EP0574067B1 - Verfahren zur Herstellung eines festen Katalysators, fester Katalysator und diesen festen Katalysator verwendendes Verfahren zur Olefin(co)polymerisation - Google Patents

Verfahren zur Herstellung eines festen Katalysators, fester Katalysator und diesen festen Katalysator verwendendes Verfahren zur Olefin(co)polymerisation Download PDF

Info

Publication number
EP0574067B1
EP0574067B1 EP93201561A EP93201561A EP0574067B1 EP 0574067 B1 EP0574067 B1 EP 0574067B1 EP 93201561 A EP93201561 A EP 93201561A EP 93201561 A EP93201561 A EP 93201561A EP 0574067 B1 EP0574067 B1 EP 0574067B1
Authority
EP
European Patent Office
Prior art keywords
process according
catalytic solid
magnesium
compound
denotes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93201561A
Other languages
English (en)
French (fr)
Other versions
EP0574067A1 (de
Inventor
Nicola Zandona
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ineos Manufacturing Belgium NV
Original Assignee
Solvay Polyolefins Europe Belgium SA
Solvay SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solvay Polyolefins Europe Belgium SA, Solvay SA filed Critical Solvay Polyolefins Europe Belgium SA
Publication of EP0574067A1 publication Critical patent/EP0574067A1/de
Application granted granted Critical
Publication of EP0574067B1 publication Critical patent/EP0574067B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond

Definitions

  • the present invention relates to a process for manufacturing a catalytic solid of the Ziegler-Natta type, comprising a magnesium compound and at least one compound of a transition metal, more particularly a titanium compound.
  • the invention also relates to catalytic solids, and their use for the polymerization of olefins, typically ethylene.
  • the invention remedies the disadvantages of the known process described above, by providing a new process, which makes it possible to obtain catalytic solids having a high activity when it is used for the polymerization of olefins.
  • the invention also makes it possible to manufacture catalytic solids with a low aluminum content.
  • the invention makes it possible to obtain catalytic solids comprising several transition metals, which thus widens, when used in the polymerization of olefins, the range of molecular weight of the polyolefins produced.
  • the magnesium compounds corresponding to the formula MgX n (OR) 2-n are preferably chosen from those in which the group R contains up to 20 carbon atoms. They can be selected from monoalcoholates magnesium such as MgCl (OC 2 H 5 ) and MgCl (OC 4 H 9 ), magnesium dialcoholates such as Mg (OC 2 H 5 ) 2 and Mg (OC 4 H 9 ) 2 and magnesium dihalides such as MgCl 2 .
  • the especially preferred magnesium compounds are magnesium dichloride and magnesium diethylate.
  • the transition metal compounds represented by the formulas MY x (O-R ') tx and M'O y (O-R'') s-2y are preferably chosen from those whose group R 'or R''contains up to 20 carbon atoms. They are preferably chosen from those in which the transition metal M or M ′ is titanium, zirconium or vanadium.
  • Y denotes a halogen this is preferably chlorine and in the case where Y denotes a group (O-R '''),R''' is chosen from alkyl, aryl or cycloalkyl groups containing up to 20 carbon atoms.
  • transition metal is titanium
  • titanium alcoholates such as Ti (OC 2 H 5 ) 4 , Ti (OC 4 H 9 ) 4 , Ti (OC 3 H 7 ) 4 , Ti (OC 6 H 5 ) 4 and Ti (O-CH 3 ) 2 (OC 2 H 5 ) 2
  • titanium haloalcoholates such as TiCl ( OC 4 H 9 ) 3 .
  • the transition metal is vanadium
  • zirconium compound mention may, for example, be made of Zr (OC 2 H 5 ) 4 and Zr (OC 4 H 9 ) 2 (OC 3 H 7 ) 4 . Particularly satisfactory results are obtained with titanium tetrabutylate and vanadium tetrabutylate.
  • the reductohalogenating agent is a compound capable of acting not only as a halogenating agent, for example substituting the groups (OR), (O-R ') and (O-R'') respectively in the compounds MgX n (OR) 2-n , MY x (O-R ') tx and M'O y (O-R'') s-2y by a halogen, but also as a reducing agent, reducing the valence of the transition metal of the compound MY x (O-R ') tx or M'O y (O-R'') s-2y .
  • this reductohalogenating agent consists of a complex of a transition metal from group IVB of the periodic table, of general formula M '' (A) Al 2 (X ', X'') 8 .
  • the transition metal M '' is advantageously chosen from titanium and zirconium.
  • the transition metal in this reductohalogenating agent is in the bivalent state. This bivalent state being unstable, the complex is stabilized by an aromatic hydrocarbon (A).
  • This aromatic hydrocarbon is preferably benzene or a substituted derivative of the latter comprising at most 12 carbon atoms, such as toluene, mesitylene, tetra-, penta- or hexamethylbenzene. Toluene works well.
  • halogen atoms X 'and X'' can be the same or different. Chlorine is preferred.
  • the especially preferred reductohalogenating agents are those corresponding to the crude formulas Ti (Toluene) Al 2 Cl 8 and Zr (Toluene) Al 2 Cl 8 .
  • the reductohalogenating agent can be prepared, in a known manner, by direct synthesis, by reacting a halide of the transition metal (for example titanium tetrachloride), metallic aluminum, a halide aluminum and an aromatic hydrocarbon, within an organic compound.
  • organic compound is intended to denote a solvent for the aromatic hydrocarbon. This is most often the aromatic hydrocarbon itself. A suspension is thus obtained, the solid fraction of which is removed.
  • the solution thus collected, which contains the complex M '' (A) Al 2 (X ', X'') 8 can be used as it is during the process, or the solvent can be removed from the solution and the solid used. resulting.
  • the magnesium compound is mixed with the compound of the metal of transition of formula MY x (O-R ') tx or M'O y (O-R'') s-2y so that the magnesium compound forms a complex with the transition metal compound.
  • the mixture is advantageously carried out in an organic solvent which has the function of facilitating the dispersion of the magnesium compound and of the transition metal compound, and optionally dissolving the complex in the case where it is solid.
  • the organic solvent can be chosen from aromatic, aliphatic and cycloaliphatic hydrocarbons preferably comprising from 5 to 12 carbon atoms and their mixtures, for example benzene, pentane or cyclohexane.
  • Toluene or hexane is preferably used.
  • quantities of the transition metal compound and of the magnesium compound are used such that the molar ratio (M or M ′) / Mg is greater than 0.5, preferably at least equal to 1, the values at least equal to 2 being especially advantageous. It is desirable that the value of this ratio does not exceed 20 and is preferably at most equal to 15, values less than 12 being especially advantageous.
  • the temperature at which the mixture is prepared must be such that a solution is obtained after a reasonable time, which can for example vary from half an hour to 12 hours, optionally stirring the reaction medium, while remaining below the boiling temperature of the components of the mixture.
  • the operating temperature therefore depends on the nature of the components of the mixture and can, for example, vary from ambient temperature to approximately 170 ° C. It is preferably carried out from approximately 50 to 150 ° C.
  • the second step of the process according to the invention consists in reducing and halogenating the mixture obtained from the above-mentioned first step, by bringing it into contact with the reductohalogenating agent.
  • the reductohalogenating agent is used in solid form, it is first dissolved in a diluent chosen from aromatic hydrocarbons, such as benzene and its derivatives or polycyclic aromatic hydrocarbons, each cycle being able to be substituted.
  • a diluent chosen from aromatic hydrocarbons, such as benzene and its derivatives or polycyclic aromatic hydrocarbons, each cycle being able to be substituted.
  • Toluene is particularly suitable. It is advantageous to use quantities such that the molar ratio M '' / (M or M ') is greater than 0.1, preferably at least equal to 0.3, values less than 5 being recommended, those of 0 , 3 to 1 being especially advantageous.
  • the operating temperature and the duration of the reduction and halogenation reaction are not critical. In general, this reaction is initiated at room temperature, then the temperature increases rapidly during the reaction between the mixture resulting from the first step and the reductohalogenating complex, the reaction being instantaneous and exothermic. After the reaction, the reaction medium can be allowed to cool to room temperature.
  • the catalytic solid is precipitated.
  • the catalytic solid is subjected to ripening at an elevated temperature, at least equal to 40 ° C. and below the boiling point of the solvent used, for example for a time from 0.5 to 12 hours approximately.
  • This ripening is preferably carried out at a temperature of 45 to 80 ° C, for at least one hour.
  • the third step of the process according to the invention consists in separating the precipitated catalytic solid from the reaction medium by any known means such as filtration, centrifugation or decantation of the supernatant liquid.
  • the precipitated catalytic solid is subjected to washing using an organic liquid chosen from aliphatic hydrocarbons.
  • organic liquids are linear alkanes such as n-butane, n-hexane and n-heptane, or branched alkanes such as isobutane, isopentane, isooctane and 2,2-dimethylpropane, or cycloalkanes such as cyclopentane and cyclohexane or their mixtures. Hexane is particularly suitable. Washing is produced by bringing the catalytic solid into contact with the organic liquid, for example by dispersing it in the organic liquid. In the case where the catalytic solid is subjected to curing, washing is usually carried out after curing. It is of course possible to carry out several successive washes with the organic liquid.
  • the reductohalogenating agent is deposited on a mineral support.
  • the mineral support is impregnated with a solution of the reductohalogenating agent in an organic diluent, so that the reductohalogenating agent is adsorbed on the mineral support.
  • the diluent can be that used in the second step of the process, explained above.
  • the support is a mineral oxide, this can be selected from the oxides of silicon, aluminum, titanium, zirconium, thorium, their mixtures and the mixed oxides of these metals such as silicate d 'aluminum.
  • the mineral support is a halide
  • this can for example be selected from magnesium chloride and manganese chloride.
  • silica is used. Dehydroxylated silica is well suited.
  • the operating conditions of the impregnation are not critical, the temperature possibly varying from ambient temperature to the boiling temperature of the organic diluent, and the duration of impregnation being from a few minutes to several hours.
  • the mineral support impregnated with the reductohalogenating agent is separated from the organic diluent, then dispersed in the mixture obtained in the first step explained above.
  • the magnesium compound used in the first step is magnesium dichloride.
  • the magnesium dichloride is mixed with titanium tetrabutylate in such amounts that the molar ratio Ti (OC 4 H 9 ) 4 / MgCl 2 is greater than or equal to 2 to ensure the complete dissolution of magnesium dichloride. Values less than 5 are recommended, those close to 2 being preferred.
  • the magnesium dichloride is mixed with vanadium tetrabutylate in such quantities that the molar ratio V (OC 4 H 9 ) 4 / MgCl 2 is at least equal to 2, preferably at least 5 and not more than 20.
  • the magnesium compound used in the first step is a magnesium dialcoholate which is used in an amount such that the molar ratio (M or M ') / Mg or greater than or equal to 1. In practice, for economic considerations, there is no point in exceeding a molar ratio of 5, the values of 1 to 2 being preferred.
  • the magnesium dialcoholate is preferably chosen from alcoholates containing up to 20 carbon atoms, magnesium diethylate being especially advantageous.
  • the magnesium dialcoholate can be prepared in situ in the first step of the process by mixing metallic magnesium and an alcohol in sufficient amounts to obtain the magnesium dialcoholate, to which is then added the transition metal compound of formula MY x (O-R ') tx or M'O y (O-R'') s-2y .
  • the catalytic solid collected from the third step (and optionally subjected to ripening and / or washing) is subjected to a subsequent halogenation with titanium tetrahalide, the halogen of tetrahalide titanium and those of the reductohalogenating agent being preferably identical. Particularly satisfactory results are obtained with titanium tetrachloride, chlorine then being selected for the halogens of the reductohalogenating complex.
  • the catalytic solid resulting from the subsequent halogenation can optionally be subjected to ripening and / or washing, the washing and ripening being carried out as described above.
  • the reductohalogenating agent of crude formula M '' (A) Al 2 (X ', X'') 8 is prepared by reacting tetrahalide of the transition metal (M''X' 4 ), trihalide aluminum (AlX '' 3 ), aromatic hydrocarbon (A) and metallic magnesium, which is suspended in an organic solvent which is most often the hydrocarbon itself.
  • quantities corresponding to a M''X ' 4 : Mg: AlX'' 3 molar ratio of 1: (1 to 2) :( 2 to 6) are used (this ratio preferably being approximately equal to 1: 1: 2) in an excess of aromatic hydrocarbon.
  • This synthesis is generally carried out under the same operating conditions as those used during the conventional synthesis of the complex of crude formula M '' (A) Al 2 (X ', X'') 8 described in the aforementioned publications.
  • the operation is advantageously carried out by refluxing the suspension at a temperature equal to or slightly higher than the boiling temperature of the aromatic hydrocarbon for a period varying from 1 to 12 hours, allowing the reaction medium to cool, separating the possible solid fraction comprising the excess of one of the components used, and collecting the solution thus obtained.
  • the process according to the invention makes it possible to obtain a catalytic solid comprising a coprecipitate of a halogenated compound of the transition metal M or M 'in the trivalent state, of a halogenated compound of the transition metal M' 'to the trivalent state and a magnesium halide.
  • This catalytic solid generally has a low aluminum content not exceeding 10% of the weight of the catalytic solid.
  • the present invention therefore also relates to catalytic solids comprising a coprecipitate of a magnesium halide and halides of at least two transition metals chosen from groups IVB and VB of the periodic table, of which at least 90% (in general at least 95%) by weight has an amorphous structure.
  • the catalytic solids according to the invention have a magnesium content greater than 0.5% by weight of the catalytic solid, preferably at least equal to 2%, for example at least equal to 5%. This magnesium content is generally at most equal to 20% of the weight of the catalytic solid, preferably at most equal to 18%, the values less than 14% being the most advantageous.
  • the total content of transition metals can reach 30% of the weight of the catalytic solid; it is generally at most equal to 25%, and is usually greater than 5%, the values at least equal to 10% being the most common.
  • the magnesium halide and the halides of the transition metals can be derived from the same halogen or from different halogens. Halides derived from the same halogen are preferred, chlorine being especially recommended.
  • the different transition metals are generally in a molar ratio at least equal to 1 and at most equal to 4, this molar ratio preferably being greater than 1.2 and at most equal to 2, 8.
  • the catalytic solids according to the invention have the advantageous characteristic of having an amorphous structure characterized by a homogeneous incorporation of the trivalent transition metals in magnesium, thus improving their mutual interaction. This has the effect of increasing the activity of the catalytic solids according to the invention.
  • the aluminum content of the catalytic solids according to the invention does not exceed 10% of the weight of the catalytic solid and is generally less than 9% of this weight, for example from 0.5 to 5%, the values located at 0.7 to 4% being the most common.
  • the catalytic solids according to the invention find a particularly advantageous use in the (co) polymerization of olefins, in particular making it possible to obtain polyolefins having a wide range of molecular weight.
  • the catalytic solids according to the invention can be used for the polymerization of olefins containing up to 20 carbon atoms per molecule.
  • Olefins contain advantageously from 2 to 12 carbon atoms per molecule and are for example chosen from ethylene, propylene, 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 3- and 4-methyl-1-pentenes, 1-octene, 3-ethyl-1-butene, 1-heptene, 3,4-dimethyl-1-hexene, 4-butyl-1-octene, 5 -ethyl-1-decene and 3,3-dimethyl-1-butene.
  • Catalytic solids find particular use in the production of ethylene homopolymers or ethylene copolymers with one or more olefinically unsaturated comonomers which may contain up to 8 carbon atoms, for example propylene, 1- butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 3- and 4-methyl-1-pentenes and 1-octene.
  • One or more diolefins comprising from 4 to 18 carbon atoms can also be copolymerized with ethylene.
  • the diolefins are unconjugated aliphatic diolefins such as 4-vinylcyclohexene and 1,5-hexadiene, or alicyclic diolefins having an endocyclic bridge such as dicyclopentadiene, methylene- and ethylidenenorbornene and conjugated aliphatic diolefins such as 1,3-butadiene, isoprene and 1,3-pentadiene.
  • unconjugated aliphatic diolefins such as 4-vinylcyclohexene and 1,5-hexadiene
  • alicyclic diolefins having an endocyclic bridge such as dicyclopentadiene, methylene- and ethylidenenorbornene and conjugated aliphatic diolefins such as 1,3-butadiene, isoprene and 1,3-pentadiene.
  • the catalytic solids according to the invention are particularly suitable for the manufacture of ethylene homopolymers and of copolymers containing at least 90%, preferably at least 95%, by weight of ethylene.
  • the preferred comonomers are chosen from propylene, 1-butene, 1-hexene and 1-octene.
  • the invention therefore also relates to a process for the (co) polymerization of olefins as defined above, using a catalytic solid in accordance with the invention.
  • a cocatalyst in addition to the catalytic solid.
  • cocatalysts of preferably non-halogenated organoaluminum compounds such as tributyl-, trimethyl-, triethyl-, tripropyl-, triisopropyl-, triisobutyl-, trihexyl-, trioctyl- and tridodecylaluminium.
  • the (co) polymerization is carried out in the presence of a molecular weight regulator such as hydrogen.
  • the (co) polymerization can be carried out either in solution, in suspension or in the gas phase, and can be carried out continuously or batchwise. It is preferred, according to the invention, to carry out the (co) polymerization in suspension, for example in a hydrocarbon diluent such as liquid aliphatic, cycloaliphatic and aromatic hydrocarbons, in such quantities and at a temperature such that at least 50% (of preferably 70%) of the polymer formed therein is insoluble.
  • a hydrocarbon diluent such as liquid aliphatic, cycloaliphatic and aromatic hydrocarbons
  • Preferred hydrocarbon diluents are linear alkanes such as n-butane, n-hexane and n-heptane or branched alkanes such as isobutane, isopentane, isooctane and 2,2-dimethylpropane or cycloalkanes such as cyclopentane and cyclohexane or mixtures thereof.
  • the polymerization temperature is generally chosen from 20 to 200 ° C, preferably from 50 to 150 ° C, in particular from 80 to 115 ° C.
  • the olefin pressure is most often chosen between atmospheric pressure and 5 MPa, preferably from 0.2 to 2 MPa, more particularly from 0.4 to 1.5 MPa.
  • the partial pressure of hydrogen is advantageously between 0.01 and 0.50 MPa, the ratio between the partial pressures of hydrogen and l olefin generally not exceeding 3, more particularly not exceeding 1/3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Claims (29)

  1. Verfahren zur Herstellung eines katalytischen Feststoffs, gemäß dem
    a) man ein Gemisch herstellt, das einerseits wenigstens eine Magnesiumverbindung, die unter Magnesiumoxid und den Verbindungen der Formeln MgXn(O-R)2-n ausgewählt ist, und andererseits wenigstens eine Übergangsmetallverbindung, die unter den Verbindungen der Formeln MYx(O-R')t-x und M'Oy(O-R")s-2y, in denen
    - X ein Halogen bezeichnet
    - M und M' jedes ein Übergangsmetall der Gruppen IVB und VB des Periodensystems bezeichnen, dessen Valenz wenigstens gleich 4 ist
    - Y ein Halogen oder eine Gruppe (O-R''') bezeichnet
    - R, R', R" und R''' jedes eine gegebenenfalls substituierte Alkyl-, Aryl- oder Cycloalkylgruppe bezeichnen
    - 0 ≤ n ≤ 2
    - 0 ≤ x ≤ t, wobei t gleich der Valenz von M ist
    - 0 ≤ y ≤ s/2, wobei s gleich der Valenz von M' ist,
    ausgewählt ist, umfaßt,
    b) man das so erhaltene Gemisch mit einem Reduktohalogenierungsmittel reduziert und halogeniert und
    c) man den so erhaltenen ausgefällten katalytischen Feststoff vom Reaktionsmedium abtrennt,
    dadurch gekennzeichnet, daß das Reduktohalogenierungsmittel wenigstens einen Komplex der Summenformel M"(A)Al2(X',X")8, in der
    - M" ein Übergangsmetall der Gruppe IVB des Periodensystems darstellt
    - A einen aromatischen Kohlenwasserstoff darstellt
    - X' und X" jedes ein Halogen darstellen,
    umfaßt.
  2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß die Alkyl-, Aryl- oder Cycloalkylgruppe unter denjenigen ausgewählt ist, die bis zu 20 Kohlenstoffatome umfassen.
  3. Verfahren gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Verbindung des Übergangsmetalls M oder M', die Magnesiumverbindung und der Komplex M"(A)Al2(X',X")8 in solchen Mengen verwendet werden, daß das Molverhältnis (M oder M')/Mg 1 bis 20 ist und daß das Molverhältnis M"/(M oder M') 0,3 bis 1 ist.
  4. Verfahren gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß man das Gemisch in wenigstens einem organischen Lösungsmittel, das unter Toluol und Hexan ausgewählt ist, herstellt und man den Komplex M"(A)Al2(X',X")8 als Lösung in Toluol verwendet.
  5. Verfahren gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß man das Gemisch bei einer Temperatur von 50 bis 135 °C herstellt.
  6. Verfahren gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß man den katalytischen Feststoff bei einer Temperatur von 45 bis 80 °C während wenigstens einer Stunde einem Reifen unterzieht.
  7. Verfahren gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß man den katalytischen Feststoff mit einer organischen Flüssigkeit, die unter den aliphatischen Kohlenwasserstoffen ausgewählt ist, wäscht.
  8. Verfahren gemäß Anspruch 7, dadurch gekennzeichnet, daß man, wenn der katalytische Feststoff einem Reifen unterzogen wird, das Waschen nach dem Reifen ausführt.
  9. Verfahren gemäß einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß das Reduktohalogenierungsmittel unter denjenigen ausgewählt ist, die den Summenformeln Ti(Toluol)Al2Cl8 und Zr(Toluol)Al2Cl8 entsprechen.
  10. Verfahren gemäß einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß das Reduktohalogenierungsmittel auf einem mineralischen Träger abgeschieden ist.
  11. Verfahren gemäß Anspruch 10, dadurch gekennzeichnet, daß man, um das Reduktohalogenierungsmittel auf dem mineralischen Träger abzuscheiden, den mineralischen Träger mit einer Lösung des Reduktohalogenierungsmittels in einem unter den aromatischen Kohlenwasserstoffen ausgewählten Verdünnungsmittel tränkt.
  12. Verfahren gemäß Anspruch 10 oder 11, dadurch gekennzeichnet, daß der mineralische Träger dehydroxylierte Kieselerde ist.
  13. Verfahren gemäß einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß die einer der Formeln MYx(O-R')t-x oder M'Oy(O-R")s-2y entsprechende Verbindung unter denjenigen ausgewählt ist, in denen M oder M' Ti, V oder Zr ist.
  14. Verfahren gemäß Anspruch 13, dadurch gekennzeichnet, daß die Verbindung MYx(O-R')t-x unter.Titantetrabutylat und Vanadiumtetrabutylat ausgewählt ist.
  15. Verfahren gemäß einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß die Verbindung MgXn(O-R)2-n ein Magnesiumdialkoholat ist, das man in einer solchen Menge verwendet, daß das Molverhältnis (M oder M')/Mg 1 bis 2 ist.
  16. Verfahren gemäß Anspruch 15, dadurch gekennzeichnet, daß man nach der Abtrennung des ausgefällten katalytischen Feststoffs vom Reaktionsmedium besagten katalytischen Feststoff mit Titantetrahalogenid, dessen Halogen mit dem des verwendeten Reduktohalogenierungsmittel identisch ist, behandelt.
  17. Verfahren gemäß Anspruch 16, dadurch gekennzeichnet, daß man den katalytischen Feststoff mit Titantetrachlorid behandelt.
  18. Verfahren gemäß Anspruch 16 oder 17, dadurch gekennzeichnet, daß der katalytische Feststoff nach der Behandlung mit Titantetrahalogenid mit Hilfe einer organischen Flüssigkeit, die unter den aliphatischen Kohlenwasserstoffen ausgewählt ist, gewaschen wird.
  19. Verfahren gemäß einem der Ansprüche 7 bis 18, dadurch gekennzeichnet, daß die organische Waschflüssigkeit Hexan ist.
  20. Verfahren gemäß einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, daß die Magnesiumverbindung unter Magnesiumdichlorid und Magnesiumdiethylat ausgewählt ist.
  21. Verfahren gemäß einem der Ansprüche 14 bis 20, dadurch gekennzeichnet, daß man, wenn die Verbindung MYx(O-R')t-x Titantetrabutylat ist und die Magnesiumverbindung Magnesiumdichlorid ist, ein Molverhältnis Ti(O-C4H9)4/MgCl2 von wenigstens gleich 2 verwendet.
  22. Verfahren gemäß einem der Ansprüche 14 bis 20, dadurch gekennzeichnet, daß man, wenn die Verbindung MYx(O-R')t-x Vanadiumtetrabutylat ist und die Magnesiumverbindung Magnesiumdichlorid ist, ein Molverhältnis V(O-C4H9)4/MgCl2 von 2 bis 20 verwendet.
  23. Verfahren gemäß einem der Ansprüche 1 bis 22, dadurch gekennzeichnet, daß das Reduktohalogenierungsmittel der Summenformel M"(A)Al2(X',X")8 hergestellt wird, indem man die folgenden Verbindungen
    - M"X'4
    - AlX"3
    - A
    mit Magnesium reagieren läßt,
    wobei
    - M" ein Übergangsmetall der Gruppe IVB des Periodensystems darstellt
    - A einen aromatischen Kohlenwasserstoff darstellt
    - X' und X" jedes ein Halogen darstellen.
  24. Katalytischer Feststoff, der durch das Verfahren gemäß einem der Ansprüche 1 - 23 erhalten werden kann, der ein Copräzipitat eines Magnesiumhalogenids und von Halogeniden wenigstens zweier verschiedener Übergangsmetalle, die aus den Gruppen IVB und VB des Periodensystems ausgewählt sind, umfaßt, von dem wenigstens 90 Gew.-% eine amorphe Struktur aufweisen.
  25. Katalytischer Feststoff gemäß Anspruch 24, dadurch gekennzeichnet, daß er einen Übergangsmetallgehalt von 5 bis 30% des Gewichts des katalytischen Feststoffs, einen Magnesiumgehalt von 0,5% bis 20% des Gewichts des katalytischen Feststoffs und einen Aluminiumgehalt von 0,5 bis 10% des Gewichts des katalytischen Feststoffs aufweist.
  26. Katalytischer Feststoff gemäß Anspruch 24 oder 25, dadurch gekennzeichnet, daß die Übergangsmetalle in einem Molverhältnis von 1 bis 4 vorliegen.
  27. Katalytischer Feststoff gemäß einem der Ansprüche 24 bis 26, dadurch gekennzeichnet, daß die Halogenide der beiden Übergangsmetalle Chloride sind.
  28. Verfahren zur Polymerisation wenigstens eines Olefins, gemäß dem man einen katalytischen Feststoff gemäß einem der Ansprüche 24 bis 27 verwendet.
  29. Verfahren gemäß Anspruch 28, dadurch gekennzeichnet, daß das Olefin Ethylen ist.
EP93201561A 1992-06-09 1993-06-01 Verfahren zur Herstellung eines festen Katalysators, fester Katalysator und diesen festen Katalysator verwendendes Verfahren zur Olefin(co)polymerisation Expired - Lifetime EP0574067B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BE9200532A BE1005982A3 (fr) 1992-06-09 1992-06-09 Procede de fabrication d'un solide catalytique, solide catalytique et procede de (co)polymerisation d'olefines au moyen de ce solide catalytique.
BE9200532 1992-06-09

Publications (2)

Publication Number Publication Date
EP0574067A1 EP0574067A1 (de) 1993-12-15
EP0574067B1 true EP0574067B1 (de) 1997-09-10

Family

ID=3886310

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93201561A Expired - Lifetime EP0574067B1 (de) 1992-06-09 1993-06-01 Verfahren zur Herstellung eines festen Katalysators, fester Katalysator und diesen festen Katalysator verwendendes Verfahren zur Olefin(co)polymerisation

Country Status (9)

Country Link
US (1) US5631334A (de)
EP (1) EP0574067B1 (de)
JP (1) JPH06293807A (de)
KR (1) KR940000483A (de)
AT (1) ATE157994T1 (de)
BE (1) BE1005982A3 (de)
CA (1) CA2097890A1 (de)
DE (1) DE69313728T2 (de)
ES (1) ES2109420T3 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1009443A5 (fr) * 1995-06-29 1997-03-04 Solvay Systeme catalytique et procede de polymerisation d'olefines en presence de ce systeme.
US6693058B1 (en) 1997-01-28 2004-02-17 Fina Technology, Inc. Ziegler-natta catalyst for narrow to broad MWD of polyoefins, method of making, method of using, and polyolefins made therewith
US6486274B1 (en) 1997-01-28 2002-11-26 Fina Technology, Inc. Hydrogen response Ziegler-Natta catalyst for narrowing MWD of polyolefin, method of making, method of using, and polyolefins made therewith
US6174971B1 (en) * 1997-01-28 2001-01-16 Fina Technology, Inc. Ziegler-natta catalysts for olefin polymerization
US6734134B1 (en) 1997-01-28 2004-05-11 Fina Technology, Inc. Ziegler-natta catalyst for tuning MWD of polyolefin, method of making, method of using, and polyolefins made therewith
US7655590B2 (en) * 2007-12-20 2010-02-02 Fina Technology, Inc. Ziegler-Natta catalyst for particle size control
IT1403290B1 (it) * 2010-12-27 2013-10-17 Polimeri Europa Spa Componente solido di catalizzatore, catalizzatore comprendente detto componente solido, e procedimento di (co)polimerizzazione delle alfa-olefine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1256424B (de) * 1965-01-20 1967-12-14 Vickers Zimmer Ag Planung Verfahren zur Polymerisation von olefinisch ungesaettigten Kohlenwasserstoffen
GB1551016A (en) * 1975-11-25 1979-08-22 Ici Ltd Supported transition metal-arene compounds
IT1078995B (it) * 1977-05-24 1985-05-08 Montedison Spa Catalizzatori per la polimeriazzazione di olefine
GB1580979A (en) * 1977-05-25 1980-12-10 Ici Ltd Transition metal composition suitable for use an olefine polymerisation catalyst or component thereof
JPH0725827B2 (ja) * 1987-06-02 1995-03-22 出光石油化学株式会社 エチレン重合体の製造方法

Also Published As

Publication number Publication date
EP0574067A1 (de) 1993-12-15
DE69313728D1 (de) 1997-10-16
US5631334A (en) 1997-05-20
KR940000483A (ko) 1994-01-03
DE69313728T2 (de) 1998-04-02
CA2097890A1 (fr) 1993-12-10
JPH06293807A (ja) 1994-10-21
BE1005982A3 (fr) 1994-04-12
ATE157994T1 (de) 1997-09-15
ES2109420T3 (es) 1998-01-16

Similar Documents

Publication Publication Date Title
EP0127530B1 (de) Verfahren zur Herstellung einer Übergangsmetallkomponente für ein katalytisches System zur Olefinpolymerisation
EP0373999B1 (de) Verfahren für die Ethylenpolymerisation in der Gasphase zur Herstellung von linearem Polyethylen mit enger Molekulargewichtsverteilung
EP0627447B1 (de) Katalysatorträger und Katalysator für Alpha-Olefinpolymerisation; Verfahren zu ihrer Herstellung und Polymerisation von Alpha-Olefinen in Gegenwart des Katalysators
EP0908468B1 (de) Verfahren zur (Co)Polymerisation von Olefinen
FR2500457A1 (fr) Nouveau catalyseur a base d'un alkylmagnesium, d'un organosilane et d'un compose de titane, son procede de production et son application a la polymerisation d'olefines
FR2768148A1 (fr) Systeme catalytique heterogene pour la polymerisation d'olefines et son procede d'utilisation
EP0703247B1 (de) Verfahren zur Olefinpolymerisation
EP0574067B1 (de) Verfahren zur Herstellung eines festen Katalysators, fester Katalysator und diesen festen Katalysator verwendendes Verfahren zur Olefin(co)polymerisation
EP0330255B1 (de) In der alpha-Olefinpolymerisation anwendbare katalytische Festsubstanz, Verfahren zu deren Herstellung und alpha-Olefinpolymerisationsverfahren in Anwesenheit eines diese Festsubstanz enthaltenden katalytischen Systems
EP0717052B1 (de) Katalysatorkomponente für Olefinpolymerisation, Verfahren zur deren Herstellung und Verfahren zur Polymerisation von Olefinen unter Anwendung derselben
EP0206893B1 (de) Verfahren zur Herstellung einer Übergangsmetallkomponente für ein Olefinpolymerisationskatalysatorsystem
EP0580033B1 (de) Feste Katalysatorkomponente zur Anwendung bei stereospezifischer alpha-Olefinpolymerisation, Verfahren zur Herstellung derselben und Verfahren zur alpha-Olefinpolymerisation in ihrer Anwesenheit
FR2471990A1 (fr) Procede de preparation de polymeres d'olefines et catalyseur pour sa mise en oeuvre
EP0072717B1 (de) Homogen-Katalysator ein Übergangsmetall und Magnesium enthaltend, Verfahren zu dessen Herstellung und seine Verwendung bei der Polymerisation von Äthylen
EP0771821B1 (de) Aus mehreren festen Katalysatorbestandteilen bestehendes Prepolymer für die Olefinpolymerisation
EP1264847A1 (de) Verfahren zur Alpha-Olefinpolymerisation
EP1275663A1 (de) Verfahren zur Olefinpolymerisation
EP0554139B1 (de) Polymerisationsverfahren für Ethylen zur Herstellung von Polymeren mit breiter Molekulargewichtsverteilung und Verfahren zur Herstellung des Katalysatorbestandteils
EP0187796B1 (de) Polymerisationskatalysator und verfahren zu dessen herstellung
BE1008703A3 (fr) Procede de polymerisation d'olefines.
CA2314527A1 (fr) Procede de preparation de support de catalyseur pour la polymerisation des .alpha.-olefines, et support ainsi obtenu
BE807143A (fr) Procede de production de polyolefines
EP0554140A1 (de) Verfahren zur Herstellung von MgCl2, MgO mit geringfügiger Teilchengrösse-Verteilung und deren Benutzung als Katalysatorträger zur Polymerisation von Olefinen
FR2529211A1 (fr) Procede pour la polymerisation et la copolymerisation des alpha-olefines en lit fluidise
EP1333038A1 (de) Verfahren zur Polymerisation von Alpha-Olefinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE ES FR GB IT NL PT SE

17P Request for examination filed

Effective date: 19940531

17Q First examination report despatched

Effective date: 19951017

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SOLVAY POLYOLEFINS EUROPE-BELGIUM

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SOLVAY POLYOLEFINS EUROPE - BELGIUM (SOCIETE ANONY

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE ES FR GB IT NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19970910

Ref country code: AT

Effective date: 19970910

REF Corresponds to:

Ref document number: 157994

Country of ref document: AT

Date of ref document: 19970915

Kind code of ref document: T

REF Corresponds to:

Ref document number: 69313728

Country of ref document: DE

Date of ref document: 19971016

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19971210

Ref country code: PT

Effective date: 19971210

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19971201

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2109420

Country of ref document: ES

Kind code of ref document: T3

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990525

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990526

Year of fee payment: 7

Ref country code: BE

Payment date: 19990526

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19990616

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990629

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20000602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000630

BERE Be: lapsed

Owner name: S.A. SOLVAY POLYOLEFINS EUROPE - BELGIUM

Effective date: 20000630

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010403

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20020204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050601