EP0573353B1 - High temperature composite material having honeycomb structure and process for its preparation - Google Patents
High temperature composite material having honeycomb structure and process for its preparation Download PDFInfo
- Publication number
- EP0573353B1 EP0573353B1 EP93401405A EP93401405A EP0573353B1 EP 0573353 B1 EP0573353 B1 EP 0573353B1 EP 93401405 A EP93401405 A EP 93401405A EP 93401405 A EP93401405 A EP 93401405A EP 0573353 B1 EP0573353 B1 EP 0573353B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fabric
- plies
- dimensional
- honeycomb structure
- cuts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 27
- 238000000034 method Methods 0.000 title claims description 37
- 239000011159 matrix material Substances 0.000 claims abstract description 17
- 239000000463 material Substances 0.000 claims abstract description 11
- 239000004744 fabric Substances 0.000 claims description 45
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 28
- 239000000835 fiber Substances 0.000 claims description 28
- 229910052799 carbon Inorganic materials 0.000 claims description 24
- 239000000919 ceramic Substances 0.000 claims description 12
- 238000004519 manufacturing process Methods 0.000 claims description 12
- 230000003014 reinforcing effect Effects 0.000 claims description 8
- 230000008595 infiltration Effects 0.000 claims description 7
- 238000001764 infiltration Methods 0.000 claims description 7
- 239000000126 substance Substances 0.000 claims description 6
- 241001137251 Corvidae Species 0.000 claims 1
- 235000015108 pies Nutrition 0.000 claims 1
- 230000002787 reinforcement Effects 0.000 abstract description 9
- 238000000280 densification Methods 0.000 description 12
- 241000256815 Apocrita Species 0.000 description 7
- 239000002243 precursor Substances 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000005520 cutting process Methods 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229910002804 graphite Inorganic materials 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 238000009958 sewing Methods 0.000 description 4
- 229920000049 Carbon (fiber) Polymers 0.000 description 3
- 241000257303 Hymenoptera Species 0.000 description 3
- 239000004917 carbon fiber Substances 0.000 description 3
- 239000007833 carbon precursor Substances 0.000 description 3
- 238000002513 implantation Methods 0.000 description 3
- 238000005470 impregnation Methods 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 238000004026 adhesive bonding Methods 0.000 description 2
- 239000011153 ceramic matrix composite Substances 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000000123 paper Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920002239 polyacrylonitrile Polymers 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- CREMABGTGYGIQB-UHFFFAOYSA-N carbon carbon Chemical compound C.C CREMABGTGYGIQB-UHFFFAOYSA-N 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 229920006184 cellulose methylcellulose Polymers 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000012700 ceramic precursor Substances 0.000 description 1
- 238000012710 chemistry, manufacturing and control Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 229940082150 encore Drugs 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 238000009417 prefabrication Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000009941 weaving Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B3/00—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
- B32B3/10—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
- B32B3/12—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by a layer of regularly- arranged cells, e.g. a honeycomb structure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D99/00—Subject matter not provided for in other groups of this subclass
- B29D99/0089—Producing honeycomb structures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B31—MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
- B31D—MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER, NOT PROVIDED FOR IN SUBCLASSES B31B OR B31C
- B31D1/00—Multiple-step processes for making flat articles ; Making flat articles
- B31D1/0031—Multiple-step processes for making flat articles ; Making flat articles the articles being paper nettings, e.g. by slitting and expanding webs or sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B18/00—Layered products essentially comprising ceramics, e.g. refractory products
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B38/00—Ancillary operations in connection with laminating processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B38/00—Ancillary operations in connection with laminating processes
- B32B38/0012—Mechanical treatment, e.g. roughening, deforming, stretching
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
- B32B5/24—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
- B32B5/26—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C2/00—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
- E04C2/30—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure
- E04C2/34—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure composed of two or more spaced sheet-like parts
- E04C2/36—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure composed of two or more spaced sheet-like parts spaced apart by transversely-placed strip material, e.g. honeycomb panels
- E04C2/365—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure composed of two or more spaced sheet-like parts spaced apart by transversely-placed strip material, e.g. honeycomb panels by honeycomb structures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B38/00—Ancillary operations in connection with laminating processes
- B32B38/0012—Mechanical treatment, e.g. roughening, deforming, stretching
- B32B2038/0028—Stretching, elongating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2305/00—Condition, form or state of the layers or laminate
- B32B2305/02—Cellular or porous
- B32B2305/024—Honeycomb
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/36—Non-oxidic
- C04B2237/363—Carbon
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/38—Fiber or whisker reinforced
- C04B2237/385—Carbon or carbon composite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/50—Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
- C04B2237/76—Forming laminates or joined articles comprising at least one member in the form other than a sheet or disc, e.g. two tubes or a tube and a sheet or disc
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/50—Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
- C04B2237/76—Forming laminates or joined articles comprising at least one member in the form other than a sheet or disc, e.g. two tubes or a tube and a sheet or disc
- C04B2237/765—Forming laminates or joined articles comprising at least one member in the form other than a sheet or disc, e.g. two tubes or a tube and a sheet or disc at least one member being a tube
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T156/00—Adhesive bonding and miscellaneous chemical manufacture
- Y10T156/10—Methods of surface bonding and/or assembly therefor
- Y10T156/1002—Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina
- Y10T156/1003—Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina by separating laminae between spaced secured areas [e.g., honeycomb expanding]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T156/00—Adhesive bonding and miscellaneous chemical manufacture
- Y10T156/10—Methods of surface bonding and/or assembly therefor
- Y10T156/1002—Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina
- Y10T156/1026—Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina with slitting or removal of material at reshaping area prior to reshaping
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T156/00—Adhesive bonding and miscellaneous chemical manufacture
- Y10T156/10—Methods of surface bonding and/or assembly therefor
- Y10T156/1052—Methods of surface bonding and/or assembly therefor with cutting, punching, tearing or severing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24149—Honeycomb-like
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24149—Honeycomb-like
- Y10T428/24165—Hexagonally shaped cavities
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24273—Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture
- Y10T428/24298—Noncircular aperture [e.g., slit, diamond, rectangular, etc.]
- Y10T428/24314—Slit or elongated
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24628—Nonplanar uniform thickness material
- Y10T428/24661—Forming, or cooperating to form cells
Definitions
- the present invention relates to the manufacture of nest structures of bees in thermostructural composite material.
- thermostructural composite materials are characterized by their mechanical properties which make them suitable for constituting structural elements and by their ability to maintain their mechanical properties up to high temperatures.
- Typical thermostructural composite materials are carbon-carbon composite materials (C-C) and composite materials with ceramic matrix (CMC).
- C-C composites are made up of a reinforcing texture, or preform, carbon fiber densified by a carbon matrix.
- CMCs are consisting of a preform of refractory fibers (carbon or ceramic fibers) densified by a ceramic matrix.
- a commonly used ceramic material used for the manufacture of CMC is silicon carbide (SiC).
- the preform of a C-C composite or a CMC is produced by stacking or layering of unidirectional strata (layers of parallel wires or cables between them) or multidirectional (layers of fabric, veils of fibers, layers felt), or by winding threads, ribbons or strips, or by three-dimensional weaving. In the case of layering of strata, these can be linked between them by needling, by sewing, or by implantation of transverse threads.
- the preforms are made from carbon or ceramic fibers or, more generally, from fibers into a carbon or ceramic precursor, the transformation of the precursor being carried out after the necessary textile operations in the production of the preform.
- the densification of the preform aims to fill the accessible porosity of this by the material of the matrix.
- This densification can be carried out by impregnation of the preform by means of a liquid phase containing a precursor of the matrix material, followed by a transformation of the precursor, or by chemical vapor infiltration.
- a first known method (FIGS. 1A, 1B and 1C and JP-A-1 119 574) consists in stacking and glue staggered sheets 10. Gluing is done along strips 12 parallel, the glue strips located on one side of a sheet being offset by compared to those located on the other side ( Figure 1A). The set of leaves is cut into sections 14, perpendicular to the adhesive strips. Each section is then stretched in a direction normal to the faces of the leaves (arrows f of the Figure 1B) to give, by deformation, hexagonal cells 16 ( Figure 1C). A honeycomb panel 18 is thus obtained, on either side of which can be glued a metallic or composite sheet.
- honeycomb structures metallic.
- the sheets 10 are cut from a metal strip and the cells 16 are produced by plastic deformation of the metal.
- This process can also be implemented using sheets of cardboard or paper.
- the sheets of paper can be impregnated with a resin, for example a resin phenolic.
- the crosslinking of the resin is carried out after formation of the cells (this before or after cutting the set of sheets into sections).
- FIGS. 2A, 2B A second known method (FIGS. 2A, 2B) consists in using fluted sheets, for example in metallic foil. Grooved sheets 20 are superimposed and glued or welded along their facets 22 in contact mutual ( Figure 2A). Honeycomb panels 28 are directly obtained by cutting the block of sheets 20 perpendicular to the grooves ( Figure 2B).
- This process can make honeycomb structures in composite material using fluted sheets themselves of material composite.
- Such sheets can be obtained by draping layers of fabric by giving them the desired fluted shape and densification, for example by draping and molding of fabric layers impregnated with a resin.
- it is then necessary to ensure an effective bonding of the fluted sheets capable of withstanding the service temperatures at which materials thermostructural can be brought to undergo.
- the operations of prefabrication of fluted sheets are long and expensive, which weighs down considerably the cost price of the honeycomb structure.
- a third known method uses a sheet 30, for example a metal sheet in which cutouts are formed 32.
- the cuts are made in staggered rows along parallel lines ( Figure 3A).
- the cuts are the same length and regularly spaced each other along each line.
- the cuts along a line are offset from those of the adjacent lines and each cut extends over a length greater than the distance between two neighboring cuts aligned.
- the sheet 30 is deployed by traction perpendicular to the lines of cutouts (arrows f 'in Figure 3A).
- By plastic deformation of the metal it forms cells 36 at the cutout locations ( Figure 3B).
- the deployment is limited so as not to induce, particularly at the ends of the cuts 32, stresses liable to cause tears in the leaf.
- the axis of each cell is inclined relative to the initial plane of the sheet at an angle of less than 90 °, so that the walls of the cells are not perpendicular to the general plane of the honeycomb panel 38 obtained.
- this process is practically impossible to carry out on layers of fabric without causing tears in the fabric at the ends of the cuts at the time of deployment.
- this method has a limitation important as to the thickness of the honeycomb panel obtainable. Indeed, this thickness is determined by the distance between the cutting lines and this distance must remain small enough to allow training cells during deployment.
- the present invention aims to provide a method for to make a honeycomb structure in thermostructural composite material without encountering the above drawbacks.
- the invention aims to provide a process thanks to which honeycomb structures of thermostructural composite material can be manufactured at a cost price moderate enough to open broad fields of applications.
- the strata forming the reinforcing texture may be at least partially consisting of layers of fabric.
- the connection between the strata is carried out by example by implantation of threads, by sewing or by needling.
- the strata include layers of fabric, it may be advantageous to interpose between them strata formed of fiber veils, in order to provide fibers capable of being taken up by the needles and arranged through the strata during needling.
- Fibrous reinforcement textures formed of two-dimensional layers superimposed and linked together for example by needling are well known.
- the process according to the invention is particularly remarkable from the fact that a preform of a honeycomb structure is simply obtained by formation of staggered cuts and stretching of the texture.
- This process differs from that illustrated in FIGS. 1A to 1C because that, according to the invention, the stretching is carried out parallel to the planes of the strata and not perpendicular to them.
- the process according to the invention also differs from that illustrated by the Figures 3A and 3B.
- the walls of the cells are formed by the parts of the sheet located between two lines of cuts.
- the deployment has the effect of causing a gradual inclination of these walls with respect to the initial plan of the sheet at the same time as the expansion of the leaf.
- Stretching texture has the effect of spreading each other's lips apart from each form cells, the walls of which are formed by the lips of the cutouts.
- the thickness of the honeycomb structure is determined by the thickness of the fibrous texture and therefore does not experience the same limitation as in the case of process of FIGS. 3A and 3B where the thickness of the honeycomb structure is determined by the distance (necessarily limited) between two cutting lines neighbors.
- the invention also relates to a honeycomb structure of composite material thermostructural as it can be obtained by the process defined more high.
- such a structure comprising a fibrous reinforcement texture densified by a matrix
- the reinforcement texture is a three-dimensional texture formed by two-dimensional strata linked together by fibers crossing the strata, the alveoli of the honeycomb structure being formed across the strata.
- thermostructural carbon / carbon type composite material A method according to the invention for producing a structure flat honeycomb made of thermostructural carbon / carbon type composite material is now described with reference to FIGS. 4A to 4F.
- a first step in the process consists in producing a texture of three-dimensional carbon fiber reinforcement.
- two-dimensional strata 40 made of carbon or a precursor carbon (for example polyacrylonitrile, or PAN, in the pre-oxidized state) are superimposed and needled (Figure 4A).
- Layers 40 are layers by example of fabric or complex formed of fabric and veil of fibers, the veil of fibers providing fibers which can be easily removed by the needles, during needling, to be implanted through the strata. Needling is carried out from preferably on fibers in the state of carbon precursor, needling performed directly on carbon fibers having a more destructive effect. For the realization needling, it can be carried out as the stacking of layers 40, as described in document FR-A-2 584 106, the thickness of the texture being determined as a function of that of the honeycomb structure to be produced.
- strata linking techniques can be used, for example sewing, or even the implantation of threads as described in document FR-A-2,565,262.
- a carbonization heat treatment must be carried out to transform the precursor into carbon. This treatment resulting in a slight withdrawal dimensional, it is preferably carried out before the realization, in the texture, of cut-outs or slots allowing the alveoli of the nest structure to form bees.
- these cutouts 42 in the form of slots are made in staggered rows, their dimensions and locations defining the dimensions and shapes of the cells.
- the cuts 42 are made in planes parallel to each other and perpendicular to the planes of the strata 40.
- the cut planes are parallel to one of the directions X and Y along which the warp threads and the weft threads are oriented. of the fabric of the strata 40, for example the direction X of the warp threads (the layers of fabric being superimposed with their parallel warp threads, as well, therefore, as their weft threads).
- the continuity of the warp (or weft) threads is preserved in the fabric layers after the cutouts have been formed.
- the cuts are all of the same length L and are regularly spaced by the same distance D in each plane.
- the planes are regularly spaced from each other by a distance d .
- the length L of the cutouts is greater than the length D of the interval between them and the staggered arrangement, in the example illustrated, is such that the middle of a cutout 42 in a cutout plane is at the level of the middle of the interval between two cuts 42 in the neighboring cutting planes.
- the cuts 42 are made for example with a knife or a water jet.
- the texture 41 is stretched in direction Y perpendicular to the planes of the cuts (arrows F in Figure 4C).
- Stretching results in a separation of the lips of the cutouts 42 (Figure 4C) and the formation of cells 46 whose walls are defined by these lips. Stretching is interrupted when the cells 46 have reached the desired shape ( Figure 4D) and before the stresses exerted at the ends of the cuts cause a tear in the texture.
- a fibrous honeycomb preform 47 is thus obtained in which the walls of the cells 46 are perpendicular to the planes X, Y of the strata 40.
- the preform 47 is densified while being kept in the state stretched using a tool.
- the latter (Figure 4E) consists of a sole in graphite 50 and graphite pins 52 implanted in cells 46 along the opposite edges of the preform in Y direction. The pins 52 penetrate into holes formed in the bottom 50.
- the assembly constituted by the tool 50, 52 and the preform 47 is introduced into an oven in which the preform 47 is densified by carbon by chemical vapor infiltration.
- a phase gas containing one or more hydrocarbons is introduced into the enclosure under conditions of temperature and pressure determined to promote a decomposition of the gas phase in contact with the fibers of the preform 47 and release carbon which gradually fills the porosity of the preform 47.
- a honeycomb structure 48 is obtained in carbon / carbon composite ( Figure 4F).
- Such a structure is likely to many applications. For example, it can constitute an oven sole of heat treatment and advantageously replace a metal sole obtained by molding or welding of elements.
- Such a honeycomb structure can also be used as a rigid tool for maintaining a preform at densify by chemical vapor infiltration, instead of tools traditional graphite.
- thermostructural composite material can also find applications to build autoraidis panels usable in aeronautical or space applications, for example as elements of space plane structures.
- the honeycomb structure can, for certain applications, be with a skin on each side.
- At least one layer fibrous 54 for example a layer of fabric, is stretched over the preform 47 held on the sole 50 by means of the pins 52.
- the layer of fabric 54 is needled on the edges of the cells 46 by means of a needling head whose displacements can be programmed, for example as described in the document FR-A-2 669 941.
- the preform 47 and the fabric layer 54 After needling of the layer 54, the preform 47 and the fabric layer 54 a graphite sole 51 similar to sole 50 and provided with holes arranged to receive the upper ends of the pins 52 which protrude from the preform 47.
- the assembly is turned over and the sole 50 is removed to allow the placement of at least one other layer of fabric 55 stretched over the other face of the preform 47 and the needling of this other layer (FIG. 5B).
- the assembly is then introduced into a chemical infiltration oven in vapor phase to simultaneously densify preform 47 and fabric layers 54, 55 needled on both sides, thereby obtaining a panel autoraidi 58 comprising a rigid honeycomb core 48 covered with two rigid skins 56, 57 closing the cells 46 (FIG. 5C).
- the fabric layers 54, 55 can be simply bonded to the faces of the preform 47 before being densified with it, the codensification completing the necessary connection between the skins and the soul of the sign.
- the invention is applicable to the production of structures in honeycomb in thermostructural composite materials other than composites carbon / carbon, in particular ceramic matrix composites whose reinforcement texture is in carbon or ceramic.
- the techniques used are those, known, of the realization of three-dimensional textures in fibers of carbon or ceramic, and densification by a ceramic matrix.
- the densification of the honeycomb preform can be carried out by liquid way, that is to say by impregnation using a precursor of the phase matrix liquid, then by transformation of the precursor.
- impregnation cycles possibly supplemented by a chemical vapor infiltration cycle, may be required.
- the invention is applicable to the production of structures curved or cylindrical. These can be obtained by shaping the honeycomb preform on an appropriate tool, before densification and stiffening.
- the cut texture is stretched on a mandrel 70 to form alveoli 66.
- Pawns 72 implanted in the mandrel 70, maintain the texture at the stretched state for its densification, for example by vapor phase infiltration ( Figure 6B). After densification, a rigid cylindrical honeycomb structure is obtained.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Laminated Bodies (AREA)
- Ceramic Products (AREA)
- Catalysts (AREA)
- Nonwoven Fabrics (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
La présente invention concerne la fabrication de structures en nid d'abeilles en matériau composite thermostructural.The present invention relates to the manufacture of nest structures of bees in thermostructural composite material.
Les matériaux composites thermostructuraux sont caractérisés par leurs propriétés mécaniques qui les rendent aptes à constituer des éléments de structures et par leur capacité à conserver leurs propriétés mécaniques jusqu'à des températures élevées. Des matériaux composites thermostructuraux typiques sont les matériaux composites carbone-carbone (C-C) et les matériaux composites à matrice céramique (CMC).Thermostructural composite materials are characterized by their mechanical properties which make them suitable for constituting structural elements and by their ability to maintain their mechanical properties up to high temperatures. Typical thermostructural composite materials are carbon-carbon composite materials (C-C) and composite materials with ceramic matrix (CMC).
Les composites C-C sont constitués par une texture de renfort, ou préforme, en fibres de carbone densifiée par une matrice en carbone. Les CMC sont constitués par une préforme en fibres réfractaires (fibres en carbone ou en céramique) densifiée par une matrice céramique. Un matériau céramique couramment utilisé pour la fabrication de CMC est le carbure de silicium (SiC).C-C composites are made up of a reinforcing texture, or preform, carbon fiber densified by a carbon matrix. CMCs are consisting of a preform of refractory fibers (carbon or ceramic fibers) densified by a ceramic matrix. A commonly used ceramic material used for the manufacture of CMC is silicon carbide (SiC).
La préforme d'un composite C-C ou d'un CMC est réalisée par empilement ou drapage de strates unidirectionnelles (nappes de fils ou de câbles parallèles entre eux) ou multidirectionnelles (couches de tissu, voiles de fibres, couches de feutre), ou par bobinage de fils, rubans ou bandes, ou encore par tissage tridimensionnel. Dans le cas de drapage de strates, celles-ci peuvent être liées entre elles par aiguilletage, par couture, ou par implantation de fils transversaux. Les préformes sont élaborées à partir de fibres en carbone ou en céramique ou, plus généralement, à partir de fibres en un précurseur de carbone ou de céramique, la transformation du précurseur étant réalisée après les opérations textiles nécessaires à la fabrication de la préforme.The preform of a C-C composite or a CMC is produced by stacking or layering of unidirectional strata (layers of parallel wires or cables between them) or multidirectional (layers of fabric, veils of fibers, layers felt), or by winding threads, ribbons or strips, or by three-dimensional weaving. In the case of layering of strata, these can be linked between them by needling, by sewing, or by implantation of transverse threads. The preforms are made from carbon or ceramic fibers or, more generally, from fibers into a carbon or ceramic precursor, the transformation of the precursor being carried out after the necessary textile operations in the production of the preform.
La densification de la préforme vise à combler la porosité accessible de celle-ci par le matériau constitutif de la matrice. Cette densification peut être réalisée par imprégnation de la préforme au moyen d'une phase liquide contenant un précurseur du matériau de la matrice, suivie d'une transformation du précurseur, ou par infiltration chimique en phase vapeur.The densification of the preform aims to fill the accessible porosity of this by the material of the matrix. This densification can be carried out by impregnation of the preform by means of a liquid phase containing a precursor of the matrix material, followed by a transformation of the precursor, or by chemical vapor infiltration.
Les techniques évoquées ci-dessus d'élaboration de préformes fibreuses en carbone ou céramique et de densification par une matrice carbone ou céramique sont bien connues.The techniques mentioned above for developing preforms carbon or ceramic fibers and densification with a carbon matrix or ceramics are well known.
Il existe plusieurs procédés de fabrication de structures en nid d'abeilles. There are several methods of making nest structures bees.
Un premier procédé connu (figures 1A, 1B et 1C et JP-A-1 119 574) consiste à empiler et
coller en quinconce des feuilles 10. Le collage est réalisé le long de bandes 12
parallèles, les bandes de colle situées sur une face d'une feuille étant décalées par
rapport à celles situées sur l'autre face (figure 1A). L'ensemble des feuilles est
découpé en tronçons 14, perpendiculairement aux bandes de colle. Chaque
tronçon est ensuite étiré en direction normale aux faces des feuilles (flèches f de la
figure 1B) pour donner, par déformation, des alvéoles hexagonaux 16 (figure 1C).
Un panneau en nid d'abeilles 18 est ainsi obtenu, de part et d'autre duquel peut être
collée une feuille métallique ou composite.A first known method (FIGS. 1A, 1B and 1C and JP-A-1 119 574) consists in stacking and
glue staggered
Un tel procédé est utilisé pour réaliser des structures en nid d'abeilles
métalliques. Les feuilles 10 sont découpées dans un feuillard métallique et les
alvéoles 16 sont produits par déformation plastique du métal.Such a method is used to make honeycomb structures
metallic. The
Ce procédé peut aussi être mis en oeuvre à partir de feuilles de carton ou de papier. Dans ce dernier cas, après empilement et collage en quinconce, les feuilles de papier peuvent être imprégnées d'une résine, par exemple une résine phénolique. La réticulation de la résine est réalisée après formation des alvéoles (ceci avant ou après découpe de l'ensemble de feuilles en tronçons).This process can also be implemented using sheets of cardboard or paper. In the latter case, after staggered stacking and gluing, the sheets of paper can be impregnated with a resin, for example a resin phenolic. The crosslinking of the resin is carried out after formation of the cells (this before or after cutting the set of sheets into sections).
Pour fabriquer une structure en nid d'abeilles en matériau composite thermostructural, il pourrait être envisagé de mettre en oeuvre un procédé du même type avec des strates fibreuses bidimensionnelles, par exemple des strates de tissu empilées et collées en quinconce ; la densification et, par là même, la rigidifica-tion de la structure étant réalisées après étirage et formation des alvéoles. Chaque strate devrait normalement être formée de plusieurs couches de tissu, ce qui implique la nécessité d'une liaison entre les couches pour éviter leur séparation mutuelle lors de l'étirage. En outre, une opération de collage en quinconce est malaisée à réaliser sur des tissus avec la régularité et la précision voulues pour qu'au moment de l'étirage un arrachage du tissu dû à un défaut local ne se produise pas. De plus, lors de l'opération de densification après étirage, il est à craindre que des contraintes d'origine thermique entraínent une destruction du collage.To make a honeycomb structure from composite material thermostructural, it could be envisaged to implement a process of same type with two-dimensional fibrous strata, for example strata stacked and staggered fabric; densification and thereby stiffening of the structure being carried out after stretching and formation of alveoli. Each layer should normally be made up of several layers of fabric, which implies the need for a bond between the layers to avoid their mutual separation during stretching. In addition, a bonding operation in staggered is difficult to achieve on fabrics with regularity and precision wanted so that at the time of stretching a tearing of the fabric due to a local defect does not happen. In addition, during the densification operation after stretching, it is to fear that thermal stresses would lead to destruction of the collage.
Une solution consistant à coudre en quinconce les strates de tissu, plutôt qu'à les coller, permettrait d'éviter certains inconvénients, mais poserait des difficultés importantes de mise en oeuvre.A solution consisting of sewing staggered layers of fabric, rather than sticking them, would avoid some disadvantages, but would pose significant difficulties in implementation.
Un deuxième procédé connu (figures 2A, 2B) consiste à utiliser des
feuilles cannelées, par exemple en clinquant métallique. Les feuilles cannelées 20
sont superposées et collées ou soudées le long de leurs facettes 22 en contact
mutuel (figure 2A). Des panneaux en nid d'abeilles 28 sont directement obtenus
par découpe du bloc de feuilles 20 perpendiculairement aux cannelures
(figure 2B).A second known method (FIGS. 2A, 2B) consists in using
fluted sheets, for example in metallic foil. Grooved
Ce procédé peut permettre de réaliser des structures en nid d'abeilles en matériau composite en utilisant des feuilles cannelées elles-mêmes en matériau composite. De telles feuilles peuvent être obtenues par drapage de couches de tissu en leur donnant la forme cannelée voulue et densification, par exemple par drapage et moulage de couches de tissu préimprégnées par une résine. Toutefois, il est nécessaire ensuite d'assurer un collage efficace des feuilles cannelées susceptible de résister aux températures de service auxquelles des matériaux thermostructuraux peuvent être amenés à subir. En outre, les opérations de préfabrication des feuilles cannelées sont longues et coûteuses, ce qui alourdit considérablement le prix de revient de la structure en nid d'abeilles.This process can make honeycomb structures in composite material using fluted sheets themselves of material composite. Such sheets can be obtained by draping layers of fabric by giving them the desired fluted shape and densification, for example by draping and molding of fabric layers impregnated with a resin. However, it it is then necessary to ensure an effective bonding of the fluted sheets capable of withstanding the service temperatures at which materials thermostructural can be brought to undergo. In addition, the operations of prefabrication of fluted sheets are long and expensive, which weighs down considerably the cost price of the honeycomb structure.
Enfin, un troisième procédé connu (figures 3A et 3B) utilise une feuille
30, par exemple une feuille métallique dans laquelle sont formées des découpes
32. Les découpes sont réalisées en quinconce le long de lignes parallèles
(figure 3A). Les découpes sont de mêmes longueurs et espacées régulièrement les
unes des autres le long de chaque ligne. Les découpes situées le long d'une ligne
sont décalées par rapport à celles des lignes adjacentes et chaque découpe s'étend
sur une longueur supérieure à la distance séparant deux découpes voisines
alignées. La feuille 30 est déployée par traction perpendiculairement aux lignes de
découpes (flèches f' de la figure 3A). Par déformation plastique du métal, il se
forme des alvéoles 36 aux emplacements des découpes (figure 3B). Le
déploiement est limité pour ne pas induire, notamment aux extrémités des
découpes 32, des contraintes susceptibles de provoquer des déchirures de la
feuille. L'axe de chaque alvéole est incliné par rapport au plan initial de la feuille
d'un angle inférieur à 90°, de sorte que les parois des alvéoles ne sont pas
perpendiculaires au plan général du panneau en nid d'abeilles 38 obtenu.Finally, a third known method (FIGS. 3A and 3B) uses a
Ce procédé est pratiquement impossible à mettre en oeuvre sur des couches de tissu sans provoquer de déchirures du tissu aux extrémités des découpes au moment du déploiement. En outre, ce procédé présente une limitation importante quant à l'épaisseur du panneau en nid d'abeilles pouvant être obtenu. En effet, cette épaisseur est déterminée par la distance entre lignes de découpes et cette distance doit rester suffisamment faible pour permettre la formation d'alvéoles lors du déploiement. This process is practically impossible to carry out on layers of fabric without causing tears in the fabric at the ends of the cuts at the time of deployment. In addition, this method has a limitation important as to the thickness of the honeycomb panel obtainable. Indeed, this thickness is determined by the distance between the cutting lines and this distance must remain small enough to allow training cells during deployment.
Aussi, la présente invention a pour but de fournir un procédé permettant de réaliser une structure en nid d'abeilles en matériau composite thermostructural sans rencontrer les inconvénients précédents.Also, the present invention aims to provide a method for to make a honeycomb structure in thermostructural composite material without encountering the above drawbacks.
En particulier, l'invention a pour but de fournir un procédé grâce auquel des structures en nid d'abeilles en matériau composite thermostructural peuvent être fabriquées à un prix de revient suffisamment modéré pour ouvrir de larges domaines d'applications.In particular, the invention aims to provide a process thanks to which honeycomb structures of thermostructural composite material can be manufactured at a cost price moderate enough to open broad fields of applications.
Ce but est atteint par un procédé de fabrication d'une structure en nid d'abeilles en un matériau composite comprenant une texture de renfort fibreuse densifiée par une matrice, les fibres de la texture de renfort étant en un matériau choisi parmi le carbone et les céramiques, de même que la matrice, procédé comportant les étapes qui consistent à:
- réaliser une texture fibreuse tridimensionnelle au moyen de strates bidimensionnelles superposées et liées entre elles au moyen de fibres traversant les strates,
- réaliser des découpes en quinconce en forme de fentes, à travers les strates, dans toute l'épaisseur de la texture,
- étirer la texture découpée en direction transversale par rapport aux découpes et parallèlement aux strates pour former des alvéoles dont les parois sont constituées par les lèvres des découpes, et
- densifier la texture découpée et maintenue à l'état étiré, par le matériau constitutif de la matrice, pour obtenir une structure en nid d'abeilles rigide en matériau thermostructural.
- achieve a three-dimensional fibrous texture by means of superimposed two-dimensional layers and linked together by means of fibers passing through the layers,
- make staggered slits in the form of slits, through the layers, throughout the thickness of the texture,
- stretch the cut texture in a transverse direction with respect to the cuts and parallel to the strata to form cells whose walls are formed by the lips of the cuts, and
- densify the cut texture and maintained in the stretched state, by the material of the matrix, to obtain a rigid honeycomb structure of thermostructural material.
Les strates formant la texture de renfort peuvent être au moins en partie constituées par des couches de tissu. La liaison entre les strates est réalisée par exemple par implantation de fils, par couture ou par aiguilletage. Dans ce dernier cas, lorsque les strates comprennent des couches de tissu, il peut être avantageux d'intercaler entre celles-ci des strates formées de voiles de fibres, ceci afin de procurer des fibres susceptibles d'être prélevées par les aiguilles et disposées à travers les strates lors de l'aiguilletage.The strata forming the reinforcing texture may be at least partially consisting of layers of fabric. The connection between the strata is carried out by example by implantation of threads, by sewing or by needling. In this last case, when the strata include layers of fabric, it may be advantageous to interpose between them strata formed of fiber veils, in order to provide fibers capable of being taken up by the needles and arranged through the strata during needling.
Des textures de renfort fibreuses formées de strates bidimensionnelles superposées et liées entre elles par exemple par aiguilletage sont bien connues.Fibrous reinforcement textures formed of two-dimensional layers superimposed and linked together for example by needling are well known.
Le procédé conforme à l'invention est en particulier remarquable du fait qu'une préforme d'une structure en nid d'abeilles est simplement obtenue par formation de découpes en quinconce et étirage de la texture. The process according to the invention is particularly remarkable from the fact that a preform of a honeycomb structure is simply obtained by formation of staggered cuts and stretching of the texture.
Ce procédé se distingue de celui illustré par les figures 1A à 1C du fait que, selon l'invention, l'étirage est réalisé parallèlement aux plans des strates et non pas perpendiculairement à celles-ci.This process differs from that illustrated in FIGS. 1A to 1C because that, according to the invention, the stretching is carried out parallel to the planes of the strata and not perpendicular to them.
Le procédé selon l'invention se distingue aussi de celui illustré par les figures 3A et 3B. En effet, avec ce procédé connu, les parois des alvéoles sont constituées par les parties de la feuille situées entre deux lignes de découpes. Le déploiement a pour effet de provoquer une inclinaison progressive de ces parois par rapport au plan initial de la feuille en même temps que l'expansion de la feuille. Il n'en est pas ainsi avec le procédé conforme à l'invention. L'étirage de la texture a pour effet d'écarter mutuellement les lèvres de chaque découpe pour former des alvéoles dont les parois sont formées par les lèvres des découpes. L'épaisseur de la structure en nid d'abeilles est déterminée par l'épaisseur de la texture fibreuse et ne connaít donc pas la même limitation que dans le cas du procédé des figures 3A et 3B où l'épaisseur de la structure en nid d'abeilles est déterminée par la distance (nécessairement limitée) entre deux lignes de découpes voisines.The process according to the invention also differs from that illustrated by the Figures 3A and 3B. In fact, with this known process, the walls of the cells are formed by the parts of the sheet located between two lines of cuts. The deployment has the effect of causing a gradual inclination of these walls with respect to the initial plan of the sheet at the same time as the expansion of the leaf. This is not so with the process according to the invention. Stretching texture has the effect of spreading each other's lips apart from each form cells, the walls of which are formed by the lips of the cutouts. The thickness of the honeycomb structure is determined by the thickness of the fibrous texture and therefore does not experience the same limitation as in the case of process of FIGS. 3A and 3B where the thickness of the honeycomb structure is determined by the distance (necessarily limited) between two cutting lines neighbors.
L'invention vise aussi une structure en nid d'abeilles en matériau composite thermostructural telle qu'elle peut être obtenue par le procédé défini plus haut.The invention also relates to a honeycomb structure of composite material thermostructural as it can be obtained by the process defined more high.
Conformément à l'invention, une telle structure, comprenant une texture de renfort fibreuse densifiée par une matrice, est caractérisée en ce que la texture de renfort est une texture tridimensionnelle formée de strates bidimensionnelles liées entre elles par des fibres traversant les strates, les alvéoles de la structure en nid d'abeilles étant formés à travers les strates.According to the invention, such a structure, comprising a fibrous reinforcement texture densified by a matrix, is characterized in that the reinforcement texture is a three-dimensional texture formed by two-dimensional strata linked together by fibers crossing the strata, the alveoli of the honeycomb structure being formed across the strata.
D'autres particularités et avantages du procédé et de la structure conformes à l'invention ressortiront à la lecture de la description faite, ci-après, à titre indicatif et non limitatif.Other particularities and advantages of the conforming process and structure to the invention will emerge on reading the description made below, as indicative and not limiting.
Il sera fait référence aux dessins annexés sur lesquels :
- les figures 1A, 1B et 1C, déjà décrites, illustrent un procédé connu pour réaliser des structures en nid d'abeilles ;
- les figures 2A et 2B, déjà décrites, illustrent un autre procédé connu pour réaliser des structures en nid d'abeilles ;
- les figures 3A et 3B, déjà décrites, illustrent encore un autre procédé connu pour réaliser des structures en nid d'abeilles ;
- les figures 4A à 4F illustrent différentes étapes successives d'un mode de mise en oeuvre du procédé selon l'invention pour fabriquer une texture plane en nid d'abeilles en matériau composite thermostructural ;
- les figures 5A à 5C illustrent la formation de peaux sur une structure en nid d'abeilles pour réaliser un panneau autoraidi ; et
- les figures 6A et 6B illustrent un autre mode de mise en oeuvre du procédé selon l'invention pour fabriquer une texture de révolution en nid d'abeilles.
- FIGS. 1A, 1B and 1C, already described, illustrate a known method for producing honeycomb structures;
- FIGS. 2A and 2B, already described, illustrate another known method for producing honeycomb structures;
- FIGS. 3A and 3B, already described, illustrate yet another known method for producing honeycomb structures;
- FIGS. 4A to 4F illustrate different successive stages of an embodiment of the method according to the invention for manufacturing a flat honeycomb texture of thermostructural composite material;
- FIGS. 5A to 5C illustrate the formation of skins on a honeycomb structure to produce a self-supporting panel; and
- Figures 6A and 6B illustrate another embodiment of the method according to the invention for manufacturing a texture of revolution honeycomb.
Un procédé conforme à l'invention pour la réalisation d'une structure en nid d'abeilles plane en matériau composite thermostructural de type carbone/carbone est maintenant décrit en référence aux figures 4A à 4F.A method according to the invention for producing a structure flat honeycomb made of thermostructural carbon / carbon type composite material is now described with reference to FIGS. 4A to 4F.
Une première étape du procédé consiste à réaliser une texture de renfort tridimensionnelle en fibres de carbone.A first step in the process consists in producing a texture of three-dimensional carbon fiber reinforcement.
A cet effet, des strates bidimensionnelles 40 en carbone ou en un précurseur
du carbone (par exemple en polyacrylonitrile, ou PAN, à l'état préoxydé)
sont superposées et aiguilletées (figure 4A). Les strates 40 sont des couches par
exemple de tissu ou de complexe formé de tissu et voile de fibres, le voile de
fibres apportant des fibres pouvant être aisément prélevées par les aiguilles, lors de
l'aiguilletage, pour être implantées à travers les strates. L'aiguilletage est réalisé de
préférence sur les fibres à l'état de précurseur de carbone, un aiguilletage effectué
directement sur les fibres de carbone ayant un effet plus destructeur. Pour la réalisation
de l'aiguilletage, il peut être procédé au fur et à mesure de l'empilement des
strates 40, comme décrit dans le document FR-A-2 584 106, l'épaisseur de la
texture étant déterminée en fonction de celle de la structure en nid d'abeilles à réaliser.To this end, two-
D'autres techniques de liaison des strates entre elles peuvent être utilisées, par exemple la couture, ou bien encore l'implantation de fils comme décrit dans le document FR-A-2 565 262.Other strata linking techniques can be used, for example sewing, or even the implantation of threads as described in document FR-A-2,565,262.
Lorsque la texture tridimensionnelle 41 ainsi obtenue est en fibres en
précurseur de carbone, un traitement thermique de carbonisation doit être réalisé
pour transformer le précurseur en carbone. Ce traitement entraínant un léger retrait
dimensionnel, il est de préférence effectué avant la réalisation, dans la texture, de
découpes ou fentes permettant la formation des alvéoles de la structure en nid
d'abeilles.When the three-
Comme le montre la figure 4B, ces découpes 42 en forme de fentes
sont réalisées en quinconce, leurs dimensions et localisations définissant les
dimensions et formes des alvéoles. Les découpes 42 sont réalisées dans des plans
parallèles entre eux et perpendiculaires aux plans des strates 40. De préférence, les
plans de découpes sont parallèles à l'une des directions X et Y suivant lesquelles
sont orientés les fils de chaíne et les fils de trame du tissu des strates 40, par
exemple la direction X des fils de chaíne (les couches de tissu étant superposées
avec leurs fils de chaíne parallèles, de même, par conséquent, que leurs fils de
trame). Ainsi, la continuité des fils de chaíne (ou de trame) est conservée dans les
strates de tissu après formation des découpes. Les découpes sont toutes de même
longueur L et sont régulièrement espacées d'une même distance D dans chaque
plan. Les plans sont régulièrement espacés les uns des autres d'une distance d. La
longueur L des découpes est supérieure à la longueur D de l'intervalle entre
celles-ci et la disposition en quinconce, dans l'exemple illustré, est telle que le
milieu d'une découpe 42 dans un plan de découpes est au niveau du milieu de
l'intervalle entre deux découpes 42 dans les plans de découpes voisins.As shown in FIG. 4B, these
Les découpes 42 sont réalisées par exemple au couteau ou au jet d'eau.The
Après réalisation des découpes, la texture 41 est étirée en direction Y
perpendiculaire aux plans des découpes (flèches F de la figure 4C).After making the cuts, the
L'étirage se traduit par un écartement des lèvres des découpes 42
(figure 4C) et la formation d'alvéoles 46 dont les parois sont définies par ces
lèvres. L'étirage est interrompu lorsque les alvéoles 46 ont atteint la forme voulue
(figure 4D) et avant que les contraintes exercées aux extrémités des découpes provoquent
une déchirure de la texture.Stretching results in a separation of the lips of the cutouts 42
(Figure 4C) and the formation of
On obtient ainsi une préforme fibreuse en nid d'abeilles 47 dans
laquelle les parois des alvéoles 46 sont perpendiculaires aux plans X, Y des strates
40.A
Il est possible de réaliser les découpes 42 dans des plans inclinés par
rapport à la normale aux strates 40. Après étirage en direction Y, on obtient alors
des alvéoles dont les parois ne sont pas perpendiculaires aux faces de la texture.It is possible to make the
Des essais effectués sur des textures telles que celle décrite ci-avant ont montré que, lors de l'étirage, les parois des alvéoles restent perpendiculaires aux plans X, Y et que les déformations de surface, induites notamment dans les zones d'extrémités des découpes, restent de très faible amplitude. Il a été aussi constaté que l'étirage ne provoque pas de déchirure aux extrémités des découpes. A titre de comparaison, des essais effectués sur des textures identiques à l'exception de l'aiguilletage (pas de liaison entre strates), ont montré que l'étirage pouvait pro-voquer un endommagement de la texture aux extrémités des découpes.Tests carried out on textures such as that described above have shown that, during stretching, the walls of the cells remain perpendicular to the X, Y planes and that the surface deformations, induced in particular in the end zones of the cuts, remain of very low amplitude. He was also found that stretching does not cause tearing at the ends of the cuts. For comparison, tests carried out on textures identical to with the exception of needling (no connection between strata), have shown that stretching could cause damage to the texture at the ends of the cuts.
Il doit être remarqué que la capacité de déformation de la texture 41
par traction en direction Y présente un caractère surprenant dans la mesure où les
tissus sont réputés indéformables dans leur plan.It should be noted that the deformation capacity of the
Après étirage, la préforme 47 est densifiée en étant maintenue à l'état
étiré au moyen d'un outillage. Ce dernier (figure 4E) est constitué par une sole en
graphite 50 et des pions en graphite 52 implantés dans des alvéoles 46 le long des
bords de la préforme opposés en direction Y. Les pions 52 pénètrent dans des
trous formés dans la sole 50.After stretching, the
L'ensemble constitué par l'outillage 50, 52 et la préforme 47 est
introduit dans un four dans lequel la préforme 47 est densifiée par du carbone par
infiltration chimique en phase vapeur. De façon bien connue en soi, une phase
gazeuse contenant un ou plusieurs hydrocarbures est introduite dans l'enceinte
dans des conditions de température et de pression déterminées pour favoriser une
décomposition de la phase gazeuse au contact des fibres de la préforme 47 et
libérer du carbone qui comble progressivement la porosité de la préforme 47.The assembly constituted by the
Après densification, on obtient une structure en nid d'abeilles 48 en
composite carbone/carbone (figure 4F). Une telle structure est susceptible de
nombreuses applications. Par exemple, elle peut constituer une sole de four de
traitement thermique et remplacer avantageusement une sole métallique obtenue
par moulage ou par soudage d'éléments. Une telle structure en nid d'abeilles peut
aussi être utilisée comme outillage rigide pour le maintien d'une préforme à
densifier par infiltration chimique en phase vapeur, à la place des outillages en
graphite traditionnels.After densification, a
Des structures en nid d'abeilles en matériau composite thermostructural peuvent trouver aussi des applications pour constituer des panneaux autoraidis uti-lisables dans des applications aéronautiques ou spatiales, par exemple comme élé-ments de structures d'avions spatiaux.Honeycomb structures in thermostructural composite material can also find applications to build autoraidis panels usable in aeronautical or space applications, for example as elements of space plane structures.
La structure en nid d'abeilles peut, pour certaines applications, être munie d'une peau sur chaque face.The honeycomb structure can, for certain applications, be with a skin on each side.
A cet effet, comme le montre la figure 5A, au moins une couche
fibreuse 54, par exemple une couche de tissu, est tendue sur la préforme 47 maintenue
sur la sole 50 au moyen des pions 52. La couche de tissu 54 est aiguilletée
sur les tranches des alvéoles 46 au moyen d'une tête d'aiguilletage dont les déplacements
peuvent être programmés, par exemple comme décrit dans le document
FR-A-2 669 941.For this purpose, as shown in FIG. 5A, at least one
Après aiguilletage de la strate 54, on place sur la préforme 47 et la
couche de tissu 54 une sole en graphite 51 analogue à la sole 50 et munie de trous
disposés de manière à recevoir les extrémités supérieures des pions 52 qui
dépassent de la préforme 47. L'ensemble est retourné et la sole 50 est retirée pour
permettre la mise en place d'au moins une autre couche de tissu 55 tendue sur
l'autre face de la préforme 47 et l'aiguilletage de cette autre strate (figure 5B).After needling of the
L'ensemble est ensuite introduit dans un four d'infiltration chimique en
phase vapeur pour densifier simultanément la préforme 47 et les couches de tissu
54, 55 aiguilletées sur ses deux faces, permettant ainsi l'obtention d'un panneau
autoraidi 58 comprenant un âme rigide 48 en nid d'abeilles recouverte de deux
peaux rigides 56, 57 obturant les alvéoles 46 (figure 5C).The assembly is then introduced into a chemical infiltration oven in
vapor phase to simultaneously densify
Lorsque le panneau autoraidi à réaliser n'est pas soumis à des efforts
importants en cisaillement, les couches de tissu 54, 55 pourront être simplement
collées sur les faces de la préforme 47 avant d'être densifiées avec celle-ci,
la
codensification complétant la liaison nécessaire entre les peaux et l'âme du
panneau.When the self-supporting panel is not subjected to efforts
important in shear, the fabric layers 54, 55 can be simply
bonded to the faces of the
Dans la description qui précède, il a été envisagé la réalisation de structures en nid d'abeilles en matériau composite carbone/carbone.In the foregoing description, it has been envisaged the realization of honeycomb structures in carbon / carbon composite material.
Bien entendu, l'invention est applicable à la réalisation de structures en nid d'abeilles en matériaux composites thermostructuraux autres que les composites carbone/carbone, en particulier les composites à matrice céramique dont la texture de renfort est en carbone ou en céramique. Les techniques mises en oeuvre sont celles, connues, de la réalisation de textures tridimensionnelles en fibres de carbone ou de céramique, et de la densification par une matrice céramique.Of course, the invention is applicable to the production of structures in honeycomb in thermostructural composite materials other than composites carbon / carbon, in particular ceramic matrix composites whose reinforcement texture is in carbon or ceramic. The techniques used are those, known, of the realization of three-dimensional textures in fibers of carbon or ceramic, and densification by a ceramic matrix.
On notera aussi que la densification de la préforme en nid d'abeilles, éventuellement munie de strates sur ses faces, peut être réalisée par voie liquide, c'est-à-dire par imprégnation au moyen d'un précurseur de la matrice en phase liquide, puis par transformation du précurseur. Plusieurs cycles d'imprégnation, éventuellement complétés par un cycle d'infiltration chimique en phase vapeur, peuvent être nécessaires.It will also be noted that the densification of the honeycomb preform, possibly provided with layers on its faces, can be carried out by liquid way, that is to say by impregnation using a precursor of the phase matrix liquid, then by transformation of the precursor. Several impregnation cycles, possibly supplemented by a chemical vapor infiltration cycle, may be required.
Enfin, bien que l'on ait décrit ci-avant la réalisation de structures en nid d'abeilles planes, l'invention est applicable à la réalisation de structures courbes ou cylindriques. Celles-ci peuvent être obtenues par mise en forme de la préforme en nid d'abeilles sur un outillage approprié, avant densification et rigidification.Finally, although we have described above the realization of structures in flat honeycomb, the invention is applicable to the production of structures curved or cylindrical. These can be obtained by shaping the honeycomb preform on an appropriate tool, before densification and stiffening.
Il est aussi envisageable de réaliser une texture de renfort tridimensionnelle
de révolution 60 par aiguilletage de strates 61 enroulées sur un mandrin
(figure 6A), comme décrit par exemple dans le document FR-A-2 584 107. Des
découpes en quinconce 62 sont formées dans des plans méridiens, à travers toute
l'épaisseur de la texture 60.It is also possible to make a three-dimensional reinforcement texture
of
La texture découpée est étirée sur un mandrin 70 pour former des
alvéoles 66. Des pions 72, implantés dans le mandrin 70, maintiennent la texture à
l'état étiré en vue de sa densification, par exemple par infiltration en phase vapeur
(figure 6B). Après densification, une structure cylindrique rigide en nid d'abeilles
est obtenue.The cut texture is stretched on a
Claims (10)
- A method of manufacturing a honeycomb structure of thermostructural composite material comprising a fiber reinforcing fabric densified by a matrix, the fibers of the reinforcing fabric being of a material selected from carbon and ceramics, as is the matrix, the method being characterised in that it comprises the following steps:making a three-dimensional fiber fabric (41) by means of superposed two-dimensional plies (40) that are bonded together by means of fibers passing through the plies;making slit-shaped cuts in a staggered configuration (42) through the plies, and through the entire thickness of the fabric;stretching the cut fabric in a direction that is transverse with respect to the cuts (42) and that is parallel to the plies (40) so as to form cells (46) whose walls are constituted by the lips of the cuts (42); andwhile the cut fabric is held in the stretched state, densifying it using the matrix-constituting material to obtain a rigid honeycomb structure (48) of thermostructural material.
- A method according to claim 1, characterised in that the two-dimensional pies (40) of the three-dimensional fabric (41) comprise layers of cloth.
- A method according to claim 2, characterised in that the cuts (42) are made parallel to one of the following directions: the warp thread direction and the weft thread direction of the layers of cloth.
- A method according to any one of claims 1 to 3, characterised in that the bonding between the plies (40) of the three-dimensional fabric is provided by needling.
- A method according to any one of claims 1 to 4, characterised in that the cut and stretched fabric (42) is densified by chemical vapor infiltration while being held in the stretched state by means of tools (50, 52).
- A method according to any one of claims 1 to 5, characterised in that the cut and stretched fabric (47) is provided with at least one fiber layer (54, 55) on each of its faces parallel to the plies of the fabric, and the assembly formed by the stretched fabric and the fiber layers is densified to obtain a self-rigid panel (58) comprising a rigid honeycomb core covered by a rigid skin on each face.
- A method according to claim 6, characterised in that the fiber layer placed on each face of the fabric is bonded thereto by needling.
- A honeycomb structure of thermostructural composite material comprising a fiber reinforcing fabric densified by a matrix, the fibers of the reinforcing fabric being of a material selected from carbon and ceramics, as is the matrix, the structure being characterised in that the reinforcing fabric is a three-dimensional fabric formed by two-dimensional plies (40) bonded together by fibers passing through the plies, the cells (46) of the honeycomb structure (48) being formed through the plies.
- A honeycomb structure according to claim 8, characterised in that the two-dimensional plies (40) comprise layers of cloth which retain the continuity of the warp or weft threads.
- A honeycomb structure according to any one of claims 8 and 9, characterised in that it comprises two rigid skins (56, 57) covering its faces parallel to the plies of the reinforcing fabric and closing the cells (46).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9206790 | 1992-06-04 | ||
FR929206790A FR2691923B1 (en) | 1992-06-04 | 1992-06-04 | Honeycomb structure in thermostructural composite material and its manufacturing process. |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0573353A1 EP0573353A1 (en) | 1993-12-08 |
EP0573353B1 true EP0573353B1 (en) | 1998-04-15 |
Family
ID=9430443
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP93401405A Expired - Lifetime EP0573353B1 (en) | 1992-06-04 | 1993-06-02 | High temperature composite material having honeycomb structure and process for its preparation |
Country Status (11)
Country | Link |
---|---|
US (2) | US5415715A (en) |
EP (1) | EP0573353B1 (en) |
JP (1) | JP3371016B2 (en) |
AT (1) | ATE165043T1 (en) |
CA (1) | CA2096864C (en) |
DE (1) | DE69317939T2 (en) |
ES (1) | ES2115737T3 (en) |
FR (1) | FR2691923B1 (en) |
NO (1) | NO180261C (en) |
RU (1) | RU2111122C1 (en) |
UA (1) | UA26423C2 (en) |
Families Citing this family (84)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2691923B1 (en) * | 1992-06-04 | 1994-09-09 | Europ Propulsion | Honeycomb structure in thermostructural composite material and its manufacturing process. |
FR2701665B1 (en) * | 1993-02-17 | 1995-05-19 | Europ Propulsion | Method for manufacturing a part made of composite material, in particular a sandwich panel, from several assembled preforms. |
MX9700018A (en) * | 1994-07-07 | 1997-12-31 | Jiffy Packaging Company Ltd | Packaging material, packaging pad and machine for manufacturing packaging material. |
US5894044A (en) * | 1997-04-21 | 1999-04-13 | The Procter & Gamble Company | Honeycomb structure and method of making |
US5876831A (en) * | 1997-05-13 | 1999-03-02 | Lockheed Martin Corporation | High thermal conductivity plugs for structural panels |
DE19728116C2 (en) * | 1997-07-02 | 2000-05-18 | Deutsch Zentr Luft & Raumfahrt | Heat exchanger for transferring heat between an adsorbent and a heat transfer medium and method for producing such a heat exchanger |
US6114006A (en) * | 1997-10-09 | 2000-09-05 | Alliedsignal Inc. | High thermal conductivity carbon/carbon honeycomb structure |
US6102112A (en) * | 1998-02-17 | 2000-08-15 | Lockheed Martin Corporation | Thermally conductive support structure |
FR2818578B1 (en) * | 2000-12-26 | 2003-03-21 | Snecma Moteurs | METHOD FOR MANUFACTURING HONEYCOMB STRUCTURES AND TOOLS FOR SUCH MANUFACTURE |
US6846574B2 (en) * | 2001-05-16 | 2005-01-25 | Siemens Westinghouse Power Corporation | Honeycomb structure thermal barrier coating |
KR20060103551A (en) * | 2003-06-10 | 2006-10-02 | 이비덴 가부시키가이샤 | Honeycomb structure body |
JP4827530B2 (en) * | 2003-07-15 | 2011-11-30 | イビデン株式会社 | Honeycomb structure |
US8066955B2 (en) * | 2003-10-17 | 2011-11-29 | James M. Pinchot | Processing apparatus fabrication |
JP4795062B2 (en) * | 2006-03-15 | 2011-10-19 | 有限会社泰成電機工業 | Plate-shaped object and method for manufacturing the same |
JP2007302542A (en) * | 2006-05-15 | 2007-11-22 | Denso Corp | Firing tool for ceramic honeycomb formed body |
US9820888B2 (en) | 2006-09-26 | 2017-11-21 | Smith & Nephew, Inc. | Wound dressing |
CA2664677C (en) * | 2006-09-26 | 2016-01-26 | T.J. Smith & Nephew, Limited | Lattice dressing |
JP4836754B2 (en) * | 2006-11-14 | 2011-12-14 | シャープ株式会社 | Packing structure |
FR2912490B1 (en) * | 2007-02-09 | 2010-10-29 | Alcan Rhenalu | METAL COMPOSITE PANEL AND METHOD OF MANUFACTURE |
US8097106B2 (en) * | 2007-06-28 | 2012-01-17 | The Boeing Company | Method for fabricating composite structures having reinforced edge bonded joints |
EP2203304B1 (en) | 2007-09-24 | 2015-05-13 | Ranpak Corp. | Dunnage conversion machine and method |
GB0803059D0 (en) * | 2008-02-20 | 2008-03-26 | Smith & Nephew | Mobile substrate attachment device |
GB0804654D0 (en) | 2008-03-13 | 2008-04-16 | Smith & Nephew | Vacuum closure device |
DE102008019070B3 (en) | 2008-04-15 | 2009-11-26 | Airbus Deutschland Gmbh | Process for producing a core composite provided with cover layers on both sides |
DE102008019065B4 (en) | 2008-04-15 | 2011-06-16 | Airbus Operations Gmbh | Process for producing a core composite provided with cover layers on both sides and core composite |
GB0902368D0 (en) | 2009-02-13 | 2009-04-01 | Smith & Nephew | Wound packing |
JP2011521187A (en) * | 2009-04-06 | 2011-07-21 | ジョンゴン ソン | Heat reflection heat insulating material manufacturing apparatus and manufacturing method thereof |
US20120009381A1 (en) * | 2010-07-08 | 2012-01-12 | Florida State University Research Foundation | Carbon nanotube honeycomb and methods of making and use thereof |
US9421132B2 (en) | 2011-02-04 | 2016-08-23 | University Of Massachusetts | Negative pressure wound closure device |
WO2012106590A2 (en) | 2011-02-04 | 2012-08-09 | University Of Massachusetts | Negative pressure wound closure device |
WO2012142473A1 (en) | 2011-04-15 | 2012-10-18 | University Of Massachusetts | Surgical cavity drainage and closure system |
FR2988401B1 (en) * | 2012-03-23 | 2014-04-25 | Snecma Propulsion Solide | HOLDING TOOLS FOR THERMAL TREATMENT OF METALLIC PARTS |
MX2014014266A (en) | 2012-05-22 | 2015-06-23 | Smith & Nephew | Apparatuses and methods for wound therapy. |
EP2852419B1 (en) | 2012-05-22 | 2019-11-20 | Smith & Nephew plc | Wound closure device |
US10117782B2 (en) | 2012-05-24 | 2018-11-06 | Smith & Nephew, Inc. | Devices and methods for treating and closing wounds with negative pressure |
US10130520B2 (en) | 2012-07-16 | 2018-11-20 | Smith & Nephew, Inc. | Negative pressure wound closure device |
RU2507113C1 (en) * | 2012-07-24 | 2014-02-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ" (КНИТУ-КАИ) | Honeycomb |
RU2650364C2 (en) * | 2012-08-17 | 2018-04-11 | Зе Боинг Компани | Honeycomb structure and method of forming same |
FR3001409B1 (en) * | 2013-01-29 | 2015-07-03 | Herakles | METHOD FOR MANUFACTURING ALVEOLAR STRUCTURE OF CURVED SHAPE IN COMPOSITE MATERIAL |
FR3001452B1 (en) * | 2013-01-29 | 2015-02-13 | Herakles | METHOD OF MANUFACTURING A CURVED SHAPE ACOUSTICAL ATTENUATION PANEL |
RU2015142873A (en) | 2013-03-13 | 2017-04-19 | Смит Энд Нефью Инк. | DEVICE AND SYSTEMS FOR CLOSING A Wound USING NEGATIVE PRESSURE, AND METHODS FOR APPLICATION IN TREATING A WAN USING NEGATIVE PRESSURE |
AU2014229749B2 (en) | 2013-03-14 | 2018-09-20 | Smith & Nephew Plc | Compressible wound fillers and systems and methods of use in treating wounds with negative pressure |
US9925680B2 (en) | 2013-06-11 | 2018-03-27 | Bell Helicopter Textron Inc. | System and method of post-cure processing of composite core |
CN105530898B (en) | 2013-07-16 | 2020-02-28 | 史密夫及内修公开有限公司 | Apparatus for wound therapy |
WO2015061352A2 (en) | 2013-10-21 | 2015-04-30 | Smith & Nephew, Inc. | Negative pressure wound closure device |
CN106456376B (en) | 2014-01-21 | 2020-12-15 | 史密夫及内修公开有限公司 | Wound treatment device |
CN110974539A (en) | 2014-01-21 | 2020-04-10 | 史密夫及内修公开有限公司 | Collapsible dressing for negative pressure wound therapy |
WO2016133582A1 (en) | 2015-02-18 | 2016-08-25 | Siemens Aktiengesellschaft | Turbine shroud with abradable layer having dimpled forward zone |
US8939706B1 (en) | 2014-02-25 | 2015-01-27 | Siemens Energy, Inc. | Turbine abradable layer with progressive wear zone having a frangible or pixelated nib surface |
US9243511B2 (en) | 2014-02-25 | 2016-01-26 | Siemens Aktiengesellschaft | Turbine abradable layer with zig zag groove pattern |
US9151175B2 (en) | 2014-02-25 | 2015-10-06 | Siemens Aktiengesellschaft | Turbine abradable layer with progressive wear zone multi level ridge arrays |
CN106232946B (en) | 2014-02-25 | 2018-04-27 | 西门子公司 | The abradable layer of turbine of pixelation surface characteristics pattern with air-flow guiding |
RU2565600C1 (en) * | 2014-04-23 | 2015-10-20 | Акционерное общество "Научно-исследовательский институт конструкционных материалов на основе графита "НИИграфит" | Heat resistant cellular structure |
CN104129140A (en) * | 2014-07-24 | 2014-11-05 | 大连塑料研究所有限公司 | Hexagonal honeycomb panel multilayer compounding apparatus and process |
LU92548B1 (en) * | 2014-09-17 | 2016-03-18 | Euro Composites | HONEYCOMB, ESPECIALLY DEFORMABLE HONEYCOMB, FOR LIGHTWEIGHT COMPONENTS, CORRESPONDING PRODUCTION PROCESS AND SANDWICH COMPONENT |
FR3026675B1 (en) * | 2014-10-02 | 2016-11-11 | Mbda France | PROCESS FOR THE PRODUCTION OF A DOUBLE-WALL THERMOSTRUCTURAL COMPOSITE MONOLITHIC PIECE AND PART OBTAINED |
WO2016133982A1 (en) | 2015-02-18 | 2016-08-25 | Siemens Aktiengesellschaft | Forming cooling passages in thermal barrier coated, combustion turbine superalloy components |
EP3288509B1 (en) | 2015-04-29 | 2022-06-29 | Smith & Nephew, Inc | Negative pressure wound closure device |
WO2016185743A1 (en) * | 2015-05-21 | 2016-11-24 | 三菱電機株式会社 | Honeycomb core, honeycomb sandwiching structure, and method for producing honeycomb core |
CN106316437A (en) * | 2015-06-26 | 2017-01-11 | 上海航天设备制造总厂 | Satellite high-thermal-conductivity carbon/carbon composite material honeycomb preparation method |
FR3044963B1 (en) * | 2015-12-14 | 2018-01-19 | Safran Nacelles | METHOD FOR MANUFACTURING A COMPOSITE SANDWICH PANEL FOR A PROPELLANT AIRCRAFT ASSEMBLY |
US10575991B2 (en) | 2015-12-15 | 2020-03-03 | University Of Massachusetts | Negative pressure wound closure devices and methods |
US11471586B2 (en) | 2015-12-15 | 2022-10-18 | University Of Massachusetts | Negative pressure wound closure devices and methods |
US10814049B2 (en) | 2015-12-15 | 2020-10-27 | University Of Massachusetts | Negative pressure wound closure devices and methods |
WO2017117153A1 (en) * | 2015-12-27 | 2017-07-06 | Massachusetts Institute Of Technology | Design and fabrication of three-dimensional kirigami structures with tunable properties |
US10207471B2 (en) * | 2016-05-04 | 2019-02-19 | General Electric Company | Perforated ceramic matrix composite ply, ceramic matrix composite article, and method for forming ceramic matrix composite article |
US10609968B2 (en) | 2016-08-17 | 2020-04-07 | Nike, Inc. | Garment having selected stretch zones |
EP3506865B1 (en) | 2016-08-30 | 2021-10-06 | Smith & Nephew plc | Systems for applying reduced pressure therapy |
US11096832B2 (en) | 2016-09-27 | 2021-08-24 | Smith & Nephew Plc | Wound closure devices with dissolvable portions |
US11617684B2 (en) | 2016-11-02 | 2023-04-04 | Smith & Nephew, Inc. | Wound closure devices |
AU2018285236B2 (en) | 2017-06-13 | 2024-02-29 | Smith & Nephew Plc | Wound closure device and method of use |
EP3638169A1 (en) | 2017-06-13 | 2020-04-22 | Smith & Nephew PLC | Collapsible structure and method of use |
WO2018231874A1 (en) | 2017-06-14 | 2018-12-20 | Smith & Nephew, Inc. | Control of wound closure and fluid removal management in wound therapy |
JP7419072B2 (en) | 2017-06-14 | 2024-01-22 | スミス アンド ネフュー ピーエルシー | Foldable sheet for wound closure and method of use |
EP3638332A1 (en) | 2017-06-14 | 2020-04-22 | Smith & Nephew, Inc | Fluid removal management and control of wound closure in wound therapy |
WO2018229011A1 (en) | 2017-06-14 | 2018-12-20 | Smith & Nephew Plc | Collapsible structure for wound closure and method of use |
WO2019020544A1 (en) | 2017-07-27 | 2019-01-31 | Smith & Nephew Plc | Customizable wound closure device and method of use |
WO2019030136A1 (en) | 2017-08-07 | 2019-02-14 | Smith & Nephew Plc | Wound closure device with protective layer and method of use |
WO2019042790A1 (en) | 2017-08-29 | 2019-03-07 | Smith & Nephew Plc | Systems and methods for monitoring wound closure |
FR3076242B1 (en) | 2017-12-28 | 2020-01-10 | Safran Ceramics | METHOD FOR MANUFACTURING A PART OF COMPOSITE MATERIAL BY INJECTING POWDER IN A FIBROUS REINFORCEMENT WITH DRAINAGE BY COMPOSITE FILTRATION STRATE |
DE102018200713A1 (en) * | 2018-01-17 | 2019-07-18 | Siemens Aktiengesellschaft | CMC moldings, as well as manufacturing method |
CN108840697B (en) * | 2018-06-29 | 2021-07-13 | 航天材料及工艺研究所 | Carbon/carbon composite material honeycomb and preparation method thereof |
FR3086786B1 (en) | 2018-10-01 | 2020-12-18 | Airbus Operations Sas | PROCESS FOR MANUFACTURING AN ACOUSTIC DE-ICING SKIN FOR AN AIRCRAFT ACOUSTIC PANEL, USING A FIBER SPREADING DEVICE |
US11865956B2 (en) * | 2021-01-28 | 2024-01-09 | Tate Technology, Llc | Energy attenuating seat assembly |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1917456A (en) * | 1929-04-29 | 1933-07-11 | Asphalt Process Corp | Multi-ply fibrous structure |
GB969329A (en) * | 1960-01-12 | 1964-09-09 | Cigarette Components Ltd | Improvements in and relating to the production of filter bodies |
US3321355A (en) * | 1964-04-20 | 1967-05-23 | Hexcel Products Inc | Fabric reinforced plastic product and method of making same |
DE1960141A1 (en) * | 1969-12-01 | 1971-06-03 | Freudenberg Carl Fa | Process for the production of perforated nonwovens |
FR2565262B1 (en) * | 1984-05-29 | 1986-09-26 | Europ Propulsion | METHOD FOR MANUFACTURING A MULTI-DIRECTIONAL FIBROUS TEXTURE AND DEVICE FOR CARRYING OUT THIS METHOD |
DE3729633A1 (en) * | 1987-09-04 | 1989-03-16 | Hoechst Ag | Structural honeycomb with increased compressive strength, process for the production thereof and planiform sandwich mouldings produced therefrom |
JP2567261B2 (en) * | 1987-10-31 | 1996-12-25 | 昭和飛行機工業株式会社 | Manufacturing method of ceramic honeycomb |
GB8808280D0 (en) * | 1988-04-08 | 1988-05-11 | Lk Tool Co Ltd | Machine structure |
US5078818A (en) * | 1990-04-18 | 1992-01-07 | Hexcel Corporation | Method for producing a fiber-reinforced ceramic honeycomb panel |
FR2691923B1 (en) * | 1992-06-04 | 1994-09-09 | Europ Propulsion | Honeycomb structure in thermostructural composite material and its manufacturing process. |
-
1992
- 1992-06-04 FR FR929206790A patent/FR2691923B1/en not_active Expired - Fee Related
-
1993
- 1993-05-25 CA CA002096864A patent/CA2096864C/en not_active Expired - Fee Related
- 1993-05-28 NO NO931973A patent/NO180261C/en not_active IP Right Cessation
- 1993-05-28 US US08/068,738 patent/US5415715A/en not_active Expired - Lifetime
- 1993-06-02 DE DE69317939T patent/DE69317939T2/en not_active Expired - Lifetime
- 1993-06-02 AT AT93401405T patent/ATE165043T1/en not_active IP Right Cessation
- 1993-06-02 ES ES93401405T patent/ES2115737T3/en not_active Expired - Lifetime
- 1993-06-02 EP EP93401405A patent/EP0573353B1/en not_active Expired - Lifetime
- 1993-06-03 RU RU93047416A patent/RU2111122C1/en not_active IP Right Cessation
- 1993-06-04 JP JP13438893A patent/JP3371016B2/en not_active Expired - Fee Related
- 1993-06-17 UA UA93002386A patent/UA26423C2/en unknown
-
1995
- 1995-01-26 US US08/378,624 patent/US5514445A/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
FR2691923B1 (en) | 1994-09-09 |
EP0573353A1 (en) | 1993-12-08 |
US5415715A (en) | 1995-05-16 |
NO931973D0 (en) | 1993-05-28 |
DE69317939T2 (en) | 1998-11-12 |
US5514445A (en) | 1996-05-07 |
NO931973L (en) | 1993-12-06 |
FR2691923A1 (en) | 1993-12-10 |
UA26423C2 (en) | 1999-08-30 |
JP3371016B2 (en) | 2003-01-27 |
ES2115737T3 (en) | 1998-07-01 |
JPH06134319A (en) | 1994-05-17 |
CA2096864A1 (en) | 1993-12-05 |
ATE165043T1 (en) | 1998-05-15 |
RU2111122C1 (en) | 1998-05-20 |
NO180261B (en) | 1996-12-09 |
DE69317939D1 (en) | 1998-05-20 |
NO180261C (en) | 1997-03-19 |
CA2096864C (en) | 1999-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0573353B1 (en) | High temperature composite material having honeycomb structure and process for its preparation | |
EP0611741B1 (en) | Process for the production of a workpiece made of composite material, especially a sandwich panel, from several preforms assembled together | |
EP2067757B1 (en) | Method of manufacturing parts from a composite material with carbon fibre reinforcements | |
CA2820415C (en) | Fibrous structure for a part made of composite material having one or more arch-shaped portions | |
EP1342552B1 (en) | Method for producing a monolithic, thermostructural and double-walled composite body and composite body obtained by this method | |
CA2858790C (en) | Fiber structure intended to reinforce composite material parts and including a portion having a reduced thickness | |
CA2925836C (en) | Fibrous structure with grouping of floats | |
FR2584106A1 (en) | METHOD FOR MANUFACTURING THREE-DIMENSIONAL STRUCTURES BY NEEDLEING PLANE LAYERS OF SUPERIMPOSED FIBROUS MATERIAL AND FIBROUS MATERIAL USED FOR THE IMPLEMENTATION OF THE PROCESS | |
FR2607069A1 (en) | LIGHTWEIGHT PANEL, ESPECIALLY FOR AIRCRAFT, AND METHOD OF MANUFACTURING THE SAME | |
EP2951008A1 (en) | Method for producing a curved honeycomb structure made from composite material | |
FR2647475A1 (en) | METHOD OF MANUFACTURING THREE-DIMENSION FIBROUS MATERIAL STRUCTURE AND HOMOGENEOUS NEEDLEDING | |
FR2633213A1 (en) | Method of producing a fibrous preform for the manufacture of components made of composite material having a complex shape | |
EP0452199B1 (en) | Method of strengthening preforms for the fabrication of heat resistant composite material parts, in particular parts in the shape of sails or panels | |
EP3843965A1 (en) | Method for producing a composite preform for producing a composite panel with double curvature geometry | |
EP2227384B1 (en) | Method for producing a cellular fibrous structure | |
FR2818578A1 (en) | METHOD FOR MANUFACTURING HONEYCOMB STRUCTURES AND TOOLS FOR SUCH MANUFACTURE | |
EP0555134B1 (en) | Process for manufacturing of shaped fibrous structure for fabricating a composite material and products obtained thereby | |
FR2669854A1 (en) | PROCESS FOR THE PREPARATION OF A FIBROUS PREFORM OF EVOLUTIVE THICKNESS FOR MANUFACTURING A PART IN COMPOSITE MATERIAL OF THE CARBON OR CERAMIC MATRIX TYPE. | |
EP0424215A1 (en) | Reinforced material, method for manufacturing and application of this material | |
FR2772748A1 (en) | METHOD FOR MANUFACTURING A SPRING OF THERMOSTRUCTURAL COMPOSITE MATERIAL | |
EP0447317B1 (en) | Method of forming a fold or separation line during the fabrication of a composite material part | |
FR2660673A1 (en) | Process for producing preforms by means of a woven and wound texture for the manufacture of pieces of composite material | |
FR2819804A1 (en) | PROCESS FOR MANUFACTURING A CARBON / CARBON PART | |
FR2655976A1 (en) | Process for the production of a composite structure, strip of staples of composite material enabling the process to be implemented and process for the manufacture of the strip of staples | |
FR3085373A1 (en) | COMPOSITE PART WITH SMOOTH OUTER SIDE AND MANUFACTURING METHOD THEREOF |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE ES GB IT LI NL SE |
|
17P | Request for examination filed |
Effective date: 19940607 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
17Q | First examination report despatched |
Effective date: 19970721 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SOCIETE NATIONALE D'ETUDE ET DE CONSTRUCTION DE MO |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE ES GB IT LI NL SE |
|
REF | Corresponds to: |
Ref document number: 165043 Country of ref document: AT Date of ref document: 19980515 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 69317939 Country of ref document: DE Date of ref document: 19980520 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19980519 |
|
ITF | It: translation for a ep patent filed | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: MICHELI & CIE INGENIEURS-CONSEILS |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2115737 Country of ref document: ES Kind code of ref document: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20030616 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040630 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040630 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20100611 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20100524 Year of fee payment: 18 Ref country code: IT Payment date: 20100531 Year of fee payment: 18 Ref country code: AT Payment date: 20100521 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20100526 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20100525 Year of fee payment: 18 Ref country code: GB Payment date: 20100527 Year of fee payment: 18 Ref country code: DE Payment date: 20100610 Year of fee payment: 18 |
|
BERE | Be: lapsed |
Owner name: SOC. NATIONALE D'ETUDE ET DE CONSTRUCTION DE MOTEU Effective date: 20110630 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V1 Effective date: 20120101 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20110602 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110602 Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110602 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 165043 Country of ref document: AT Kind code of ref document: T Effective date: 20110602 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110630 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 69317939 Country of ref document: DE Effective date: 20120103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110602 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20121116 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110603 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110603 |