EP0570498B1 - Method of reducing the risks of insulation breakdown on high voltage electrical cables and lines on ageing - Google Patents

Method of reducing the risks of insulation breakdown on high voltage electrical cables and lines on ageing Download PDF

Info

Publication number
EP0570498B1
EP0570498B1 EP92906377A EP92906377A EP0570498B1 EP 0570498 B1 EP0570498 B1 EP 0570498B1 EP 92906377 A EP92906377 A EP 92906377A EP 92906377 A EP92906377 A EP 92906377A EP 0570498 B1 EP0570498 B1 EP 0570498B1
Authority
EP
European Patent Office
Prior art keywords
risks
reducing
breakdown
insulation
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92906377A
Other languages
German (de)
French (fr)
Other versions
EP0570498A1 (en
Inventor
Claude Le Gressus
Claude Faure
Pierre Bach
Guy Blaise
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP0570498A1 publication Critical patent/EP0570498A1/en
Application granted granted Critical
Publication of EP0570498B1 publication Critical patent/EP0570498B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables
    • H01B9/02Power cables with screens or conductive layers, e.g. for avoiding large potential gradients
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • H01B7/0291Disposition of insulation comprising two or more layers of insulation having different electrical properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/28Protection against damage caused by moisture, corrosion, chemical attack or weather
    • H01B7/2813Protection against damage caused by electrical, chemical or water tree deterioration

Definitions

  • the present invention relates generally to cables and transmission lines called to operate under high electrical voltage.
  • Cables and transmission lines vary greatly depending on the range of voltages, currents and frequencies in which they are used.
  • the transport of significant energies to a place of use is often carried out by lines with 2, 3 or 4 wires in low frequency, 400 Hz, 60 Hz or 50 Hz for example, or even in direct current.
  • the signal transmission is generally carried out by a two-wire line or by a coaxial line depending on the frequencies to be transmitted and the conditions of transmission.
  • the conductors and insulators are not perfect and there are two types of faults: volume faults and interface faults.
  • the published patent FR-A-7703498 describes a transmission line comprising a device placed outside the dielectric region and intended to create a magnetic field so that the charged particles present in the dielectric undergo movement helical.
  • a transmission line comprising a device placed outside the dielectric region and intended to create a magnetic field so that the charged particles present in the dielectric undergo movement helical.
  • the probability for a charged particle to reach the energy level corresponding to ionization becomes very low.
  • This process is undoubtedly effective in the case of a cable with gaseous insulator (SF6 for example), but it is absolutely not justified for a solid insulator, which represents the most general case for industrial applications.
  • SF6 gaseous insulator
  • Patent FR-A-2 357 992 which describes an electric cable in which the insulator has a gradation of the permittivity from the central conductor to the external conductor. This gradation is obtained by using layers of insulation in which large quantities of oxides (80% to 100%) have been added.
  • the object sought in this document is to minimize the harmful effects on the breakdown of a lack of symmetry or concentricity of the cable.
  • Patent CH-A-669,277 describes a cable comprising several layers of insulating material having different permittivities. The goal is to improve manufacturing constraints by reducing the thickness of the insulation.
  • the present invention specifically relates to a process for reducing the risk of breakdown of insulators in electrical transmission systems which makes it possible to considerably improve the preceding situation.
  • This process for reducing the risk of breakdown of the insulation of cables and lines with high electric voltage during aging is characterized in that particles of elements with very high permittivity are added to the mass of the insulation. , the size of these particles being at most of the order of a micrometer and their abundance of the order of 3% of the mass of the insulator.
  • the properties of the dielectric material are modified by adding to it small quantities of particles made up of elements with very high permittivity and dimensions less than one micron.
  • the material thus doped not only has a higher breakdown threshold, but also has a high resistance to aging under normal service conditions, that is to say in the presence of an electric field. .
  • the best results have been obtained with metallic particles.
  • the electrical properties are modified by doping the insulating material using particles of an oxide of a metal chosen from chromium, titanium and manganese in the submicron state, which is deposited in the form of a paint on at least one of the surfaces of the insulator and the conductor and which is then diffuses into the insulation by heating at a high temperature, of the order of 1000 ° C. to 1500 ° C. At this temperature, the metal oxide is dissociated and the metal diffuses in the grain boundaries of the ceramic.
  • a high temperature of the order of 1000 ° C. to 1500 ° C.
  • the electrical properties are modified by doping the insulator with metallic impurities.
  • doping can be done, in accordance with the invention, by injection of metal powder during the polymer casting operation, the particles of the powder having a size necessarily less than a micrometer.
  • these dielectric insulators can be either polymers for making cables, or ceramics for making electrical passages and connectors, or more generally any other solid, organic or mineral insulator.
  • the dielectric insulating material chosen conditions the doping treatment used.
  • a coaxial insulating passage is produced using an Al2O3 alumina ceramic of 99% purity and consisting of a sintering of grains from 1 to 7 microns .
  • This ceramic is obviously refractory, doping can be done at high temperature. In practical terms, this involves diffusing a metal into the grain boundaries of the ceramic.
  • the metal being chromium
  • a chromium oxide paint is deposited either on the surface of the conductor, or on the surface of the insulator, or on both at the same time.
  • the chromium thus deposited is diffused by a heating operation at a temperature of the order of 1000 ° C to 1500 ° C.
  • the temperature and duration of heating depend on the dimensions of the ceramic. As an indication, for a passage of one centimeter diameter and a continuous electrical voltage of 100 kV, the diffusion takes place at 1200 ° C for 5 minutes.
  • the metal content in the joints is around 3%.
  • the effect of this treatment was measured over a 12 month period.
  • the measured parameter is the value of the electric shocks that the insulation can withstand in service without cracking.
  • the breakdown resistance is 800 kV / cm at the start of the use and 400 kV / cm after 12 months
  • the ceramic doped according to the process object of the invention supports 1.5 MV / cm at the start of use and still holds 1.2 MV / cm after 12 months of service.
  • the dielectric insulator used is a polymer which is doped at a relatively moderate temperature of the order of 200 to 300 ° C. for example with metallic impurities. These impurities are powders and doping takes place at the same time as the polymer is poured into the molding device in the form of an injection of metal particles which can for example be copper or iron and which dimensions are chosen. below the micrometer.

Landscapes

  • Inorganic Insulating Materials (AREA)
  • Organic Insulating Materials (AREA)

Abstract

In a method for reducing the risks of breakdown of the solid dielectric insulator of transmission lines and cables operating at high voltage where said insulator normally separates the conductors of a multiwire line or the central conductor and external metal sheath of a coaxial line, small quantities of metal particles smaller than a micron are added into the dielectric insulating material.

Description

La présente invention se rapporte d'une manière générale aux câbles et aux lignes de transmission appelés à fonctionner sous haute tension électrique.The present invention relates generally to cables and transmission lines called to operate under high electrical voltage.

Elle vise notamment à réduire les risques de claquage inhérents à tous les isolants diélectriques solides utilisés dans les dispositifs de transmission précédents, et surtout l'augmentation de ces risques lors du vieillissement de l'isolant.It aims in particular to reduce the risks of breakdown inherent in all the solid dielectric insulators used in the preceding transmission devices, and especially the increase of these risks during the aging of the insulator.

Les câbles et les lignes de transmission présentent une grande diversité selon les gammes de tensions, de courants et de fréquences où ils sont utilisés. Le transport des énergies importantes jusqu'à un lieu d'utilisation est souvent effectué par des lignes à 2, 3 ou 4 fils en basse fréquence, 400 Hz, 60 Hz ou 50 Hz par exemple, soit même en courant continu.Cables and transmission lines vary greatly depending on the range of voltages, currents and frequencies in which they are used. The transport of significant energies to a place of use is often carried out by lines with 2, 3 or 4 wires in low frequency, 400 Hz, 60 Hz or 50 Hz for example, or even in direct current.

La transmission de signaux est effectuée en général par une ligne bifilaire ou par une ligne coaxiale suivant les fréquences à transmettre et les conditions de transmission.The signal transmission is generally carried out by a two-wire line or by a coaxial line depending on the frequencies to be transmitted and the conditions of transmission.

Pour des raisons de clarté et de simplification on limitera ici la description aux câbles coaxiaux, mais il est bien entendu que l'invention s'applique à tous les isolants utilisés dans les différents types de lignes, aux portions de lignes que constituent les "passages" isolants et les dispositifs à haute tension comportant des isolants solides.For reasons of clarity and simplification, the description will be limited here to coaxial cables, but it is understood that the invention applies to all the insulators used in the different types of lines, to the portions of lines which constitute the "passages "insulators and high voltage devices incorporating solid insulators.

Une des causes majeures de défaillance de ces dispositifs à haute tension est le claquage électrique : une disruption se produit entre les conducteurs à travers les isolants (précédée parfois d'une décharge électrique partielle) conduisant au percement de l'isolant et pouvant aller jusqu'à la destruction. La défaillance se produit de façon aléatoire, mais on constate que ce risque s'aggrave beaucoup au cours du temps, selon un processus de vieillissement.One of the major causes of failure of these high-voltage devices is electrical breakdown: a disruption occurs between the conductors through the insulators (sometimes preceded by a partial electrical discharge) leading to the piercing of the insulator and which can go as far as destruction. Failure occurs randomly, but we see that this risk worsens a lot over time, according to an aging process.

Ce problème de fiabilité et de durée de vie des isolants préoccupe les fabricants de câbles depuis longtemps. La connaissance très limitée jusqu'à présent des phénomènes physiques mis en jeu n'a pas permis de trouver des solutions efficaces.This problem of reliability and lifetime of insulators has preoccupied cable manufacturers for a long time. Until now, very limited knowledge of the physical phenomena involved has not made it possible to find effective solutions.

Du fait que par définition les lignes ont une grande longueur vis-à-vis de la longueur d'onde, on ne peut leur appliquer l'approximation des ondes stationnaires. L'étude des phénomènes de transmission, d'absorption d'énergie et donc de vieillissement ne peut être effectuée qu'a partir des équations de MAXWELL, des conditions aux limites définies par les surfaces de séparation entre le milieux différents, et des relations spécifiques aux milieux considérés.Because by definition the lines have a great length with respect to the wavelength, one cannot apply to them the approximation of the standing waves. The study of the phenomena of transmission, energy absorption and therefore aging can only be carried out using MAXWELL equations, the boundary conditions defined by the surfaces of separation between the different media, and specific relationships to the environments considered.

Sans revenir de manière approfondie sur la théorie des lignes de transmission, on remarquera que pour un conducteur parfait, la densité locale de charges est nulle, alors que pour un diélectrique le champ électrique local peut être considéré comme la somme du champ électrostatique dû aux charges électriques qui s'y développent et du champ calculé par les équations de MAXWELL en milieu non chargé.Without going back in depth on the theory of transmission lines, it will be noted that for a perfect conductor, the local charge density is zero, while for a dielectric the local electric field can be considered as the sum of the electrostatic field due to the charges. electric which develop there and of the field calculated by the equations of MAXWELL in uncharged medium.

Si les milieux étaient parfaits, les champs électriques et magnétiques seraient nuls dans les conducteurs, et seraient en phase, non atténués, dans les isolants de telle sorte que les énergies électriques et magnétiques soient égales. Dans la pratique les conducteurs et les isolants ne sont pas parfaits et on rencontre deux types de défauts : les défauts de volume et les défauts d'interface.If the environments were perfect, the electric and magnetic fields would be zero in the conductors, and would be in phase, not attenuated, in the insulators so that the energies electric and magnetic are equal. In practice, the conductors and insulators are not perfect and there are two types of faults: volume faults and interface faults.

Le procédé habituel pour augmenter le seuil de claquage d'un câble coaxial consiste à augmenter l'épaisseur de la matière diélectrique. Mais on est évidemment limité par des considérations de dimensions (encombrement et prix) et de toute façon les défauts de vieillissement demeurent. D'autres idées et plusieurs procédés ont été imaginés, tous fondés sur le fait que l'existence de charges dans la masse diélectrique isolante est inévitable et qu'on limite leurs effets néfastes par application d'autres champs destinés à les dévier, ou par réduction des champs à la suite de dispositions géométriques particulières.The usual method for increasing the breakdown threshold of a coaxial cable consists in increasing the thickness of the dielectric material. But we are obviously limited by considerations of dimensions (size and price) and in any case the aging defects remain. Other ideas and several methods have been devised, all based on the fact that the existence of charges in the insulating dielectric mass is inevitable and that their harmful effects are limited by the application of other fields intended to deflect them, or by reduction of fields following special geometrical arrangements.

A titre d'exemple, le brevet publié FR-A- 7703498 décrit une ligne de transmission comportant un dispositif placé à l'extérieur de la région diélectrique et destiné à créer un champ magnétique afin que les particules chargées présentes dans le diélectrique subissent un mouvement hélicoïdal. Ainsi la probabilité pour qu'une particule chargée atteigne le niveau d'énergie correspondant à l'ionisation devient très faible. Ce procédé est sans doute efficace dans le cas d'un câble à isolant gazeux (SF₆ par exemple), mais il est absolument non justifié pour un isolant solide, ce qui représente le cas le plus général pour les applications industrielles.By way of example, the published patent FR-A-7703498 describes a transmission line comprising a device placed outside the dielectric region and intended to create a magnetic field so that the charged particles present in the dielectric undergo movement helical. Thus the probability for a charged particle to reach the energy level corresponding to ionization becomes very low. This process is undoubtedly effective in the case of a cable with gaseous insulator (SF₆ for example), but it is absolutely not justified for a solid insulator, which represents the most general case for industrial applications.

On a déjà cherché, par différentes techniques, à améliorer le fonctionnement des diélectriques de câbles électriques et à les rendre plus performants vis-à-vis des contraintes qu'ils subissent. On peut citer par exemple :We have already sought, by various techniques, to improve the functioning of the dielectrics of electric cables and to make them more efficient with respect to the constraints they undergo. We can quote for example:

Le brevet FR-A-2 357 992 qui décrit un câble électrique dans lequel l'isolant présente une gradation de la permittivité depuis le conducteur central jusqu'au conducteur extérieur. Cette gradation est obtenue en utilisant des couches d'isolants dans lesquels de grandes quantités d'oxydes (80% à 100%) ont été ajoutées. L'objet recherché dans ce document est de minimiser les effets nuisibles sur le claquage d'un manque de symétrie ou de concentricité du câble.Patent FR-A-2 357 992 which describes an electric cable in which the insulator has a gradation of the permittivity from the central conductor to the external conductor. This gradation is obtained by using layers of insulation in which large quantities of oxides (80% to 100%) have been added. The object sought in this document is to minimize the harmful effects on the breakdown of a lack of symmetry or concentricity of the cable.

Le brevet CH-A-669 277 décrit un câble comportant plusieurs couches de matière isolante ayant des permittivités différentes. Le but est d'améliorer les contraintes de fabrication en diminuant l'épaisseur de l'isolant.Patent CH-A-669,277 describes a cable comprising several layers of insulating material having different permittivities. The goal is to improve manufacturing constraints by reducing the thickness of the insulation.

Aucun de ces deux documents ne fait toutefois état de moyens mis en oeuvre pour lutter spécifiquement contre l'augmentation des risques de claquage en fonction du vieillissement.Neither of these two documents mentions the means used to specifically combat the increased risk of breakdown as a function of aging.

La présente invention a précisément pour objet un procédé de réduction des risques de claquage des isolants des systèmes de transmission électriques qui permet d'améliorer considérablement la situation précédente.The present invention specifically relates to a process for reducing the risk of breakdown of insulators in electrical transmission systems which makes it possible to considerably improve the preceding situation.

Ce procédé de réduction des risques de claquage de l'isolant des câbles et lignes à haute tension électrique lors de leur vieillissement, se caractérise en ce que l'on ajoute dans la masse de l'isolant des particules d'éléments à très forte permittivité, la dimension de ces particules étant au plus de l'ordre du micromètre et leur abondance de l'ordre de 3% de la masse de l'isolant.This process for reducing the risk of breakdown of the insulation of cables and lines with high electric voltage during aging, is characterized in that particles of elements with very high permittivity are added to the mass of the insulation. , the size of these particles being at most of the order of a micrometer and their abundance of the order of 3% of the mass of the insulator.

Une étude fondamentale des phénomènes de claquage effectuée par le demandeur a permis d'en donner une nouvelle interprétation en liant les phénomènes de claquage à la polarisation du diélectrique et à sa relaxation. On rappellera d'abord que le champ électrique

Figure imgb0001
appliqué à un diélectrique et la polarisation
Figure imgb0002
de ce même dielectrique qui résulte de l'application de ce champ, sont liés par la formule
Figure imgb0003

formule dans laquelle ε est une grandeur sans dimension que l'on désigne sous le nom de permittivité du diélectrique. Elle traduit en fait la plus ou moins grande facilité du diélectrique à se polariser, c'est-à-dire à accepter des charges électriques, sous l'influence d'un champ électrique appliqué. Or, l'étude fondamentale précédente a précisément mis à jour le fait que cette permittivité locale du diélectrique jouait un rôle essentiel dans les phénomènes de claquages.A fundamental study of the breakdown phenomena carried out by the applicant made it possible to give a new interpretation by linking the breakdown phenomena at the polarization of the dielectric and at its relaxation. It will first be recalled that the electric field
Figure imgb0001
applied to a dielectric and polarization
Figure imgb0002
of this same dielectric which results from the application of this field, are linked by the formula
Figure imgb0003

formula in which ε is a dimensionless quantity which is designated by the name of permittivity of the dielectric. It actually translates the greater or lesser ease of the dielectric to polarize, that is to say to accept electrical charges, under the influence of an applied electric field. However, the previous fundamental study has precisely brought to light the fact that this local permittivity of the dielectric plays an essential role in the breakdown phenomena.

Le rôle de la permittivité locale est d'autant plus important que les volumes concernés sont à l'échelle submicrométrique. A cette échelle la notion macroscopique de la permittivité n'a plus de sens et on doit considérer à la fois la charge électrique présente dans le diélectrique piégée dans un puits de potentiel, et le milieu environnant constitué d'un édifice d'une centaine d'atomes. L'ensemble constitue ce qu'on appelle un polaron.The role of local permittivity is all the more important as the volumes concerned are on a submicrometric scale. On this scale the macroscopic notion of permittivity no longer has any meaning and we must consider both the electric charge present in the dielectric trapped in a potential well, and the surrounding medium consisting of a building of a hundred 'atoms. The whole constitutes what is called a polaron.

Comme le diélectrique est soumis d'une part à des champs électriques et magnétiques et qu'il a d'autre part une densité de charge non nulle, on doit chercher soit à diminuer cette densité de charge, soit à mieux la répartir. Celle-ci est la superposition des charges volumiques (caractéristiques de la nature, et de l'état du matériau) et des charges injectées aux interfaces par la polarité des conducteurs. On peut donc jouer sur la nature du matériau et sur les modifications de ses propriétés.As the dielectric is subjected on the one hand to electric and magnetic fields and that it has on the other hand a non-zero charge density, one must seek either to reduce this charge density, or to better distribute it. This is the superposition of the volume charges (characteristics of the nature, and of the state of the material) and of the charges injected at the interfaces by the polarity of the conductors. We can therefore play on the nature of the material and on the modifications of its properties.

C'est pourquoi, selon l'invention, on modifie les propriétés du matériau diélectrique en lui ajoutant de faibles quantités de particules constituées d'éléments à très forte permittivité et de dimensions inférieures au micron. A cette échelle, il se produit une interaction forte entre les charges électriques dans le puits de potentiel et les atomes environnants, ce qui assure une très grande statilité du piégeage des charges dont la mobilité est la cause essentielle du vieillissement. On constate que le matériau ainsi dopé, non seulement présente un seuil de claquage plus élevé, mais qu'il possède également une grande résistance au vieillissement dans les conditions normales de service, c'est-à-dire en présence d'un champ électrique. Les meilleurs résultats ont été obtenus avec des particules métalliques.This is why, according to the invention, the properties of the dielectric material are modified by adding to it small quantities of particles made up of elements with very high permittivity and dimensions less than one micron. On this scale, there is a strong interaction between the electric charges in the potential well and the surrounding atoms, which ensures a very high level of trapping of charges whose mobility is the essential cause of aging. It is found that the material thus doped, not only has a higher breakdown threshold, but also has a high resistance to aging under normal service conditions, that is to say in the presence of an electric field. . The best results have been obtained with metallic particles.

Selon un premier mode de mise en oeuvre de l'invention, lorsque l'isolant diélectrique est réfractaire, par exemple constituée par une céramique, on modifie les propriétés électriques en dopant le matériau isolant à l'aide de particules d'un oxyde d'un métal choisi parmi le chrome, le titane et le manganèse à l'état submicronique, que l'on dépose sous la forme d'une peinture sur l'une au moins des surfaces de l'isolant et du conducteur et que l'on fait ensuite diffuser dans l'isolant par chauffage à température élevée, de l'ordre de 1000°C à 1500°C. A cette température, l'oxyde métallique est dissocié et le métal diffuse dans les joints de grains de la céramique.According to a first embodiment of the invention, when the dielectric insulator is refractory, for example constituted by a ceramic, the electrical properties are modified by doping the insulating material using particles of an oxide of a metal chosen from chromium, titanium and manganese in the submicron state, which is deposited in the form of a paint on at least one of the surfaces of the insulator and the conductor and which is then diffuses into the insulation by heating at a high temperature, of the order of 1000 ° C. to 1500 ° C. At this temperature, the metal oxide is dissociated and the metal diffuses in the grain boundaries of the ceramic.

Selon un deuxième mode de mise en oeuvre de l'invention, lorsque l'isolant est constitué d'un polymère ou d'un solide organique, on modifie les propriétés électriques en dopant l'isolant avec des impuretés métalliques. Dans ce dernier cas, le dopage peut se faire, conformément à l'invention, par injection de poudre métallique pendant l'opération de coulée du polymère, les particules de la poudre ayant une dimension nécessairement inférieure au micromètre.According to a second embodiment of the invention, when the insulator consists of a polymer or an organic solid, the electrical properties are modified by doping the insulator with metallic impurities. In the latter case, doping can be done, in accordance with the invention, by injection of metal powder during the polymer casting operation, the particles of the powder having a size necessarily less than a micrometer.

De toute façon, la présente invention sera mieux comprise en se référant à la description qui suit de plusieurs exemples de mise en oeuvre ainsi qu'à la figure 1 montrant les propriétés comparées d'un câble traité et d'un câble non traité.In any case, the present invention will be better understood by referring to the description which follows of several examples of implementation as well as to FIG. 1 showing the compared properties of a treated cable and an untreated cable.

D'une façon générale, on commençera par rappeler que tous les diélectriques isolants connus à ce jour peuvent être utilisés dans le cadre de la présente invention. En d'autres termes, ces isolants diélectriques peuvent être soit des polymères pour la réalisation de câbles, soit des céramiques pour la réalisation de passages et de connecteurs électriques, soit plus généralement de tout autre isolant solide, organique ou minéral.In general, we will begin by recalling that all the insulating dielectrics known to date can be used in the context of the present invention. In other words, these dielectric insulators can be either polymers for making cables, or ceramics for making electrical passages and connectors, or more generally any other solid, organic or mineral insulator.

Comme il a déjà été précisé précédemment, le matériau isolant diélectrique choisi conditionne le traitement de dopage utilisé. Ainsi par exemple dans un premier exemple de mise en oeuvre de l'invention, on réalise un passage isolant coaxial à l'aide d'une céramique en alumine Al₂O₃ de pureté 99% et constituée d'un frittage de grains de 1 à 7 microns. Cette céramique étant évidemment réfractaire, le dopage peut se faire à température élevée. De façon pratique il s'agit de faire diffuser un métal dans les joints de grains de la céramique. Dans cet exemple le métal étant du chrome, on dépose une peinture d'oxyde de chrome soit sur la surface du conducteur, soit sur la surface de l'isolant, soit sur l'un et l'autre à la fois. Après montage du conducteur dans l'isolant, on fait diffuser le chrome ainsi déposé par une opération de chauffage à une température de l'ordre de 1000°C à 1500°C. La température et la durée du chauffage dépendent des dimensions de la céramique. A titre indicatif, pour un passage de diamètre un centimètre et une tension électrique de service de 100 kV en continu, la diffusion se fait à 1200°C pendant 5 minutes. Le taux de métal dans les joints est de l'ordre de 3%.As already specified above, the dielectric insulating material chosen conditions the doping treatment used. Thus, for example, in a first example of implementation of the invention, a coaxial insulating passage is produced using an Al₂O₃ alumina ceramic of 99% purity and consisting of a sintering of grains from 1 to 7 microns . This ceramic is obviously refractory, doping can be done at high temperature. In practical terms, this involves diffusing a metal into the grain boundaries of the ceramic. In this example, the metal being chromium, a chromium oxide paint is deposited either on the surface of the conductor, or on the surface of the insulator, or on both at the same time. After mounting the conductor in the insulation, the chromium thus deposited is diffused by a heating operation at a temperature of the order of 1000 ° C to 1500 ° C. The temperature and duration of heating depend on the dimensions of the ceramic. As an indication, for a passage of one centimeter diameter and a continuous electrical voltage of 100 kV, the diffusion takes place at 1200 ° C for 5 minutes. The metal content in the joints is around 3%.

On a mesuré sur une période de 12 mois l'effet de ce traitement. Le paramètre mesuré est la valeur des chocs électriques que peut supporter l'isolant en service sans claquer. Alors que pour la céramique non traitée la tenue de claquage est de 800 kV/cm au début de l'utilisation et 400 kV/cm au bout de 12 mois, la céramique dopée suivant le procédé objet de l'invention, supporte 1,5 MV/cm au début de l'utilisation et tient encore 1,2 MV/cm au bout de 12 mois de service.The effect of this treatment was measured over a 12 month period. The measured parameter is the value of the electric shocks that the insulation can withstand in service without cracking. Whereas for the untreated ceramic the breakdown resistance is 800 kV / cm at the start of the use and 400 kV / cm after 12 months, the ceramic doped according to the process object of the invention, supports 1.5 MV / cm at the start of use and still holds 1.2 MV / cm after 12 months of service.

Selon un deuxième mode de mise en oeuvre de l'invention, l'isolant diélectrique utilisé est un polymère que l'on dope à une température relativement modérée de l'ordre de 200 à 300°C par exemple avec des impuretés métalliques. Ces impuretés sont des poudres et le dopage se fait au moment même de la coulée du polymère dans le dispositif de moulage sous forme d'une injection de particules métalliques qui peuvent par exemple être du cuivre ou du fer et que l'on choisit de dimensions inférieures au micromètre.According to a second embodiment of the invention, the dielectric insulator used is a polymer which is doped at a relatively moderate temperature of the order of 200 to 300 ° C. for example with metallic impurities. These impurities are powders and doping takes place at the same time as the polymer is poured into the molding device in the form of an injection of metal particles which can for example be copper or iron and which dimensions are chosen. below the micrometer.

A titre d'exemple avec un câble dans lequel le polymère est du polyéthylène du commerce, on a ajouté 3% de particules de fer de dimensions comprises entre 0,1 et 0,5 micromètre. On a mesuré sur une période de 12 mois l'effet de ce traitement. Le résultat est porté sur la figure 1. Sur cette figure 1, le temps en mois est porté en abscisses et la tenue aux chocs électriques en MV/cm en ordonnées. La courbe 1 est celle d'un câble non traité et la courbe 2 celle d'un câble traité selon l'invention.By way of example with a cable in which the polymer is commercial polyethylene, 3% of iron particles with dimensions between 0.1 and 0.5 micrometer were added. The effect of this treatment was measured over a 12 month period. The result is shown in Figure 1. In this figure 1, the time in months is plotted on the abscissa and the resistance to electric shock in MV / cm on the ordinate. Curve 1 is that of an untreated cable and curve 2 that of a cable treated according to the invention.

Claims (4)

  1. Method of reducing the risks of breakdown of the insulation of cables and lines at a high electrical voltage during their ageing, characterized in that particles of elements having very high permittivity are added throughout the bulk of the insulation, the size of these particles being at most of the order of one micrometre and their quantity of the order of 3% by weight of the insulation.
  2. Method of reducing the risks of breakdown according to Claim 1, characterized in that the particles are metallic.
  3. Method of reducing the risks of breakdown according to Claim 1, characterized in that the additive is a metal which is made to diffuse into the grain boundaries of a sintered material, the grains of which have sizes of the order of one micron, using a metallic-oxide paint which is heated at a high temperature.
  4. Method of reducing the risks of breakdown according to Claim 2, characterized in that, the insulation being a polymer, the doping is performed by injection of metallic powder during the operation of causing the polymer to flow, the particles of the powder having a size less than one micrometre.
EP92906377A 1991-02-06 1992-02-05 Method of reducing the risks of insulation breakdown on high voltage electrical cables and lines on ageing Expired - Lifetime EP0570498B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9101310 1991-02-06
FR9101310A FR2672422A1 (en) 1991-02-06 1991-02-06 METHOD FOR REDUCING THE RISK OF BREAKDOWN OF THE SOLID DIELECTRIC INSULATION OF CABLES AND DEVICES OPERATING AT HIGH ELECTRICAL VOLTAGE.
PCT/FR1992/000101 WO1992014253A1 (en) 1991-02-06 1992-02-05 Method of reducing the risks of insulation breakdown on high voltage electrical cables and lines on ageing

Publications (2)

Publication Number Publication Date
EP0570498A1 EP0570498A1 (en) 1993-11-24
EP0570498B1 true EP0570498B1 (en) 1994-11-30

Family

ID=9409395

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92906377A Expired - Lifetime EP0570498B1 (en) 1991-02-06 1992-02-05 Method of reducing the risks of insulation breakdown on high voltage electrical cables and lines on ageing

Country Status (5)

Country Link
EP (1) EP0570498B1 (en)
JP (1) JPH06505356A (en)
DE (1) DE69200763T2 (en)
FR (1) FR2672422A1 (en)
WO (1) WO1992014253A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5660878A (en) * 1991-02-06 1997-08-26 Commissariat A L'energie Atomique Process for the reduction of breakdown risks of the insulant of high voltage cable and lines during their aging

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2357992A1 (en) * 1975-12-23 1978-02-03 Gen Electric INSULATED ELECTRIC CABLE
CH669277A5 (en) * 1986-10-14 1989-02-28 Cossonay Cableries Trefileries High tension electric cable with extruded insulating layers - consists of synthetic materials of different dielectric properties sandwiched between 2 semiconducting layers

Also Published As

Publication number Publication date
EP0570498A1 (en) 1993-11-24
DE69200763T2 (en) 1995-06-22
JPH06505356A (en) 1994-06-16
WO1992014253A1 (en) 1992-08-20
FR2672422A1 (en) 1992-08-07
DE69200763D1 (en) 1995-01-12

Similar Documents

Publication Publication Date Title
EP0264315B1 (en) Wave propagation structures for the suppression of over-voltages and the absorption of transitory waves
EP1128395B1 (en) High and extra-high voltage d.c. power cable
MX2007005358A (en) High temperature capacitors and method of manufacturing the same.
He et al. Research on mechanical and dielectric properties of XLPE cable under accelerated electrical‐thermal aging
JP3602297B2 (en) DC power cable
EP0570498B1 (en) Method of reducing the risks of insulation breakdown on high voltage electrical cables and lines on ageing
US20110232940A1 (en) Low ionization potential additive to dielectric compositions
EP2062268A1 (en) Insulating support for a high-voltage or medium-voltage device, and device comprising it
EP2136376B1 (en) High-voltage power cable
EP0624885B1 (en) Cable usable within the telecommunications field
Choi et al. Finite-element analysis for surface discharge due to interfacial polarization at the oil-nanocomposite interface
US5660878A (en) Process for the reduction of breakdown risks of the insulant of high voltage cable and lines during their aging
FR2827999A1 (en) SEMICONDUCTOR SCREEN FOR ENERGY CABLE
EP1789975B1 (en) High- or medium-voltage device comprising a particular dielectric system
FR2976117A1 (en) ELECTRICALLY INSULATING MATERIAL, IN PARTICULAR FOR HIGH VOLTAGE GENERATOR
FR2710183A1 (en) Energy cable with improved dielectric strength.
BE506685A (en)
Zhang et al. Surface discharge phenomena of silicon in atmospheric air
Mammone et al. Increased breakdown strengths of polypropylene films melt‐extruded from plasma‐treated resin
Tada Aspects affecting the reliability of a carbon composition resistor
FR2672722A1 (en) MAGNESIS-BASED INSULATING MATERIAL FOR HIGH-VOLTAGE CABLE USED IN A SEVERE ENVIRONMENT.
FR2824179A1 (en) GAS INSULATED COILING WINDING EQUIPMENT
FR2683378A1 (en) ELECTRIC CABLE.
FR2716292A1 (en) Superconducting coil with general transition.
WO2017174954A1 (en) New electrical insulation material

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19930630

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB IT

17Q First examination report despatched

Effective date: 19940105

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT

REF Corresponds to:

Ref document number: 69200763

Country of ref document: DE

Date of ref document: 19950112

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950221

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000208

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20000214

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000302

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010228

BERE Be: lapsed

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE

Effective date: 20010228

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030225

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041029

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050205