EP0570863B1 - Surveillance radar antenna in flat configuration - Google Patents

Surveillance radar antenna in flat configuration Download PDF

Info

Publication number
EP0570863B1
EP0570863B1 EP93107897A EP93107897A EP0570863B1 EP 0570863 B1 EP0570863 B1 EP 0570863B1 EP 93107897 A EP93107897 A EP 93107897A EP 93107897 A EP93107897 A EP 93107897A EP 0570863 B1 EP0570863 B1 EP 0570863B1
Authority
EP
European Patent Office
Prior art keywords
radar antenna
transmitters
omnidirectional radar
polarisation
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93107897A
Other languages
German (de)
French (fr)
Other versions
EP0570863A3 (en
EP0570863A2 (en
Inventor
Anton Dipl.-Ing. Brunner
Erwin Dipl.-Ing. Kress
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daimler Benz AG
Original Assignee
DaimlerChrysler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DaimlerChrysler AG filed Critical DaimlerChrysler AG
Publication of EP0570863A2 publication Critical patent/EP0570863A2/en
Publication of EP0570863A3 publication Critical patent/EP0570863A3/xx
Application granted granted Critical
Publication of EP0570863B1 publication Critical patent/EP0570863B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/064Two dimensional planar arrays using horn or slot aerials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/02Waveguide horns
    • H01Q13/025Multimode horn antennas; Horns using higher mode of propagation
    • H01Q13/0258Orthomode horns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • H01Q21/245Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction provided with means for varying the polarisation 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems

Definitions

  • the invention relates to a search radar antenna according to the preamble of claim 1.
  • Radar antennas with a variety of in rows and columns arranged single spotlights, which are open to the front Waveguide radiators are also formed known with electronically phase controlled antennas (M. I. Skolnik: “Introduction to Radar Systems", Second Edition, MacGraw Hill, 1980, pages 305 and 306).
  • phase-controlled antennas Although can be trained relatively flat, but is not All-round search possible. There are several such antennas required.
  • the object of the invention is to provide a highly mobile, circular search antenna in flat design rotating about a vertical axis, which can be switched between exact linear and circular polarization operation and has very low secondary peaks in the azimuth diagram.
  • Linear polarization is switched on when the 0 ° / 90 ° phase shifter is switched to 0 °, so that at the not only two coupling devices of each radiator matching amplitude, but also phase relationships consist.
  • Circular polarization exists if the 0 ° / 90 ° phase shifter is set to 90 ° so that on the two coupling devices have the same amplitude, but there are different phase relationships by 90 °. Is a switchable in each of the two feed routes 0 ° / 90 ° phase shifter inserted, so you can between select left or right circular polarization, each after which phase shifter is set to 90 °.
  • the search radar antenna can an IFF antenna (Identification-Friend-Foe; Friend-foe identifier).
  • IFF antenna Identity-Friend-Foe; Friend-foe identifier.
  • the carrier plate advantageously one or more Rows of forward-facing dipole radiators or one grid-like emitter structure on a dielectric Plate arranged, the leads to the dipole radiators or to the lattice-like radiator structure the carrier plate and between the distributors or in part through this to an IFF distributor located behind it be carried out with sum-difference hybrid.
  • An SLS radiator can still be found on the top of the antenna for the purpose of suppression of the sidelobes attach.
  • FIG. 1 is a perspective view in FIG with a vertical axis rotating search radar antenna Integrated IFF antenna shown in flat design.
  • the Radar antenna itself consists of a variety of horizontal ones Rows and vertical columns arranged Single radiators through waveguide radiators open to the front 1 are formed, each in front Funnel attachment 12, e.g. have a diagonal funnel.
  • a support plate is used to hold the waveguide radiator 1 2 provided for the inclusion or formation of Waveguide radiators 1 has openings 3.
  • Behind the Carrier plate 2 are one column for the radiators to supply these spotlights with a provided
  • the amplitude and phase are each perpendicular Waveguide trained vertical distributor 10 arranged.
  • a vertical distributor 10 is thus provided for each column.
  • the inputs of all vertical distributors 10 are of correspondingly arranged exits one behind horizontally extending horizontal distributor 11 fed.
  • the horizontal distributor 11 is over with its input a feed line with the actual radar device connected.
  • the carrier plate 2 can for example be made of Metal, especially aluminum, or metallized Plastic.
  • the waveguide radiators 1 also be metallized with their funnel extensions 12.
  • Fig. 2 is a perspective view another embodiment of a vertical Axis rotating search radar antenna according to the invention shown.
  • This antenna is what the primary radar is relates, constructed in exactly the same way as the antenna according to FIG. 1.
  • IFF dipoles are, however, in the exemplary embodiment according to FIG. 2 not available, so that a radome 19 as a flat plate applied directly to the carrier plate 2 at the front can become and thereby a much flatter Design results.
  • FIGs 3, 4 and 5 are views of a similar one Embodiment of a search radar antenna according to the Invention from the front, from the side or from above shown.
  • the front with a funnel approach e.g. a pyramid funnel 12 or Diagonal funnels 13 are provided, are two by 90 ° offset coupling devices 4, 5 for double feeding provided coaxially from the back of the lamp he follows.
  • a polarization switching device 6 provided, by means of which by pressing a are also located on the back of the heater 0 ° / 90 ° phase shifter 7 a switch between one can make linear and circular polarization.
  • Switchable Phase shifters 7 are in the two feed paths 8, 9 to the coupling devices spatially offset by 90 ° 4, 5 inserted. Are the two phase shifters 7 each switch 6 is set to 0 °, so lies linear polarization. When switching on the 90 ° phase shift arises in one of the two phase shifters 7 left circular and when switching on the 90 ° phase shift in the other phase shifter 7 right circular Polarization, with 0 ° in the other phase shifter is set.
  • the use of a double 0 ° / ⁇ 90 ° phase shifter combination allows one more Polarization switch: horizontal-vertical.
  • radiators 1 each have a column to supply them Radiator 1 with an intended amplitude and phase one of the vertical vertical distributors 10 arranged.
  • the inputs of all vertical distributors 10 are of appropriately arranged outputs of the behind it horizontal horizontal distributor 11 fed.
  • the amplitude distribution along the horizontal distributor 11 is set so that a very high radian antenna sub-zip attenuation results.
  • one of the waveguide radiators 1 has one Funnel approach, which is designed as a diagonal funnel 13 is.
  • the two coupling devices offset by 90 ° 14, 15 for double feed are here ⁇ 45 ° spatially offset from the horizontal plane.
  • the two coupling devices 14, 15 with the same Phase and amplitude excited is a funnel approach 12 provided in the form of a pyramid funnel.
  • a linear polarization occurs below 45 ° to the horizontal plane.
  • the Switching between horizontal and circular polarization is done in all cases by switching on a 0 ° / 90 ° phase shifter 7 in one of the two feed paths 8, 9 of each polarization switching device 6.
  • the vertical distributors 10 can be serial, parallel, in phase (equiphase) or operated in different phases.
  • the vertical distributor 10 the waveguide radiator 1 with that for a cosecans-shaped vertical diagram supply the necessary phase.
  • Special phase shifters can also be provided in the polarization switching devices for setting a special radiation diagram, for example a cosec 2 characteristic.
  • the polarization switching devices 6 can also additionally contain switchable phase shifters which allow the switching on of another beam shape, for example a pencil or fan beam instead of a cosec 2 characteristic.
  • the multiple version of the 0 ° / 90 ° phase shifter 7 for polarization switching in the polarization switching devices 6 can also be a double version all distributors 10, 11, i.e. two vertical distributors per spotlight column and one horizontal distributor for one of the two vertical distributors of all Radiator columns, and a one-time 0 ° / 90 ° or 0 ° / ⁇ 90 ° phase switch be applied.
  • All vertical distributors 10 can also be in one Work in the common plate.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Description

Die Erfindung bezieht sich auf eine Rundsuchradarantenne gemäß dem Oberbegriff des Patentanspruchs 1.The invention relates to a search radar antenna according to the preamble of claim 1.

Gewöhnliche Rundsuchradarantennen sind als Reflektorantennen aufgebaut und weisen eine verhältnismäßig große Bautiefe auf, was den Anforderungen an hohe Mobilität oft entgegensteht. Außerdem genügen Reflektorantennen oft nicht den Ansprüchen an niedrige Nebenzipfel und eine umschaltbare Polarisation:linear-zirkular.Ordinary circular search radar antennas are used as reflector antennas built and have a relatively large Depth, which often meets the requirements for high mobility opposes. In addition, reflector antennas are often sufficient not the demands of low side lobes and one switchable polarization: linear-circular.

Es bestehen deswegen bereits Bemühungen, Rundsuchradarantennen in Flachbauweise zu realisieren. Diese Bemühungen münden jedoch bislang in verhältnismäßig aufwendigen oder wenig gut aufeinander abgestimmten Kombinationen von Strahlern (z.B. Patch-Strahler, offene Hohlleiter), Polarisationsumschaltungen (Septum) und Verteilern (Streifenleitungen, Koaxalleitungen, Hohlleiter).Efforts have therefore already been made to search radar antennas to be realized in flat construction. This effort so far, however, have resulted in relatively complex or little well coordinated combinations of Radiators (e.g. patch radiators, open waveguides), polarization switches (Septum) and distributors (strip lines, Coaxial cables, waveguides).

Radarantennen mit einer Vielzahl von in Reihen und Spalten angeordneten Einzelstrahlern, die durch nach vorne offene Hohlleiterstrahler gebildet werden, sind auch im Zusammenhang mit elektronisch phasengesteuerten Antennen bekannt (M. I. Skolnik: "Introduction to Radar Systems", Second Edition, MacGraw Hill, 1980, Seiten 305 und 306). Mit derartigen phasengesteuerten Antennen, die sich zwar verhältnismäßig flach ausbilden lassen, ist jedoch keine Rundumsuche möglich. Dazu sind mehrere solche Antennen erforderlich.Radar antennas with a variety of in rows and columns arranged single spotlights, which are open to the front Waveguide radiators are also formed known with electronically phase controlled antennas (M. I. Skolnik: "Introduction to Radar Systems", Second Edition, MacGraw Hill, 1980, pages 305 and 306). With such phase-controlled antennas, although can be trained relatively flat, but is not All-round search possible. There are several such antennas required.

Aus der US 4,527,165 ist eine Antenne für zirkular polarisierte Signale bekannt, die in eine Schichtstruktur eingebrachte Wellenleiter und Hornstrahler aufweist. Die Trennung zwischen zwei Erregernetzwerken für eine zirkulare Polarisation durch eine Zwischenschicht führt jedoch zu einer voluminösen Bauform. An antenna for circularly polarized is known from US Pat. No. 4,527,165 Known signals introduced into a layer structure Has waveguides and horn radiators. The separation between two excitation networks for circular polarization through an intermediate layer, however, leads to a voluminous Design.

Aufgabe der Erfindung ist es, eine hochmobile, um eine Vertikalachse rotierende Rundsuchradarantenne in Flachbauweise zu schaffen, die zwischen exaktem Linear- und Zirkular-Polarisationsbetrieb umschaltbar ist und sehr niedrige Nebenzipfel im Azimutdiagramm aufweist. Außerdem sollen sich ohne Schwierigkeiten ein cosec2-Diagramm in der Elevationsebene erzeugen und IFF-Strahler integrieren lassen.The object of the invention is to provide a highly mobile, circular search antenna in flat design rotating about a vertical axis, which can be switched between exact linear and circular polarization operation and has very low secondary peaks in the azimuth diagram. In addition, it should be possible to generate a cosec 2 diagram in the elevation plane without difficulty and to integrate IFF emitters.

Diese Aufgabe wird bei einer gattungsgemäßen Rundsuchradarantenne durch die im kennzeichnenden Teil des Patentanspruchs 1 angegebenen Merkmale gelöst. Die Rundsuchradarantenne nach der Erfindung ist für eine Frequenz bandbreite geeignet, die mindestens 10 % beträgt. Die hinter der Trägerplatte angeordneten Verteiler lassen sich sehr kompakt gestalten, so daß die gesamte Antenne extrem flach und damit für hohe Mobilität geeignet aufgebaut werden kann.This task is carried out with a generic search radar antenna by the in the characterizing part of the claim 1 specified features solved. The search radar antenna according to the invention is bandwidth for a frequency suitable, which is at least 10%. The behind the distributor plate arranged can be very make compact so that the entire antenna is extremely flat and thus be built suitable for high mobility can.

Linearpolarisation ist dann eingeschaltet, wenn der 0°/90°-Phasenschieber auf 0° geschaltet ist, so daß an den beiden Einkoppeleinrichtungen jedes Strahlers nicht nur übereinstimmende Amplituden-, sondern auch Phasenverhältnisse bestehen. Zirkularpolarisation liegt dann vor, wenn der 0°/90°-Phasenschieber auf 90° gestellt ist, so daß an den beiden Einkoppeleinrichtungen zwar gleiche Amplituden-, aber um 90° unterschiedliche Phasenverhältnisse bestehen. Ist in jedem der beiden Speisewege ein umschaltbarer 0°/90°-Phasenschieber eingefügt, so läßt sich zwischen links- oder rechtszirkularer Polarisation auswählen, je nachdem, welcher Phasenschieber auf 90° gestellt ist.Linear polarization is switched on when the 0 ° / 90 ° phase shifter is switched to 0 °, so that at the not only two coupling devices of each radiator matching amplitude, but also phase relationships consist. Circular polarization exists if the 0 ° / 90 ° phase shifter is set to 90 ° so that on the two coupling devices have the same amplitude, but there are different phase relationships by 90 °. Is a switchable in each of the two feed routes 0 ° / 90 ° phase shifter inserted, so you can between select left or right circular polarization, each after which phase shifter is set to 90 °.

Mit der Rundsuchradarantenne nach der Erfindung läßt sich ohne große Probleme eine IFF-Antenne (Identification-Friend-Foe; Freund-Feind-Kennung) integrieren. Dazu werden vor der Trägerplatte in vorteilhafter Weise eine oder mehr Reihen von nach vorne abragenden Dipolstrahlern oder eine gitterartige Strahlerstruktur auf einer dielektrischen Platte angeordnet, wobei die Zuleitungen zu den Dipolstrahlern bzw. zur gitterartigen Strahlerstruktur durch die Trägerplatte und zwischen den Verteilern bzw. zum Teil durch diese hindurch zu einem dahinter liegenden IFF-Verteiler mit Summen-Differenz-Hybrid durchgeführt werden. Auf der Oberseite der Antenne läßt sich noch ein SLS-Strahler zum Zwecke der Nebenzipfelsignalunterdrückung anbringen.With the search radar antenna according to the invention can an IFF antenna (Identification-Friend-Foe; Friend-foe identifier). To do this in front of the carrier plate advantageously one or more Rows of forward-facing dipole radiators or one grid-like emitter structure on a dielectric Plate arranged, the leads to the dipole radiators or to the lattice-like radiator structure the carrier plate and between the distributors or in part through this to an IFF distributor located behind it be carried out with sum-difference hybrid. An SLS radiator can still be found on the top of the antenna for the purpose of suppression of the sidelobes attach.

Weitere zweckmäßige Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.Further expedient developments of the invention are in specified in the subclaims.

Im folgenden wird die Erfindung anhand von in fünf Figuren dargestellten Ausführungsbeispielen erläutert.The invention is described in the following in five figures illustrated embodiments explained.

Es zeigen

Fig. 1
die Schrägansicht einer Rundsuchradarantenne nach der Erfindung mit integrierter IFF-Antenne in Flachbauweise,
Fig. 2
die Schrägansicht einer Rundsuchradarantenne nach der Erfindung ohne IFF-Antenne,
Fig. 3, 4 und 5
Ansichten auf eine ähnliche Antenne wie nach Fig. 2 von vorne, von der Seite bzw. von oben.
Show it
Fig. 1
the oblique view of a search radar antenna according to the invention with integrated IFF antenna in a flat design,
Fig. 2
the oblique view of a search radar antenna according to the invention without IFF antenna,
3, 4 and 5
Views of a similar antenna as shown in FIG. 2 from the front, from the side or from above.

In einer perspektivischen Ansicht ist in Fig. 1 eine um eine vertikale Achse rotierende Rundsuchradarantenne mit integrierter IFF-Antenne in Flachbauweise dargestellt. Die Radarantenne selbst besteht aus einer Vielzahl von in horizontalen Reihen und vertikalen Spalten angeordneten Einzelstrahlern, die durch nach vorne offene Hohlleiterstrahler 1 gebildet werden, die vorne jeweils einen Trichteransatz 12, z.B. einen Diagonaltrichter, aufweisen. Zur Halterung der Hohlleiterstrahler 1 ist eine Trägerplatte 2 vorgesehen, die zur Aufnahme oder Bildung von Hohlleiterstrahlern 1 Öffnungen 3 aufweist. Hinter der Trägerplatte 2 sind für die Strahler jeweils einer Spalte zur Versorgung dieser Strahler mit einer vorgesehenen Amplitude und Phase jeweils als senkrecht verlaufende Hohlleiter ausgebildete Vertikalverteiler 10 angeordnet. Für jede Spalte ist somit ein Vertikalverteiler 10 vorgesehen. Die Eingänge sämtlicher Vertikalverteiler 10 sind von entsprechend angeordneten Ausgängen eines dahinter waagrecht verlaufenden Horizontalverteilers 11 gespeist. Der Horizontalverteiler 11 ist mit seinem Eingang über eine Speiseleitung mit dem eigentlichen Radargerät verbunden. Die Trägerplatte 2 kann beispielsweise aus Metall, insbesondere Aluminium, oder metallisiertem Kunststoff bestehen. Dabei können die Hohlleiterstrahler 1 mit ihren Trichteransätzen 12 ebenfalls metallisiert sein.1 is a perspective view in FIG with a vertical axis rotating search radar antenna Integrated IFF antenna shown in flat design. The Radar antenna itself consists of a variety of horizontal ones Rows and vertical columns arranged Single radiators through waveguide radiators open to the front 1 are formed, each in front Funnel attachment 12, e.g. have a diagonal funnel. A support plate is used to hold the waveguide radiator 1 2 provided for the inclusion or formation of Waveguide radiators 1 has openings 3. Behind the Carrier plate 2 are one column for the radiators to supply these spotlights with a provided The amplitude and phase are each perpendicular Waveguide trained vertical distributor 10 arranged. A vertical distributor 10 is thus provided for each column. The inputs of all vertical distributors 10 are of correspondingly arranged exits one behind horizontally extending horizontal distributor 11 fed. The horizontal distributor 11 is over with its input a feed line with the actual radar device connected. The carrier plate 2 can for example be made of Metal, especially aluminum, or metallized Plastic. The waveguide radiators 1 also be metallized with their funnel extensions 12.

Zur Realisierung einer integrierten IFF-Antenne sind auf der Trägerplatte 2 im dargestellten Ausführungsbeispiel drei Reihen von nach vorn abragenden Dipolstrahlern 16 angeordnet, wobei die vordere Oberfläche der Trägerplatte 2 als Reflektor genutzt wird. Die Zuleitungen 17 zu den Dipolstrahlern 16 sind durch die Trägerplatte 2 und teilweise durch den Horizontalverteiler 11 sowie zwischen den Vertikalverteilern 10 zu einem dahinter liegenden, in Fig. 1 nicht sichtbaren IFF-Verteiler mit Summen-Differenz-Hybrid durchgeführt. Die Trägerplatte 2 mit den Öffnungen aller darin aufgenommenen Hohlleiterstrahler 1 und die IFF-Dipolstrahler 16 sind aperturseitig von einem verlustarmen Radom 18 abgedeckt.To realize an integrated IFF antenna are on the carrier plate 2 in the illustrated embodiment three rows of forward-facing dipole radiators 16 arranged, the front surface of the carrier plate 2 is used as a reflector. The leads 17 to the Dipole radiators 16 are through the carrier plate 2 and partly through the horizontal distributor 11 and between the vertical distributors 10 to a behind, in Fig. 1 invisible IFF distributor with sum-difference hybrid carried out. The carrier plate 2 with the Openings of all waveguide radiators 1 contained therein and the IFF dipole radiators 16 are aperture-side of one low loss radome 18 covered.

In Fig. 2 ist in einer perspektivischen Ansicht ein anderes Ausführungsbeispiel einer sich um eine vertikale Achse drehenden Rundsuchradarantenne nach der Erfindung dargestellt. Diese Antenne ist, was das Primärradar betrifft, genauso aufgebaut wie die Antenne nach Fig. 1. IFF-Dipole sind jedoch im Ausführungsbeispiel nach Fig. 2 nicht vorhanden, so daß ein Radom 19 als ebene Platte unmittelbar auf die Trägerplatte 2 vorne aufgebracht werden kann und sich dadurch eine noch erheblich flachere Bauform ergibt.In Fig. 2 is a perspective view another embodiment of a vertical Axis rotating search radar antenna according to the invention shown. This antenna is what the primary radar is relates, constructed in exactly the same way as the antenna according to FIG. 1. IFF dipoles are, however, in the exemplary embodiment according to FIG. 2 not available, so that a radome 19 as a flat plate applied directly to the carrier plate 2 at the front can become and thereby a much flatter Design results.

In den Figuren 3, 4 und 5 sind Ansichten eines ähnlichen Ausführungsbeispiels einer Rundsuchradarantenne nach der Erfindung von vorne, von der Seite bzw. von oben dargestellt. In den Hohlleiterstrahlern 1, die vorne mit einem Trichteransatz, z.B. einem Pyramidentrichter 12 oder Diagonaltrichter 13, versehen sind, sind zwei um 90° versetzte Einkoppeleinrichtungen 4, 5 zur Doppeleinspeisung vorgesehen, die koaxial von der Strahlerrückseite her erfolgt. An der Rückseite der Hohlleiterstrahler 1 ist jeweils eine Polarisations-Umschalteinrichtung 6 vorgesehen, mittels welcher sich durch Betätigung eines sich somit ebenfalls an der Strahlerrückseite befindenden 0°/90°-Phasenschiebers 7 eine Umschaltung zwischen einer linearen und zirkularer Polarisation vornehmen läßt. Umschaltbare Phasenschieber 7 sind in den beiden Speisewegen 8, 9 zu den räumlich um 90° versetzten Einkoppeleinrichtungen 4, 5 eingefügt. Sind die beiden Phasenschieber 7 jeder Umschalteinrichtung 6 auf 0° gestellt, so liegt lineare Polarisation vor. Bei Einschaltung der 90°-Phasenverschiebung in einem der beiden Phasenschieber 7 entsteht linkszirkulare und bei Einschaltung der 90°-Phasenverschiebung im anderen Phasenschieber 7 rechtszirkulare Polarisation, wobei jeweils im anderen Phasenschieber 0° eingestellt ist. Die Anwendung einer doppelten 0°/±90°-Phasenschieberkombination erlaubt zusätzlich noch eine Polarisationsumschaltung: horizontal-vertikal. Hinter den Polarisations-Umschalteinrichtungen 6 und zwar hinter der Zusammenführung 20 der beiden Speisewege 8 und 9 ist für alle Strahler 1 jeweils einer Spalte zur Versorgung dieser Strahler 1 mit einer vorgesehenen Ampltude und Phase jeweils einer der senkrecht verlaufenden Vertikalverteiler 10 angeordnet. Die Eingänge sämtlicher Vertikalverteiler 10 sind von entsprechend angeordneten Ausgängen des dahinter waagrecht verlaufenden Horizontalverteilers 11 gespeist. Die Amplitudenverteilung entlang dem Horizontalverteiler 11 wird so eingestellt, daß sich eine sehr hohe Nebenzipfeldämpfung der Radarantenne ergibt.Figures 3, 4 and 5 are views of a similar one Embodiment of a search radar antenna according to the Invention from the front, from the side or from above shown. In the waveguide radiators 1, the front with a funnel approach, e.g. a pyramid funnel 12 or Diagonal funnels 13 are provided, are two by 90 ° offset coupling devices 4, 5 for double feeding provided coaxially from the back of the lamp he follows. At the back of the waveguide radiator 1 is each have a polarization switching device 6 provided, by means of which by pressing a are also located on the back of the heater 0 ° / 90 ° phase shifter 7 a switch between one can make linear and circular polarization. Switchable Phase shifters 7 are in the two feed paths 8, 9 to the coupling devices spatially offset by 90 ° 4, 5 inserted. Are the two phase shifters 7 each switch 6 is set to 0 °, so lies linear polarization. When switching on the 90 ° phase shift arises in one of the two phase shifters 7 left circular and when switching on the 90 ° phase shift in the other phase shifter 7 right circular Polarization, with 0 ° in the other phase shifter is set. The use of a double 0 ° / ± 90 ° phase shifter combination allows one more Polarization switch: horizontal-vertical. Behind the Polarization switching devices 6 behind the Merge 20 of the two feed paths 8 and 9 is for all radiators 1 each have a column to supply them Radiator 1 with an intended amplitude and phase one of the vertical vertical distributors 10 arranged. The inputs of all vertical distributors 10 are of appropriately arranged outputs of the behind it horizontal horizontal distributor 11 fed. The amplitude distribution along the horizontal distributor 11 is set so that a very high radian antenna sub-zip attenuation results.

In Fig. 3 weist einer der Hohlleiterstrahler 1 einen Trichteransatz auf, der als Diagonaltrichter 13 ausgebildet ist. Die beiden um 90° versetzten Einkoppeleinrichtungen 14, 15 zur Doppeleinspeisung sind hierbei unter ± 45° gegenüber der Horizontalebene räumlich versetzt. Zur Erzeugung einer horizontal polarisierten Strahlung werden die beiden Einkoppeleinrichtungen 14, 15 mit gleicher Phase und Amplitude erregt. Bei den anderen beispielhaft ausgeführten Hohlleiterstrahlern 1 ist ein Trichteransatz 12 in Form eines Pyramidentrichters vorgesehen. Werden dort die beiden um 90° versetzten Einkoppeleinrichtungen 4, 5 zur Doppeleinspeisung mit gleichen Amplituden und Phasen erregt, dann entsteht eine Linearpolarisation unter 45° gegenüber der Horizontalebene. In diesem Zusammenhang wird darauf hingewiesen, daß in einer Antenne selbstverständlich lediglich gleichartige Hohlleiterstrahler Anwendung finden können, z.B. also ausschließlich solche mit Pyramidentrichteransatz oder Diagonaltrichter. Die Umschaltung zwischen horizontaler und zirkularer Polarisation erfolgt in allen Fällen durch Einschalten eines 0°/90°-Phasenschiebers 7 in einen der beiden Speisewege 8, 9 jeder Polarisations-Umschalteinrichtung 6. Die Vertikalverteiler 10 können seriell, parallel, gleichphasig (equiphase) oder phasenunterschiedlich betrieben werden. So können z.B. die Vertikalverteiler 10 die Hohlleiterstrahler 1 mit der für ein cosecansförmiges Vertikaldiagramm notwendigen Phase versorgen.In Fig. 3, one of the waveguide radiators 1 has one Funnel approach, which is designed as a diagonal funnel 13 is. The two coupling devices offset by 90 ° 14, 15 for double feed are here ± 45 ° spatially offset from the horizontal plane. For Generation of horizontally polarized radiation the two coupling devices 14, 15 with the same Phase and amplitude excited. Exemplary for the others executed waveguide radiators 1 is a funnel approach 12 provided in the form of a pyramid funnel. Will there the two coupling devices offset by 90 ° 4, 5 for double feeding with the same amplitudes and Phases excited, then a linear polarization occurs below 45 ° to the horizontal plane. In this context is pointed out that in an antenna, of course only similar waveguide radiators Can be used, e.g. so only those with pyramid funnel or diagonal funnel. The Switching between horizontal and circular polarization is done in all cases by switching on a 0 ° / 90 ° phase shifter 7 in one of the two feed paths 8, 9 of each polarization switching device 6. The vertical distributors 10 can be serial, parallel, in phase (equiphase) or operated in different phases. For example, the vertical distributor 10 the waveguide radiator 1 with that for a cosecans-shaped vertical diagram supply the necessary phase.

In den Polarisations-Umschalteinrichtungen können auch besondere Phasenschieber zur Einstellung eines besonderen Strahlungsdiagramms, z.B. einer cosec2-Charakteristik, vorgesehen sein. Es können in den Polarisations-Umschalteinrichtungen 6 auch noch zusätzlich einschaltbare Phasenschieber enthalten sein, welche die Einschaltung einer anderen Strahlform erlauben, z.B. anstelle einer cosec2-Charakteristik einen Bleistift- oder Fächerstrahl.Special phase shifters can also be provided in the polarization switching devices for setting a special radiation diagram, for example a cosec 2 characteristic. The polarization switching devices 6 can also additionally contain switchable phase shifters which allow the switching on of another beam shape, for example a pencil or fan beam instead of a cosec 2 characteristic.

Alternativ zu der Vielfachausführung des 0°/90°-Phasenschiebers 7 zur Polarisationsumschaltung in den Polarisations-Umschalteinrichtungen 6 kann auch eine Doppelausführung aller Verteiler 10, 11, d.h. zwei Vertikalverteiler pro Strahlerspalte und ein Horizontalverteiler für jeweils einen der beiden Vertikalverteiler aller Strahlerspalten, und eine einmalige 0°/90°- oder 0°/±90°-Phasenumschaltung angewendet werden.As an alternative to the multiple version of the 0 ° / 90 ° phase shifter 7 for polarization switching in the polarization switching devices 6 can also be a double version all distributors 10, 11, i.e. two vertical distributors per spotlight column and one horizontal distributor for one of the two vertical distributors of all Radiator columns, and a one-time 0 ° / 90 ° or 0 ° / ± 90 ° phase switch be applied.

Alle Vertikalverteiler 10 lassen sich auch in einer gemeinsamen Platte einarbeiten.All vertical distributors 10 can also be in one Work in the common plate.

Claims (20)

  1. An omnidirectional radar antenna which rotates about a vertical axis, is of a flat-pack design and has a plurality of individual transmitters which are disposed in rows and columns and are formed by hollow conductor transmitters open to the front, the said antenna having a supporting plate (2) in which are mounted the hollow conductor transmitters (1) and which has apertures (3) to accommodate or form waveguide transmitters, and having two coupling devices (4, 5) offset by 90° in the waveguide transmitters in order to provide a two-source mains infeed, the waveguide transmitters being in the form of hollow conductor transmitters, the two-source mains infeed being effected from the rear side of the transmitters, and the rear side of the transmitters being provided with a polarisation reversal device (6),
    characterised
    in that reversal between linear and circular polarisation is effected by means of the polarisation reversal device (6), by operation of a 0°/90° phase shifter (7) likewise disposed on the rear side of the transmitters and inserted into one of the two supply paths (8, 9) to the coupling devices which are spatially offset by 90°,
    in that, behind the polarisation reversal devices (6), namely behind the junction (20) of the two supply paths, there is disposed a vertical distributor (10) in the form of a vertically extending hollow conductor for all the transmitters of each column for the purpose of supplying these transmitters with an intended amplitude and phase, and
    in that the inputs of all the vertical distributors are supplied by correspondingly disposed outputs of a horizontal distributor (11) which extends therebehind and which, with its input, is connected via a supply line to a radar device.
  2. An omnidirectional radar antenna as claimed in claim 1,
    characterised in that a switch-on 0°/90° phase shifter (7) is inserted into each of the two supply paths (8, 9) so that, when the 90° phase shift is switched on in the one phase shifter, left-handed circular polarisation is produced and, when the 90° phase shift is switched on in the other phase shifter, right-handed circular polarisation is produced.
  3. An omnidirectional radar antenna as claimed in claim 2,
    characterised in that the two phase shifters (7) of each polarisation reversal device (6) are in the form of 0°/± 90° phase shifters so that, when +90° is switched on in the one phase shifter and -90° in the other, the respectively orthogonal linear polarisation can additionally be set.
  4. An omnidirectional radar antenna as claimed in any one of the preceding claims,
    characterised in that the amplitude distribution along the horizontal distributor (11) is set in such a way as to produce a very high side lobe attenuation.
  5. An omnidirectional radar antenna as claimed in any one of the preceding claims,
    characterised in that, instead of the 0°/90° phase shifters (7) provided in each polarisation reversal device (6), all the distributors (10, 11) are provided in a double design, i.e. two vertical distributors per transmitter column and one horizontal distributor for each of the two vertical distributors on all the transmitter columns, and a single 90° phase reversal is provided.
  6. An omnidirectional radar antenna as claimed in any one of the preceding claims,
    characterised in that, at the front, the hollow conductor transmitters (1) have a funnel neck (12), e.g. in the form of a round funnel or a pyramid-shaped funnel.
  7. An omnidirectional radar antenna as claimed in claim 6,
    characterised in that the funnel neck is in the form of a diagonal funnel (13), in that the two coupling devices which are spatially offset by 90° (14, 15) are offset by ± 45° to the horizontal plane for the purpose of two-source mains infeed, and in that the two coupling devices are excited with the same phases and amplitudes to create horizontal polarisation.
  8. An omnidirectional radar antenna as claimed in claim 6,
    characterised in that the funnel neck is in the form of a diagonal funnel (13), in that the two coupling devices which are spatially offset by 90° (14, 15) are offset by ± 45° to the vertical plane for the purpose of two-source mains infeed, and in that the two coupling devices are excited with the same phase and amplitude to create vertical polarisation.
  9. An omnidirectional radar antenna as claimed in any one of the preceding claims,
    characterised in that the amplitude and phase distribution along the vertical distributor (10) is set in such a way as to produce a distinctively shaped lobe in the elevation pattern, e.g. a cosecant shape.
  10. An omnidirectional radar antenna as claimed in any one of the preceding claims,
    characterised in that, in the polarisation reversal devices (6), there are provided special phase shifters to set a distinctive radiation pattern, e.g. a cosec2 characteristic.
  11. An omnidirectional radar antenna as claimed in any one of the preceding claims,
    characterised in that, in the polarisation reversal devices (6), there are also additionally provided switch-on phase shifters which permit the switching-on of another beam form, e.g. a pencil or fan beam instead of a cosec2 characteristic.
  12. An omnidirectional radar antenna as claimed in any one of the preceding claims,
    characterised in that all the vertical distributors (10) are incorporated in a common plate.
  13. An omnidirectional radar antenna as claimed in any one of the preceding claims,
    characterised in that the supporting plate (2) is made from metal, e.g. aluminium, or from plastics with surface metallisation.
  14. An omnidirectional radar antenna as claimed in claim 13,
    characterised in that, where the supporting plate (2) is made from metal, the hollow conductor transmitters (1) are milled therein.
  15. An omnidirectional radar antenna as claimed in claim 13,
    characterised in that, where the supporting plate (2) is made from plastics with surface metallisation, the hollow conductor transmitters (1) are likewise metallised therein.
  16. An omnidirectional radar antenna as claimed in any one of the preceding claims,
    characterised in that one or more rows of forwardly projecting dipole transmitters (16) are disposed on the supporting plate (2) to form an integrated IFF antenna, and in that the supply leads (17) to the dipole transmitters are guided through the supporting plate and partially through the horizontal distributor (11), as well as between the vertical distributors (10, 11), to an IFF distributor disposed behind with a summation balance hybrid.
  17. An omnidirectional radar antenna as claimed in any one of claims 1 to 15,
    characterised in that the integrated IFF antenna is formed by a grid-like transmitter structure which is placed on a dielectric plate, is disposed forward of the supporting plate and has little perturbation effect on the hollow conductor transmitters, and in that the supply leads to the grid-like transmitter structure are guided through the supporting plate and partially through the horizontal distributor, as well as between the vertical distributors, to an IFF distributor disposed behind with a summation balance hybrid.
  18. An omnidirectional radar antenna as claimed in claim 16 or 17,
    characterised in that, on the upper side of the supporting plate (2), there is affixed an SLS transmitter for the purpose of side lobe suppression.
  19. An omnidirectional radar antenna as claimed in any one of the preceding claims,
    characterised in that the supporting plate (2), with all its hollow conductor transmitter apertures, and, where relevant, the IFF dipole transmitters (16) are covered on the aperture side by a low-loss radome (18).
  20. An omnidirectional radar antenna as claimed in any one of the preceding claims,
    characterised by a rating for the X band.
EP93107897A 1992-05-22 1993-05-14 Surveillance radar antenna in flat configuration Expired - Lifetime EP0570863B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4217091 1992-05-22
DE4217091 1992-05-22

Publications (3)

Publication Number Publication Date
EP0570863A2 EP0570863A2 (en) 1993-11-24
EP0570863A3 EP0570863A3 (en) 1994-04-13
EP0570863B1 true EP0570863B1 (en) 1999-04-14

Family

ID=6459558

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93107897A Expired - Lifetime EP0570863B1 (en) 1992-05-22 1993-05-14 Surveillance radar antenna in flat configuration

Country Status (2)

Country Link
EP (1) EP0570863B1 (en)
DE (1) DE59309507D1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111463573A (en) * 2020-04-21 2020-07-28 上海航天电子通讯设备研究所 Dual-band high-isolation wide-angle scanning composite aperture array antenna

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19608622A1 (en) * 1996-03-06 1997-09-11 Sel Alcatel Ag Aerial system with two aerials
US6034647A (en) * 1998-01-13 2000-03-07 Raytheon Company Boxhorn array architecture using folded junctions
US7948443B2 (en) * 2008-01-23 2011-05-24 The Boeing Company Structural feed aperture for space based phased array antennas
DE102014208389A1 (en) 2014-05-06 2015-11-12 Robert Bosch Gmbh Antenna device for a vehicle

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5443659A (en) * 1977-09-13 1979-04-06 Tech Res & Dev Inst Of Japan Def Agency Antenna unit
GB2058468B (en) * 1979-08-23 1983-10-12 Marconi Co Ltd Dual frequency aerial feed arrangement
AU3417289A (en) * 1988-03-30 1989-10-16 British Satellite Broadcasting Limited Flat plate array antenna
DE3915048A1 (en) * 1989-05-08 1990-11-15 Siemens Ag Electronically phase controlled antenna - has antenna elements in groups coupled to distributors with polariser switches
EP0470786A3 (en) * 1990-08-06 1992-02-26 Harry J. Gould Electronic rotatable polarization antenna feed apparatus
US5304999A (en) * 1991-11-20 1994-04-19 Electromagnetic Sciences, Inc. Polarization agility in an RF radiator module for use in a phased array

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111463573A (en) * 2020-04-21 2020-07-28 上海航天电子通讯设备研究所 Dual-band high-isolation wide-angle scanning composite aperture array antenna

Also Published As

Publication number Publication date
DE59309507D1 (en) 1999-05-20
EP0570863A3 (en) 1994-04-13
EP0570863A2 (en) 1993-11-24

Similar Documents

Publication Publication Date Title
DE10256960B3 (en) Two-dimensional antenna array
DE19627015C2 (en) Antenna field
DE60214585T2 (en) PATCH VESSEL, PRINTED ANTENNA
DE2638539C2 (en)
DE68922041T2 (en) Level antenna array with printed coplanar waveguide feed lines in cooperation with openings in a base plate.
DE69809704T2 (en) Antenna support structure
EP1082782B1 (en) Dual polarised multi-range antenna
DE69837530T2 (en) ANTENNA ARRANGEMENT FOR BASE STATION
DE2418506C2 (en) Planar antenna
DE60313737T2 (en) DOUBLE-SHEET CUTTING ANTENNA WITH ADVANCED BANDWIDTH
DE69832592T2 (en) DEVICE FOR RECEIVING AND SENDING RADIO SIGNALS
DE60000238T2 (en) Phase-controlled group antenna with active edge elements
DE4136476C2 (en) Ultra-high frequency lens and antenna with electronic beam swiveling with such a lens
EP1277252A1 (en) Dual-polarized dipole array antenna
WO1999062138A1 (en) Antenna array with several vertically superposed primary radiator modules
DE69839348T2 (en) TWO BAND ANTENNA
WO2005008833A1 (en) Dual polarised microstrip patch antenna
DE2610324A1 (en) PHASED ANTENNA LINE
DE102012023938A1 (en) Dual polarized omnidirectional antenna
DE2815453A1 (en) NON-SPREADING ULTRA HIGH FREQUENCY ANTENNA WITH ELECTRONIC DEFLECTION
DE3917138A1 (en) FLAT AERIAL
DE3926188A1 (en) SLOT HEADER
EP0570863B1 (en) Surveillance radar antenna in flat configuration
DE2810483C2 (en) Antenna with a feed waveguide having slots and a radiator line enclosing an angle with this
EP1006608B1 (en) Multi-layered antenna arrangement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19941006

17Q First examination report despatched

Effective date: 19961206

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DAIMLER-BENZ AKTIENGESELLSCHAFT

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DAIMLERCHRYSLER AG

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59309507

Country of ref document: DE

Date of ref document: 19990520

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990719

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030428

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030512

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030514

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050131

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST