance with the present process, at least an equimolar amount of nucleobase salt is employed, relative to the total amount of carbohydrate employed. However, more preferably an excess of nucleobase salt is used in an amount from greater than 1 equivalent to about 10 equivalents and more preferably from about 2 equivalents to about 4 equivalents.
  • The glycosylation reaction temperature employed in the present process is from 23°C to 170°C; more preferably from 23°C to 130°C, and most preferably 23°C to 50°C. The glycosylation reaction is preferably carried out under atmospheric conditions and is substantially complete in about 5 minutes to about 6 hours.
  • Although not critical, it is advisiable that the reaction between the α anomer enriched carbohydrate of formula (II) and the nucleobase salt be carried out in a dry atmosphere, e.g. in the presence of dry air, nitrogen, or argon. This is because certain nucleobase salts are moisture sensitive.
  • The progress of the present glycosylation process may be followed by procedures well known to one of ordinary skill in the art such as high pressure liquid chromatography (HPLC) and thin layer chromatography (TLC) which can be used to detect the presence of nucleoside product.
  • In accordance with the present glycosylation process, the β anomer enriched nucleosides are prepared in a β to α anomer ratio of greater than 1:1 to about 10:1.
  • The final phase of the reaction sequence is the removal of the protecting groups X, Z and/or W from the blocked nucleoside of formula (II). The same anomeric ratio of unprotected nucleoside is obtained by removal of the protecting groups.
  • Most silyl and silyl-amino protecting groups are easily cleaved by use of a protic solvent, such as water or an alcohol. The acyl protecting groups, such as benzoyl and the acyl-amino protecting groups, are removed by hydrolysis with a strong base at a temperature from about 0°C to about 100°C. Strong or moderately strong bases suitable for use in this reaction are bases which have a pKa (at 25°C) of about 8.5 to about 20.0. Such bases include alkali metal hydroxides such as sodium or potassium hydroxide; alkali metal alkoxides such as sodium methoxide or potassium t-butoxide; alkali metal amides; amines such as diethylamine, hydroxylamine, ammonia and the like; and other common bases such as hydrazine and the like. At least one equivalent of base is needed for each protecting group.
  • The acyl protecting groups can also be removed with acid catalysts, such as methanesulfonic acid, hydrochloric acid, hydrobromic acid, sulfuric acid, or with acidic ion exchange resins. It is preferred to carry out such hydrolysis at relatively high temperature, such as the reflux temperature of the mixture, but temperatures as low as ambient may be used when particularly strong acids are used.
  • The removal of ether protecting groups is carried out by known methods, for example, with ethanethiol and aluminum chloride.
  • The t-butyldimethylsilyl protecting group requires acid conditions, such as contact with gaseous hydrogen halide, for its removal.
  • Removal of the protecting groups may be conveniently carried out in alcoholic solvents, especially aqueous alkanols such as methanol. However, the deblocking reaction may also be carried out in any convenient solvent, such as polyols including ethylene glycol, ethers such as tetrahydrofuran, ketones such as acetone and methyl ethyl ketone, or dimethylsulfoxide.
  • In a preferred embodiment, the deblocking reaction employs ammonia to remove a benzoyl hydroxy-protecting group at a temperature of about 10°C. It is preferable, however, to use an excess of base in this reaction, although the amount of excess base used is not crucial.
  • The β anomer enriched nucleosides of the present invention may be extracted and/or isolated from the reaction mixture by the procedure described in U.S. Patent 4,965,374, Chou, or by conventional methods known in the art such as extraction, crystallization, etc.
  • The following examples illustrate specific aspects of the present invention and are not intended to limit the scope thereof in any respect and should not be so construed.
  • Example 1 Preparation of beta-anomer enriched 1-(2'-deoxy-2',2'-difluoro-3',5'-di-O-benzoyl-D-ribofuranosyl)-4-(N-pivalamido)aminopyrimid-2-one in acetonitrile
  • N-pivaloylcytosine (0.098 g, 0.5 mmol) was suspended in acetonitrile (1.5 ml) and treated with potassium t-butoxide (0.062 g, 0.55 mmol) and stirred under a nitrogen atmosphere at 25°C to form the potassium salt of N-pivaloylcytosine.
  • 2-deoxy-2,2-difluoro-D-ribofuranosyl-3,5-dibenzoyl-1-α-iodo (0.244 g, 0.5 mmol), in acetonitrile (1.5 ml), was added to the above salt and the entire mixture was reacted for 24 hours at 60°C to form a blocked nucleoside. HPLC analysis confirmed completion of the reaction and indicated a beta to alpha anomeric ratio of 1.13:1.
  • Comparative Example 2 Preparation of beta-anomer enriched 1-(2'-deoxy-2',2'-difluoro-3',5'-di-O-benzoyl-D-ribofuranosyl)-1,2,4-triazole-3-carbonitrile in acetonitrile
  • 1,2,4-triazole-3-carbonitrile (0.101 g, 1.03 mmol) was suspended in acetonitrile (10 ml) and treated with sodium hydride (0.0445 g, 1.12 mmol) and stirred under a nitrogen atmosphere at 25°C to form the corresponding sodium salt of the triazole. 2-deoxy-2,2-difluoro-D-ribofuranosyl-3,5-dibenzoyl-1-α-bromo (0.451 g, 1.02 mmol), in acetonitrile (10 ml), was added to the above salt and the entire mixture was reacted for 78 hours at 82°C to form a blocked nucleoside. HPLC analysis confirmed completion of the reaction and indicated a beta to alpha anomeric ratio of 1.2:1.
  • To isolate the nucleoside product, the reaction mixture was evaporated to from an oily solid, diluted with ethyl acetate, washed with sodium bicarbonate and dried over magnesium sulfate and concentrated. The residue crystallized from ethanol to give 30 mg of a titled product at a yield of 6 percent; m.p. 225°C-226°C. MS(FD) M/Z 455 (M+1) Elemental Analysis for C22H16F2N4O5: (Theoretical) C, 58.15; H, 3.55; N, 12.33; (Empirical) C, 58.36; H, 3.79; N, 12.10.
  • Example 3 Preparation of beta-anomer enriched 1-(2'-deoxy-2',2'-difluoro-3',5'-di-O-benzoyl-D-ribofuranosyl)-1,2,4-triazole-3-carbonitrile in acetonitrile
  • 1,2,4-triazole-3-carbonitrile (0.272 g, 2.89 mmol) was suspended in acetonitrile (20 ml), treated with sodium hydride (0.094 g, 2.7 mmol) and stirred under a nitrogen atmosphere at 25°C to form the sodium salt of the triazole.
  • 2-deoxy-2,2-difluoro-D-ribofuranosyl-3,5-dibenzoyl-1-a-iodo (0.941 g, 1.9 mmol), in acetonitrile (20 ml), was added to the above salt and the entire mixture was reacted for 48 hours at 82°C to form a blocked nucleoside. HPLC analysis confirmed completion of the reaction and indicated a beta to alpha anomeric ratio of 3.5:1.
  • To isolate the nucleoside product, the reaction mixture was evaporated to from an oily solid, diluted with ethyl acetate, washed with sodium bicarbonate, dried over magnesium sulfate and concentrated. The residue crystallized from ethanol to give 0.421 g of the titled product; m.p. 225°C-226°C at a yield of 48 percent. MS(FD) M/Z 455 (M+1) Elemental Analysis for C22H16F2N4O5: (Theoretical) C, 58.15; H, 3.55; N, 12.33; (Empirical) C, 58.35; H, 3.65; N, 12.33.
  • Example 4 Preparation of (9)regioisomer-beta-anomer enriched 1-(2'-deoxy-2',2'-difluoro-3',5'-di-O-benzoyl-D-ribofuranosyl)-6-cyanopurine in N,N-dimethylacetamide
  • 6-cyanopurine (0.92 g, 6.35 mmol) was suspended in N,N-dimethylacetamide (12 ml) and treated with sodium hydride (0.396 g, 8.25 mmol) and stirred under a nitrogen atmosphere at 25°C to form the sodium salt of 6-cyanopurine.
  • 2-deoxy-2,2-difluoro-D-ribofuranosyl-3,5-dibenzoyl-1-α-iodo (3.09 g, 6.35 mmol), in N,N-dimethylacetamide (4 ml), was added to the above salt and the entire mixture was reacted for 5 hours at 70°C to form a blocked nucleoside. HPLC analysis confirmed completion of the reaction and indicated a beta to alpha anomeric ratio of 1.2:1.
  • To isolate the nucleoside product, the reaction mixture was cooled, the solvent removed under vacuum, the residue was dissolved in ethyl acetate, washed with a 0.2 M lithium chloride solution, dried over magnesium sulfate and concentrated. Column chromatography (silica gel, toluene/ethyl acetate 9:1) gave 0.21 g of the titled product at a yield of 6.5 percent. MS(FD) 506 (M+1) Elemental Analysis for C25H17F2N5O5: (Theoretical) C, 59.41; H, 3.39; N, 13.86; (Empirical) C, 59.85; H, 3.49; N, 13.48.
  • Example 5 Preparation of (9)regioisomer-beta-anomer enriched 1-(2'-deoxy-2',2'-difluoro-3',5'-di-O-benzoyl-D-ribofuranosyl)-2,6-(dipivalamido)diaminopurine in acetonitrile
  • 2,6-(dipivalamido)diaminopurine (0.159 g, 0.5 mmol) was suspended in acetonitrile (1.5 ml) and treated with potassium t-butoxide (0.062 g, 0.55 mmol) and stirred under a nitrogen atmosphere at 25°C to form the potassium salt of 2,6-(dipivalamido)diaminopurine.
  • 2-deoxy-2,2-difluoro-D-ribofuranosyl-3,5-dibenzoyl-1-α-iodo (0.244 g, 0.5 mmol), in acetonitrile (1.5 ml), was added to the above salt and the entire mixture was reacted for 16 hours at 60°C to form a blocked nucleoside. HPLC analysis confirmed completion of the reaction and indicated a beta to alpha anomeric ratio of 2.2:1.
  • To isolate the nucleoside product, the reaction mixture was diluted with ethyl acetate, the organic layer was washed with sodium bicarbonate, dried over magnesium sulfate separated and concentrated to an oil. Column chromatography (silica gel, toluene/ethyl acetate 1:1) followed by recrystallization gave 0.085 g of the titled product at a yield of 25 percent. MS(FD) 679 (M+1).
  • Example 6 Preparation of beta-anomer enriched 1-(2'-deoxy-2',2'-difluoro-3',5'-di-O-benzoyl-D-ribofuranosyl)-4-(benzylamino)pyrimid-2-one in N,N-dimethylacetamide
  • N-benzylcytosine (0.099 g, 0.493 mmol) was suspended in N,N-dimethylacetamide (2.0 ml) and treated with sodium hydride (0.0256 g, 0.534 mmol) and stirred under a nitrogen atmosphere at 25°C to form the sodium salt of N-benzylcytosine.
  • 2-deoxy-2,2-difluoro-D-ribofuranosyl-3,5-dibenzoyl-1-α-iodo (0.201 g, 0.411 mmol), in N,N-dimethylacetamide (1.5 ml), was added to the above salt and the entire mixture was reacted for 5 hours at 23°C to form a blocked nucleoside. HPLC analysis confirmed completion of the reaction and indicated a beta to alpha anomeric ratio of 1.9:1.
  • The reaction solvents were removed under vacuum and the residue was dissolved in ethyl acetate, washed with sodium bicarbonate, dried over magnesium sulfate and concentrated to an oil. Column chromatography (silica gel, toluene/ethyl acetate 9:1) gave 0.015 mg of the titled product at a yield of 6.5 percent. MS(FD) 562 (M+2).
  • Example 7 Preparation of beta-anomer enriched ethyl 1-(2'-deoxy-2',2'-difluoro-3',5'-di-O-benzoyl-D-ribofuranosyl)-1,2,4-triazole-3-carboxylate in N,N-dimethylacetamide
  • Ethyl 1,2,4-triazole-3-carboxylate (0.723 g, 5.13 mmol) was suspended in N,N-dimethylacetamide (2.5 ml), treated with sodium hydride (0.123 g, 5.13 mmol) and stirred under a nitrogen atmosphere at 25°C to form the sodium salt of the triazole.
  • 2-deoxy-2,2-difluoro-D-ribofuranosyl-3,5-dibenzoyl-1-α-iodo (2.0 g, 4.11 mmol), in N,N-dimethylacetamide (2.5 ml), was added to the above salt and the entire mixture was reacted for 24 hours at 23°C to form a blocked nucleoside. HPLC analysis confirmed completion of the reaction and indicated a beta to alpha anomeric ratio of 3:1.
  • The crude reaction mixture was purified by removing the solvent under reduced pressure and employing column chromatography (silica gel, toluene/ethyl acetate 9:1). The combined theoretical yield of alpha and beta regioisomers (A and B below) of blocked nucleosides was 67 percent.
    • A. Ethyl 1-(2'-deoxy-2',2'-difluoro-3',5'-di-O-benzoyl-β-D-ribofuranosyl)-1,2,4-triazole-3-carboxylate (436 mg, 21.2 percent yield).
      Figure imgb0010

      Recrystallization of "A" from ethyl acetateisooctane provided 267 mg of the pure β-anomer in 13% yield.
    • B. Ethyl 1-(2'-deoxy-2',2'-difluoro-3',5'-di-O-benzoyl-β-D-ribofuranosyl)-1,2,4-triazole-5-carboxylate (855 mg, 41.5 percent yield).
      Figure imgb0011
    Example 8 Preparation of beta-anomer enriched 2-deoxy-2,2-difluoro-D-ribofuranosyl-1-β-(2-amino-6-chloropurine) in dimethylacetamide
  • To a suspension of 2-amino-6-chloropurine (82.6 mmol, 14.0 g) in dimethylacetamide (900 ml) at 0°C under nitrogen was added powdered potassium hydroxide (99.12 mmol, 5.55 g). The mixture was stirred for 30 minutes to form a solution. 2-deoxy-2,2-difluoro-D-ribofuranosyl-3,5-dibenzoyl-1-α -iodo (82.6 mmol, 40.31 g) in dimethylacetamide (450 ml) was added. The reaction was allowed to warm to room temperature and stirred under nitrogen overnight.
  • The product was extracted by adding ethyl acetate and brine. The organic layer was washed successively with 1N HCl, saturated sodium bicarbonate solution, H2O, and brine. The organic layer was then dried over sodium sulfate and evaporated in vacuo.
  • The crude product was purified with silica gel chromatography to yield a 3:1 beta to alpha anomer ratio of 2-deoxy-2,2-difluoro-D-ribofuranosyl-3,5-dibenzoyl-1-(2-amino-6-chloropurine) 1H NMR (300 MHz, CD3OD), δ 4.68(m, 2H, 4'-H, 5'a-H), 4.90(m, 1H, 5'b-H), 6.02(m, 1H, 3'-H), 6.29 (m, 1H, 1'-H), 7.53(m, 6H, Bz), 7.92(s, 1H, 8'-H), 8.05(m, 4H, Bz).
  • The dibenzoyl intermediate (.49 mmol, 260 mg) was deprotected by suspending it in methanol at 0°C and saturating the mixture with anhydrous ammonia. The resulting solution was warmed to room temperature and stirred overnight. The solution was then purged with nitrogen and evaporated. The titled product was then purified by washing with a non-polar solvent such as methylene chloride to remove the benzoate by products. The beta anomer was separated by reversed phase HPLC.
    1H NMR (300MHz, CD3OD), ∂3.90 (m, 3H, 4'-H,5'-H), 4.58 (m, 1H, 3'-H), 6.27 (dd, 1H, 1'-H), 8.31 (s, 1H, 8-H).

Claims (3)

  1. A stereoselective anion glycosylation process for preparing a β anomer enriched nucleoside of the formula
    Figure imgb0012
    wherein T is selected from fluoro or hydrogen and R is a nucleobase selected from the group consisting of
    Figure imgb0013
    Figure imgb0014
    wherein R1 is selected from the group consisting of hydrogen, alkyl, substituted alkyl and halo; R2 is selected from the group consisting of hydroxy, halo, azido, primary amino and secondary amino; R3 is selected from the group consisting of hydrogen, alkyl and halo; R4, R5 and R6 are independently selected from the group consisting of hydrogen, -OH, -NH2, N(alkyl), halo, alkoxy and thioalkyl; R7 is selected from the group consisting of hydrogen, halo, cyano, alkyl, alkoxy, alkoxycarbonyl, thioalkyl, thiocarboxamide and carboxamide; Q is selected from the group consisting of CH, CR8 and N; wherein R8 is selected from the group consisting of halo, carboxamide, thiocarboxamide, alkoxycarbonyl and nitrile; comprising reacting an α anomer enriched fluorocarbohydrate of the formula
    Figure imgb0015
    wherein T is as defined above; and X is a hydroxy protecting group; with at least a molar equivalent of a nucleobase salt (R') selected from the group consisting of
    Figure imgb0016
    Figure imgb0017
    wherein R1 through R7 and Q are as defined above; Z is a hydroxy protecting group; W is an amino protecting group and M+ is a cation; in an inert solvent; and deblocking to form a compound of formula (I).
  2. The process of Claim 1 wherein M+ is sodium or potassium metal cation.
  3. The process of any one of the preceeding claims wherein the reaction temperature is from 23°C to 130°C.
EP93304822A 1992-06-22 1993-06-21 Stereoselective anion glycosylation process Expired - Lifetime EP0577304B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US90213592A 1992-06-22 1992-06-22
US4431593A 1993-04-07 1993-04-07
US44315 1993-04-07
US902135 2001-07-10

Publications (2)

Publication Number Publication Date
EP0577304A1 EP0577304A1 (en) 1994-01-05
EP0577304B1 true EP0577304B1 (en) 1997-03-05

Family

ID=26721394

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93304822A Expired - Lifetime EP0577304B1 (en) 1992-06-22 1993-06-21 Stereoselective anion glycosylation process

Country Status (19)

Country Link
US (1) US5744597A (en)
EP (1) EP0577304B1 (en)
JP (1) JPH0673086A (en)
KR (1) KR940005654A (en)
CN (1) CN1086519A (en)
BR (1) BR9302431A (en)
CA (1) CA2098874C (en)
CO (1) CO4130215A1 (en)
CZ (1) CZ123493A3 (en)
DE (1) DE69308400T2 (en)
ES (1) ES2101231T3 (en)
FI (1) FI932871A (en)
HU (1) HUT64359A (en)
IL (1) IL106078A0 (en)
MX (1) MX9303708A (en)
NO (1) NO932286L (en)
NZ (1) NZ247936A (en)
PL (1) PL299413A1 (en)
TW (1) TW234128B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7994310B2 (en) 2007-03-23 2011-08-09 Dongwoo Syntech Co., Ltd. Process for preparing 2′-deoxy-2′, 2′-difluorocytidine

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4832566A (en) * 1988-02-04 1989-05-23 Westinghouse Electric Corp. Axial flow elastic fluid turbine with inlet sleeve vibration inhibitor
US5637688A (en) * 1994-12-13 1997-06-10 Eli Lilly And Company Process for preparing 1-(2'-deoxy-2'-difluoro-d-ribofuranosyl)-4-aminopyrimidin-2-one hydrochloride
CA2171518A1 (en) * 1995-03-24 1996-09-25 Douglas Patton Kjell Process for the preparation of 2,2'-anhydro- and 2' -keto-1-(3', 5'-di-o-protected-.beta.-d-arabinofuranosyl) nucleosides
US5633367A (en) * 1995-03-24 1997-05-27 Eli Lilly And Company Process for the preparation of a 2-substituted 3,3-difluorofuran
GB9525606D0 (en) * 1995-12-14 1996-02-14 Iaf Biochem Int Method and compositions for the synthesis of dioxolane nucleosides with › - configuration
KR100695717B1 (en) * 2000-02-18 2007-03-15 서던리서치인스티튜트 Methods for synthesizing 2-chloro-9-2-deoxy-2-fluoro-beta- d-arabinofuranosyl-9h-purin-6-amine
DE60226447D1 (en) * 2001-08-02 2008-06-19 Ilex Oncology Inc PROCESS FOR THE PREPARATION OF PURIN NUCLEOSIDES
US7528247B2 (en) * 2001-08-02 2009-05-05 Genzyme Corporation Process for preparing purine nucleosides
US6884880B2 (en) * 2002-08-21 2005-04-26 Ash Stevens, Inc. Process for the preparation of 9-β-anomeric nucleoside analogs
US7214791B2 (en) * 2004-07-01 2007-05-08 Shenzhen Hande Technology Co., Ltd. Method for preparation of 2′-deoxy-2′, 2′-difluoro-β-cytidine or pharmaceutically acceptable salts thereof by using 1,6-anhydro-β-d-glucose as raw material
WO2006011713A1 (en) * 2004-07-29 2006-02-02 Hanmi Pharm. Co., Ltd. 1-α-HALO-2,2-DIFLUORO-2-DEOXY-D-RIBOFURANOSE DERIVATIVES AND PROCESS FOR THE PREPARATION THEREOF
US20060173174A1 (en) * 2004-12-08 2006-08-03 Anne-Ruth Born Difluoronucleosides and process for preparation thereof
WO2006070985A1 (en) * 2004-12-30 2006-07-06 Hanmi Pharm. Co., Ltd. METHOD FOR THE PREPARATION OF 2#-DEOXY-2#,2#-DIFLUOROCYTIDINE
CN101010329B (en) * 2004-12-30 2011-06-08 韩美控股株式会社 Method for the preparation of 2'-deoxy-2',2'-difluoro cytidine
AU2005328519B2 (en) * 2005-03-04 2012-03-01 Fresenius Kabi Oncology Limited Intermediate and process for preparing of beta- anomer enriched 21deoxy, 21 ,21-difluoro-D-ribofuranosyl nucleosides
CN100391966C (en) * 2005-06-17 2008-06-04 华东师范大学 Synthesis method of 2-deoxy-2',2'-difluoro cytidine
AT502221A1 (en) * 2005-07-20 2007-02-15 Pharmacon Forschung & Beratung Gmbh HOMOGEMIC CITABINE, PROCESS FOR THEIR PRODUCTION AND THEIR USE
KR100846143B1 (en) 2007-02-28 2008-07-14 (주) 유일팜테크 Precursor for 2'-deoxy-2',2'-difluorocytidine and preparing method thereof
US8193339B2 (en) * 2007-11-06 2012-06-05 Pharmaessentia Corp. Synthesis of β-nucleosides
WO2011003018A2 (en) * 2009-07-01 2011-01-06 Cornell University Halogenated 2-deoxy-lactones, 2'-deoxy--nucleosides, and derivatives thereof

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3282921A (en) * 1964-06-04 1966-11-01 Syntex Corp Halo-deoxynucleosides and processes for the preparation thereof
US4096324A (en) * 1975-07-07 1978-06-20 The Upjohn Company Cytidine nucleoside compound
DE2628202A1 (en) * 1976-06-23 1977-12-29 Max Planck Gesellschaft PROCESS FOR THE PREPARATION OF 2'-SUBSTITUTE-D-RIBOFURANOSYLPURINE DERIVATIVES
US4211773A (en) * 1978-10-02 1980-07-08 Sloan Kettering Institute For Cancer Research 5-Substituted 1-(2'-Deoxy-2'-substituted-β-D-arabinofuranosyl)pyrimidine nucleosides
FI832884A (en) * 1982-08-17 1984-02-18 Sandoz Ag DESOXYURIDINDERIVAT, DERAS FRAMSTAELLNINGSFOERFARANDEN OCH ANVAENDNING SOM PHARMACEUTISKA MEDEL
US4526988A (en) * 1983-03-10 1985-07-02 Eli Lilly And Company Difluoro antivirals and intermediate therefor
US4625020A (en) * 1983-11-18 1986-11-25 Bristol-Myers Company Nucleoside process
CA1295998C (en) * 1985-07-29 1992-02-18 Sai P. Sunkara Nucleosides and their use as antineoplastic agents
US4751221A (en) * 1985-10-18 1988-06-14 Sloan-Kettering Institute For Cancer Research 2-fluoro-arabinofuranosyl purine nucleosides
US4965374A (en) * 1987-08-28 1990-10-23 Eli Lilly And Company Process for and intermediates of 2',2'-difluoronucleosides
EP0339161A1 (en) * 1988-04-01 1989-11-02 Merrell Dow Pharmaceuticals Inc. Novel fluorophosphonate nucleotide derivatives
JPH0232093A (en) * 1988-06-08 1990-02-01 Merrell Dow Pharmaceut Inc Anti-retrovirus difluorinated nucleoside
JPH0217199A (en) * 1988-07-05 1990-01-22 Japan Tobacco Inc Production of 2'-deoxy-beta-adenosine
GB8816345D0 (en) * 1988-07-08 1988-08-10 Hoffmann La Roche Purine derivatives
HU906976D0 (en) * 1989-11-13 1991-05-28 Bristol Myers Squibb Co Process for producing 2', 3'-didesoxy-2'-fluoarabinonucleoside analogues
US5817799A (en) * 1990-07-23 1998-10-06 The United States Of America As Represented By The Department Of Health And Human Services 2'-Fluorofuranosyl derivatives and methods for preparing 2'-fluoropyrimidine and 2'-fluoropurine nucleosides
US5371210A (en) * 1992-06-22 1994-12-06 Eli Lilly And Company Stereoselective fusion glycosylation process for preparing 2'-deoxy-2',2'-difluoronucleosides and 2'-deoxy-2'-fluoronucleosides

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7994310B2 (en) 2007-03-23 2011-08-09 Dongwoo Syntech Co., Ltd. Process for preparing 2′-deoxy-2′, 2′-difluorocytidine

Also Published As

Publication number Publication date
US5744597A (en) 1998-04-28
CA2098874C (en) 2004-04-20
IL106078A0 (en) 1993-10-20
CZ123493A3 (en) 1994-02-16
CA2098874A1 (en) 1993-12-23
ES2101231T3 (en) 1997-07-01
KR940005654A (en) 1994-03-22
BR9302431A (en) 1994-01-11
NO932286L (en) 1993-12-23
NZ247936A (en) 1995-05-26
NO932286D0 (en) 1993-06-21
CO4130215A1 (en) 1995-02-13
HU9301823D0 (en) 1993-09-28
FI932871A0 (en) 1993-06-21
CN1086519A (en) 1994-05-11
DE69308400T2 (en) 1997-07-10
FI932871A (en) 1993-12-23
JPH0673086A (en) 1994-03-15
HUT64359A (en) 1993-12-28
PL299413A1 (en) 1994-03-07
DE69308400D1 (en) 1997-04-10
TW234128B (en) 1994-11-11
EP0577304A1 (en) 1994-01-05
MX9303708A (en) 1994-05-31

Similar Documents

Publication Publication Date Title
EP0577304B1 (en) Stereoselective anion glycosylation process
EP0577303B1 (en) Stereoselective glycosylation process
US5426183A (en) Catalytic stereoselective glycosylation process for preparing 2'-deoxy-2',2'-difluoronucleosides and 2'-deoxy-2'-fluoronucleosides
US5606048A (en) Stereoselective glycosylation process for preparing 2'-Deoxy-2', 2'-difluoronucleosides and 2'-deoxy-2'-fluoronucleosides
US5401838A (en) Stereoselective fusion glycosylation process for preparing 2'-deoxy-2',2'-difluoronucleosides and 2'-deoxy-2'-fluoronucleosides
US5821357A (en) Stereoselective glycosylation process for preparing 2'-deoxy-2',2'-difluoropurine and triazole nucleosides
US5648473A (en) 2'-deoxy-2', 2'-difluoropyrimidine nucleosides and 2'-deoxy-2'-fluoropyrimidine nucleosides and intermediates
US4689404A (en) Production of cytosine nucleosides
US7799907B2 (en) Method for the preparation of 2′-deoxy-2′,2′-difluorocytidine
WO2006119347A1 (en) STEREOSELECTIVE SYNTHESIS OF β-NUCLEOSIDES
CA2130618C (en) Stereoselective process for preparing .beta.-anomer enriched 2-deoxy-2,2-difluoro-d-ribofuranosyl-3,5-hydroxy protected-1-alkyl and aryl sulfonate intermediates
AU659008B2 (en) Stereoselective anion glycosylation process
US7572898B2 (en) Process of making an alpha-anomer enriched 2-deoxy-2,2-difluoro-D-ribofuranosyl sulfonate and use thereof for making a beta nucleoside
RU2131880C1 (en) Method of preparing beta-anomer enriched nucleosides
AU659009B2 (en) Stereoselective glycosylation process

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19930628

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

17Q First examination report despatched

Effective date: 19940720

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB IT

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

REF Corresponds to:

Ref document number: 69308400

Country of ref document: DE

Date of ref document: 19970410

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R.L.

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2101231

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: ES

Ref legal event code: GD2A

Effective date: 20070418

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20070612

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070629

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070511

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070619

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070605

Year of fee payment: 15

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080621

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080621

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20080623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080621

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080623