EP0570899B1 - Image receptor for thermal transfer ink - Google Patents

Image receptor for thermal transfer ink Download PDF

Info

Publication number
EP0570899B1
EP0570899B1 EP93108052A EP93108052A EP0570899B1 EP 0570899 B1 EP0570899 B1 EP 0570899B1 EP 93108052 A EP93108052 A EP 93108052A EP 93108052 A EP93108052 A EP 93108052A EP 0570899 B1 EP0570899 B1 EP 0570899B1
Authority
EP
European Patent Office
Prior art keywords
image receptor
release material
film
image
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP93108052A
Other languages
German (de)
French (fr)
Other versions
EP0570899A1 (en
Inventor
Hideki c/o Technical Center Suzuki
Yasuo c/o Technical Center Tago
Akio c/o Technical Center Shimomine
Tomoaki c/o Technical Center Yamanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujicopian Co Ltd
Original Assignee
Fuji Kagakushi Kogyo Co Ltd
Fujicopian Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14968748&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0570899(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Fuji Kagakushi Kogyo Co Ltd, Fujicopian Co Ltd filed Critical Fuji Kagakushi Kogyo Co Ltd
Publication of EP0570899A1 publication Critical patent/EP0570899A1/en
Application granted granted Critical
Publication of EP0570899B1 publication Critical patent/EP0570899B1/en
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/40Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used characterised by the base backcoat, intermediate, or covering layers, e.g. for thermal transfer dye-donor or dye-receiver sheets; Heat, radiation filtering or absorbing means or layers; combined with other image registration layers or compositions; Special originals for reproduction by thermography
    • B41M5/42Intermediate, backcoat, or covering layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/50Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
    • B41M5/52Macromolecular coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M2205/00Printing methods or features related to printing methods; Location or type of the layers
    • B41M2205/02Dye diffusion thermal transfer printing (D2T2)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M2205/00Printing methods or features related to printing methods; Location or type of the layers
    • B41M2205/06Printing methods or features related to printing methods; Location or type of the layers relating to melt (thermal) mass transfer

Definitions

  • the present invention relates to an image receptor for thermal transfer ink and, more particularly, to an image receptor for thermal transfer ink which is advantageously used especially with a so-called "tape printer”.
  • the above-noted tape printer is provided with simple word processing function and printing function, and adapted to form printed images while rewinding an image receptor in the form of a tape which is wound into a pancake-like body. A portion of the image receptor in which the printed images are formed is cut off and the cut piece is stuck onto an object. With the tape printer it is possible to form a heading-printed label, name-printed label and the like with ease.
  • a thermal transfer printer is usually employed in a printer part of the tape printer because it can be easily scaled down. Therefore, an ink sheet to be used therein is a thermal transfer ink sheet.
  • an image receptor in the form of tape (hereinafter referred simply to as "image receptor") for use with such a tape printer
  • an image receptor of the type which includes a main body comprising: a foundation film, such as polyester film, provided on one side thereof with an image-receiving layer such as made of a polyester resin which allows a thermal transfer ink to exhibit a good fixing property, and on the other side thereof with a pressure-sensitive adhesive layer; and a release material stacked on the pressure-sensitive adhesive layer.
  • release material in the above conventional image receptor generally used is one of the type wherein a release layer composed of a silicone resin is provided on one side of glassine paper.
  • the image receptor including such a release material of which foundation is of glassine paper suffers a phenomenon such that the release material is partially lifted from the image receptor body.
  • lift the phenomenon is referred to as "lift”. If the image receptor with such a lift is used in the tape printer, there is likely to encounter such inconveniences that the image receptor does not smoothly run and, in an extreme case, the image receptor carrying printed images will not come out of the tape printer. Description is to be made on these phenomena with reference to the drawings.
  • Fig. 1 is an explanatory view for illustrating a lift produced in an image receptor.
  • Numeral 10 denotes an image receptor wherein a release material 12 is partially lifted from an image receptor body 11 and, hence, a lift 13 is produced.
  • the height of the lift 13 (height H from the general surface of the release material, hereinafter the same) reaches 1 to 2 mm.
  • ten or more of such a lift are produced per 1 m along the length of the image receptor in the form of tape.
  • Fig. 2 is an explanatory view for illustrating the travelling state of the image receptor in the tape printer, and wherein numeral 20 denotes a driving roller, and numeral 21 a thermal head.
  • the image receptor 10 and a thermal transfer ink sheet 22, which are each wound into a pancake-like shape, are rewound and fed to between the driving roller 20 and the thermal head 21.
  • the image receptor 10 is separated from the ink sheet 22 and ejected to exterior from a receptor outlet 24 located on a casing 23 of the tape printer.
  • the image receptor 10 is fed by the rotation of the driving roller 20 as shown in Fig. 2 and is, hence, imposed with a substantial pressure thereby. This may cause small lifts to move and to join together, thereby forming a large lift.
  • Such a phenomenon is presumed to be caused because the peel strength of the release material is set to a low level (for example, about 5 g/20 mm) so as to facilitate the peeling of the release material from the image receptor body, and the peel strength thereof decreases further at a low temperature whereby small lifts are moved by the pressure of the driving roller and joined together to form a large lift.
  • an image receptor for a thermal transfer ink comprising a foundation film, an image-receiving layer provided on one side of the foundation film, a pressure-sensitive adhesive layer provided on the other side of the foundation film, and a release material stuck on the surface of the pressure-sensitive adhesive layer, said release material including a paper having a density of 1.0 g/cm 3 or lower as a base member.
  • an image receptor for a thermal transfer ink comprising a foundation film, an image-receiving layer provided on one side of the foundation film, a pressure-sensitive adhesive layer provided on the other side of the foundation film, and a release material stuck on the surface of the pressure-sensitive adhesive layer, said the release material including a polyester film or a polyolefin film as a base member.
  • the release material includes a paper having a density of 1.0 g/cm 3 or lower as a base member.
  • the image receptor of which release material includes the base member composed of a paper of such a low density is essentially free from a lift even if stored under a high-temperature and high-humidity condition. This is conceivably because such a low-density paper is not so densely stuffed with fibers and, hence, absorbs an expansion of itself due to moisture absorption.
  • glassine paper is of a high density as high as 1.1 to 1.2 g/cm 3 and is, hence, presumed to be incapable of absorbing an expansion of itself, which causes a lift of a release material using glassine paper.
  • the release material includes a polyester film or a polyolefin film as a base member and is completely free from a lift.
  • a paper having a density of 1.0 g/cm 3 or lower is used as the base member of the release material. If the density is too low, a satisfactory stiffness cannot be expected, which results in poor operability in exfoliating the release material from the image receptor body. It is, therefore, preferable that the paper has a density of at least 0.7 g/cm 3 . Examples of such a paper include woodfree paper, kraft paper, simili paper, paper for copying, and india paper. Synthetic paper is also utilizable.
  • the base member is preferably 40 to 90 ⁇ m thick. If the thickess of the base member is larger than that range, the winding length becomes undesirably short, whereas if it is smaller than the range, a satisfactory stiffness cannot be expected, degrading the operability for exfoliation.
  • the constitution of the release material except that the paper as specified above is used as the base member thereof.
  • a release material comprising the aforesaid base member of paper, a laminated layer formed on the surface of the base member and composed of at least one resin selected from the group consisting of polyolefin resins, polystyrene resins, polyester resins and polyurethane resins, and a release layer provided on the laminated layer (hereinafter referred to as "first mode").
  • the presence of the laminated layer of resin will suppress an expansion of the base member of paper and, hence, prevent the production of lifts almost completely.
  • polystyrene resins for the laminated layer examples include polyethylene resins, polypropylene resins, ethylene-vinyl acetate copolymers, ethylene-ethyl acrylate copolymers, ethylene-methyl methacrylate copolymers, ethylene-acrylic acid copolymers, and ethylene-vinyl alcohol copolymers.
  • the laminated layer of resin is preferably 5 to 25 ⁇ m thick. With the laminated layer of a thickness smaller than that range, it is difficult to sufficiently suppress an expansion of the base member of paper. With the laminated layer of a thickness larger than the range, on the other hand, the winding length of the image receptor is shortened undesirably.
  • the lamination method any known method can be employed, but usually employed is an extrusion laminating method.
  • the releasing agent for the release layer is not particularly limited. Although there can be used various releasing agents such as silicone resin type, olefin resin type, long-chain-alkyl-containing polymer type and fluorine-containing resin type, usually silicone resin type releasing agents are preferably used.
  • the release layer is usually about 0.1 to 2 ⁇ m thick.
  • an alternative release material comprising the aforesaid base member of paper, a resin coat layer formed on the surface of the base member, and a release layer provided on the resin coat layer (hereinafter referred to as "second mode").
  • the presence of the resin coat layer can suppress an expansion of the base member of paper.
  • the resin for use in the resin coat layer there can be used, without particular limitations, nonhygroscopic resins or resins which will not expand even when they absorb moisture.
  • resins include polyacrylic alkyl esters, polymethacrylic alkyl esters, polyacrylamide, polystyrene, polyvinyl butyral, polyvinyl acetate, polyvinyl chloride, polyvinylidene chloride, polyurethanes, polyesters, carboxymethyl cellulose, urea resins, and melamine resins. These resins may be used either alone or as a mixture.
  • the resin coat layer is suitably 0.5 to 25 ⁇ m thick. If the thickness of the resin coat layer is smaller than that range, an expansion of the base member of paper cannot be suppressed sufficiently, while if it exceeds the range, the winding length of the image receptor becomes undesirably short.
  • the release material for use in the second aspect of the present invention is that which includes a polyester film or a polyolefin film as a base member.
  • the polyester film is of polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate or the like.
  • the polyolefin film is of polyethylene, polypropylene or the like. These films may be unstretched or uni- or biaxially stretched.
  • the film base member is suitably about 15 to about 100 ⁇ m thick. If the thickness of the film base member is smaller than that range, the operability for exfoliation is degraded, while on the other hand if it exceeds the range, the winding length becomes undesirably short.
  • the release layer is directly formed on one side of the film base member.
  • the release layer for use in the second aspect there can be used a release layer of the same type as that in the first aspect.
  • the release material is preferably 50 to 100 ⁇ m thick so as to assure a desired winding length and a high operability for exfoliation.
  • the release material in the second aspect is more preferably 15 to 100 ⁇ m thick.
  • the peel strength of the release material from the image receptor body is preferably about 2 to about 10 g/20 mm (at a peeling rate of 0.15 m/min) so as to assure a good operability for exfoliation.
  • the image receptor body may be of any constitution, provided that it comprises a foundation film, an image-receiving layer composed of a resin of a good fixing property for a thermal transfer ink and formed on one side of the foundation film, and a pressure-sensitive adhesive layer formed on the other side of the foundation film.
  • the foundation film of the image receptor body is, for example, a polyester film such as a polyethylene terephthalate film, in view of its strength and and good adhesiveness with the image-receiving layer.
  • a polyester film such as a polyethylene terephthalate film
  • usable therefor are a polyvinyl chloride film, polycarbonate film, triacetyl cellulose film, polyamide film, polyimide film, aramid film, or a like film.
  • the foundation film is preferably about 20 to about 60 ⁇ m thick, in view of the handling property in sticking to an object or in a like operation.
  • the resin for the image-receiving layer a polyester resin is advantageously used, but another resin is usable if it has a good affinity with the vehicle of the thermal transfer ink.
  • the image-receiving layer may be incorporated with a small amount of an extender such as silica or titanium oxide.
  • the amount of the image-receiving layer to be applied is usually about 0.08 to about 2 g/m 2 . The amount thereof in excess of that range will degrade the anti-blocking property, whereas the amount thereof smaller than the range results in a printed image with poor fixing property.
  • a color coat layer may be provided as required. Otherwise, the foundation may be colored instead of the provision of such a color coat layer.
  • the pressure-sensitive adhesive layer is formed on the foundation at the side free of the image-receiving layer.
  • the pressure-sensitive adhesive layer can be formed of any conventional pressure-sensitive adhesive such as an acrylic resin-type pressure-sensitive adhesive without particular limitations.
  • the aforesaid release material is stacked on the surface of the pressure-sensitive adhesive layer. Note that it is preferable to select the pressure-sensitive adhesive layer of the image receptor body and the release layer of the release material so that the peel strength therebetween would be within the aforesaid range.
  • any conventional thermal transfer ink sheet can be used to form a printed image on the image receptor without particular limitations.
  • a 38 ⁇ m-thick polyethylene terephthalate film was applied a 5% (by weight) solution of a polyester resin (UE-3210, a product of UNITIKA Ltd., glass transition point: 45°C, molecular weight: 20,000) in a toluene-methyl ethyl ketone mixed solvent (2 : 3 in weight ratio), followed by drying to form an image-receiving layer.
  • the coating amount of the receiving layer when dried was 0.2 g/m 2 .
  • On the other side of the film was formed a 15 ⁇ m-thick pressure-sensitive adhesive layer of an acrylic resin type. Thus, an image receptor body was given.
  • a 70 ⁇ m-thick kraft paper (density: 0.8 g/cm 3 ) was used instead of the above woodfree paper.
  • Each of the image receptors thus fabricated was wound around a core while being slitted to have a width of 18 mm, to form a pancake-like image receptor sample (winding length: 8m).
  • each sample was allowed to stand at 25°C, 50%RH for 24 hrs. (at that time no lift was observed with naked eye in any of the samples), then set in a commercially-available tape printer, and subjected to a printing test in an atmosphere at -5°C so as to examine the running state of the image receptor.
  • Table 1 Lift Printing test at -5°C Height H* Number Ex.1 A 0 No running and printing abnormalities B 0 C 0 Ex.2 A 0 ditto B 0 C 0 Ex.3 A 0 ditto B 0 C 0 Ex.4 A 0 ditto B 0 C 0 Comp. Ex. A 7 Jammed at the outlet, ran obliquely, impossibility of continuous printing B 21 C 12 (* Note) A: H ⁇ 0.5 mm B: 0.5 mm ⁇ H ⁇ 1.0mm C: 1.0 mm ⁇ H ⁇ 1.5mm
  • the image receptor of the present invention is free from lifts and hence, runs smoothly even if stored under a high-temperature and high-humidity condition or subjected to printing in a low-temperature environment.

Description

  • The present invention relates to an image receptor for thermal transfer ink and, more particularly, to an image receptor for thermal transfer ink which is advantageously used especially with a so-called "tape printer".
  • The above-noted tape printer is provided with simple word processing function and printing function, and adapted to form printed images while rewinding an image receptor in the form of a tape which is wound into a pancake-like body. A portion of the image receptor in which the printed images are formed is cut off and the cut piece is stuck onto an object. With the tape printer it is possible to form a heading-printed label, name-printed label and the like with ease.
  • A thermal transfer printer is usually employed in a printer part of the tape printer because it can be easily scaled down. Therefore, an ink sheet to be used therein is a thermal transfer ink sheet.
  • As the image receptor in the form of tape (hereinafter referred simply to as "image receptor") for use with such a tape printer, there is known an image receptor of the type which includes a main body comprising: a foundation film, such as polyester film, provided on one side thereof with an image-receiving layer such as made of a polyester resin which allows a thermal transfer ink to exhibit a good fixing property, and on the other side thereof with a pressure-sensitive adhesive layer; and a release material stacked on the pressure-sensitive adhesive layer. With this image receptor, an image is formed on the image-receiving layer, the release material is then exfoliated from the image receptor body, and that portion of the image receptor body in which the image is formed is stuck at its pressure-sensitive layer side on an object.
  • As the release material in the above conventional image receptor, generally used is one of the type wherein a release layer composed of a silicone resin is provided on one side of glassine paper.
  • However, when stored under a high-temperature and high-humidity condition, the image receptor including such a release material of which foundation is of glassine paper suffers a phenomenon such that the release material is partially lifted from the image receptor body. Hereinafter the phenomenon is referred to as "lift". If the image receptor with such a lift is used in the tape printer, there is likely to encounter such inconveniences that the image receptor does not smoothly run and, in an extreme case, the image receptor carrying printed images will not come out of the tape printer. Description is to be made on these phenomena with reference to the drawings.
  • Fig. 1 is an explanatory view for illustrating a lift produced in an image receptor. Numeral 10 denotes an image receptor wherein a release material 12 is partially lifted from an image receptor body 11 and, hence, a lift 13 is produced. In the event, the height of the lift 13 (height H from the general surface of the release material, hereinafter the same) reaches 1 to 2 mm. There may be a case where ten or more of such a lift are produced per 1 m along the length of the image receptor in the form of tape.
  • Fig. 2 is an explanatory view for illustrating the travelling state of the image receptor in the tape printer, and wherein numeral 20 denotes a driving roller, and numeral 21 a thermal head. The image receptor 10 and a thermal transfer ink sheet 22, which are each wound into a pancake-like shape, are rewound and fed to between the driving roller 20 and the thermal head 21. After printing, the image receptor 10 is separated from the ink sheet 22 and ejected to exterior from a receptor outlet 24 located on a casing 23 of the tape printer.
  • However, there is likely to occur such an inconvenience that the lift 13 is lodged by the outlet 24 if the lift 13 is too large and the image receptor cannot come out of the tape printer.
  • Even if the lift 13 produced during storage is not so large, the following problem will result when printing is carried out in a low-temperature environment. The image receptor 10 is fed by the rotation of the driving roller 20 as shown in Fig. 2 and is, hence, imposed with a substantial pressure thereby. This may cause small lifts to move and to join together, thereby forming a large lift. Such a phenomenon is presumed to be caused because the peel strength of the release material is set to a low level (for example, about 5 g/20 mm) so as to facilitate the peeling of the release material from the image receptor body, and the peel strength thereof decreases further at a low temperature whereby small lifts are moved by the pressure of the driving roller and joined together to form a large lift.
  • Although it is possible to avoid such a phenomenon by increasing the peel strength of the release material or enhancing the stiffness thereof so as to prevent lifts from moving, it is not preferable to increase the peel strength because the operation of exfoliating the release material is rendered difficult. It is not preferable that glassine paper of an increased thickness is used to enhance the stiffness of the release material, because the total length of the image receptor accommodatable in the tape printer (hereinafter referred to as "winding length") is reduced.
  • In view of the foregoing, it is an object of the present invention to provide an image receptor in which a lift of the release material will not be produced even if stored in a high-temperature and high-humidity environment or subjected to printing in a low-temperature environment.
  • This and other objects of the invention will become apparent from the description hereinafter.
  • According to a first aspect of the present invention, there is provided an image receptor for a thermal transfer ink, comprising a foundation film, an image-receiving layer provided on one side of the foundation film, a pressure-sensitive adhesive layer provided on the other side of the foundation film, and a release material stuck on the surface of the pressure-sensitive adhesive layer, said release material including a paper having a density of 1.0 g/cm3 or lower as a base member.
  • Further, according to a second aspect of the present invention, there is provided an image receptor for a thermal transfer ink, comprising a foundation film, an image-receiving layer provided on one side of the foundation film, a pressure-sensitive adhesive layer provided on the other side of the foundation film, and a release material stuck on the surface of the pressure-sensitive adhesive layer, said the release material including a polyester film or a polyolefin film as a base member.
    • Fig. 1 is an explanatory view for illustrating a lift of a release material in an image receptor; and
    • Fig. 2 is an explanatory view for illustrating the traveling state of an image receptor in a tape printer.
  • In the first aspect of the present invention, the release material includes a paper having a density of 1.0 g/cm3 or lower as a base member. The image receptor of which release material includes the base member composed of a paper of such a low density is essentially free from a lift even if stored under a high-temperature and high-humidity condition. This is conceivably because such a low-density paper is not so densely stuffed with fibers and, hence, absorbs an expansion of itself due to moisture absorption. Note that glassine paper is of a high density as high as 1.1 to 1.2 g/cm3 and is, hence, presumed to be incapable of absorbing an expansion of itself, which causes a lift of a release material using glassine paper.
  • Further, since even a small lift is unlikely to be produced in the image receptor, in the case of printing even in a low-temperature environment the image receptor will not suffer from the inconvenience involved in the prior art such that small lifts are moved and joined together to form a large lift.
  • In the second aspect of the present invention, the release material includes a polyester film or a polyolefin film as a base member and is completely free from a lift.
  • Description is to be made first on the release material as used in the first aspect of the present invention.
  • In the first aspect of the present invention, a paper having a density of 1.0 g/cm3 or lower is used as the base member of the release material. If the density is too low, a satisfactory stiffness cannot be expected, which results in poor operability in exfoliating the release material from the image receptor body. It is, therefore, preferable that the paper has a density of at least 0.7 g/cm3. Examples of such a paper include woodfree paper, kraft paper, simili paper, paper for copying, and india paper. Synthetic paper is also utilizable. The base member is preferably 40 to 90 µm thick. If the thickess of the base member is larger than that range, the winding length becomes undesirably short, whereas if it is smaller than the range, a satisfactory stiffness cannot be expected, degrading the operability for exfoliation.
  • In the first aspect of the present invention, there is no particular limitation to the constitution of the release material except that the paper as specified above is used as the base member thereof. However, particularly preferable is a release material comprising the aforesaid base member of paper, a laminated layer formed on the surface of the base member and composed of at least one resin selected from the group consisting of polyolefin resins, polystyrene resins, polyester resins and polyurethane resins, and a release layer provided on the laminated layer (hereinafter referred to as "first mode").
  • With the first mode of the release material, the presence of the laminated layer of resin will suppress an expansion of the base member of paper and, hence, prevent the production of lifts almost completely.
  • Examples of the polyolefin resins for the laminated layer include polyethylene resins, polypropylene resins, ethylene-vinyl acetate copolymers, ethylene-ethyl acrylate copolymers, ethylene-methyl methacrylate copolymers, ethylene-acrylic acid copolymers, and ethylene-vinyl alcohol copolymers. The laminated layer of resin is preferably 5 to 25 µm thick. With the laminated layer of a thickness smaller than that range, it is difficult to sufficiently suppress an expansion of the base member of paper. With the laminated layer of a thickness larger than the range, on the other hand, the winding length of the image receptor is shortened undesirably. As the lamination method, any known method can be employed, but usually employed is an extrusion laminating method.
  • The releasing agent for the release layer is not particularly limited. Although there can be used various releasing agents such as silicone resin type, olefin resin type, long-chain-alkyl-containing polymer type and fluorine-containing resin type, usually silicone resin type releasing agents are preferably used. The release layer is usually about 0.1 to 2 µm thick.
  • In the first aspect, there can be advantageously used an alternative release material comprising the aforesaid base member of paper, a resin coat layer formed on the surface of the base member, and a release layer provided on the resin coat layer (hereinafter referred to as "second mode").
  • In the second mode too, the presence of the resin coat layer can suppress an expansion of the base member of paper.
  • As the resin for use in the resin coat layer, there can be used, without particular limitations, nonhygroscopic resins or resins which will not expand even when they absorb moisture. Examples of such resins include polyacrylic alkyl esters, polymethacrylic alkyl esters, polyacrylamide, polystyrene, polyvinyl butyral, polyvinyl acetate, polyvinyl chloride, polyvinylidene chloride, polyurethanes, polyesters, carboxymethyl cellulose, urea resins, and melamine resins. These resins may be used either alone or as a mixture. The resin coat layer is suitably 0.5 to 25 µm thick. If the thickness of the resin coat layer is smaller than that range, an expansion of the base member of paper cannot be suppressed sufficiently, while if it exceeds the range, the winding length of the image receptor becomes undesirably short.
  • In the second mode of the first aspect, there can be used a release layer of the same type as that in the first mode.
  • The release material for use in the second aspect of the present invention is that which includes a polyester film or a polyolefin film as a base member.
  • Specifically the polyester film is of polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate or the like. The polyolefin film is of polyethylene, polypropylene or the like. These films may be unstretched or uni- or biaxially stretched. The film base member is suitably about 15 to about 100 µm thick. If the thickness of the film base member is smaller than that range, the operability for exfoliation is degraded, while on the other hand if it exceeds the range, the winding length becomes undesirably short.
  • In the second aspect, the release layer is directly formed on one side of the film base member. As the release layer for use in the second aspect, there can be used a release layer of the same type as that in the first aspect.
  • In either the first or second aspect of the present invention, the release material is preferably 50 to 100 µm thick so as to assure a desired winding length and a high operability for exfoliation. The release material in the second aspect is more preferably 15 to 100 µm thick. The peel strength of the release material from the image receptor body is preferably about 2 to about 10 g/20 mm (at a peeling rate of 0.15 m/min) so as to assure a good operability for exfoliation.
  • In either aspect the image receptor body may be of any constitution, provided that it comprises a foundation film, an image-receiving layer composed of a resin of a good fixing property for a thermal transfer ink and formed on one side of the foundation film, and a pressure-sensitive adhesive layer formed on the other side of the foundation film.
  • Preferably, the foundation film of the image receptor body is, for example, a polyester film such as a polyethylene terephthalate film, in view of its strength and and good adhesiveness with the image-receiving layer. Besides, usable therefor are a polyvinyl chloride film, polycarbonate film, triacetyl cellulose film, polyamide film, polyimide film, aramid film, or a like film. The foundation film is preferably about 20 to about 60 µm thick, in view of the handling property in sticking to an object or in a like operation.
  • As the resin for the image-receiving layer, a polyester resin is advantageously used, but another resin is usable if it has a good affinity with the vehicle of the thermal transfer ink. The image-receiving layer may be incorporated with a small amount of an extender such as silica or titanium oxide. The amount of the image-receiving layer to be applied is usually about 0.08 to about 2 g/m2. The amount thereof in excess of that range will degrade the anti-blocking property, whereas the amount thereof smaller than the range results in a printed image with poor fixing property.
  • On the foundation at the side opposite to the side formed with the image-receiving layer, a color coat layer may be provided as required. Otherwise, the foundation may be colored instead of the provision of such a color coat layer.
  • The pressure-sensitive adhesive layer is formed on the foundation at the side free of the image-receiving layer. The pressure-sensitive adhesive layer can be formed of any conventional pressure-sensitive adhesive such as an acrylic resin-type pressure-sensitive adhesive without particular limitations. The aforesaid release material is stacked on the surface of the pressure-sensitive adhesive layer. Note that it is preferable to select the pressure-sensitive adhesive layer of the image receptor body and the release layer of the release material so that the peel strength therebetween would be within the aforesaid range.
  • In the present invention any conventional thermal transfer ink sheet can be used to form a printed image on the image receptor without particular limitations.
  • The present invention will be described in more detail by means of the following Examples and Comparative Example. It is to be understood that the present invention is not limited to the Examples.
  • Examples 1 to 4 and Comparative Example
  • On one side of a 38 µm-thick polyethylene terephthalate film was applied a 5% (by weight) solution of a polyester resin (UE-3210, a product of UNITIKA Ltd., glass transition point: 45°C, molecular weight: 20,000) in a toluene-methyl ethyl ketone mixed solvent (2 : 3 in weight ratio), followed by drying to form an image-receiving layer. The coating amount of the receiving layer when dried was 0.2 g/m2. On the other side of the film was formed a 15 µm-thick pressure-sensitive adhesive layer of an acrylic resin type. Thus, an image receptor body was given.
  • Onto the pressure-sensitive adhesive layer of the image receptor body was stuck each of the following release materials so that the release layer of the release material would be brought into contact with the adhesive layer, thus completing an image receptor.
  • Release material in Example 1
  • On one side of a 60 µm-thick woodfree paper (density: 0.85 g/cm3) was extrusion-laminated a 15 µm-thick polyethylene film, on which a 0.5 µm-thick release layer of silicone resin was then formed.
  • Release material in Example 2
  • A 70 µm-thick kraft paper (density: 0.8 g/cm3) was used instead of the above woodfree paper.
  • Release material in Example 3
  • On one side of a 60 µm-thick woodfree paper (density: 0.85 g/cm3) was formed a 8 µm-thick coat layer of methyl acrylate resin, on which a 0.5 µm-thick release layer of silicone resin was then formed.
  • Release material in Example 4
  • On one side of a 50 µm-thick, biaxial-stretched polypropylene film was formed a 0.7 µm-thick release layer of silicone resin.
  • Release material in Comparative Example
  • On one side of a 65 µm-thick glassine paper (density: 1.15 g/cm3) was formed a 0.5 µm-thick release layer of silicone resin.
  • Each of the image receptors thus fabricated was wound around a core while being slitted to have a width of 18 mm, to form a pancake-like image receptor sample (winding length: 8m).
  • Each sample was allowed to stand at 60°C, 90%RH for 96 hrs., then rewound, and examined for production of lifts.
  • Separately, each sample was allowed to stand at 25°C, 50%RH for 24 hrs. (at that time no lift was observed with naked eye in any of the samples), then set in a commercially-available tape printer, and subjected to a printing test in an atmosphere at -5°C so as to examine the running state of the image receptor.
  • The results of the above tests are shown in Table 1. Table 1
    Lift Printing test at -5°C
    Height H* Number
    Ex.1 A 0 No running and printing abnormalities
    B 0
    C 0
    Ex.2 A 0 ditto
    B 0
    C 0
    Ex.3 A 0 ditto
    B 0
    C 0
    Ex.4 A 0 ditto
    B 0
    C 0
    Comp. Ex. A 7 Jammed at the outlet, ran obliquely, impossibility of continuous printing
    B 21
    C 12
    (* Note)
    A: H<0.5 mm
    B: 0.5 mm≦H<1.0mm
    C: 1.0 mm≦H<1.5mm
  • As can be undestood from the results, the image receptor of the present invention is free from lifts and hence, runs smoothly even if stored under a high-temperature and high-humidity condition or subjected to printing in a low-temperature environment.
  • In addition to the materials and ingredients used in the Examples, other materials and ingredients can be used in the Examples as set forth in the specification to obtain substantially the same results.

Claims (8)

  1. An image receptor for a thermal transfer ink, comprising a foundation film, an image-receiving layer provided on one side of the foundation film, a pressure-sensitive adhesive layer provided on the other side of the foundation film, and a release material stuck on the surface of the pressure-sensitive adhesive layer, said release material including a paper having a density of 1.0 g/cm3 or lower as a base member.
  2. The image receptor of Claim 1, wherein said release material comprises on said base member a laminated layer comprising at least one resin selected from the group consisting of polyolefin resins, polystyrene resins, polyester resins and polyurethane resins, and a release layer provided on the laminated layer.
  3. The image receptor of Claim 1, wherein said release material comprises a resin coat layer on said base member, and a release layer provided on the resin coat layer.
  4. The image receptor of Claim 1, wherein said release material is 50 to 100 µm thick.
  5. The image receptor of Claim 2, wherein said release material is 50 to 100 µm thick.
  6. The image receptor of Claim 3, wherein said release material is 50 to 100 µm thick.
  7. An image receptor for a thermal transfer ink, comprising a foundation film, an image-receiving layer provided on one side of the foundation film, a pressure-sensitive adhesive layer provided on the other side of the foundation film, and a release material stuck on the surface of the pressure-sensitive adhesive layer, said release material including a polyester film or a polyolefin film as a base member.
  8. The image receptor of Claim 7, wherein said release material is 15 to 100 µm thick.
EP93108052A 1992-05-20 1993-05-18 Image receptor for thermal transfer ink Revoked EP0570899B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP4127790A JPH05318948A (en) 1992-05-20 1992-05-20 Image receiving material for thermal transfer ink
JP127790/92 1992-05-20

Publications (2)

Publication Number Publication Date
EP0570899A1 EP0570899A1 (en) 1993-11-24
EP0570899B1 true EP0570899B1 (en) 1996-10-16

Family

ID=14968748

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93108052A Revoked EP0570899B1 (en) 1992-05-20 1993-05-18 Image receptor for thermal transfer ink

Country Status (3)

Country Link
EP (1) EP0570899B1 (en)
JP (1) JPH05318948A (en)
DE (1) DE69305416T2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07108774A (en) * 1993-10-12 1995-04-25 Fujicopian Co Ltd Image-receiving body for tape printer
DE69700349T2 (en) * 1996-03-15 1999-11-18 Seiko Epson Corp Recording material with adhesive layer
EP0826509A3 (en) * 1996-08-29 1998-08-19 Victor Company Of Japan, Limited Porous ink acceptor sheet for thermal dye transfer printing
US5756188A (en) * 1996-09-26 1998-05-26 Eastman Kodak Company Image-receiving laminate for ID card stock
GB9717829D0 (en) * 1997-08-22 1997-10-29 Ici Plc Label sheets for thermal transfer imaging
US6605337B1 (en) 1999-04-28 2003-08-12 Toyo Boseki Kabushiki Kaisha Recording material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0428336A2 (en) * 1989-11-16 1991-05-22 Sony Corporation Paper roll for a thermal printer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0428336A2 (en) * 1989-11-16 1991-05-22 Sony Corporation Paper roll for a thermal printer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
EP0 428 336 (SONY) * *

Also Published As

Publication number Publication date
DE69305416T2 (en) 1997-02-13
EP0570899A1 (en) 1993-11-24
DE69305416D1 (en) 1996-11-21
JPH05318948A (en) 1993-12-03

Similar Documents

Publication Publication Date Title
CA1268332A (en) Heat transferable sheet for preparation of a transparency
US5804302A (en) Web take-up roll
EP0637603B1 (en) Polymeric film
EP0570899B1 (en) Image receptor for thermal transfer ink
JP3707858B2 (en) Pressure sensitive adhesive label
JP2004025500A (en) Thermal transfer image receiving sheet roll
US5683954A (en) Image receptor for tape printer
US5434598A (en) Method of using image receptor and thermal transfer sheet
WO1990010544A1 (en) Thermal transfer sheet
JP3109411B2 (en) Cavity-containing polyester film for thermal recording material and thermal recording material
EP1293456B1 (en) Recording paper roll
JP3707885B2 (en) Pressure sensitive adhesive label
JP2007125778A (en) Thermal transfer receiving sheet and its manufacturing method
JP4117935B2 (en) Release liner and double-sided adhesive tape having the same
JP2008087421A (en) Laminated film and inkjet recording material
JP2000273403A (en) Thermosensitively color-developing tape
JP3357960B2 (en) Thermal transfer image receiving sheet
JP2000185476A (en) Dye thermal transfer image receiving sheet and image forming method
JP3810136B2 (en) Thermal transfer image receiving sheet
JP2002347354A (en) Sublimation transfer thermal transfer image receiving sheet and method for printing using the same
JP5712647B2 (en) Thermal transfer image receiving sheet
JP2002356050A (en) Ink jet media
JPH06286310A (en) Thermal recording material for tape printer
JP2005169731A (en) Rolled thermal transfer accepting sheet
JPH02198894A (en) Thermal transfer image receiving material

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19940514

17Q First examination report despatched

Effective date: 19950821

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 69305416

Country of ref document: DE

Date of ref document: 19961121

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970512

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970520

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970703

Year of fee payment: 5

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: MINNESOTA MINING AND MANUFACTURING COMPANY OFFICE

Effective date: 19970716

26 Opposition filed

Opponent name: IMATION CORP

Effective date: 19970716

Opponent name: MINNESOTA MINING AND MANUFACTURING COMPANY OFFICE

Effective date: 19970716

RDAH Patent revoked

Free format text: ORIGINAL CODE: EPIDOS REVO

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 19980320

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Free format text: 980320

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO