EP0576669A4 - Novel methods and compositions for treatment of angiogenic diseases - Google Patents

Novel methods and compositions for treatment of angiogenic diseases

Info

Publication number
EP0576669A4
EP0576669A4 EP93904627A EP93904627A EP0576669A4 EP 0576669 A4 EP0576669 A4 EP 0576669A4 EP 93904627 A EP93904627 A EP 93904627A EP 93904627 A EP93904627 A EP 93904627A EP 0576669 A4 EP0576669 A4 EP 0576669A4
Authority
EP
European Patent Office
Prior art keywords
treatment
rpf4
synthetic
recombinant
medicament
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP93904627A
Other versions
EP0576669A1 (en
Inventor
Theodore E Maione
Richard J Sharpe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Repligen Corp
Original Assignee
Repligen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Repligen Corp filed Critical Repligen Corp
Publication of EP0576669A1 publication Critical patent/EP0576669A1/en
Publication of EP0576669A4 publication Critical patent/EP0576669A4/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/521Chemokines
    • C07K14/522Alpha-chemokines, e.g. NAP-2, ENA-78, GRO-alpha/MGSA/NAP-3, GRO-beta/MIP-2alpha, GRO-gamma/MIP-2beta, IP-10, GCP-2, MIG, PBSF, PF-4, KC
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • Angiogenesis the development of new capillary blood vessels, is an important process in the developing fetus and growing human. However, in healthy adults, angiogenesis occurs significantly only during wound healing and in the menstrual cycle.
  • angiogenic dysfunctions include diabetic retinopathy, retrolental fibroplasia, neovascular glaucoma, psoriasis, angiofibromas, immune and non-immune inflammation (including rheumatoid arthritis) , capillary proliferation within atherosclerotic plaques, hemangiomas, and Kaposi's Sarcoma have also recently been recognized as diseases possessing characteristics of dysregulated endothelial cell division and capillary growth. These conditions along with growth of solid tumors are collectively referred to as "angiogenic diseases” (Folkman, J. , and M. Klagsbrun [1987] Science 235:442-447).
  • endothelial cell proliferation is pathological or, at least, unwanted.
  • endometriosis is characterized by the abnormal proliferation and positioning of certain endothelial cells which normally line the inner wall of the uterus. Control of the angiogenic process could help to prevent or alleviate endometriosis. Also, prevention of endothelial cell growth in the uterus could be a means of birth control.
  • Endothelial cell growth is associated with wound healing. This growth is undesirable during extended surgical proceedings and where excessive scar formation may occur. Therefore, a means of controlling endothelial cell proliferation would help prevent or reduce unwanted scar formation.
  • protamine which is a protein found only in sperm.
  • Protamine has been shown to inhibit tumor angiogenesis and subsequent tumor growth (Taylor, S. and J. Folkman [1982] Nature 297:307-312).
  • Protamine's anti-angiogenesis activity has been attributed to its well-known capacity to bind heparin (Taylor and Folkman [1982], supra) .
  • Clinical experiments with protamine have not been pursued because of the toxicity associated with protamine injection.
  • Protamine which is usually isolated from salmon sperm, is known to be antigenic in humans, and anaphylactic reactions to this protein have been observed with secondary exposures. At least two other compounds have been studied in regard to their heparin-binding activity: platelet factor 4 (PF4) and major basic protein. Major basic protein has demonstrated heparin-binding activity but is of little practical utility because of its high toxicity. Platelet factor 4 is a well-known protein which has been completely sequenced (Deuel, T.F., R.M. Senior, D. Chang, G.L. Griffin, R.L. Heinrikson, and E.T. Kaiser [1981] Proc. Natl. Acad. Sci. USA 78:4585-4587).
  • PF4 In addition to angiostatic properties, PF4 possesses characteristic structural features of the pro- inflammatory proteins interleukin-8 and ⁇ -thromboglobulin and has been shown to be chemotactic for neutrophils and monocytes in vivo (Wolpe and Cera i [1989] the FASEB Journal, 3:2565-2573). This similarity of the structure and activities of PF4 to well characterized pro- inflammatory proteins along with the ubiquitous aggregation of platelets at sites of inflammation suggest that PF4 may be an endogenous mediator of inflammation. Thus, it is anticipated that swelling could accompany the administration of PF4 in vivo. There is a significant and very long-standing need to locate an effective and non-toxic inhibitor of angiogenesis and endothelial cell proliferation. Angiogenesis plays a major role in the initiation and progression of widespread catastrophic illnesses, including cancer. An effective, non-toxic agent which can be administered locally and/or systemically to treat these illnesses would be highly advantageous and has long eluded identification.
  • conservative amino acid substitution means the substitution of an amino acid with another amino acid that is biologically compatible with the first amino acid.
  • PF4 has clinical utility in the treatment of diseases which involve angiogenesis and endothelial cell proliferation. Furthermore, PF4 fragments are demonstrated to be inhibitors of angiogenesis. The ability to inhibit angiogenesis has been found in synthetic peptides corresponding to sequences in PF4 as small as the carboxyterminal 13 amino acids.
  • the invention features treatment of angiogenic diseases with a combination of PF4 and an anti- inflammatory agent.
  • Anti-inflammatory agents help to alleviate unwanted swelling, pain, or tissue damage which could accompany the administration of pro-inflammatory compounds.
  • the invention also features methods for the treatment of tumors that contain malignant endothelial cells with PF4 either alone or in combination with an anti-inflammatory agent.
  • the invention features methods for the treatment of brain tumors with PF4.
  • Figure 1 shows DNA and amino acid sequence of native rPF4.
  • Figure 2 shows the inhibition of angiogenesis resulting from the treatment of rPF4 and various related peptides.
  • Figure 3 depicts the inhibition of endothelial cell proliferation by rPF .
  • Figure 4 depicts the alpha-helical configurations of rPF4 and rPF4-241.
  • Figure 5 compares the inhibition of angiogenesis resulting from treatment with rPF4 and rPF4-241.
  • Figure 6 compares the inhibition of human umbilical vein endothelial cell proliferation resulting from treatment with rPF4 or rPF4-241.
  • Figure 7 shows the ability of rPF4 and rPF4-241 to inhibit tumor growth.
  • Figure 8 shows footpad swelling in mice as a function of time after injection with either rPF4, rPF4 and indomethacin, or a buffer solution.
  • Figure 9 shows quantification of inflammatory cell infiltrate after treatment with rPF4 or rPF4 with indomethacin.
  • Figure 10 shows tumor growth after administration of rPF4 alone, indomethacin alone, buffer alone, or rPF4 and indomethacin.
  • the subject invention pertains to in vivo inhibition of angiogenesis by rPF4 and certain analogs and peptide fragments of PF4. These analogs and peptide fragments of PF4 can be used to treat angiogenic diseases.
  • angiogenic disease refers to growth of solid tumors, and other conditions involving angiogenic dysfunctions including macular degeneration.
  • the subject invention also concerns the use of rPF4 and PF4 fragments for treatment of diseases of dysregulated endothelial cell proliferation.
  • the types of solid tumors that can be treated by rPF4, PF4, or analogs and fragments thereof, include all types of lung tumors, including small cell lung carcinoma, tumors of the breast, colon/rectum, prostate, head and neck, stomach, bladder, kidney, pancreas, liver, ovary and uterus; sarcomas; melanoma and other metastatic skin cancers; nonmetastatic skin cancers (e.g., Kaposi's sarcoma, basal cell carcinoma) ; and, most preferably tumors of the brain.
  • the types of tumors that can treated using the compositions and methods of the invention include tumors that are not surgically accessible and/or are resistant to chemotherapy and radiation therapy.
  • Advanced invasive malignancy with or without surgery, can be treated using the compositions and methods of the invention.
  • the invention can be used as an adjuvant therapy following surgical resection and can be used to treat known metastatic disease and nonmetastatic cancer.
  • Treatment of the tumors and diseases described above can be either systemic, regional, or local (intralesional) , depending upon the type and severity of the disease as well as the accessibility of the disease site.
  • Systemic treatment includes intravenous bolus injections and infusions, subcutaneous injections, implants, refillable reservoirs and sustained release depots and intramuscular injections.
  • Regional treatment includes intraarterial for the treatment of primary liver tumors and liver metastases, and for the treatment of kidney, brain and pancreatic tumors.
  • Regional intraperitoneal treatment can be used for the treatment of tumors of the ovary.
  • Local treatment can be used for tumors of the brain, uterus, bladder, head and neck, for Kaposi's sarcoma and other nonmetastatic skin cancers, for metastatic skin cancer once dissemination precludes further surgical excision, and for colon and rectal cancer.
  • Brain tumors are generally treated with initial surgical excision if possible, followed by intensive chemotherapy and radiation therapy.
  • Aggressive brain tumors (high grade astrocytoma, glioblastoma multiforme) ultimately produce mortality by reoccurrence near their original site due to incomplete surgical removal, rather than through metastatic dissemination.
  • Methods to specifically focus postsurgical treatment on the site of the initial lesion are therefore desirable to deliver effective therapy and reduce damage to healthy tissues.
  • the subject invention in part takes advantage of the ability of rPF4 to inhibit capillary formation in vivo as well as embryonic neovascularization. Full length recombinant PF4 also inhibits growth factor- dependent human endothelial cell proliferation in vitro.
  • PF4 directly inhibits growth of pure cultures of endothelial cells indicates that, advantageously, its effects are not mediated by some other cell type.
  • the activity of the C-13 peptide is especially surprising in light of its inability to affect the anticoagulant activity of heparin.
  • the use of the C-13 peptide offers several advantages over whole rPF4 such as reduced dosage (weight basis) , reduced likelihood of antigenicity, and greater likelihood of effectiveness in novel dosage forms.
  • the C-13 peptide of PF4 also retains the ability to prevent Con-A induced immunosuppression in mice, an activity which is unaffected by heparin and probably independent of the ability of the peptide to inhibit angiogenesis.
  • angiogenesis is required for solid tumors to grow beyond a few cubic millimeters.
  • use of rPF4, or a fragment thereof, to inhibit tumor growth by inhibiting angiogenesis presents a novel and highly advantageous means of therapy, although efficacy of PF4 in some of the therapies described herein is not entirely explained by inhibition of angiogenesis; for example, we have discovered that in specific types of cancers that contain malignant endothelial cells, such as Kaposi's sarcoma, PF4 was inhibitory.
  • the C-13 peptide inhibits angiogenesis without affecting the anticoagulant activity of heparin demonstrates that this small peptide would also have the benefit of not interfering with concurrent anticoagulant therapy.
  • small peptides are generally less antigenic than larger proteins, and, thus, the PF4 fragments can be used advantageously for oral and transdermal administration. These types of delivery are particularly useful in the treatment of gastrointestinal capillary proliferation (e.g., Kaposi's Sarcoma) and skin lesions, respectively. Intralesional, as well as systemic, administration of PF4 fragments are also appropriate for treatment of these conditions.
  • rPF4-241 Analogs of PF4 were created which lack heparin binding activity but retain ability to inhibit angiogenesis.
  • One such analog known as rPF4-241
  • rPF4-241 was created by cassette mutagenesis of a synthetic PF4 gene whereby the DNA sequence encoding the four lysine residues near the carboxy terminus of PF4 were converted to a sequence encoding two Gln-Glu couplets.
  • rPF4-241 is administered intralesionally, it can be applied such that the dosage is between about 1 ⁇ qflesion and about 4 mg/lesion.
  • dosages of rPF4 and fragments thereof may be twice that of rPF4-241 or higher.
  • PF4 has been shown to be chemotactic for neutrophils and monocytes m vitro, suggesting that it may mediate an inflammatory response.
  • rPF4 recombinant human PF4
  • Injection of an equivalent amount of cytochrome C, buffer alone, or an amino terminal PF4 peptide failed to elicit a significant inflammatory response, however, the carboxy terminal PF4 peptide was pro-inflammatory.
  • the inflammatory infiltrate induced by both rPF4 and the 41 amino acid COOH terminal peptide was composed of neutrophils and to a lesser degree mononuclear cells-. Although relatively high concentrations of rPF4 are required to elicit an inflammatory response, these concentrations may be locally obtainable during platelet aggregation or at sites of administration of rPF4 or related compounds.
  • the rPF4 pro- inflammatory effect was significantly suppressed by systemic administration of an anti-inflammatory agent without reducing the angiostatic activity.
  • CAM Chicken Chorioallantoic Membrane Assay. Fertile eggs were incubated in a stationary position for 3 days at 37°C and 70-80% relative humidity. During this time, the embryo rose to the upper surface of the egg contents. At the beginning of the 4th day, the eggs were cracked without inversion and carefully deposited into sterile plastic petri dishes such that the embryo remained on the upper surface. The shell-free eggs were incubated for an additional 72 hours at 37°C, under an atmosphere containing 2.5-3.5% C0 2 after which the growing embryos developed a recognizable CAM. Discs, made by mixing test samples with 1% (w/v) methylcellulose, were dried and placed on the CAM between major veins and approximately 0.5 cm from the embryo.
  • the cultures were harvested by trypsin treatment, diluted, replated, and grown to confluence. Prior to the start of an experiment, the cells were centrifuged and resuspended in heparin-free media and incubated with the test substance (PF4) for 3 days under standard culture conditions. At the end of the incubation period, the cells were removed by trypsin treatment and counted with a Particle Data Elzone 180 Cell Counter. Statistical significance between means was determined by a standard Student t-test for unpaired data.
  • Inhibition of DNA synthesis was measured by plating the cells as described, then incubating with the test substance for 24 hours. 3 H-Thymidine (1 ⁇ ,Ci/well) was added for an additional 6 hours and the plates were frozen at —70 C. Following 2 freeze/thaw cycles, the cells were aspirated onto a fiber filter, washed with distilled water, fixed with MeOH, and counted for incorporation of radioactivity into DNA.
  • rPF4 in preventing in vivo tumor growth and angiogenesis
  • tumor bearing animals were injected daily, directly into the nascent tumor, with either rPF4 or with buffer lacking rPF4, beginning one day after tumor inoculation.
  • Tumor volume was measured at regular intervals with digital calipers by laboratory personnel uninformed of the specific treatment received by each subject animal.
  • Footpad Assay 0.05 ml of PBS containing a test substance was injected intradermally into the right hind footpad of each mouse. An identical amount of diluent, not containing the test substance, was injected into the left hind footpad. At various time points, footpad thicknesses were measured with a spring loaded engineer's micrometer (Fowler Co., Biggswald, England).
  • mice were sacrificed and footpad tissue was prepared for light microscopy. This tissue was used to quantify infiltrating cell types. Biopsy specimens were fixed in 10% buffered formalin for at least 48 hours and then prepared using standard techniques of paraffin embedding and staining with hematoxylin and eosin. Using an ocular grid, four cellular areas of dermis in each specimen were examined in a coded fashion at 1000X magnification and inflammatory cells were quantified. Differences between groups were assessed by Student's t test or analysis of variance, where appropriate. rPF4 Production.
  • Recombinant PF4 was produced in F ⁇ coli as an N-terminal fusion protein containing a unique methionine residue immediately preceding the PF4 portion. More specifically, expression plasmid pPF4-211 was constructed by cloning a synthetic gene encoding native sequence PF4 (Figure 1) (Poncz et al. [1987] Blood 69:219) into the multiple restriction site region of plasmid pREV2.2 (deposited July 30, 1986; accession # NRRL B-18091) . Codon usage in the synthetic gene was optimized for expression in E . coli. and synthetic DNA linkers were included on each end to facilitate the directional insertion of the PF4 gene into the vector.
  • Cells expressing the fusion protein were subjected to lysozyme (1 mg/g cells) , DNase I (500 units/100 g cells) and bead mill treatments.
  • the lysis pellet containing the fusion protein was treated with CNBr (10 g/lOOg cells) in 70% formic acid to cleave the fusion protein at the methionine between the BG and PF4 portions.
  • CNBr 10 g/lOOg cells
  • the recombinant protein was extracted with 200 ml of 50 mM Tris-Cl, pH 7.6, 5 mM EDTA, and 10 mM DTT per 100 g of cell starting material.
  • Native sequence rPF4-211 was purified by binding the protein to heparin agarose, removing contaminating proteins with 0.6 M NaCl, and eluting with 1.2 M NaCl. The resulting material was dialyzed into 20 mM sodium acetate, pH 4.0, and analyzed on a 15% SDS-PA gel stained with Coomassie Brilliant Blue. Minor contaminants could be removed using C 4 reverse phase high pressure liquid chromatography (HPLC) to prepare the protein for in vivo use.
  • HPLC high pressure liquid chromatography
  • rPF4-241 Production of rPF4-241 and other PF4 analogs.
  • a synthetic gene encoding the mutant designated rPF4-241 was constructed by changing the codons for the four lysine residues near the C-terminus of PF4 to sequences encoding two Gln-Glu couplets (CAA GAA) by cassette mutagenesis between the Bbel and Smal sites. Linkers were included at the ends of the synthetic gene, and the gene was inserted into pREV2.2 as described above. Genes encoding other PF4 mutants or analogs were prepared in a similar manner.
  • mutant proteins e.g., rPF4-241
  • the mutant proteins were cleaved and extracted as described above.
  • the extracts were then purified using DEAE-Sepharose chromatography, and eluted with a gradient of 0-1 M NaCl.
  • the PF4 proteins generally eluted at approximately 0.5 M NaCl and were dialyzed into 20 mM phosphate buffer, pH 7.5.
  • the samples were further purified by reverse phase HPLC.
  • PF4 peptides Peptides were prepared by standard solid phase synthesis procedures, cleaved from the solid support and deblocked, and purified by reverse phase HPLC. Reagents. Recombinant human IL-1 (rIL-1) was purchased from Genzyme Corporation (Cambridge, MA) . Cytochrome c and J coli endotoxin were purchased from Sigma Chemical Co. (St. Louis, MO) . Slow release indomethacin pellets were purchased from Innovative Research (Toledo, OH) .
  • mice C57B1/6J, A/J and C3H/HeJ female mice, 6-8 weeks old, were purchased from the Jackson Laboratory (Bar Harbor, ME) . Following are examples which illustrate procedures, including the best mode, for practicing the invention. These examples should not be construed as limiting. All percentages are by weight and all solvent mixture proportions are by volume unless otherwise noted.
  • the lysine rich region of PF4 (residues 61-66) is also the domain associated with the binding of heparin by PF4.
  • Heparin is known to play a role in modulating angiogenesis, which can also be affected by protamine, another well characterized heparin-binding protein.
  • protamine another well characterized heparin-binding protein.
  • PF4-based synthetic peptides To assess the ability of PF4-based synthetic peptides to bind heparin, we assayed the activity of coagulation- cascade enzymes which are inhibited by heparin.
  • the Factor Xa assay used here has previously been described in Denton et al. (1983) Biochem. J. 209:455-460.
  • Protamine and platelet factor 4 are able to prevent the heparin inhibition of thrombin and Factor Xa at approximately equimolar concentrations.
  • the 41 amino acid C-terminal peptide of PF4 (C-41) prevented heparin inhibition less effectively, but the C-13 peptide was unable to prevent the inhibition of thrombin even at concentrations ten times that of an effective level of rPF4. This unexpected finding suggests that the C-13 peptide inhibits angiogenesis by some method other than heparin binding.
  • rPF4 having the wild type sequence (rPF4-211) and related peptides to inhibit growth factor-stimulated human endothelial cell proliferation in vitro. As shown in Figure 3, rPF4 significantly inhibited endothelial cell growth in a dose-dependent fashion at a concentration as low as 1.3 ⁇ -M. Inhibition was complete at 3.2 ⁇ M in the heparin- deficient medium employed here.
  • Example 5 Construction of rPF4-2 1 15 A mutant of PF4 was created by converting the four lysine residues at the carboxy terminus of PF4 to two Gln-Glu couplets as disclosed above. This protein apparently retains the alpha-helical secondary structure ( Figure 4) for this region of the molecule with the 20 concurrent loss of heparin binding activity.
  • the protein was reactive with polyclonal antibodies to native PF4 and was determined to possess the appropriate modifications by amino acid analysis. Significantly, the purified mutant protein lacked 25 heparin-binding activity in the Factor Xa inhibition assay.
  • C-13-241 has the following 30 sequence:
  • rPF4-241 was tested for its ability to 35 inhibit capillary growth in the chicken chorioallantoic membrane (CAM) assay. Even at the lowest concentrations tested (1.25 nmol/disc) rPF4-241 extensively inhibited angiogenesis in the CAM system ( Figure 5) . This inhibition was even more effective than that caused by equal concentrations of native rPF4 as suggested by larger avascular zones on the membrane. The inhibitory effect of rPF4-241 was not reversed by heparin.
  • CAM chicken chorioallantoic membrane
  • Example 8 Inhibition of In Vivo Tumor Growth
  • the efficacy of rPF4-211 or rPF4-241 in preventing tumor growth and angiogenesis was tested.
  • the inhibition of in vivo tumor growth was assayed after injection of either rPF4-211 (in 20 mM NaOAc, pH 4.0) or rPF4-241 (in 50 mM sodium phosphate, pH 6.5, 50 mM NaCl) directly into the nascent tumor, as described in the materials and methods section above.
  • rPF4-211 in 50 mM sodium phosphate, pH 6.5, 50 mM NaCl
  • rPF4 as an inhibitor of angiogenesis, will possess clinical usefulness in the management of malignant melanoma and other cancers. Progressive growth of tumors requires new blood vessel formation which, if inhibited, may not only restrict tumor growth, but stimulate regression of . existing vessels, as well as enhance other responses to malignant invasion.
  • the finding that rPF4 inhibition of in vivo tumor growth was apparent within three days of the initial inoculation (of rPF4) indicates that rPF4 acts to modulate tumor growth by local mechanisms rather than by immunomodulation which would require a longer time course. Additionally, rPF4 did not directly inhibit tumor cell growth in vitro. It appears, therefore, that rPF4 modulated the host's angiogenic response to the growing tumor.
  • Example 9 It has been shown that proteins of identified structure and function may be constructed by changing the amino acid sequence if such changes do not significantly alter the protein secondary structure (Kaiser, E.T., and F.J. Kezdy [1984] Science 223:249-255)-.
  • the subject inventionr includes other mutants or fragments of the PF4 sequences depicted herein which lack affinity for heparin and exhibit substantially the same or higher angiostatic activity.
  • a preferred region for modification is the lysine rich region near the carboxy terminus corresponding to the heparin binding domain (residues 60- 70) .
  • amino acids 60 through 70 cannot be eliminated.
  • the subject invention includes mutants of the amino acid sequences depicted herein which do not alter the protein secondary structure, or if the structure is altered, the biological activity is retained.
  • conservative substitutions of amino acids may be made.
  • amino acids may be placed in the following classes: basic, hydrophobic, acidic, polar, and amide. Substitutions whereby an amino acid of one class is replaced with another amino acid of the same type fall within the scope of the subject invention so long as the substitution does not materially alter the biological activity of the compound.
  • Table 2 provides a listing of examples of amino acids belonging to each class.
  • non-conservative ' substitutions can also be made.
  • a lysine residue near the C-terminus of PF4 may be replaced with any of the following amino acids: E, Q, D, N, M, A, L, and I.
  • the critical factor is that these substitutions must not significantly detract from the biological activity of the rPF4 or the rPF4 fragment.
  • rPF4-302 which does not exhibit significant activity in either the CAM or the HUVEC assay, has no charged amino acid residues between residues 60 and 70.
  • rPF4-231 which also does not exhibit significant biological activity, terminates at amino acid number 60. If a person skilled in the art wished to investigate the biological activity of other rPF4 mutants, it would now be a straightforward procedure to make the desired mutations and test the resulting peptides for activity. Using the teachings of this document, the researcher could prepare and readily test peptides which could be expected to have the desired properties. For example, the amino acid substitutions just described for the full length rPF4 molecule can also be made with the C-13 and C-41 fragments which are described above.
  • Example 10 Inflammatory Properties of rPF4 and Related Compounds
  • the time course of rPF4 induced inflammation shows a rapid increase from baseline and peaks at between 6 and 12 hours and almost completely resolves by 36 hours.
  • Example 11 Effects of Anti-Inflammatory Agent with rPF4
  • 0.05 mg, slow release indomethacin pellets (Innovative Research, Toledo, OH) were implanted subcutaneously under light ether anesthesia 48 hours prior to an experiment. These pellets continuously release their contents over 14 days.
  • indomethacin can be used to decrease the swelling which could accompany the administration of PF4 or PF4-related substances.
  • Other non-steroidal anti- inflammatory agents could also be used.
  • the anti- inflammatory agents useful in the combinations and methods of this invention include steroidal and non- steroidal anti-inflammatory agents.
  • the non-steroidal anti-inflammatory agents include, but are not limited to, acetyl salicylic acid (aspirin) , methyl salicylate, sodium salicylate, phenylbutazone, oxyphenbutazone, apazone, indomethacin, sulindac, tol etin, mefenamic acid, ibuprofen, naproxen, fenoprofen, flurbiprofen, ketoprofen, and other compounds.
  • Other anti-inflammatory agents useful in the combinations and methods of this invention are lipocortins derived from natural sources or lipocortins and lipocortin-like polypeptides produced by recombinant techniques (see United States patent applications Serial Nos.
  • Steroidal anti-inflammatory agents which could be used according to the subject invention include, but are not limited to, hydrocortisones.
  • Example 12 Anti-Tumor Activity of rPF4 Combined with Indomethacin
  • mice Four groups of mice were used in this experiment. In two groups of mice, slow release indomethacin pellets (50 ⁇ g) were implanted surgically under the skin of the left flank. The other two groups were not treated with indomethacin. Tumors were implanted subcutaneously in all four groups in the right flank.
  • the combinations and methods of the present invention may allow the administration of PF4, or related compounds, in higher doses in some cases than those tolerated in conventional treatment regimes based upon PF4 alone. Accordingly, the combinations and methods of this invention advantageously reduce or eliminate the inflammatory effects of high dose treatments with PF4 alone. Thus, the use of PF4 in combination with an anti- inflammatory agent may reduce the duration of treatment which would be required by therapies based upon conventionally tolerated lower dosages of PF4 alone.
  • the combinations and methods of this invention are useful in treating any mammal, including humans.
  • mammals are treated with pharmaceutically effective amounts of the two active components—PF4 and an anti-inflammatory agent—of the combinations of this invention for a period of time sufficient to inhibit angiogenesis or endothelial cell proliferation.
  • PF4 an anti- inflammatory agent and the PF4 (or PF4-related compounds) are administered sequentially or concurrently to the patient.
  • the most effective mode of administration and dosage regimen of PF4 and anti-inflammatory agent will depend upon the type of disease to be treated, the severity and course of that disease, previous therapy, the patient's health status, and response to PF4 and the judgment of the treating physician.
  • PF4 may be administered to the patient at one time or over a series of treatments.
  • the anti-inflammatory agent and the PF4 are administered sequentially to the patient, with the anti-inflammatory agent being administered before, after, or both before and after treatment with PF4.
  • Sequential administration involves treatment with the anti-inflammatory agent at least on the same day (within 24 hours) of treatment with PF4 and may involve continued treatment with the anti-inflammatory agent on days that the PF4 is not administered.
  • Conventional modes of administration and standard dosage regimens of anti- inflammatory agents may be used (see Gil an, A.G. et al. [eds.] The Pharmacological Basis of Therapeutics, pp. 697-713, 1482, 1489-91 [1980]; Physicians Desk Reference, 1986 Edition) .
  • indomethacin may be administered orally at a dosage of about 25-50 mg, three times a day. Higher doses may also be used.
  • aspirin about 1500-2000 mg/day
  • ibuprofen about 1200-3200 mg/day
  • conventional therapeutic doses of other anti-inflammatory agents may be used. Dosages of anti-inflammatory agents may be titrated to the individual patient.
  • the patient may receive concurrent treatments with the anti- inflammatory agent and PF4.
  • Local, intralesional, or intravenous injection of PF4 is preferred (see Gilman et al. , supra at pp. 1290-91) .
  • the anti-inflammatory agent should preferably be administered by subcutaneous injection, subcutaneous slow-release implant, or orally.
  • the patient may receive a composition comprising a combination of PF4 (or PF4- related compounds) and an anti-inflammatory agent according to conventional modes of administration of agents which exhibit anticancer, antitumor, or anti- inflammatory activity. These include, for example, parenteral, subcutaneous, intravenous, or intralesional routes of administration.
  • Example 14 Dosages for Systemic Administration It has been discovered that very high doses of PF4 are required when PF4 is used systemically for treatment of tumors, and that these high doses do not have unacceptable high levels of toxicity. An experiment demonstrating the need for, and tolerance of, high doses of PF4 was carried out as follows.
  • PF4 produced a dose-dependent effect, as measured by both parameters. Optimal results were observed when PF4 was administered systemically, when dosages in excess of 5000 ⁇ g per kg of body weight; at these dosages, no observable toxicity or other adverse effects were noted.
  • Example 17 Systemic Treatment.
  • PF4 can be administered by direct intravenous injection, or preferably by intravenous infusion lasting from 0.5 to 4 hours per single treatment.
  • Patients can be treated as in- or out-patients. Patients may also be treated using implantable subcutaneous portals, reservoirs, or pumps. Multiple intravenous or subcutaneous doses are possible, and in the case of implantable methods for treatment, formulations designed for sustained release will be especially useful.
  • Patients can be treated at dosages of 0.3 to 12 g of rPF4 per period; preferably with 4 to 180 mg/kg in a volume of 60 ml to 2.5 liters per day.
  • a dosage is defined as a single dose administered as a bolus injection or intravenous infusion; or the compound can be administered to the patient as an intravenous infusion over a period of a day; alternatively, the compound can be administered in several bolus injections interrupted by periods of time such that the dose is delivered over the course of a 24 hour period.
  • the most preferred method of treatement is to administer the compound to the patient in one injection or infusion per day.
  • Patients may be treated daily on alternative weeks for six weeks, or possibly for life. They may also be treated three times per week continuously, or they may be treated daily for life.
  • Regional treatment is useful for treatment of cancers in specific organs in the patient, including, but not limited to primary liver cancer, brain and kidney cancer and liver metastases from colon/rectal cancer.
  • Treatment can be accomplished by intraarterial infusion.
  • a catheter can be surgically or angiographically implanted to direct treatment to the affected organ.
  • a subcutaneous portal, connected to the catheter can be used for chronic treatment, or an implantable, refillable pump may also be employed.
  • Patients can receive 0.05 to 1 g rPF4 (1 to 20 mg/kg) in a volume of 10 to 400 ml per single dose.
  • the schedule for treatment is the same as that described above for systemic treatment.
  • compositions used in these therapies may also be in a variety of forms. These include, for example, solid, semi-solid, and liquid dosage forms, such as tablets, pills, powders, liquid solutions or suspension, liposomes, suppositories, injectable and infusible solutions. The preferred form depends on the intended mode of administration and therapeutic application.
  • the compositions also preferably include conventional pharmaceutically acceptable carriers and adjuvants which are known to those of skill in the art.
  • the compositions of the invention are in the form of a unit dose and will usually be administered to the patient one or more times a day.
  • PF4 or related compounds may be administered to the patient in any pharmaceutically acceptable dosage form, including intravenous, intramuscular, intralesional, or subcutaneous injection.
  • An effective dose may be in the range of from about 0.003 to about 200 mg/kg body weight, it being recognized that lower and higher doses may also be useful. As discussed above, very high doses are preferred for systemic administration. It should, of course, be understood that the compositions and methods of this invention may be used in combination with other therapies.
  • a maintenance dose is administered if necessary. Subsequently, the dosage or the frequency of administration, or both, may be reduced, as a function of the symptoms, to a level at which the improved condition is retained. When the symptoms have been alleviated to the desired level, treatment should cease. Patients may, however, require intermittent treatment on a long-term basis upon any recurrence of disease symptoms.

Abstract

The subject invention pertains compositions and methods for treatment of angiogenesis using PF4 and peptide fragments thereof.

Description

NOVEL METHODS AND COMPOSITIONS FOR TREATMENT OF ANGIOGENIC DISEASES Background of the Invention
The field of the invention is angiogenesis. Angiogenesis, the development of new capillary blood vessels, is an important process in the developing fetus and growing human. However, in healthy adults, angiogenesis occurs significantly only during wound healing and in the menstrual cycle.
It is now widely recognized that much of the angiogenic activity occurring in adults is pathological in nature. For example, proliferation of vascular endothelial cells and formation of new capillaries is essential for growth of solid tumors beyond a few cubic millimeters in volume (Folkman et al. [1983] Ciba Found. Symp. 100:132-149-). We now understand that developing tumors secrete growth factors which stimulate neighboring endothelial cells to divide and migrate toward the tumor.
In addition to growth of solid tumors, other conditions involving angiogenic dysfunctions include diabetic retinopathy, retrolental fibroplasia, neovascular glaucoma, psoriasis, angiofibromas, immune and non-immune inflammation (including rheumatoid arthritis) , capillary proliferation within atherosclerotic plaques, hemangiomas, and Kaposi's Sarcoma have also recently been recognized as diseases possessing characteristics of dysregulated endothelial cell division and capillary growth. These conditions along with growth of solid tumors are collectively referred to as "angiogenic diseases" (Folkman, J. , and M. Klagsbrun [1987] Science 235:442-447). In addition to angiogenic diseases, there are other conditions where endothelial cell proliferation is pathological or, at least, unwanted. For example, endometriosis is characterized by the abnormal proliferation and positioning of certain endothelial cells which normally line the inner wall of the uterus. Control of the angiogenic process could help to prevent or alleviate endometriosis. Also, prevention of endothelial cell growth in the uterus could be a means of birth control.
Endothelial cell growth .is associated with wound healing. This growth is undesirable during extended surgical proceedings and where excessive scar formation may occur. Therefore, a means of controlling endothelial cell proliferation would help prevent or reduce unwanted scar formation.
The mechanism of angiogenesis and endothelial cell proliferation has not been completely characterized. It has been established that mast cells accumulate at a tumor site before new capillary growth occurs; however, mast cells alone cannot initiate angiogenesis. Heparin, a mast cell product, has been shown to significantly stimulate the capillary endothelial cell migration which is necessary for angiogenesis (Folkman, J. [1984] Angiogenesis: Initiation and Modulation. In Cancer Invasion and Metastasis: Biologic and Therapeutic Aspects. G.L. Nicolson and L. Milas, eds. Raven Press, New York, pp. 201-208) .
Several substances are known to have the capability of inhibiting endothelial cell growth in vitro. One of the most extensively studied inhibitors of endothelial cell growth is protamine, which is a protein found only in sperm. Protamine has been shown to inhibit tumor angiogenesis and subsequent tumor growth (Taylor, S. and J. Folkman [1982] Nature 297:307-312). Protamine's anti-angiogenesis activity has been attributed to its well-known capacity to bind heparin (Taylor and Folkman [1982], supra) . Clinical experiments with protamine have not been pursued because of the toxicity associated with protamine injection. Protamine, which is usually isolated from salmon sperm, is known to be antigenic in humans, and anaphylactic reactions to this protein have been observed with secondary exposures. At least two other compounds have been studied in regard to their heparin-binding activity: platelet factor 4 (PF4) and major basic protein. Major basic protein has demonstrated heparin-binding activity but is of little practical utility because of its high toxicity. Platelet factor 4 is a well-known protein which has been completely sequenced (Deuel, T.F., R.M. Senior, D. Chang, G.L. Griffin, R.L. Heinrikson, and E.T. Kaiser [1981] Proc. Natl. Acad. Sci. USA 78:4585-4587). It is a 70-residue secretable platelet protein with a molecular weight of approximately 7.8 Kd which is released during platelet aggregation. Although there is evidence of heparin binding activity and some indications of anti- angiogenesis activity (Folkman [1984], supra), PF4 has never been shown to have clinical utility.
A compound which has been described as "oncostatin A," and which appears to be the same, or similar to, native PF4, has been implicated as affecting the growth of tumors (U.S. Patent Nos. 4,645,828 and 4,737,580; both issued to Twardzik et al.). However, the effects reported in these patents pertain to slowly growing human cancer cells in immunodeficient mice. The results of these experiments cannot be reliably extrapolated to predict the effect of rapidly growing tumors which are native to the host animal. Furthermore, the experiments reported in these patents in no way predict or disclose any angiostatic properties. Various peptid.es from PF4 have been purified and their properties studied. None has been shown to have any role in the inhibition of angiogenesis. It is known that the C-13 peptide of PF4 is chemotactic for neutrophils and monocytes (Osterman, D.G., G.L. Griffin, R.M. Senior, E.T. Kaiser, and T.H. Deuel [1982] Biochem. and Biophys. Res. Comm. 107(1) :130-135) . It is significant to note that the infiltration of monocytes would be expected to stimulate the proliferation and migration of local endothelial cells by the secretion of angiogenic factors. Thus, peptides of PF4 could be expected to stimulate, rather than inhibit, angiogenesis.
In addition to angiostatic properties, PF4 possesses characteristic structural features of the pro- inflammatory proteins interleukin-8 and β-thromboglobulin and has been shown to be chemotactic for neutrophils and monocytes in vivo (Wolpe and Cera i [1989] the FASEB Journal, 3:2565-2573). This similarity of the structure and activities of PF4 to well characterized pro- inflammatory proteins along with the ubiquitous aggregation of platelets at sites of inflammation suggest that PF4 may be an endogenous mediator of inflammation. Thus, it is anticipated that swelling could accompany the administration of PF4 in vivo. There is a significant and very long-standing need to locate an effective and non-toxic inhibitor of angiogenesis and endothelial cell proliferation. Angiogenesis plays a major role in the initiation and progression of widespread catastrophic illnesses, including cancer. An effective, non-toxic agent which can be administered locally and/or systemically to treat these illnesses would be highly advantageous and has long eluded identification.
The following table may be helpful in identifying the amino acids of the subject invention: Amino acid
Alanine
Arginine Asparagine
Aspartic acid
Asn and/or Asp
Cysteine
Glutamine Glutamic acid
Gin and/or Glu
Glycine
Histidine
Isoleucine Leucine
Lysine
Methionine
Phenylalanine
Proline Serine
Threonine
Tryptophan
Tyrosine
Valine
When used herein, . the term conservative amino acid substitution means the substitution of an amino acid with another amino acid that is biologically compatible with the first amino acid.
Summary of the Invention This invention concerns the discovery that PF4 has clinical utility in the treatment of diseases which involve angiogenesis and endothelial cell proliferation. Furthermore, PF4 fragments are demonstrated to be inhibitors of angiogenesis. The ability to inhibit angiogenesis has been found in synthetic peptides corresponding to sequences in PF4 as small as the carboxyterminal 13 amino acids.
The invention features treatment of angiogenic diseases with a combination of PF4 and an anti- inflammatory agent. Anti-inflammatory agents help to alleviate unwanted swelling, pain, or tissue damage which could accompany the administration of pro-inflammatory compounds. The invention also features methods for the treatment of tumors that contain malignant endothelial cells with PF4 either alone or in combination with an anti-inflammatory agent. In particular, the invention features methods for the treatment of brain tumors with PF4.
Detailed Description The drawings are first described. The Drawings
Figure 1 shows DNA and amino acid sequence of native rPF4.
Figure 2 shows the inhibition of angiogenesis resulting from the treatment of rPF4 and various related peptides.
Figure 3 depicts the inhibition of endothelial cell proliferation by rPF .
Figure 4 depicts the alpha-helical configurations of rPF4 and rPF4-241.
Figure 5 compares the inhibition of angiogenesis resulting from treatment with rPF4 and rPF4-241. Figure 6 compares the inhibition of human umbilical vein endothelial cell proliferation resulting from treatment with rPF4 or rPF4-241.
Figure 7 shows the ability of rPF4 and rPF4-241 to inhibit tumor growth. Figure 8 shows footpad swelling in mice as a function of time after injection with either rPF4, rPF4 and indomethacin, or a buffer solution.
Figure 9 shows quantification of inflammatory cell infiltrate after treatment with rPF4 or rPF4 with indomethacin.
Figure 10 shows tumor growth after administration of rPF4 alone, indomethacin alone, buffer alone, or rPF4 and indomethacin.
The subject invention pertains to in vivo inhibition of angiogenesis by rPF4 and certain analogs and peptide fragments of PF4. These analogs and peptide fragments of PF4 can be used to treat angiogenic diseases. As used in this application, the term "angiogenic disease" refers to growth of solid tumors, and other conditions involving angiogenic dysfunctions including macular degeneration. The subject invention also concerns the use of rPF4 and PF4 fragments for treatment of diseases of dysregulated endothelial cell proliferation.
The types of solid tumors that can be treated by rPF4, PF4, or analogs and fragments thereof, include all types of lung tumors, including small cell lung carcinoma, tumors of the breast, colon/rectum, prostate, head and neck, stomach, bladder, kidney, pancreas, liver, ovary and uterus; sarcomas; melanoma and other metastatic skin cancers; nonmetastatic skin cancers (e.g., Kaposi's sarcoma, basal cell carcinoma) ; and, most preferably tumors of the brain. The types of tumors that can treated using the compositions and methods of the invention include tumors that are not surgically accessible and/or are resistant to chemotherapy and radiation therapy. Advanced invasive malignancy, with or without surgery, can be treated using the compositions and methods of the invention. The invention can be used as an adjuvant therapy following surgical resection and can be used to treat known metastatic disease and nonmetastatic cancer. Treatment of the tumors and diseases described above can be either systemic, regional, or local (intralesional) , depending upon the type and severity of the disease as well as the accessibility of the disease site. Systemic treatment includes intravenous bolus injections and infusions, subcutaneous injections, implants, refillable reservoirs and sustained release depots and intramuscular injections. As will be explained in more detail below, the inventors have discovered that effective anti-tumor dosages useful in systemic administration must be very high; these unusually high dosages, which are necessary for maximum efficacy, can be administered with acceptably low attendant toxicity. Regional treatment includes intraarterial for the treatment of primary liver tumors and liver metastases, and for the treatment of kidney, brain and pancreatic tumors. Regional intraperitoneal treatment can be used for the treatment of tumors of the ovary. Local treatment can be used for tumors of the brain, uterus, bladder, head and neck, for Kaposi's sarcoma and other nonmetastatic skin cancers, for metastatic skin cancer once dissemination precludes further surgical excision, and for colon and rectal cancer.
Brain tumors are generally treated with initial surgical excision if possible, followed by intensive chemotherapy and radiation therapy. Aggressive brain tumors (high grade astrocytoma, glioblastoma multiforme) ultimately produce mortality by reoccurrence near their original site due to incomplete surgical removal, rather than through metastatic dissemination. Methods to specifically focus postsurgical treatment on the site of the initial lesion are therefore desirable to deliver effective therapy and reduce damage to healthy tissues. The subject invention in part takes advantage of the ability of rPF4 to inhibit capillary formation in vivo as well as embryonic neovascularization. Full length recombinant PF4 also inhibits growth factor- dependent human endothelial cell proliferation in vitro. Significantly, it was determined that the angiogenesis-inhibiting activity of PF4 was retained by synthetic peptides corresponding to sequences of PF4 as small as 13 amino acids in length. In particular, it was found that a synthetic peptide of 13 amino acids corresponding to the carboxyl terminal portion of PF4 (C- 13) displayed potent angiostatic activity.
The finding that PF4 directly inhibits growth of pure cultures of endothelial cells indicates that, advantageously, its effects are not mediated by some other cell type. The activity of the C-13 peptide is especially surprising in light of its inability to affect the anticoagulant activity of heparin. The use of the C-13 peptide offers several advantages over whole rPF4 such as reduced dosage (weight basis) , reduced likelihood of antigenicity, and greater likelihood of effectiveness in novel dosage forms.
The C-13 peptide of PF4 also retains the ability to prevent Con-A induced immunosuppression in mice, an activity which is unaffected by heparin and probably independent of the ability of the peptide to inhibit angiogenesis.
It is well understood that angiogenesis is required for solid tumors to grow beyond a few cubic millimeters. Thus for the treatment of solid tumors, use of rPF4, or a fragment thereof, to inhibit tumor growth by inhibiting angiogenesis presents a novel and highly advantageous means of therapy, although efficacy of PF4 in some of the therapies described herein is not entirely explained by inhibition of angiogenesis; for example, we have discovered that in specific types of cancers that contain malignant endothelial cells, such as Kaposi's sarcoma, PF4 was inhibitory.
The fact that the C-13 peptide inhibits angiogenesis without affecting the anticoagulant activity of heparin demonstrates that this small peptide would also have the benefit of not interfering with concurrent anticoagulant therapy. Additionally, small peptides are generally less antigenic than larger proteins, and, thus, the PF4 fragments can be used advantageously for oral and transdermal administration. These types of delivery are particularly useful in the treatment of gastrointestinal capillary proliferation (e.g., Kaposi's Sarcoma) and skin lesions, respectively. Intralesional, as well as systemic, administration of PF4 fragments are also appropriate for treatment of these conditions.
Analogs of PF4 were created which lack heparin binding activity but retain ability to inhibit angiogenesis. One such analog, known as rPF4-241, was created by cassette mutagenesis of a synthetic PF4 gene whereby the DNA sequence encoding the four lysine residues near the carboxy terminus of PF4 were converted to a sequence encoding two Gln-Glu couplets. If rPF4-241 is administered intralesionally, it can be applied such that the dosage is between about 1 μqflesion and about 4 mg/lesion. For systemic administration, the dosage of rPF4-241 -can be between 0.5 mg/kg of body weight and about 100 mg/kg of body weight. Similar and higher dosages can be used for the administration of native sequence rPF4 as well as peptide fragments. For example, dosages of rPF4 and fragments thereof may be twice that of rPF4-241 or higher.
As discussed above, PF4 has been shown to be chemotactic for neutrophils and monocytes m vitro, suggesting that it may mediate an inflammatory response. To assess whether these observations have m vivo relevance, the ability of PF4 to induce acute and chronic dermal inflammation in the mouse was tested. When injected into the murine dermis, recombinant human PF4 (rPF4) induces acute inflammation within two hours, which peaks at about 12 to 18 hours and which resolves by about 36 hours. Injection of an equivalent amount of cytochrome C, buffer alone, or an amino terminal PF4 peptide failed to elicit a significant inflammatory response, however, the carboxy terminal PF4 peptide was pro-inflammatory. The inflammatory infiltrate induced by both rPF4 and the 41 amino acid COOH terminal peptide was composed of neutrophils and to a lesser degree mononuclear cells-. Although relatively high concentrations of rPF4 are required to elicit an inflammatory response, these concentrations may be locally obtainable during platelet aggregation or at sites of administration of rPF4 or related compounds.
Advantageously, it was found that the rPF4 pro- inflammatory effect was significantly suppressed by systemic administration of an anti-inflammatory agent without reducing the angiostatic activity.
Materials and Methods Chicken Chorioallantoic Membrane (CAM) Assay. Fertile eggs were incubated in a stationary position for 3 days at 37°C and 70-80% relative humidity. During this time, the embryo rose to the upper surface of the egg contents. At the beginning of the 4th day, the eggs were cracked without inversion and carefully deposited into sterile plastic petri dishes such that the embryo remained on the upper surface. The shell-free eggs were incubated for an additional 72 hours at 37°C, under an atmosphere containing 2.5-3.5% C02 after which the growing embryos developed a recognizable CAM. Discs, made by mixing test samples with 1% (w/v) methylcellulose, were dried and placed on the CAM between major veins and approximately 0.5 cm from the embryo. Following another 48 hour incubation at 37°C (2.5-3.5% C02) , the samples were scored for their ability to inhibit angiogenesis. Inhibition appears as an avascular zone surrounding the implant and can often include elbows formed by veins avoiding the disc and a reduced number of capillaries in the region of the implant. Endothelial Cell Proliferation Assay. Human umbilical vein endothelial cells (HUVEC) were cultured in Medium 199 (Gibco) containing 10% (v/v) fetal bovine serum (FBS) , 150 mcg/ml endothelial cell growth supplement (ECGS)^and 5 units/ml heparin at 37°C and 4-5% C02. Every 3-4 days, the cultures were harvested by trypsin treatment, diluted, replated, and grown to confluence. Prior to the start of an experiment, the cells were centrifuged and resuspended in heparin-free media and incubated with the test substance (PF4) for 3 days under standard culture conditions. At the end of the incubation period, the cells were removed by trypsin treatment and counted with a Particle Data Elzone 180 Cell Counter. Statistical significance between means was determined by a standard Student t-test for unpaired data.
Inhibition of DNA synthesis was measured by plating the cells as described, then incubating with the test substance for 24 hours. 3H-Thymidine (1 μ,Ci/well) was added for an additional 6 hours and the plates were frozen at —70 C. Following 2 freeze/thaw cycles, the cells were aspirated onto a fiber filter, washed with distilled water, fixed with MeOH, and counted for incorporation of radioactivity into DNA.
In vivo Tumor Growth Assay. Normal C57BL/6J female mice (6-8 weeks old) were inoculated subcutaneously with 5 x 105 log phase cells of a B16-F10 melanoma tumor line. This protocol led to progressive tumor growth resulting in large (300 mm3) necrotic tumors after approximately 10 days, followed by death of untreated animals usually within three weeks of tumor inoculation.
To test the efficacy of rPF4 in preventing in vivo tumor growth and angiogenesis, tumor bearing animals were injected daily, directly into the nascent tumor, with either rPF4 or with buffer lacking rPF4, beginning one day after tumor inoculation. Tumor volume was measured at regular intervals with digital calipers by laboratory personnel uninformed of the specific treatment received by each subject animal. Footpad Assay. 0.05 ml of PBS containing a test substance was injected intradermally into the right hind footpad of each mouse. An identical amount of diluent, not containing the test substance, was injected into the left hind footpad. At various time points, footpad thicknesses were measured with a spring loaded engineer's micrometer (Fowler Co., Biggswald, England).
At various time points, mice were sacrificed and footpad tissue was prepared for light microscopy. This tissue was used to quantify infiltrating cell types. Biopsy specimens were fixed in 10% buffered formalin for at least 48 hours and then prepared using standard techniques of paraffin embedding and staining with hematoxylin and eosin. Using an ocular grid, four cellular areas of dermis in each specimen were examined in a coded fashion at 1000X magnification and inflammatory cells were quantified. Differences between groups were assessed by Student's t test or analysis of variance, where appropriate. rPF4 Production. Recombinant PF4 was produced in Fϋ coli as an N-terminal fusion protein containing a unique methionine residue immediately preceding the PF4 portion. More specifically, expression plasmid pPF4-211 was constructed by cloning a synthetic gene encoding native sequence PF4 (Figure 1) (Poncz et al. [1987] Blood 69:219) into the multiple restriction site region of plasmid pREV2.2 (deposited July 30, 1986; accession # NRRL B-18091) . Codon usage in the synthetic gene was optimized for expression in E . coli. and synthetic DNA linkers were included on each end to facilitate the directional insertion of the PF4 gene into the vector. The restriction sites Hindlll and Smal were chosen for insertion into pREV2.2. The resulting construct, pPF4- 211, expressed a fusion protein containing 34 amino acids of E_^ coli ?-glucuronidase (BG) separated from the PF4 sequence by a unique methionine residue.
Cells expressing the fusion protein were subjected to lysozyme (1 mg/g cells) , DNase I (500 units/100 g cells) and bead mill treatments. The lysis pellet containing the fusion protein was treated with CNBr (10 g/lOOg cells) in 70% formic acid to cleave the fusion protein at the methionine between the BG and PF4 portions. Following evaporation of the CNBr/formic acid, the recombinant protein was extracted with 200 ml of 50 mM Tris-Cl, pH 7.6, 5 mM EDTA, and 10 mM DTT per 100 g of cell starting material. Native sequence rPF4-211 was purified by binding the protein to heparin agarose, removing contaminating proteins with 0.6 M NaCl, and eluting with 1.2 M NaCl. The resulting material was dialyzed into 20 mM sodium acetate, pH 4.0, and analyzed on a 15% SDS-PA gel stained with Coomassie Brilliant Blue. Minor contaminants could be removed using C4 reverse phase high pressure liquid chromatography (HPLC) to prepare the protein for in vivo use.
Production of rPF4-241 and other PF4 analogs. A synthetic gene encoding the mutant designated rPF4-241 was constructed by changing the codons for the four lysine residues near the C-terminus of PF4 to sequences encoding two Gln-Glu couplets (CAA GAA) by cassette mutagenesis between the Bbel and Smal sites. Linkers were included at the ends of the synthetic gene, and the gene was inserted into pREV2.2 as described above. Genes encoding other PF4 mutants or analogs were prepared in a similar manner.
The mutant proteins (e.g., rPF4-241) were cleaved and extracted as described above. The extracts were then purified using DEAE-Sepharose chromatography, and eluted with a gradient of 0-1 M NaCl. The PF4 proteins generally eluted at approximately 0.5 M NaCl and were dialyzed into 20 mM phosphate buffer, pH 7.5. The samples were further purified by reverse phase HPLC.
PF4 peptides. Peptides were prepared by standard solid phase synthesis procedures, cleaved from the solid support and deblocked, and purified by reverse phase HPLC. Reagents. Recombinant human IL-1 (rIL-1) was purchased from Genzyme Corporation (Cambridge, MA) . Cytochrome c and J coli endotoxin were purchased from Sigma Chemical Co. (St. Louis, MO) . Slow release indomethacin pellets were purchased from Innovative Research (Toledo, OH) .
Mice. C57B1/6J, A/J and C3H/HeJ female mice, 6-8 weeks old, were purchased from the Jackson Laboratory (Bar Harbor, ME) . Following are examples which illustrate procedures, including the best mode, for practicing the invention. These examples should not be construed as limiting. All percentages are by weight and all solvent mixture proportions are by volume unless otherwise noted.
Example 1
Chicken eggs, prepared as described above, were treated with discs containing several concentrations of recombinant PF4 or peptides derived from the sequence of PF4. rPF4 and C-terminal peptides as small as 13 amino acids inhibited angiogenesis on the CAM (Figure 2) . In each case, the inhibition was dose-dependent and the response approximately equivalent (molar basis) for the inhibitors containing the C-terminal region of PF4. An N-terminal peptide of PF4 (N-29) did not inhibit angiogenesis even at the highest concentration tested, suggesting that all of the anti-angiogenic activity of PF4 is probably associated with the C-terminal portion of the molecule. Since the C-terminus of PF4 is rich in lysine, polylysine was tested in this assay system and found not to cause inhibition at 6.5 nmol dosages.
Example 2
The lysine rich region of PF4 (residues 61-66) is also the domain associated with the binding of heparin by PF4. Heparin is known to play a role in modulating angiogenesis, which can also be affected by protamine, another well characterized heparin-binding protein. To assess the ability of PF4-based synthetic peptides to bind heparin, we assayed the activity of coagulation- cascade enzymes which are inhibited by heparin. The Factor Xa assay used here has previously been described in Denton et al. (1983) Biochem. J. 209:455-460. Protamine and platelet factor 4 are able to prevent the heparin inhibition of thrombin and Factor Xa at approximately equimolar concentrations. The 41 amino acid C-terminal peptide of PF4 (C-41) prevented heparin inhibition less effectively, but the C-13 peptide was unable to prevent the inhibition of thrombin even at concentrations ten times that of an effective level of rPF4. This unexpected finding suggests that the C-13 peptide inhibits angiogenesis by some method other than heparin binding.
Example 3
Many angiostatic agents act by direct inhibition of endothelial cell proliferation. Endothelial cell division and growth is tightly controlled and strictly dependent on the presence of growth factors. We evaluated the ability of rPF4 having the wild type sequence (rPF4-211) and related peptides to inhibit growth factor-stimulated human endothelial cell proliferation in vitro. As shown in Figure 3, rPF4 significantly inhibited endothelial cell growth in a dose-dependent fashion at a concentration as low as 1.3 μ-M. Inhibition was complete at 3.2 μM in the heparin- deficient medium employed here.
Example 4
To assess the importance of the heparin binding activity of PF4 in the inhibition of endothelial cell proliferation, cells were incubated in media containing or lacking 5 units/ml heparin. The presence of heparin stimulated proliferation of these cells during the three day incubation of this experiment. rPF4 significantly inhibited both control (100%) and heparin stimulated (45%) endothelial cell growth (Table 1) . Table 1. Attenuation of rPF4 inhibition of endothelial cell growth by heparin . rPF4 %
Addition — 50mcg/ml Inhibition3
5
14.4 ± 2.5 b6.0 ± 0.6 _100
5 u/ml heparin 18.9 ± 1.2 b14.0 ± 0.4 45
10 aBased on seeding of 8 x 104 cells/well bSignificantly different from appropriate control (p< 0.005)
Example 5 - Construction of rPF4-2 1 15 A mutant of PF4 was created by converting the four lysine residues at the carboxy terminus of PF4 to two Gln-Glu couplets as disclosed above. This protein apparently retains the alpha-helical secondary structure (Figure 4) for this region of the molecule with the 20 concurrent loss of heparin binding activity.
The protein was reactive with polyclonal antibodies to native PF4 and was determined to possess the appropriate modifications by amino acid analysis. Significantly, the purified mutant protein lacked 25 heparin-binding activity in the Factor Xa inhibition assay.
The substitutions described here can be made with the peptide fragments as well as with the full length PF4 molecule. For example, C-13-241 has the following 30 sequence:
Pro-Leu-Tyr-Gln-Glu-Ile-Ile-Gln-Glu-Leu-Leu-Glu- Ser
Example 6 - Inhibition of Angiogenesis by rPF4-241
Purified rPF4-241 was tested for its ability to 35 inhibit capillary growth in the chicken chorioallantoic membrane (CAM) assay. Even at the lowest concentrations tested (1.25 nmol/disc) rPF4-241 extensively inhibited angiogenesis in the CAM system (Figure 5) . This inhibition was even more effective than that caused by equal concentrations of native rPF4 as suggested by larger avascular zones on the membrane. The inhibitory effect of rPF4-241 was not reversed by heparin.
Example 7 - Inhibition of Human Endothelial Cell Proliferation bv rPF4-241
In a test of inhibition of human umbilical vein endothelial cell proliferation by native rPF4 and mutant rPF4-241, both were shown to be effective at inhibiting the proliferation of these cells. The results of this test are shown in Figure 6.
These results are remarkable in that previous theories of PF4 inhibition of angiogenesis assumed that the PF4 effects were due to heparin binding. We have designed a protein, retaining most of the structural features of native PF4 but lacking detectable heparin binding activity, which may be more active than native PF4 in inhibiting angiogenesis in vivo and endothelial cell proliferation in vitro. Additionally, the mutant we have designed would not be expected to interfere with heparin anticoagulant therapy.
Example 8 - Inhibition of In Vivo Tumor Growth The efficacy of rPF4-211 or rPF4-241 in preventing tumor growth and angiogenesis was tested. The inhibition of in vivo tumor growth was assayed after injection of either rPF4-211 (in 20 mM NaOAc, pH 4.0) or rPF4-241 (in 50 mM sodium phosphate, pH 6.5, 50 mM NaCl) directly into the nascent tumor, as described in the materials and methods section above. Within seven days of tumor inoculation, animals injected with buffer possessed obvious three dimensional tumors, while rPF4-211-treated animals were essentially tumor-free (Figure 7) . Continued treatment with rPF4 completely suppressed tumor growth under these conditions where control animal tumors became necrotic and large as seen previously with untreated mice. The same effect was observed when rPF4- 241 was used as the inhibitory agent.
This finding supports the proposition that rPF4, as an inhibitor of angiogenesis, will possess clinical usefulness in the management of malignant melanoma and other cancers. Progressive growth of tumors requires new blood vessel formation which, if inhibited, may not only restrict tumor growth, but stimulate regression of . existing vessels, as well as enhance other responses to malignant invasion. The finding that rPF4 inhibition of in vivo tumor growth was apparent within three days of the initial inoculation (of rPF4) indicates that rPF4 acts to modulate tumor growth by local mechanisms rather than by immunomodulation which would require a longer time course. Additionally, rPF4 did not directly inhibit tumor cell growth in vitro. It appears, therefore, that rPF4 modulated the host's angiogenic response to the growing tumor.
Example 9 It has been shown that proteins of identified structure and function may be constructed by changing the amino acid sequence if such changes do not significantly alter the protein secondary structure (Kaiser, E.T., and F.J. Kezdy [1984] Science 223:249-255)-. The subject inventionr includes other mutants or fragments of the PF4 sequences depicted herein which lack affinity for heparin and exhibit substantially the same or higher angiostatic activity. A preferred region for modification is the lysine rich region near the carboxy terminus corresponding to the heparin binding domain (residues 60- 70) . As a general rule, amino acids 60 through 70 cannot be eliminated. Also, as a general rule, it is necessary to have at least one charged residue between positions 60 and 70. Maintenance of an amphipathic α-helix in this region does not seem to be necessary, however, an amphipathic structure may be preferable. Thus, the subject invention includes mutants of the amino acid sequences depicted herein which do not alter the protein secondary structure, or if the structure is altered, the biological activity is retained. In particular it should be understood that conservative substitutions of amino acids may be made. For example, amino acids may be placed in the following classes: basic, hydrophobic, acidic, polar, and amide. Substitutions whereby an amino acid of one class is replaced with another amino acid of the same type fall within the scope of the subject invention so long as the substitution does not materially alter the biological activity of the compound. Table 2 provides a listing of examples of amino acids belonging to each class.
Table 2.
Class of Amino Acid Example of Amino Acids
Basic K, R, H Hydrophobic A, L, I, V, P, F, W, Y, M
Acidic E, D
Polar S, T, N, Q, C
Amide Q, N
In some instances, non-conservative' substitutions can also be made. For example, a lysine residue near the C-terminus of PF4 may be replaced with any of the following amino acids: E, Q, D, N, M, A, L, and I. The critical factor is that these substitutions must not significantly detract from the biological activity of the rPF4 or the rPF4 fragment.
We have conducted experiments whereby amino acid substitutions have been made, and the resulting rPF4 mutants have been tested for biological activity. Various mutants which have been constructed are shown in Table 3.
Seguence
60
70
[PF4 AA 1-57] - P L Y K K I I K K L L E
[PF4 AA 1-57] - P L Y
[PF4 AA 1-57] - P L Y Q E I I Q E L L E
[PF4 AA 1-57] - P L Y Q Q I I Q Q L L E
[PF4 AA 1-57] - P L Y K K Q E K K Q E E
[PF4 AA 1-57] - P L Y Q I E I Q L E L E
[PF4 AA 1-57] - P L Y N D I I N D L L E
[PF4 AA 1-57] - P L Y G E I I G E L L E
Results from experiments testing the biological activity of these peptides are shown in Table 4.
Table 4.
rPF4-211 rPF4-231 rPF4-241 rPF4-302 rPF4-303 rPF4-307 rPF4-308 + NA rPF4-315 + NA
NA = Not available
The results shown in Table 4 clearly demonstrate that it is possible to make rPF4 mutant which retain the biological activity of rPF4 with respect to inhibition of cell growth in the CAM assay and the HUVEC assay. Two of these peptides (rPF4-241 and rPF4-307) exhibited enhanced activity in these assays. The mutants described here are amino acid sequences which are largely homologous with wild type rPF4 (rPF4-211) , but which have certain amino acid substitutions. These substitutions were made between amino acids 60 and 70.
Although most of the resulting compounds still exhibit biological activity in the CAM and HUVEC assays, they do not bind heparin. rPF4-302, which does not exhibit significant activity in either the CAM or the HUVEC assay, has no charged amino acid residues between residues 60 and 70. rPF4-231, which also does not exhibit significant biological activity, terminates at amino acid number 60. If a person skilled in the art wished to investigate the biological activity of other rPF4 mutants, it would now be a straightforward procedure to make the desired mutations and test the resulting peptides for activity. Using the teachings of this document, the researcher could prepare and readily test peptides which could be expected to have the desired properties. For example, the amino acid substitutions just described for the full length rPF4 molecule can also be made with the C-13 and C-41 fragments which are described above. Example 10 — Inflammatory Properties of rPF4 and Related Compounds
The inflammatory properties of rPF4 and related compounds were assessed using the footpad assay as described above. At 8 hours, local injection of 25 μg of rPF4-211 into the murine dermis resulted in a brisk inflammatory response as measured by footpad swelling (Figure 8) and quantification of inflammatory cell infiltrate (Figure 9) . At higher doses the tissue edema does not increase further and may even drop off slightly. It has been found that relatively high local concentrations of PF4 are required to exert a pro- inflammatory effect. Although a brisk inflammatory response occurs with 25 μg of PF4 injected into the murine dermis, at 0.25 μg, the inflammatory response is minimal. The time course of rPF4 induced acute inflammation is broad and resolves by about 36 hours (Figure 8) .
The time course of rPF4 induced inflammation shows a rapid increase from baseline and peaks at between 6 and 12 hours and almost completely resolves by 36 hours.
Example 11 — Effects of Anti-Inflammatory Agent with rPF4 For each mouse, 0.05 mg, slow release indomethacin pellets (Innovative Research, Toledo, OH) were implanted subcutaneously under light ether anesthesia 48 hours prior to an experiment. These pellets continuously release their contents over 14 days.
Systemic treatment of animals with indomethacin significantly blunts the rPF4 pro-inflammatory response (Figure 8) . The area under the curve of footpad swelling in the rPF4 plus indomethacin treated mice is 45.7% of the area under the curve of the rPF4 alone treated mice.
The inflammatory cell infiltrate is also partially abrogated with indomethacin treatment. The results of these experiments are summarized in Table 5.
inflammatory response
Infiltrating
++ ++
+ +/-
Thus, indomethacin can be used to decrease the swelling which could accompany the administration of PF4 or PF4-related substances. Other non-steroidal anti- inflammatory agents could also be used. The anti- inflammatory agents useful in the combinations and methods of this invention include steroidal and non- steroidal anti-inflammatory agents. The non-steroidal anti-inflammatory agents include, but are not limited to, acetyl salicylic acid (aspirin) , methyl salicylate, sodium salicylate, phenylbutazone, oxyphenbutazone, apazone, indomethacin, sulindac, tol etin, mefenamic acid, ibuprofen, naproxen, fenoprofen, flurbiprofen, ketoprofen, and other compounds. Other anti-inflammatory agents useful in the combinations and methods of this invention are lipocortins derived from natural sources or lipocortins and lipocortin-like polypeptides produced by recombinant techniques (see United States patent applications Serial Nos. 690,146; 712,376; 765,877 and 772,892; Wallner, B. et al. [1986] Nature 320:77-81) and uromodulin (Muchmore, A.V. , and J.M. Decker [1985]
Science 229:479-481), or cyclosporin and its derivatives. Steroidal anti-inflammatory agents which could be used according to the subject invention include, but are not limited to, hydrocortisones. Example 12 — Anti-Tumor Activity of rPF4 Combined with Indomethacin
Four groups of mice were used in this experiment. In two groups of mice, slow release indomethacin pellets (50 μg) were implanted surgically under the skin of the left flank. The other two groups were not treated with indomethacin. Tumors were implanted subcutaneously in all four groups in the right flank.
As shown in Figure 10, the addition of indomethacin to PF4 did not compromise the antitumor activity of PF4. Implanted tumors grew rapidly after day 6 when the tumor was treated with either buffer alone or- indomethacin alone. By contrast, the tumors grew very little, if at all, when treated with PF4 or a combination of PF4 and indomethacin.
From these results it is apparent that PF4 retains its antitumor activity even when combined with the anti- inflammatory agent indomethacin.
Example 13 — Administration of PF4 and Anti-Inflammatorv Agents
The combinations and methods of the present invention may allow the administration of PF4, or related compounds, in higher doses in some cases than those tolerated in conventional treatment regimes based upon PF4 alone. Accordingly, the combinations and methods of this invention advantageously reduce or eliminate the inflammatory effects of high dose treatments with PF4 alone. Thus, the use of PF4 in combination with an anti- inflammatory agent may reduce the duration of treatment which would be required by therapies based upon conventionally tolerated lower dosages of PF4 alone.
The combinations and methods of this invention are useful in treating any mammal, including humans. According to this invention, mammals are treated with pharmaceutically effective amounts of the two active components—PF4 and an anti-inflammatory agent—of the combinations of this invention for a period of time sufficient to inhibit angiogenesis or endothelial cell proliferation.
In accordance with this invention, pharmaceutically effective amounts of an anti- inflammatory agent and the PF4 (or PF4-related compounds) are administered sequentially or concurrently to the patient. The most effective mode of administration and dosage regimen of PF4 and anti-inflammatory agent will depend upon the type of disease to be treated, the severity and course of that disease, previous therapy, the patient's health status, and response to PF4 and the judgment of the treating physician. PF4 may be administered to the patient at one time or over a series of treatments.
Preferably, the anti-inflammatory agent and the PF4 are administered sequentially to the patient, with the anti-inflammatory agent being administered before, after, or both before and after treatment with PF4. Sequential administration involves treatment with the anti-inflammatory agent at least on the same day (within 24 hours) of treatment with PF4 and may involve continued treatment with the anti-inflammatory agent on days that the PF4 is not administered. Conventional modes of administration and standard dosage regimens of anti- inflammatory agents may be used (see Gil an, A.G. et al. [eds.] The Pharmacological Basis of Therapeutics, pp. 697-713, 1482, 1489-91 [1980]; Physicians Desk Reference, 1986 Edition) . For example, indomethacin may be administered orally at a dosage of about 25-50 mg, three times a day. Higher doses may also be used. Alternatively, aspirin (about 1500-2000 mg/day) , ibuprofen (about 1200-3200 mg/day) , or conventional therapeutic doses of other anti-inflammatory agents may be used. Dosages of anti-inflammatory agents may be titrated to the individual patient.
According to one embodiment of this invention, the patient may receive concurrent treatments with the anti- inflammatory agent and PF4. Local, intralesional, or intravenous injection of PF4 is preferred (see Gilman et al. , supra at pp. 1290-91) . The anti-inflammatory agent should preferably be administered by subcutaneous injection, subcutaneous slow-release implant, or orally. Alternatively, the patient may receive a composition comprising a combination of PF4 (or PF4- related compounds) and an anti-inflammatory agent according to conventional modes of administration of agents which exhibit anticancer, antitumor, or anti- inflammatory activity. These include, for example, parenteral, subcutaneous, intravenous, or intralesional routes of administration.
Example 14 - Dosages for Systemic Administration It has been discovered that very high doses of PF4 are required when PF4 is used systemically for treatment of tumors, and that these high doses do not have unacceptable high levels of toxicity. An experiment demonstrating the need for, and tolerance of, high doses of PF4 was carried out as follows.
Cells of a B16 murine melanoma cell line were injected intravenously into a tail vein of a mouse. Thirty seconds later, rPF4 (in saline or acetate buffer) was injected into the same mouse via a different tail vein. After 21 days, the tumor burden of the test and control animals was measured by counting, optically, lung metastases, and by weighing the lungs of the mice. Referring to Table 6, PF4 produced a dose-dependent effect, as measured by both parameters. Optimal results were observed when PF4 was administered systemically, when dosages in excess of 5000 μg per kg of body weight; at these dosages, no observable toxicity or other adverse effects were noted.
Lung
443
525 404 357
Average of six mice per group t Statistically different from control group, p<0.05.
Example 17 - Systemic Treatment.
Systemic treatment is essentially equivalent for all applications, including, but not limited to, small cell lung carcinoma, head and neck cancer, sarcoma, breast cancer, colon cancer, etc. PF4 can be administered by direct intravenous injection, or preferably by intravenous infusion lasting from 0.5 to 4 hours per single treatment. Patients can be treated as in- or out-patients. Patients may also be treated using implantable subcutaneous portals, reservoirs, or pumps. Multiple intravenous or subcutaneous doses are possible, and in the case of implantable methods for treatment, formulations designed for sustained release will be especially useful. Patients can be treated at dosages of 0.3 to 12 g of rPF4 per period; preferably with 4 to 180 mg/kg in a volume of 60 ml to 2.5 liters per day.
A dosage is defined as a single dose administered as a bolus injection or intravenous infusion; or the compound can be administered to the patient as an intravenous infusion over a period of a day; alternatively, the compound can be administered in several bolus injections interrupted by periods of time such that the dose is delivered over the course of a 24 hour period. The most preferred method of treatement is to administer the compound to the patient in one injection or infusion per day.
Patients may be treated daily on alternative weeks for six weeks, or possibly for life. They may also be treated three times per week continuously, or they may be treated daily for life.
Example 18 - Regional Treatment.
Regional treatment is useful for treatment of cancers in specific organs in the patient, including, but not limited to primary liver cancer, brain and kidney cancer and liver metastases from colon/rectal cancer. Treatment can be accomplished by intraarterial infusion. A catheter can be surgically or angiographically implanted to direct treatment to the affected organ. A subcutaneous portal, connected to the catheter can be used for chronic treatment, or an implantable, refillable pump may also be employed. Patients can receive 0.05 to 1 g rPF4 (1 to 20 mg/kg) in a volume of 10 to 400 ml per single dose. The schedule for treatment is the same as that described above for systemic treatment.
Compositions
The compositions used in these therapies may also be in a variety of forms. These include, for example, solid, semi-solid, and liquid dosage forms, such as tablets, pills, powders, liquid solutions or suspension, liposomes, suppositories, injectable and infusible solutions. The preferred form depends on the intended mode of administration and therapeutic application. The compositions also preferably include conventional pharmaceutically acceptable carriers and adjuvants which are known to those of skill in the art. Preferably, the compositions of the invention are in the form of a unit dose and will usually be administered to the patient one or more times a day.
PF4, or related compounds, may be administered to the patient in any pharmaceutically acceptable dosage form, including intravenous, intramuscular, intralesional, or subcutaneous injection. An effective dose may be in the range of from about 0.003 to about 200 mg/kg body weight, it being recognized that lower and higher doses may also be useful. As discussed above, very high doses are preferred for systemic administration. It should, of course, be understood that the compositions and methods of this invention may be used in combination with other therapies.
Once improvement of the patient's condition has occurred, a maintenance dose is administered if necessary. Subsequently, the dosage or the frequency of administration, or both, may be reduced, as a function of the symptoms, to a level at which the improved condition is retained. When the symptoms have been alleviated to the desired level, treatment should cease. Patients may, however, require intermittent treatment on a long-term basis upon any recurrence of disease symptoms.
It should be understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and the scope of the appended claims.

Claims

Claims
1. Use of recombinant or synthetic PF4, a PF4- related compound, or a fragment thereof, for the manufacture of a medicament for use in the treatment of a tumor of the head or neck.
2. Use of recombinant or synthetic PF4, a PF4- related compound, or a fragment thereof, for the manufacture of a medicament for use in the treatment of a lung tumor.
3. Use of recombinant or synthetic PF4, a PF4- related compound, or a fragment thereof, for the manufacture of a medicament for use in the treatment of a breast tumor.
4. Use of recombinant or synthetic PF4, a PF4- related compound, or a fragment thereof, for the manufacture of a medicament for use in the treatment of a colon tumor.
5. Use of recombinant or synthetic PF4, a PF4- related compound, or a fragment thereof, for the manufacture of a medicament for use in the treatment of rectal cancer.
6. Use of recombinant or synthetic PF4, a PF4- related compound, or a fragment thereof, for the manufacture of a medicament for use in the treatment of prostate cancer.
7. Use of recombinant or synthetic PF4, a'PF4- related compound, or a fragment thereof, for the manufacture of a medicament for use in the treatment of stomach cancer.
8. Use of recombinant or synthetic PF4, PF4- related compound, or a fragment thereof, for the manufacture of a medicament for use in the treatment of bladder cancer.
9. Use of recombinant or synthetic PF4, a PF4- related compound, or a fragment thereof, for the manufacture of a medicament for use in the treatment of kidney cancer.
10. Use of recombinant or synthetic PF4, a PF4- related compound, or a fragment thereof, for the manufacture of a medicament for use in the treatment of pancreatic cancer.
11. Use of recombinant or synthetic PF4, a PF4- related compound, or a fragment thereof, for the manufacture of a medicament for use in the treatment of liver cancer.
12. Use of recombinant or synthetic PF4, a PF4- related compound, or a fragment thereof, for the manufacture of a medicament for use in the treatment of ovarian cancer.
13. Use of recombinant or synthetic PF4, a PF4- related compound, or a fragment thereof, for the manufacture of a medicament for use in the treatment of uterine cancer.
14. Use of recombinant or synthetic PF4, a PF4- related compound, or a fragment thereof, for the manufacture of a medicament for use in the treatment of metastatic skin cancer.
15. Use of recombinant or synthetic PF4, a PF4- related compound, or a fragment thereof, for the manufacture of a medicament for use in the treatment of malignant melanoma.
16. Use of recombinant or synthetic PF4, a PF4- related compound, or a fragment thereof, for the manufacture of a medicament for use in the treatment of basal cell carcinoma.
17. Use of recombinant or synthetic PF4, a PF4- related compound, or a fragment thereof, for the manufacture of a medicament for use in the treatment of macular degeneration.
EP93904627A 1992-01-16 1993-01-19 Novel methods and compositions for treatment of angiogenic diseases Withdrawn EP0576669A4 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US82237892A 1992-01-16 1992-01-16
US822378 1992-01-16

Publications (2)

Publication Number Publication Date
EP0576669A1 EP0576669A1 (en) 1994-01-05
EP0576669A4 true EP0576669A4 (en) 1996-05-08

Family

ID=25235857

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93904627A Withdrawn EP0576669A4 (en) 1992-01-16 1993-01-19 Novel methods and compositions for treatment of angiogenic diseases

Country Status (5)

Country Link
EP (1) EP0576669A4 (en)
JP (1) JPH06506702A (en)
AU (1) AU3592593A (en)
CA (1) CA2106368A1 (en)
WO (1) WO1993013794A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1006437A3 (en) * 1992-12-10 1994-08-30 Company S A Z Nucleotide sequence for the treatment of cancer and infection.
CN1105574C (en) * 1993-03-12 2003-04-16 爱克索马技术有限公司 Therapeutic uses of bactericidal/permeability increasing protein products
US5733872A (en) * 1993-03-12 1998-03-31 Xoma Corporation Biologically active peptides from functional domains of bactericidal/permeability-increasing protein and uses thereof
US5348942A (en) * 1993-03-12 1994-09-20 Xoma Corporation Therapeutic uses of bactericidal/permeability increasing protein products
US5652332A (en) * 1993-03-12 1997-07-29 Xoma Biologically active peptides from functional domains of bactericidal/permeability-increasing protein and uses thereof
WO1996025171A1 (en) * 1995-02-16 1996-08-22 F.Hoffmann-La Roche Ag Inhibition of angiogenesis using interleukin-12
FI955489A0 (en) * 1995-11-15 1995-11-15 Antti Aarne Ilmari Lange Foerfarande Foer adaptive Kalmanfiltrering in a dynamic system
EP2287183A1 (en) * 2009-07-29 2011-02-23 Institut National De La Sante Et De La Recherche Medicale (Inserm) Mutants PF4 polypeptides exhibiting an increased anti-angiogenic activity

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985004397A1 (en) * 1984-03-23 1985-10-10 Oncogen Platelet related growth regulator
EP0324556A2 (en) * 1988-01-14 1989-07-19 Nippon Mining Company Method to improve mRNA translation and use thereof for production of platelet factor-4
EP0378364A2 (en) * 1989-01-10 1990-07-18 Repligen Corporation Analogues of PF4 and fragments thereof, and pharmaceutical compositions containing them
EP0407122A1 (en) * 1989-07-06 1991-01-09 Repligen Corporation Novel modified PF4 compositions and methods of use
WO1992002240A2 (en) * 1990-07-27 1992-02-20 Repligen Corporation Novel methods and compositions for treatment of angiogenic diseases
WO1993002192A1 (en) * 1991-07-15 1993-02-04 Repligen Corporation Modified pf4 compositions and methods of use

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU623589B2 (en) * 1987-03-02 1992-05-21 Bristol-Myers Squibb Company Platelet related growth regulator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985004397A1 (en) * 1984-03-23 1985-10-10 Oncogen Platelet related growth regulator
EP0324556A2 (en) * 1988-01-14 1989-07-19 Nippon Mining Company Method to improve mRNA translation and use thereof for production of platelet factor-4
EP0378364A2 (en) * 1989-01-10 1990-07-18 Repligen Corporation Analogues of PF4 and fragments thereof, and pharmaceutical compositions containing them
EP0407122A1 (en) * 1989-07-06 1991-01-09 Repligen Corporation Novel modified PF4 compositions and methods of use
WO1992002240A2 (en) * 1990-07-27 1992-02-20 Repligen Corporation Novel methods and compositions for treatment of angiogenic diseases
WO1993002192A1 (en) * 1991-07-15 1993-02-04 Repligen Corporation Modified pf4 compositions and methods of use

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO9313794A1 *

Also Published As

Publication number Publication date
WO1993013794A1 (en) 1993-07-22
AU3592593A (en) 1993-08-03
CA2106368A1 (en) 1993-07-17
EP0576669A1 (en) 1994-01-05
JPH06506702A (en) 1994-07-28

Similar Documents

Publication Publication Date Title
US5284827A (en) Systemic treatment of metastatic cancer with platelet factor 4
WO1992002240A2 (en) Novel methods and compositions for treatment of angiogenic diseases
EP0407122B1 (en) Novel modified PF4 compositions and methods of use
US5800820A (en) Methods and compositions for treatment of angiogenic diseases
US5474981A (en) Use of the cytokine IP-10 as an anti-tumor agent
JP4384597B2 (en) Chimeric coiled-coil molecule
EP0791011B1 (en) Biologically active tgf-beta1 and tgf-beta2 peptides
WO1993009799A1 (en) Suppression of megakaryocytopoiesis by macrophage inflammatory proteins
US20060258583A1 (en) Anti-angiogenic peptides for treating or preventing endometriosis
EP1038011B1 (en) Methods of producing anti-angiogenic proteins; endostatin, angiostatin or restin, using a pichia yeast expression system
EP0576669A4 (en) Novel methods and compositions for treatment of angiogenic diseases
EP0379522B1 (en) Uses of recombinant colony stimulating factor-1
EP0594749A1 (en) Modified pf4 compositions and methods of use
US6797488B1 (en) Methods of producing anti-angiogenic proteins
US8133491B1 (en) Compositions and methods for treatment of hyperplastic disorders
CN114605501B (en) Polypeptide FIP-21 capable of antagonizing FUS protein RNA binding activity and application thereof
JP2000095702A (en) Anticancer agent containing salmosin as active ingredient
WO1988002632A1 (en) Combinations of tumor necrosis factors and anti-inflammatory agents and methods for treating malignant and non-malignant diseases
WO2011119008A2 (en) Peptides for promoting angiogenesis and an use thereof
EP1196440B1 (en) Therapeutic peptides derived from subsequences of bpi
JP4583763B2 (en) Cleaved 24 kDa basic fibroblast growth factor
Tosato et al. Calreticulin and tumor suppression
JP2006519873A (en) Use of tumor endothelial markers 1, 9, and 17 to promote angiogenesis

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19931008

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SHARPE, RICHARD, J.

Inventor name: MAIONE, THEODORE, E.

A4 Supplementary search report drawn up and despatched

Effective date: 19960320

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19980723