EP0566312A1 - Resin compositions for laser marking - Google Patents

Resin compositions for laser marking Download PDF

Info

Publication number
EP0566312A1
EP0566312A1 EP93302756A EP93302756A EP0566312A1 EP 0566312 A1 EP0566312 A1 EP 0566312A1 EP 93302756 A EP93302756 A EP 93302756A EP 93302756 A EP93302756 A EP 93302756A EP 0566312 A1 EP0566312 A1 EP 0566312A1
Authority
EP
European Patent Office
Prior art keywords
compounds
marking
resin
tetrazole
resin compositions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP93302756A
Other languages
German (de)
French (fr)
Inventor
Kenichi Sakai
Takuro Kitamura
Toshio Ishihara
Hideki Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SABIC Innovative Plastics Japan KK
Original Assignee
GE Plastics Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GE Plastics Japan Ltd filed Critical GE Plastics Japan Ltd
Publication of EP0566312A1 publication Critical patent/EP0566312A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/267Marking of plastic artifacts, e.g. with laser

Definitions

  • the present invention is a resin composition for laser marking, comprising:
  • thermoplastic resins used in the present invention there is no particular restriction on the thermoplastic resins used in the present invention, it being possible to use various known thermoplastic resins. These may be, but are not limited to, polyesters such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polycyclohexene terephthalate (PCT), polyphenylene oxide (PPO), polycarbonate (PC), polyether imide (PEI), polystyrenes (PS) such as high-impact polystyrene (HIPS), polyethylene (PE), polypropylene (PP), polyamide (PA), polyvinyl chloride (PVC), polyacetal (POM), fluororesins such as polytetrafluoroethylene, acrylic resins, polysulfones, polyphenylenesulfides (PPS) and methylpentene resins. Alloys of various thermoplastic resins such as alloys of PPO and PS resins can be obtained. The use of polyester, PPO,
  • tetrazole compounds can be used as the tetrazole compounds or as the azo compounds, nitroso compounds or sulfonylhydrazide compounds having a decomposition temperature of 210° C or more (hereinafter, these compounds shall sometimes be referred to as "laser marking additives").
  • these compounds are the alkaline earth metal salts of tetrazoles, and especially the calcium salt; the alkaline earth metal salts of 5-amino-1 H-tetrazole, and especially the calcium salt; the alkaline earth metal salt of 5-methyl-1 H-tetrazole, and especially the calcium and barium salts; and the alkaline earth metal salt of 5,5'-bis-1 H-tetrazole, and especially the calcium salt.
  • These compounds are preferably used in an amount of about 0.001-10 parts by weight, and even more preferably an amount of about 0.01-5 parts by weight, per 100 parts by weight of the thermoplastic resin.
  • reinforcing agents such as glass fibers, carbon fibers and aramid fibers may be contained in the resin compositions for laser marking according to the present invention.
  • the amounts in which these are used may be set as desired in accordance with the type of thermoplastic resin and the desired resin composition, but it is generally desirable for this to be set at about 0-100 parts by weight, and especially about 0-50 parts by weight, per 100 parts by weight of thermoplastic resin.
  • a temperature appropriate for the thermoplastic resin being used for example the temperature may be set at about 260° C in the case of PBT resins, about 280° C in the case of PCT resins, about 280° C in the case of mixtures of PPO resins and PS resins, about 270° C in the case of PC resins
  • marking can be rapidly carried out; for instance, if this is a line having a width of about 1.0 mm, writing can be carried out at a speed of 200 mm/sec or more.
  • This invention encompasses resin compositions of various formulations, but it is not necessary to carefully investigate the optimal irradiation conditions for each composition; nor is there any restriction on the resins used as the ingredients. Afurther advantage of the resin compositions according to the present invention is that the production steps can be simplified.
  • Tables 1-5 The ingredients shown in Tables 1-5 were selected from the following ingredients, and pellets were prepared by extrusion using an extruder. Molded pieces measuring 50x50x3mm were injection-molded using these pellets. The temperature during extrusion and the temperature at the time of injection molding are indicated in Tables 1-5.
  • Marking was carried out on the surface of these molded pieces using a CO 2 gas laser or a YAG laser.
  • the marking conditions were as follows:
  • compositions which contain laser marking additives form distinct marks by means of laser light irradiation, regardless, for the most part, of the type of resin.

Abstract

A resin composition for laser marking, comprises :
  • [A] a thermoplastic resin, and
  • [B] one or more compounds selected from the group consisting of tetrazole compounds, and also sulfonylhydrazide compounds, nitroso compounds and azo compounds having a decomposition temperature of 210° C or more and optionally a flame-retarding agent. Clear, secure markings can be easily applied in a short time to these resin compositions.

Description

  • This invention relates to resin compositions for laser marking.
  • Methods for marking thermoplastic resins include the spraying of ink by inkjet processes, screen printing, and inkwriting. Problems with heat impact resistance (peeling of the ink surface), weatherability (discoloration of the ink) and wear resistance (wearing of the ink surface) are generally encountered with the use of these methods. In inkjet processes and screen printing, ink is applied to the resin surface and dried, thereby causing it to adhere; attention must be paid to this point in the selection of the ink. In ink embedding processes, either depressions are applied beforehand during molding in the resin marking places or engraving is carried out after molding; marking is then carried out by embedding ink or paint at those places. However, in methods where depressions are applied during molding, the marking shape is limited by the mold, making it difficult to change the marking shape for each product. Hence, in processes where engraving is carried out, a great deal of time is taken up with marking. In addition, because it is necessary that ink or paint be embedded afterward and the excess ink or paint removed, the steps become complicated, making such processes inappropriate for marking mass-produced products.
  • For the above reasons, much industrial use has been made recently of laser marking methods, which are non-contact, have a rapid marking speed, are automated, and enable easy process control. Laser marking methods are processes that use laser light to place marks, bar codes or images on the surface of metal, ceramic, macromolecular organic materials or the like.
  • Laser marking involves irradiation of the target surface with laser light. In a first type of laser marking process, marking is effected by utilizing changes in the surface state (roughening or forming depressions) brought about by erosion of the irradiated portion. In a second type of laser marking process, as described in Japanese Published Unexamined Patent Application [Kokai] Nos. 56-144,995 (1981), 60-155,493 (1985), 60-166,488 (1985), 60-172,590 (1985), 60-47,065 (1985), 62-50,360 (1987) and 3-10,884 (1991), marking is carried out by using the decoloration and discoloraion of pigments and dyes in the irradiated portion. In a third type of laser marking process, as described in Japanese Examined Patent Application [Kokoku] No. 2-47,314 (1990), marking is carried out by using changes in the surface state (projections) due to foaming of the stock resin. Here, in laser marking process (3) that utilizes a change in state, unpolymerized monomers and decomposition products present in that portion of the resin to which intense heat has been applied by means of laser light are volatilized, causing those places to foam. Thus, marking is carried out to scatter and reflect light, and also to cause the resin to rise.
  • However, in marking by roughening or forming depressions in the surface (1), the boundary between the areas irradiated with laser light and the areas not irradiated is indistinct. There are cases where different types of resin are molded into a laminar structure and just the resin in the surface layer is removed. However, the production steps in this process become extremely complex, and there are problems over which lager erosion occurs down to. In the laser marking process (2) involving the decoloration or discoloration of pigments and dyes, the type and color of the resin is limited by the type of pigment or dye, which represents a drawback. Moreover, because the pigments and dyes are readily decolored or discolored by heat, the region of discoloration broadens and the contours of letters or the like become indistinct. In the laser marking process (3) that utilizes changes in state due to foaming, the optimal conditions for each resin must be investigated. Moreover, when one considers that a resin is not often used alone, in cases where the surface of a resin composition made of a plurality of ingredients is marked, the appropriate conditions in the various compositions must be carefully examined. Because some resins do not readily foam, there are limits on the resins that can be used.
  • Hence, the object of this invention is to provide resin compositions to which distinct and secure markings can be easily applied in a short time.
  • (Means for Resolving the Problems)
  • The inventors discovered that when specific compounds are included in a thermoplastic resin, resin compositions are obtainable that can be distinctly marked by a very simple operation.
  • That is, the present invention is a resin composition for laser marking, comprising:
    • [A] a thermoplastic resin, and
    • [B] one or more compounds selected from the group consisting of tetrazole compounds, and also sulfonylhydrazide compounds, nitroso compounds and azo compounds having a decomposition temperature of 210° C or more.
  • There is no particular restriction on the thermoplastic resins used in the present invention, it being possible to use various known thermoplastic resins. These may be, but are not limited to, polyesters such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polycyclohexene terephthalate (PCT), polyphenylene oxide (PPO), polycarbonate (PC), polyether imide (PEI), polystyrenes (PS) such as high-impact polystyrene (HIPS), polyethylene (PE), polypropylene (PP), polyamide (PA), polyvinyl chloride (PVC), polyacetal (POM), fluororesins such as polytetrafluoroethylene, acrylic resins, polysulfones, polyphenylenesulfides (PPS) and methylpentene resins. Alloys of various thermoplastic resins such as alloys of PPO and PS resins can be obtained. The use of polyester, PPO, PC, PEI or a resin alloy containing these is preferable.
  • An essential condition of this invention is that one or more compounds selected from the group consisting of tetrazole compounds and also of azo compounds, nitroso compounds and sulfonylhydrazide compounds having a decomposition temperature of 210° C or more be used. By including these compounds, it is possible to mark resins (compositions) that could not be marked by the method cited in Kokoku No. 2-47,314 (1990). Moreover, because there is no influence on areas not irradiated with laser light, these markings are very distinct. According to research conducted by the inventors, from the standpoint of foaming the laser irradiated areas, as indicated in Kokoku No. 2-47,314 (1990), if compounds that are commonly used as foaming agents, such as aliphatic hydrocarbons, their chlorinates orfluorinates, bicarbonates, or azo compounds, nitroso compounds or sulfonylhydrazide compounds having a decomposition temperature of less than about 210° C are included, this has undesirable consequences, such as foaming during production of the resin composition or foaming even in regions not irradiated with laser light, making for indistinct marking. That is, only resin compositions according to this invention which contain the above compounds provide distinct marking by means of laser light irradiation. This was entirely unexpected.
  • Various known compounds can be used as the tetrazole compounds or as the azo compounds, nitroso compounds or sulfonylhydrazide compounds having a decomposition temperature of 210° C or more (hereinafter, these compounds shall sometimes be referred to as "laser marking additives"). Preferable examples that may be cited include 1 H-tetrazole compounds having substituents, such as tetrazole, 5,5'-bis-1 H-tetrazole, 1-methyl-1H-tetrazole, 5-mercapto-lH-tetrazole, 1-methyl-5-mercapto-1H-tetrazole, 1-ethyt-5-mercapto-1H-tetrazole, 1-carboxymethyl-5-mercapto-1H-tetrazole, 1-cyclohexyl-5-mercapto-1H-hydrotetrazole, 1-phenyl-5-mercapto-1H-tetrazole, 1-(4-hydroxyphenyl)-5-mercapto-1 H-tetrazole, 1-(3-acetamidophenyl)-5-mercapto-1H-tetrazole, 1-N,N-dimethylaminoethyl-5-mercapto-1H-tetrazole, 5-methyl-lH-tetrazole, 1,5-dimethyl-lH-tetrazole, 1-ethyl-5-methyl-lH-tetrazole, 1-methyl-5-(chloromethyl)-1H-tetrazole, 5-phenyl-lH-tetrazole, sodium 1 H-tetrazole-5-carbonate, 1-ethyl-5-hydroxy-1H-tetrazole and 5-amino-1 H-tetrazole; substituent-bearing 2H-tetrazole compounds of the same kind as above; and metal salts of these, such as the lithium, sodium, potassium, calcium, barium, magnesium, zinc, manganese and copper salts. However, the possibilities are not limited to these alone. Combinations of two or more of the above compounds can also be used. Preferable examples of these compounds are the alkaline earth metal salts of tetrazoles, and especially the calcium salt; the alkaline earth metal salts of 5-amino-1 H-tetrazole, and especially the calcium salt; the alkaline earth metal salt of 5-methyl-1 H-tetrazole, and especially the calcium and barium salts; and the alkaline earth metal salt of 5,5'-bis-1 H-tetrazole, and especially the calcium salt. These compounds are preferably used in an amount of about 0.001-10 parts by weight, and even more preferably an amount of about 0.01-5 parts by weight, per 100 parts by weight of the thermoplastic resin.
  • The resin compositions for laser marking of the present invention can include any known substances. For example, these may contain rubber ingredients such as styrene-butadiene copolymers (SB), styrene-acrylonitrile copolymers (SAN), styrene-butadiene-styrene copolymers (SBS), styrene-ethylene-butadiene-styrene copolymers (SEBS), ethylene-propylene copolymers (EP), ethylene-propylene-diene copolymers (EPDM) and acrylonitrile-butadiene-styrene copolymers (ABS).
  • The resin compositions for laser marking according to the present invention can also contain various flame retardants and flame-retarding adjuvants. There is no particular restriction on the flame retardants and flame-retarding adjuvant. Preferable examples that may be cited include halogen-based flame retardants such as brominated imides, brominated polycarbonates, brominated epoxy compounds, brominated bisphenol A (Br-BPA) and brominated polyphenylene oxide; phosphorus-based flame retardantssuchastriphenylphosphates (TPP), and flame-retarding adjuvants such as Sb203, although the possibilities are not limited to these alone. The amount in which these flame retardants and flame-retarding adjuvants are used may be set as desired in accordance with the type of thermoplastic resin and the desired resin composition, but it is generally preferable to set the amount of flame retardant at about 5-30 parts by weight and the amount of flame-retarding adjuvant at about 0-15 parts by weight, per 100 parts by weight of the thermoplastic resin.
  • In addition, reinforcing agents such as glass fibers, carbon fibers and aramid fibers may be contained in the resin compositions for laser marking according to the present invention. The amounts in which these are used may be set as desired in accordance with the type of thermoplastic resin and the desired resin composition, but it is generally desirable for this to be set at about 0-100 parts by weight, and especially about 0-50 parts by weight, per 100 parts by weight of thermoplastic resin.
  • One or more components of any type other than those cited above may also be contained within the resin compositions of this invention within a range that does not interfere with the object of this invention, Examples include inorganic or organic fillers such as glass, silica and talc, as well as conventional additives such as plasticizers, lubricants, heat stabilizers, weather stabilizers, antistatic agents, slip agents, anti-blocking agents, antifogging agents, pigments, dyes, natural oils, synthetic oils and waxes.
  • The resin compositions for laser marking of the present invention can be obtained by mixing together all of the above ingredients. There is no particular restriction on the mixing method, it being possible to adopt any sequence for compounding the various ingredients. For example, marking additives and any other ingredients may be added to a thermoplastic resin in the molten state and mixed, or marking additives and any other ingredients may be added to a solution of the thermoplastic resin and kneaded. Specific methods that may be cited include a method whereby the marking additives and any other ingredients are separately or simultaneously added directly to a thermoplastic resin in the molten state, following which kneading is carried out; a method whereby pellets of a thermoplastic resin are fed together with marking additives and any other ingredients to a single-screw or twin-screw extruder, and melt-kneading is carried out; and a method whereby a thermoplastic resin is dissolved in a suitable solvent (e.g., methylene chloride, chloroform, toluene, tetrahydrofuran), marking additives and any other ingredients are added separately or simultaneously to this solution, and kneading is carried out. Of these methods, one preferable form of the melt kneading method consists of carrying out extrusion with a single-screw or twin-screw extruder (D = 30-90 mm) at a temperature appropriate for the thermoplastic resin being used (for example the temperature may be set at about 260° C in the case of PBT resins, about 280° C in the case of PCT resins, about 280° C in the case of mixtures of PPO resins and PS resins, about 270° C in the case of PC resins, and about 330° C in the case of PEI resins, although it is not limited to these), thereby giving resin compositions according to the present invention in the form of pellets. There is no particular restriction on the method for producing molded pieces from resin compositions according to the present invention. Various known methods such as injection molding, extrusion, blow molding and vacuum molding may be used. Nor is there any particular restriction on the molding conditions, it being possible to mold under any temperature and pressure conditions that are appropriate for the ingredients being used, the intended molded pieces and the molding process (in the case of temperature, this can be set at about 260° C for the injection molding of PBT resins, about 280° C for the injection molding of PCT resins, about 260° C for the injection molding of mixtures of PPO resin and PS resin, about 270° C for the injection molding PC resin, and about 320° C for injection molding PEI resins, although the temperature is not limited to these). The selection of a suitable kneading method and a suitable molding method appropriate for the ingredients and the intended object should be a simple matter to those conversant with the art.
  • Laser marking can be carried out by any technique on the resin compositions of the present invention. For example, a carbon dioxide gas laser or a YAG laser can be used, although the possibilities are not limited to these alone. Distinct marking can be carried out by irradiating laser light onto the resin compositions of the present invention. In marking onto the resin compositions of the present invention, unlike marking that involves decoloring or discoloring dyes or pigments, the laser light does not have an effect on areas other than the irradiated areas. Hence, it is possible, for example, to draw a fine line having a width of about 10 f,.lm. In addition, marking can be rapidly carried out; for instance, if this is a line having a width of about 1.0 mm, writing can be carried out at a speed of 200 mm/sec or more. This invention encompasses resin compositions of various formulations, but it is not necessary to carefully investigate the optimal irradiation conditions for each composition; nor is there any restriction on the resins used as the ingredients. Afurther advantage of the resin compositions according to the present invention is that the production steps can be simplified.
  • The reason why the resin compositions of the present invention are distinctly marked by laser light is not clear, but it is thought that the marking additives within the resin compositions in the portion irradiated with laser light deteriorate or that the resin composition in that portion form projections and depressions, giving rise to the scattering and reflection of light.
  • The present invention shall now be illustrated more concretely by means of the examples presented below, although it shall be understood that these examples in no way restrict the scope of the invention.
  • Examples
  • The ingredients shown in Tables 1-5 were selected from the following ingredients, and pellets were prepared by extrusion using an extruder. Molded pieces measuring 50x50x3mm were injection-molded using these pellets. The temperature during extrusion and the temperature at the time of injection molding are indicated in Tables 1-5.
    • A) Resins: 100 parts by weight of any one of the following:
      • A-a) PBT (ValoxTM, made by GE Plastics Japan)
      • A-b) PCT (ValoxTM, made by GE Plastics Japan)
      • A-c) Mixture of PPO and PS resins (NoryITM, made by GE Plastics Japan)
      • A-d) PC (LexanTM, made by GE Plastics Japan) A-e) PEI (UltemTM, made by GE Plastics Japan).
    • B) Laser marking additives: 0.5 part by weight of one of the following:
      • B-a) the calcium salt of 5,5'-bis-1 H-tetrazole
      • B-b) the calcium salt of tetrazole
      • B-c) the calcium malt of 5-methyl-1 H-tetrazole
      • B-d) the barium salt of 5-methyl-1 H-tetrazole
      • B-e) the calcium salt of 5,5'-bis-1 H-tetrazole
    • C) Flame Retardants: Any one of the following:
      • C-a) 15 parts by weight of brominated imides (BT-93TM, made by Ethyl Corporation)
      • C-b) 15 parts by weight of brominated PC (ML4365TM, made by GE Plastics Japan)
      • C-c) 15 parts by weight of brominated PS (Pyrocheck™', made by Ferro Kagaku)
      • C-d) 15 parts by weight of brominated epoxy compounds (SR-T5000™, made by Sakamoto Yakuhin)
      • C-e) 15 parts by weight of brominated BPA oligomer (FR-53TM, made by Mitsubishi Gas)
      • C-f) mixture of 12 parts by weight of a brominated BPAoligomer (FR-53) and 5 parts by weight of Sb203
      • C-g) 12 parts by weight of TPP
    • D) Glass fibers, used in the amounts (parts by weight) indicated in Tables 1-5.
  • Marking was carried out on the surface of these molded pieces using a CO2 gas laser or a YAG laser. The marking conditions were as follows:
    • CO2 gas laser: 6-24 J/cm2
    • YAG laser:
      • moving speed, 100-400 mm/s
      • byte size, 10-140 µm
    • The marking clarity was evaluated visually. Those results are shown in Tables 1-5. The symbols in the tables have the following meanings:
    • Θ -- very distinct; 0 -- distinct;
    • Δ -- somewhat indistinct; X -- indistinct
      Figure imgb0001
      Figure imgb0002
      Figure imgb0003
      Figure imgb0004
      Figure imgb0005
  • From the above description, it is apparent that, according to the present invention, compositions which contain laser marking additives form distinct marks by means of laser light irradiation, regardless, for the most part, of the type of resin.
  • Using resin compositions containing azodicarbonamide (ADCA) or N,N'-dinitrosopentamethylene tetra- mine (DPT), which are conventional blowing agents, the production of molded pieces by means of the same molding operations as in Examples 1, 7,13,19,25, 31, 37,43,49, 55,61,67, 73, 79 or 85 was attempted, but all of these foamed during extrusion of the resin composition.
  • Effects of the Invention
  • Distinct and secure marking can be carried out on the resin compositions of the present invention by means of laser irradiation. In the resin compositions of the present invention, the laser light does not have an effect on non-irradiated areas. For this reason, it is also possible to draw a fine line having a linewidth of about 10 µm. Resin compositions of various formulations are encompassed within the present invention, but there is no need to closely investigate the optimal conditions for the various compositions, nor is there any restriction on the resins used. Another advantage of the resin compositions according to this invention is that the production steps are simplified.

Claims (2)

  1. (1) A resin composition for laser marking, comprising:
    [A] a thermoplastic resin, and
    [B] one or more compounds selected from the group consisting of tetrazole compounds, and also sulfonylhydrazide compounds, nitroso compounds and azo compounds having a decomposition temperature of 210° C or more.
  2. (2) A resin composition for laser marking according to claim 1, which composition contains also a flame-retarding agent.
EP93302756A 1992-04-16 1993-04-07 Resin compositions for laser marking Withdrawn EP0566312A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP04121028A JP3102818B2 (en) 1992-04-16 1992-04-16 Resin composition for laser marking
JP121028/92 1992-04-16

Publications (1)

Publication Number Publication Date
EP0566312A1 true EP0566312A1 (en) 1993-10-20

Family

ID=14801033

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93302756A Withdrawn EP0566312A1 (en) 1992-04-16 1993-04-07 Resin compositions for laser marking

Country Status (2)

Country Link
EP (1) EP0566312A1 (en)
JP (1) JP3102818B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0680831A1 (en) * 1994-05-04 1995-11-08 Dsm N.V. Shaped article with a marking on a thermoplastic substrate and a process for the manufacture of the shaped article
EP0572178B1 (en) * 1992-05-29 1997-04-16 Ge Plastics Japan Limited Resin compositions for laser marking
EP0822229A1 (en) * 1995-04-18 1998-02-04 Nippon Zeon Co., Ltd. Polyimide resin composition
WO2013183000A1 (en) * 2012-06-04 2013-12-12 Sabic Innovative Plastics Ip B.V. Marked thermoplastic compositions, methods of making and articles comprising the same, and uses thereof
US9209443B2 (en) 2013-01-10 2015-12-08 Sabic Global Technologies B.V. Laser-perforated porous solid-state films and applications thereof
US9662833B2 (en) 2012-06-04 2017-05-30 Sabic Global Technologies B.V. Marked thermoplastic compositions, methods of making and articles comprising the same, and uses thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2356917A1 (en) 1999-10-27 2001-05-03 Kaneka Corporation Extruded styrene resin foams and methods for producing the same
EP2272917B1 (en) 2001-01-22 2012-11-28 Idemitsu Kosan Co., Ltd. Use of a polycarbonate resin compositions for laser marking and molded articles made thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4032691A (en) * 1974-03-22 1977-06-28 Fuji Photo Film Co., Ltd. Recording material
DE8210186U1 (en) * 1982-04-08 1987-10-01 Gao Gesellschaft Fuer Automation Und Organisation Mbh, 8000 Muenchen, De
EP0190997B1 (en) * 1985-02-05 1991-10-09 Novartis AG Laser lettering on pigmented systems

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4032691A (en) * 1974-03-22 1977-06-28 Fuji Photo Film Co., Ltd. Recording material
DE8210186U1 (en) * 1982-04-08 1987-10-01 Gao Gesellschaft Fuer Automation Und Organisation Mbh, 8000 Muenchen, De
EP0190997B1 (en) * 1985-02-05 1991-10-09 Novartis AG Laser lettering on pigmented systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 12, no. 96 (C-484)29 March 1988 & JP-A-62 227 955 ( TOSHIBA CORPORATION ) 6 October 1987 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0572178B1 (en) * 1992-05-29 1997-04-16 Ge Plastics Japan Limited Resin compositions for laser marking
EP0680831A1 (en) * 1994-05-04 1995-11-08 Dsm N.V. Shaped article with a marking on a thermoplastic substrate and a process for the manufacture of the shaped article
BE1008341A3 (en) * 1994-05-04 1996-04-02 Dsm Nv Form part of a mark in surface of a thermoplastic plastic and method for form part of preparation.
US6734248B2 (en) 1995-04-18 2004-05-11 Nippon Zeon Co., Ltd. Pattern forming process using polyimide resin composition
US6310135B1 (en) 1995-04-18 2001-10-30 Nippon Zeon Co., Ltd. Polyimide resin composition
EP0822229B1 (en) * 1995-04-18 2003-07-30 Nippon Zeon Co., Ltd. Polyimide resin composition
EP0822229A1 (en) * 1995-04-18 1998-02-04 Nippon Zeon Co., Ltd. Polyimide resin composition
US6743851B2 (en) 1995-04-18 2004-06-01 Nippon Zeon Co., Ltd. Polyimide film
WO2013183000A1 (en) * 2012-06-04 2013-12-12 Sabic Innovative Plastics Ip B.V. Marked thermoplastic compositions, methods of making and articles comprising the same, and uses thereof
CN104349887A (en) * 2012-06-04 2015-02-11 沙特基础创新塑料Ip私人有限责任公司 Marked thermoplastic compositions, methods of making and articles comprising same, and uses thereof
US9168696B2 (en) 2012-06-04 2015-10-27 Sabic Global Technologies B.V. Marked thermoplastic compositions, methods of making and articles comprising the same, and uses thereof
CN104349887B (en) * 2012-06-04 2017-05-10 沙特基础全球技术有限公司 Marked thermoplastic compositions, methods of making and articles comprising same, and uses thereof
US9662833B2 (en) 2012-06-04 2017-05-30 Sabic Global Technologies B.V. Marked thermoplastic compositions, methods of making and articles comprising the same, and uses thereof
US10639851B2 (en) 2012-06-04 2020-05-05 Sabic Global Technologies Ip B.V. Marked thermoplastic compositions, methods of making and articles comprising the same, and uses thereof
US9209443B2 (en) 2013-01-10 2015-12-08 Sabic Global Technologies B.V. Laser-perforated porous solid-state films and applications thereof

Also Published As

Publication number Publication date
JPH05295274A (en) 1993-11-09
JP3102818B2 (en) 2000-10-23

Similar Documents

Publication Publication Date Title
US5373039A (en) Resin compositions for laser marking
EP2908937B1 (en) Microspheres
US5717018A (en) Laser-inscribable polymer moulding compositions
AU663664B2 (en) Polyester based polymer blends useful for forming extrusion blow moulded articles
JPH07278446A (en) Polymer molding material for giving partial color change especially for formation of color marking with laser energy
MXPA01003758A (en) Laser-markable plastics.
EP0566312A1 (en) Resin compositions for laser marking
EP0601785A1 (en) Nucleating agent for foam molded thermoplastics
US20060030631A1 (en) Laser markable polymers
JP2017520660A (en) Microsphere
JP6502932B2 (en) Microsphere
EP0675001B1 (en) Resin compositions for laser marking
JP3352481B2 (en) Resin composition for laser marking
US20070235414A1 (en) Laser markable polymers
EP1162232A1 (en) Resin composition capable of laser marking, marking method, and marked molded article
EP0680831B1 (en) Shaped article with a marking on a thermoplastic substrate and a process for the manufacture of the shaped article
JPH0781239A (en) Resin composition for laser marking
JP3616565B2 (en) Thermoplastic resin for equivalent molded article molding and equivalent regeneration method
JPH10297095A (en) Laser marking method and resin composition for laser marking
JP2005029739A (en) Resin composition for depiction with lightwave optically amplified by stimulated emission of radiation and use thereof
JPH06345951A (en) Masterbatch for coloring thermoplastic resin
JPH1159077A (en) Manufacture of eraser
JPH10152603A (en) Production of article resembling wood in property and article produced thereby

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT NL

17P Request for examination filed

Effective date: 19940324

17Q First examination report despatched

Effective date: 19950721

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19960201