EP0565481A1 - Label detection apparatus - Google Patents

Label detection apparatus Download PDF

Info

Publication number
EP0565481A1
EP0565481A1 EP93810137A EP93810137A EP0565481A1 EP 0565481 A1 EP0565481 A1 EP 0565481A1 EP 93810137 A EP93810137 A EP 93810137A EP 93810137 A EP93810137 A EP 93810137A EP 0565481 A1 EP0565481 A1 EP 0565481A1
Authority
EP
European Patent Office
Prior art keywords
transmitter
receiver
signal
background
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP93810137A
Other languages
German (de)
French (fr)
Other versions
EP0565481B1 (en
Inventor
Burckart Kind
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Actron Entwicklungs AG
Original Assignee
Actron Entwicklungs AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Actron Entwicklungs AG filed Critical Actron Entwicklungs AG
Publication of EP0565481A1 publication Critical patent/EP0565481A1/en
Application granted granted Critical
Publication of EP0565481B1 publication Critical patent/EP0565481B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/22Electrical actuation
    • G08B13/24Electrical actuation by interference with electromagnetic field distribution
    • G08B13/2402Electronic Article Surveillance [EAS], i.e. systems using tags for detecting removal of a tagged item from a secure area, e.g. tags for detecting shoplifting
    • G08B13/2405Electronic Article Surveillance [EAS], i.e. systems using tags for detecting removal of a tagged item from a secure area, e.g. tags for detecting shoplifting characterised by the tag technology used
    • G08B13/2414Electronic Article Surveillance [EAS], i.e. systems using tags for detecting removal of a tagged item from a secure area, e.g. tags for detecting shoplifting characterised by the tag technology used using inductive tags
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/22Electrical actuation
    • G08B13/24Electrical actuation by interference with electromagnetic field distribution
    • G08B13/2402Electronic Article Surveillance [EAS], i.e. systems using tags for detecting removal of a tagged item from a secure area, e.g. tags for detecting shoplifting
    • G08B13/2465Aspects related to the EAS system, e.g. system components other than tags
    • G08B13/2468Antenna in system and the related signal processing
    • G08B13/2471Antenna signal processing by receiver or emitter
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/22Electrical actuation
    • G08B13/24Electrical actuation by interference with electromagnetic field distribution
    • G08B13/2402Electronic Article Surveillance [EAS], i.e. systems using tags for detecting removal of a tagged item from a secure area, e.g. tags for detecting shoplifting
    • G08B13/2465Aspects related to the EAS system, e.g. system components other than tags
    • G08B13/2488Timing issues, e.g. synchronising measures to avoid signal collision, with multiple emitters or a single emitter and receiver

Definitions

  • the present invention relates to a device for the detection of labels which are used for theft protection of goods and are provided with an electrical resonance circuit with a resonance frequency (f R ) in the MHz range, the device comprising a transmitter and a receiver, of which the transmitter a transmission signal sequence is generated and emitted via a transmission antenna, the frequency of which is wobbled in wobble cycles over the predetermined resonance frequency of the labels and the presence of a label in the area between the transmitting and the receiving antenna is detected in the receiver by evaluating signals received via a receiving antenna becomes.
  • f R resonance frequency
  • Devices of this type are known in several versions and in use. Common to all devices is the problem of discriminating the relatively weak label signals from the interference background which is always present and avoiding false alarms. In particular, there are particular difficulties in the form of disturbances which are caused by diffractions and reflections of the high-frequency electromagnetic waves emitted by the transmitting antenna on all possible objects in the vicinity, such as walls or objects. Such disturbances can namely be very similar to the label signals sought, in which case they cannot be easily eliminated by filtering.
  • the present invention takes a different approach to solving the same problem in which there is no need for intermittent transmission and reception.
  • the transmission signal sequence in the transmitter is generated digitally and with a corresponding phase position with respect to each wobble cycle.
  • the signals received by means of the receiving antenna are sampled and digitized synchronously in the receiver with the signal generation in the transmitter.
  • a background is formed from the digitized signal values of n wobble cycles. This is subtracted from the digitized signal values of the last wobble cycle or from a foreground which is formed like the background, but only using the digitized signal values of the last m wobble cycles.
  • the number n is considerably larger (preferably by one to two orders of magnitude) than the number m.
  • the disturbances critical for label discrimination are practically stationary in comparison to the label signals, i.e. always appear in the same way in a large number of successive wobble cycles. This is actually the case as far as the disturbances caused by the aforementioned diffractions and reflections are concerned, but only if exactly the same signal sequence with exactly the same phase position is emitted via the transmitting antenna in each wobble cycle.
  • the label signals are subject to a temporal change with regard to their occurrence, if only because the labels are inevitably moved when they pass through the antenna arrangement.
  • the signal sequence emitted via the transmitting antenna is generated digitally in the transmitter.
  • the very critical phase condition can be met relatively simply and with sufficient precision.
  • the sampling in the receiver is carried out synchronously with the signal generation in the transmitter.
  • Fig. 1 only the device components essential for understanding the inventive idea are shown. As far as in Fig. 1 it concerns multi-bit data connections (e.g. with 16 bits), these are drawn widely. In Fig. 2, the actually very high-frequency processes are shown at low frequency for graphic reasons.
  • the clock generator generates a clock signal sequence with a clock frequency of approximately 48 MHz. This is therefore several times higher than the resonance frequency of the resonance circuits on the labels to be detected, which is usually predetermined at about 8.2 MHz, or that of the signal sequence to be generated by the transmitter 1 for this purpose.
  • the clock signal is reduced in transmitter 1 in a frequency reducer 4 (e.g. by a factor of 9) and then fed to a modulo-m counter 5. At its data output, this supplies the numbers from 0 to m as input variables for a downstream function generator 6 in the sequence of the reduced clock rate.
  • the wobble cycles are determined by the cycle of the modulo-m counter 5. Their frequency is usually chosen between 80 and 85 Hz.
  • the function generator 6 is preferably a PROM (with a storage capacity of e.g. 1 megabyte), in which a function table is stored.
  • the stored function values correspond to the phase angle increment ⁇ for the signal sequence to be generated digitally in the transmitter 1.
  • the phase angle increment as a function of time t is shown schematically under a). Because of its discrete generation, the temporal course of the phase angle increment is step-shaped, the function value changing in the rhythm of the step-down clock. This is shown in FIG. 2 a) only on the left at the beginning of the time scale, whereas the stair curve is extended continuously at longer times to make the course of the function easier to recognize.
  • the course of the function is sinusoidal around a phase angle increment value Au, and not, as is usually the case with wobbling, selected as a sawtooth.
  • the sinusoidal function curve advantageously results in fewer harmonics.
  • phase angle increment values supplied by the function generator 6 are in the rhythm of those supplied directly by the clock generator, i.e. clock signal, which is not reduced, is accumulated by binary addition in order to form the values for the phase angle a therefrom.
  • the phase angle values a are fed as input variables to a further function generator 8.
  • the value is automatically limited by the predetermined number of bits of the accumulator 7.
  • the further function generator delivers a fixed amplitude value of the signal sequence to be generated for each phase angle value.
  • the amplitude values of the signal sequence to be generated in turn correspond to values of the sine function.
  • the digital-to-analog converter 9 is used to convert the signal values supplied by the further function generator 8 into an analog voltage signal. Its output signal is smoothed by means of the low-pass filter 10 before it is fed to the transmission antenna 11 as a transmission signal.
  • 2 shows under b) on the left at the beginning of the time scale the discrete voltage values supplied by the digital-to-analog converter 9 and, extended over the entire time scale shown, the transmission signal curve resulting after the filtering by means of the low-pass filter 10. 2 b) clearly shows how the frequency of this curve increases or decreases over the wobble cycle shown in FIG. 2 a) (usually about +/- 10%).
  • the signal sequence received via the receiving antenna is first demodulated by combining it with the pure, i.e. undisturbed transmission signal is multiplied.
  • the transmission signal must be transmitted from the transmitter 1 not only by air but also directly to the receiver 2 via a line connection.
  • the demodulation in the mixer 13 using the pure, undisturbed transmission signal instead of the otherwise usually customary demodulation by multiplying the interference-affected reception signal by itself contributes significantly to the interference reduction.
  • a background is formed in the background generator 16 from the digitized signal values of the n (e.g. 800) wobble cycles preceding the respective last wobble cycle and subtracted in the difference generator 17 from the digitized signal values of the respective last wobble cycle.
  • n e.g. 800
  • m e.g. 16
  • wobble cycles are combined to form a "foreground” and the background is then formed from n '(e.g. 50) such "foregrounds”.
  • the background is then correspondingly not only subtracted from the digitized signal values of the last wobble cycle but from the last "foreground” formed.
  • the background formation and subtraction serves to distinguish interference "S" in the "DC voltage component", which is caused in particular by reflections, diffractions and superimpositions of the transmitted signal and is practically permanently present, from interference "S" caused by a resonance circuit will.
  • background formation in the background former 16 storage means must be provided, in which the digitized signal values determined by scanning can be stored cycle by cycle.
  • the signal values belonging to a wobble cycle each form a data record.
  • the background formation is carried out by adding the signal values determined at the same sampling time within the wobble cycles used for background formation and then dividing the total values obtained by the number of wobble cycles used for background formation, i.e. be standardized to this number.
  • the formation of the “foreground” mentioned is basically done in the same way.
  • the background subtraction in the difference former 17 is also carried out separately with respect to the individual sampling times.
  • the data record that results after the background subtraction is finally fed to an evaluation unit 18, in which it is further evaluated.
  • the evaluation unit can be of a known type and is therefore not further described here.
  • it makes the decision about the presence of a resonance circuit in the area between the transmission antenna 11 and the reception antenna 12.
  • On a line 19 it generates an alarm signal in the event that the presence of a resonance circuit is determined.

Abstract

The apparatus for detecting labels which are used for protecting goods against theft and are provided with an electrical resonant circuit (21) having a resonant frequency (fR) in the MHz range, comprises a transmitter (1) and a receiver (2). The transmitter (1) generates a transmitted signal sequence, the frequency of which is swept in sweep cycles over the predetermined resonant frequency of the labels and is radiated via a transmitting antenna (11). The signal is generated digitally and with corresponding phase angle with respect to each sweep cycle in the transmitter (1). In the receiver (2), the signals received by means of a receiving antenna (12) are sampled synchronously with the signal generation in the transmitter (1) and digitised. From the digitised signal values of n sweep cycles, a background is formed and subtracted from the digitised signal values of the last sweep cycle in each case. A long-time and a short-time background can also be formed and the latter can be subtracted from the former. Due to the background subtraction, in particular, interference which is relatively constant with respect to time can be discriminated such as is caused mainly by diffraction and reflections of the transmitted signal on objects existing in the environment of the transmitting and receiving antenna. <IMAGE>

Description

Technisches GebietTechnical field

Die vorliegende Erfindung betrifft eine Vorrichtung zur Detektion von Etiketten, welche zur Diebstahlsicherung von Waren dienen und mit einem elektrischen Resonanzschaltkreis mit einer Resonanzfrequenz (fR) im MHz-Bereich versehen sind, wobei die Vorrichtung einen Sender und einen Empfänger umfasst, wobei von dem Sender eine Sendesignalfolge erzeugt und über eine Sendeantenne abgestrahlt wird, deren Frequenz in Wobbelzyklen über die vorgegebene Resonanzfrequenz der Etiketten hinweg gewobbelt ist und wobei in dem Empfänger durch Auswertung von über eine Empfangsantenne empfangenen Signalen die Präsenz einer Etikette im Bereich zwischen der Sende- und der Empfangsantenne detektiert wird.The present invention relates to a device for the detection of labels which are used for theft protection of goods and are provided with an electrical resonance circuit with a resonance frequency (f R ) in the MHz range, the device comprising a transmitter and a receiver, of which the transmitter a transmission signal sequence is generated and emitted via a transmission antenna, the frequency of which is wobbled in wobble cycles over the predetermined resonance frequency of the labels and the presence of a label in the area between the transmitting and the receiving antenna is detected in the receiver by evaluating signals received via a receiving antenna becomes.

Stand der TechnikState of the art

Vorrichtungen dieser Art sind in mehreren Ausführungen bekannt und im Einsatz. Allen Vorrichtungen gemeinsam ist das Problem, die relativ schwachen Etikettensignale von dem stets vorhandenen Störhintergrund zu diskriminieren und Fehlalarme zu vermeiden. Besondere Schwierigkeiten bereiten dabei insbesondere Störungen, welche durch Beugungen und Reflexionen der von der Sendantenne abgestrahlten hochfrequenten elektromagnetischen Wellen an allen möglichen sich in der Umgebung befindlichen Objekten, wie Wänden oder Gegenständen verursacht werden. Solche Störungen können nämlich sehr ähnlich zu den gesuchten Etikettensignalen sein, in welchem Fall sie sich durch Filtern nicht ohne weiteres eliminieren.Devices of this type are known in several versions and in use. Common to all devices is the problem of discriminating the relatively weak label signals from the interference background which is always present and avoiding false alarms. In particular, there are particular difficulties in the form of disturbances which are caused by diffractions and reflections of the high-frequency electromagnetic waves emitted by the transmitting antenna on all possible objects in the vicinity, such as walls or objects. Such disturbances can namely be very similar to the label signals sought, in which case they cannot be easily eliminated by filtering.

Bei der aus der US-A-4,531,117 bekannten Vorrichtung wird dem genannten Problem durch intermittierendes Senden und Empfangen Rechnung getragen. Es wird nur in Sendepausen des Senders und nach dem Abklingen des Sendesignals sowie der Störungen empfangen und detektiert (Echoverfahren). Hierbei wird ausgenutzt, dass die Etikettensignale im allgemeinen langsamer abklingen als die Störungen.In the device known from US-A-4,531,117, the problem mentioned is taken into account by intermittent transmission and reception. It is only received and detected during pauses in transmission of the transmitter and after the transmission signal and the interference have decayed (echo method). This takes advantage of the fact that the label signals generally decay more slowly than the interference.

Darstellung der ErfindungPresentation of the invention

Durch die vorliegende Erfindung wird zur Lösung des gleichen Problems ein anderer Weg eingeschlagen, bei welchem sich ein intermittierendes Senden und Empfangen erübrigt. Bei dererfindungsgemässen Vorrichtung, wie sie im Patentanspruch 1 gekennzeichnet ist, wird die Sendesignalfolge im Sender digital und bezüglich jedes Wobbelzyklus mit übereinstimmender Phasenlage erzeugt. Im Empfänger werden die vermittels der Empfangsantenne empfangenen Signale nach einer Demodulation mit der Signalerzeugung im Sender synchron abgetastet und digitalisiert. Aus den digitalisierten Signalwerten von n Wobbelzyklen wird jeweils ein Hintergrund gebildet. Dieser wird von den digitalisierten Signalwerten des jeweils letzten Wobbelzyklus oder von einem Vordergrund subtrahiert, welcher wie der Hintergrund, jedoch lediglich unter Verwendung der digitalisierten Signalwerte der jeweils letzten m Wobbeizkien gebildet wird. Die Anzahl n ist dabei wesentlich grösser (vorzugsweise um eine bis zwei Grössenordnungen) als die Anzahl m.The present invention takes a different approach to solving the same problem in which there is no need for intermittent transmission and reception. In the device according to the invention, as is characterized in claim 1, the transmission signal sequence in the transmitter is generated digitally and with a corresponding phase position with respect to each wobble cycle. After demodulation, the signals received by means of the receiving antenna are sampled and digitized synchronously in the receiver with the signal generation in the transmitter. A background is formed from the digitized signal values of n wobble cycles. This is subtracted from the digitized signal values of the last wobble cycle or from a foreground which is formed like the background, but only using the digitized signal values of the last m wobble cycles. The number n is considerably larger (preferably by one to two orders of magnitude) than the number m.

Gemäss der Erfindung wird demnach zur Eliminierung der für die Etikettendiskriminierung kritischen Störungen von einer Hintergrundsubtraktion Gebrauch gemacht. Vorraussetzung dafür ist allerdings, dass die für die Etikettendiskriminierung kritischen Störungen im Vergleich zu den Etikettensignalen praktisch stationär sind, d.h. in einer grösseren Anzahl von aufeinanderfolgenden Wobbelzyklen stets in gleicher Weise auftreten. Dies ist, was die durch die vorgenannten Beugungen und Reflexionen verursachten Störungen anbetrifft, tatsächlich der Fall, jedoch nurdann, wenn in jedem Wobbelzyklus jeweils exakt die gleiche Signalfolge mit jeweils exakt übereinstimmender Phasenlage über die Sendeantenne abgestrahlt wird. Die Etikettensignale unterliegen dagegen einer zeitlichen Änderung bezüglich ihres Auftretens und zwar allein schon dadurch, dass sich die Etiketten beim passieren der Antennenanordnung zwangsläufig bewegt werden.According to the invention, use is made of a background subtraction to eliminate the interference critical for label discrimination. A prerequisite for this, however, is that the disturbances critical for label discrimination are practically stationary in comparison to the label signals, i.e. always appear in the same way in a large number of successive wobble cycles. This is actually the case as far as the disturbances caused by the aforementioned diffractions and reflections are concerned, but only if exactly the same signal sequence with exactly the same phase position is emitted via the transmitting antenna in each wobble cycle. The label signals, on the other hand, are subject to a temporal change with regard to their occurrence, if only because the labels are inevitably moved when they pass through the antenna arrangement.

Um diese Anforderung erfüllen zu können, wird u.a. die über die Sendeantenne abgestrahlte Signalfolge im Sender digital erzeugt. Bei der digitalen Signalerzeugung kann nämlich die sehr kritische Phasenbedingung verhältnismässig einfach und ausreichend präzise erfüllt werden. Aus dem gleichen Grund erfolgt auch die Abtastung im Empfänger synchron mit der Signalerzeugung im Sender.In order to be able to meet this requirement, the signal sequence emitted via the transmitting antenna is generated digitally in the transmitter. With digital signal generation, the very critical phase condition can be met relatively simply and with sufficient precision. For the same reason, the sampling in the receiver is carried out synchronously with the signal generation in the transmitter.

In den abhängigen Ansprüchen sind vorteilhafte und bevorzugte Ausgestaltungen bzw. Weiterbildungen der vorliegenden Erfindung gekennzeichnet.Advantageous and preferred refinements or developments of the present invention are characterized in the dependent claims.

Nachfolgend wird die Erfindung unter Bezugnahme auf die beigefügten Zeichnungen beispielsweise näher erläutert.The invention is explained in more detail below with reference to the accompanying drawings, for example.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Es zeigt:

  • Fig. 1 schematisch eine Vorrichtung nach der Erfindung, und
  • Fig. 2 unter a), b) und c) Zeitdiagramme zur Erläuterung der Funktion der Vorrichtung von Fig. 1.
It shows:
  • Fig. 1 shows schematically a device according to the invention, and
  • 2 under a), b) and c) timing diagrams to explain the function of the device of FIG. 1st

In Fig. 1 sind nur die für das Verständnis der Erfindungsidee wesentlichen Vorrichtungsbestandteile dargestellt. Soweit es sich in Fig. 1 um Mehrbit-Datenverbindungen (mit z.B. 16 Bit) handelt, sind diese verbreiteit gezeichnet. In Fig. 2 sind aus zeichnerischen Gründen die tatsächlich sehr hochfrequenten Vorgänge niederfrequent dargestellt.In Fig. 1 only the device components essential for understanding the inventive idea are shown. As far as in Fig. 1 it concerns multi-bit data connections (e.g. with 16 bits), these are drawn widely. In Fig. 2, the actually very high-frequency processes are shown at low frequency for graphic reasons.

Weg zur Ausführung der ErfindungWay of carrying out the invention

Die Vorichtung von Fig. 1 umfasst einen Sender 1 und einen Empfänger 2. Sowohl der Sender 1 als auch der Empfänger 2 werden von einem gemeinsamen Taktgenerator 3 getaktet. Der Taktgenerator erzeugt eine Taktsignalfolge mit einer Taktfrequenz von etwa 48 MHz. Diese ist damit um ein Mehrfaches höher als die üblicherweise zu etwa 8,2 MHz vorgegebene Resonanzfrequenz der Resonanzschaltkreise auf den zu detektierenden Etiketten bzw. als diejenige der zu diesem Zweck vom Sender 1 zu erzeugenden Signalfolge.1 comprises a transmitter 1 and a receiver 2. Both the transmitter 1 and the receiver 2 are clocked by a common clock generator 3. The clock generator generates a clock signal sequence with a clock frequency of approximately 48 MHz. This is therefore several times higher than the resonance frequency of the resonance circuits on the labels to be detected, which is usually predetermined at about 8.2 MHz, or that of the signal sequence to be generated by the transmitter 1 for this purpose.

Das Taktsignal wird im Sender 1 in einem Frequenzuntersetzer 4 untersetzt (z.B. um einen Faktor 9) und dann einem Modulo-m-Zähler 5 zugeführt. Dieser liefert an seinem Datenausgang in der Folge des untersetzten Taktes die Zahlen von 0 bis m als Eingangsgrössen für einen nachgeschalteten Funktionsgenerator 6. Durch den Zyklus des Modulo-m-Zählers 5 werden die Wobbelzyklen bestimmt. Deren Frequenz wird üblicherweise zwischen 80 und 85 Hz gewählt.The clock signal is reduced in transmitter 1 in a frequency reducer 4 (e.g. by a factor of 9) and then fed to a modulo-m counter 5. At its data output, this supplies the numbers from 0 to m as input variables for a downstream function generator 6 in the sequence of the reduced clock rate. The wobble cycles are determined by the cycle of the modulo-m counter 5. Their frequency is usually chosen between 80 and 85 Hz.

Der Funktionsgenerator 6 ist vorzugsweise ein PROM (mit einer Speicherkapaziät von z.B. 1 Megabyte), in welchem eine Funktionstabelle abgelegt ist. Die abgelegten Funktionswerte entsprechen dem Phasenwinkelinkrement Δα für die im Sender 1 digital zu erzeugende Signalfolge. In Fig. 2 ist unter a) das Phasenwinkelincrement als Funktion der Zeit t schematisch dargestellt. Wegen seiner diskreten Erzeugung ist der zeitliche Verlauf des Phasenwinkelinkrements treppenförmig, wobei sich der Funktionswert jeweils im Rythmus des untersetzten Taktes ändert. Dies ist in Fig. 2 a) lediglich links am Anfang der Zeitskala so dargestellt, wohingegen die Treppenkurve bei grösseren Zeiten zur besseren Erkennbarkeit des Funktionsverlaufs kontinuierlich ausgezogen ist. Der Funktionsverlauf ist sinusförmig um einen Phasenwinkelincrement-Wert Au, und nicht, wie beim Wobbeln sonst meist üblich, sägezahnförmig gewählt. Aus dem sinusförmigen Funktionsverlauf-resultieren mit Vorteil weniger Oberwellen.The function generator 6 is preferably a PROM (with a storage capacity of e.g. 1 megabyte), in which a function table is stored. The stored function values correspond to the phase angle increment Δα for the signal sequence to be generated digitally in the transmitter 1. 2, the phase angle increment as a function of time t is shown schematically under a). Because of its discrete generation, the temporal course of the phase angle increment is step-shaped, the function value changing in the rhythm of the step-down clock. This is shown in FIG. 2 a) only on the left at the beginning of the time scale, whereas the stair curve is extended continuously at longer times to make the course of the function easier to recognize. The course of the function is sinusoidal around a phase angle increment value Au, and not, as is usually the case with wobbling, selected as a sawtooth. The sinusoidal function curve advantageously results in fewer harmonics.

In einem Akkumulator 7 werden die von dem Funktionsgenerator 6 gelieferten Phasenwinkelinkrement-Werte im Rythmus des direkt vom Taktgenerator gelieferten, d.h. nicht untersetzten Taktsignals durch binäre-Addition akkumuliert, um daraus die Werte für den Phasenwinkel a zu bilden. Die Phasenwinkel-Werte a werden als Eingangsgrössen einem weiteren Funktionsgenerator 8 zugeführt. Durch die vorgegebene Bitzahl des Akkumumulators 7 ist ihr Wert automatisch nach oben begrenzt. Der weitere Funktionsgenerator liefert zu jedem Phasenwinkelwert einen festgelegten Amplitudenwert der zu erzeugenden Signalfolge. Die Amplitudenwerte der zu erzeugenden Signalfolge entsprechen wiederum Werten der Sinusfunktion.In an accumulator 7, the phase angle increment values supplied by the function generator 6 are in the rhythm of those supplied directly by the clock generator, i.e. clock signal, which is not reduced, is accumulated by binary addition in order to form the values for the phase angle a therefrom. The phase angle values a are fed as input variables to a further function generator 8. The value is automatically limited by the predetermined number of bits of the accumulator 7. The further function generator delivers a fixed amplitude value of the signal sequence to be generated for each phase angle value. The amplitude values of the signal sequence to be generated in turn correspond to values of the sine function.

Zur Umsetzung der von dem weiteren Funktionsgenerator 8 gelieferten Signalwerte in ein analoges Spannungssignal dient der Digital-Analog-Wandler 9. Dessen Ausgangssignal wird noch vermittels des Tiefpassfilters 10 geglättet, bevor es der Sendeantenne 11 als Sendesignal zugeführt wird. Fig. 2 zeigt unter b) links am Anfang der Zeitskala die vom Digital-Analog-Wandler 9 gelieferten diskreten Spannungswerte und, über die gesamte dargestellte Zeitskala ausgezogen, die sich nach dem Filtern vermittels des Tiefpassfilters 10 ergebende Sendesignalkurve. Anhand von Fig. 2 b) ist deutlich zu sehen, wie sich die Frequenz dieser Kurve über den in Fig. 2 a) dargestellten Wobbelzyklus erhöht bzw. erniedrigt (üblicherweise etwa um +/- 10%).The digital-to-analog converter 9 is used to convert the signal values supplied by the further function generator 8 into an analog voltage signal. Its output signal is smoothed by means of the low-pass filter 10 before it is fed to the transmission antenna 11 as a transmission signal. 2 shows under b) on the left at the beginning of the time scale the discrete voltage values supplied by the digital-to-analog converter 9 and, extended over the entire time scale shown, the transmission signal curve resulting after the filtering by means of the low-pass filter 10. 2 b) clearly shows how the frequency of this curve increases or decreases over the wobble cycle shown in FIG. 2 a) (usually about +/- 10%).

Im Empfänger 2 wird die über die Empfangsantenne empfangene Signalfolge zunächst demoduliert, indem sie in dem Mischer 13 mit dem reinen, d.h. ungestörten Sendesignal multipliziert wird. Das Sendesignal muss zu diesem Zweck vom Sender 1 nicht nur über den Luftweg sondern zusätzlich direkt über eine Leitungsverbindung zum Empfänger 2 übertragen werden. Die Demodulation im Mischer 13 unter Verwendung des reinen, ungestörten Sendesignals anstelle der ansonsten meist üblichen Demodulation durch Multiplikation des störungsbehafteten Empfangssignals mit sich selbst, trägt nicht unwesentlich mit zur Störungsreduktion bei.In the receiver 2, the signal sequence received via the receiving antenna is first demodulated by combining it with the pure, i.e. undisturbed transmission signal is multiplied. For this purpose, the transmission signal must be transmitted from the transmitter 1 not only by air but also directly to the receiver 2 via a line connection. The demodulation in the mixer 13 using the pure, undisturbed transmission signal instead of the otherwise usually customary demodulation by multiplying the interference-affected reception signal by itself contributes significantly to the interference reduction.

Als Ergebnis der Demodulation ergibt sich eine "Gleichspannungs-Komponente" sowie eine Komponente mit der doppelten Sendesignalfrequenz. Letztere wird in dem nachgeschalteten Tiefpassfilter 14 (Grenzfrequenz bei ca. 7 kHz) eliminiert. Die übrig bleibende "Gleichspannungs-Komponente" ist in Fig. 2 c) schematisch dargestellt. Sie enthält etwa in der Mitte der Zeitskala eine kleine, mit "S" bezeichnete "Störung", wie sie typisch von einem zwischen Sendeantenne 11 und Empfangsantenne 12 befindlichen Resonanzschaltkreis 21, ggf. jedoch auch durch Beugungen und Reflexionen des Sendesignals verursacht wird. Zur weiteren Auswertung und Diskriminierung wird die "Gleichspanungs-Komponente" abgetastet (z.B. 128 mal pro Wobbelzyklus) und digitalisiert. In Fig. 1 ist zur Ausführung dieser Funktionen lediglich ein Analog-Digital-Wandler 15 dargestellt. Diesem ist zwecks Synchronisation der Abtastung mit den vom Sender 1 bestimmten Wobbelzyklen das Taktsignal des Taktgenerators 3, in dem Frequenzuntersetzer 20 jedoch geeignet untersetzt, zugeführt.The result of the demodulation results in a "DC voltage component" and a component with twice the transmission signal frequency. The latter is eliminated in the downstream low-pass filter 14 (cut-off frequency at approx. 7 kHz). The remaining "DC component" is shown schematically in Fig. 2 c). Approximately in the middle of the time scale, it contains a small “interference” labeled “S”, as is typically caused by a resonance circuit 21 located between the transmission antenna 11 and the reception antenna 12, but possibly also due to diffractions and reflections of the transmission signal. For further evaluation and discrimination, the "DC voltage component" is sampled (e.g. 128 times per wobble cycle) and digitized. In Fig. 1, only an analog-to-digital converter 15 is shown for performing these functions. For the purpose of synchronizing the scanning with the wobble cycles determined by the transmitter 1, the clock signal of the clock generator 3, but appropriately reduced in the frequency reducer 20, is fed to the latter.

In dem Hintergrundbildner 16 wird aus den digitalisierten Signalwerten der dem jeweils letzten Wobbelzyklus jeweils vorangegangenen n (z.B. 800) Wobbelzyklen ein Hintergrund gebildet und in dem Differenzbildner 17 von den digitalisierten Signalwerten des jeweils letzten Wobbelzyklus subtrahiert. Vorzugsweise werden jedoch jeweils m (z.B. 16) Wobbelzyklen zu einem "Vordergrund" zusammengefasst und aus n' (z.B. 50) solcher "Vordergründe" dann der Hintergrund gebildet. Der Hintergrund wird dann entsprechend auch nicht lediglich von den digitalisierten Signalwerten des jeweils letzten Wobbelzyklus sondern von dem jeweils zuletzt gebildeten "Vordergrund" subtrahiert.A background is formed in the background generator 16 from the digitized signal values of the n (e.g. 800) wobble cycles preceding the respective last wobble cycle and subtracted in the difference generator 17 from the digitized signal values of the respective last wobble cycle. However, preferably m (e.g. 16) wobble cycles are combined to form a "foreground" and the background is then formed from n '(e.g. 50) such "foregrounds". The background is then correspondingly not only subtracted from the digitized signal values of the last wobble cycle but from the last "foreground" formed.

Die Hintergrundbildung und Subtraktion dient dazu, Störungen "S" in der"Gleichspannungs-Komponente", welche insbesondere durch Reflexionen, Beugungen und Überlagerungen des Sendesignals verursacht und praktisch permanent vorhanden sind, von solchen Störungen "S" zu unterscheiden, welche von einem Resonanzschaltkreis verursacht werden.The background formation and subtraction serves to distinguish interference "S" in the "DC voltage component", which is caused in particular by reflections, diffractions and superimpositions of the transmitted signal and is practically permanently present, from interference "S" caused by a resonance circuit will.

Damit die permanent vorhandenen, "Störungen" bei der Hintergrundsubtraktion herausfallen können, müssen sich, wie oben bereits erwähnt, die Verhältnisse in jedem Wobbelzylus, insbesondere hinsichtlich der Phase der erzeugten Signalfolge, möglichst genau entsprechen. In jedem Wobbelzyklus muss die Summe genommen über alle Phasenwinkelinkremente ein ganzzahliges Vielfaches von 2 betragen. Zu den in Fig. 2 mit to bezeichneten Zeitpunkten darf es keinen Phasensprung geben. Diese sehr strenge "Phasenbedingung" lässt sich jedoch, wie bereits erwähnt, durch die digitale Sendesignalerzeugung sehr einfach erfüllen. Zur Herstellung exakt gleicher Verhältnisse in aufeinanderfolgenden Wobbelzyklen dient auch die Synchronisation der Empfangssignalabtastung unter Verwendung des Taktsignals, mit dem auch die Signalerzeugung im Sender getaktet ist.So that the permanently present "disturbances" in the background subtraction can drop out, as already mentioned above, the conditions in each wobble cycle must correspond as closely as possible, in particular with regard to the phase of the generated signal sequence. In each sweep cycle, the sum taken over all phase angle increments must be an integer multiple of 2. At the points in time denoted by t o in FIG. 2, there must be no phase jump. However, as already mentioned, this very strict "phase condition" can be very easily fulfilled by the digital transmission signal generation. The synchronization of the received signal sampling using the clock signal with which the signal generation in the transmitter is also clocked also serves to establish exactly the same conditions in successive wobble cycles.

Es versteht sich, dass zur Hintergrundbildung in dem Hintergrundbildner 16 Speichermittel vorgesehen sein müssen, in welchen die durch Abstastung ermittelten digitalisierten Signalwerte zyklusweise abgespeichert werden können. Die zu einem Wobbelzyklus gehörenden Signalwerte bilden dabei jeweils einen Datensatz. Die Hintergrundbildung erfolgt, indem die zum jeweils gleichen Abtastzeitpunkt innerhalb der zur Hintergrundbildung verwendeten Wobbelzyklen ermittelten Signalwerte addiert und anschliessend die erhaltenen Summenwerte durch die Anzahl der zur Hintergrundbildung verwendeten Wobbelzyklen dividiert, d.h. auf diese Anzahl normiert werden. Die Bildung des erwähnten "Vordergrundes" erfolgt grundsätzlich auf dieselbe Art. Die Hintergrundsubtraktion im Differenzbildner 17 erfolgt ebenfalls separat bezüglich der einzelnen Abtastzeitpunkte.It goes without saying that for background formation in the background former 16 storage means must be provided, in which the digitized signal values determined by scanning can be stored cycle by cycle. The signal values belonging to a wobble cycle each form a data record. The background formation is carried out by adding the signal values determined at the same sampling time within the wobble cycles used for background formation and then dividing the total values obtained by the number of wobble cycles used for background formation, i.e. be standardized to this number. The formation of the “foreground” mentioned is basically done in the same way. The background subtraction in the difference former 17 is also carried out separately with respect to the individual sampling times.

Der sich nach der Hintergrundsubtraktion jeweils ergebende Datensatz wird schliesslich einer Auswerteeinheit 18 zugeführt, in der er weiter ausgewertet wird. Die Auswerteeinheit kann von bereits bekannter Art sein und ist deshalb hier auch nicht weiter beschrieben. Sie trifft insbesondere anhand der ihr zugeführten Datensätze die Entscheidung über die Präsenz eines Resonanzschaltkreises im Bereich zwischen der Sendeantenne 11 und der Empfangsantenne 12. Auf einer Leitung 19 erzeugt sie ein Alarmsignal, im Falle, dass die Präsenz eines Resonanzschaltkreises festgestellt wird.The data record that results after the background subtraction is finally fed to an evaluation unit 18, in which it is further evaluated. The evaluation unit can be of a known type and is therefore not further described here. In particular, on the basis of the data records supplied to it, it makes the decision about the presence of a resonance circuit in the area between the transmission antenna 11 and the reception antenna 12. On a line 19 it generates an alarm signal in the event that the presence of a resonance circuit is determined.

Claims (4)

1. Vorrichtung zur Detektion von Etiketten, welche zur Diebstahlsicherung von Waren dienen und mit einem elektrischen Resonanzschaltkreis (21) mit einer Resonanzfrequenz (fR) im MHz-Bereich versehen sind, wobei die Vorrichtung einen Sender (1) und einen Empfänger (2) umfasst, wobei von dem Sender eine Sendesignalfolge erzeugt und über eine Sendeantenne (11) abgestrahlt wird, deren Frequenz in Wobbelzyklen über die vorgegebene Resonanzfrequenz der Etiketten hinweg gewobbelt ist und wobei in dem Empfänger durch Auswertung von über eine Empfangsantenne (12) empfangenen Signalen die Präsenz einer Etikette im Bereich zwischen der Sende- und der Empfangsantenne detektiert wird, dadurch gekennzeichnet, dass die Sendesignalfolge im Sender digital und bezüglich jedes Wobbelzyklus mit übereinstimmender Phasenlage erzeugt wird, dass die vermittels der Empfangsantenne empfangenen Signale im Empfänger nach einer Demodulation mit der Signalerzeugung im Sender synchron abgetastet und digitalisiert werden, dass aus den digitalisierten Signalwerten von n Wobbelzyklen jeweils ein Hintergrund gebildet wird und dass dieser Hintergrund von den digitalisierten Signalwerten des jeweils letzten Wobbelzyklus oder von einem Vordergrund subtrahiert wird, welcher wie der Hintergrund, jedoch lediglich unter Verwendung der digitalisierten Signalwerte der jeweils letzten m Wobbeizkien gebildet wird, wobei n wesentlich grösser als m ist.1. Device for the detection of labels, which are used for the theft protection of goods and are provided with an electrical resonance circuit (21) with a resonance frequency (f R ) in the MHz range, the device comprising a transmitter (1) and a receiver (2) The transmitter generates a transmission signal sequence and emits it via a transmission antenna (11), the frequency of which is wobbled in wobble cycles over the predetermined resonance frequency of the labels, and the presence in the receiver by evaluating signals received via a reception antenna (12) a label is detected in the area between the transmitting and receiving antennas, characterized in that the transmission signal sequence in the transmitter is generated digitally and with respect to each wobble cycle with a matching phase position, that the signals received by means of the receiving antenna in the receiver after demodulation with the signal generation in the transmitter synchronously scanned and digit alized that a background is formed from the digitized signal values of n wobble cycles and that this background is subtracted from the digitized signal values of the last wobble cycle or from a foreground, which like the background, but only using the digitized signal values of the last m Wobbeizkien is formed, where n is significantly larger than m. 2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass Sender (1) und Empfänger (2) vom gleichen Taktgenerator (3) oder von miteinander synchronisierten Taktgeneratoren getaktet sind, wobei der Taktgenerator (3) ein Taktsignal mit einer Taktfrequenz erzeugt, die um ein Mehrfaches, vorzugsweise etwa um einen Faktor 5 - 6, höher ist als die vorgegebene Resonanzfrequenz der Resonanzschaltkreise (21) auf den Etiketten.2. Device according to claim 1, characterized in that the transmitter (1) and receiver (2) are clocked by the same clock generator (3) or by synchronized clock generators, the clock generator (3) generating a clock signal with a clock frequency around a Multiple, preferably about is a factor of 5-6 higher than the predetermined resonance frequency of the resonance circuits (21) on the labels. 3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Amplitudenwerte der Sendesignalfolge in jedem Wobbelzyklus auf die gleiche Weise im Sender diskret digital erzeugt und nachfolgend durch Digital-Analog-Umwandlung in Spannungswerte umgesetzt werden.3. Device according to claim 1 or 2, characterized in that the amplitude values of the transmission signal sequence in each wobble cycle in the same way in the transmitter discretely digitally generated and subsequently converted into voltage values by digital-analog conversion. 4. Vorichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Demodulation der vermittels der Empfangsantenne empfangenen Signale im Empfänger durch Multiplikation dieser Signale mit der auf direktem Wege vom Sender bezogenen, auch der Sendeantenne zugeführten Sendesignalfolge erfolgt.4. Device according to one of claims 1 to 3, characterized in that the demodulation of the signals received by means of the receiving antenna is carried out in the receiver by multiplying these signals by the direct signal from the transmitter, also supplied to the transmitting antenna.
EP93810137A 1992-04-07 1993-02-25 Label detection apparatus Expired - Lifetime EP0565481B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH113292 1992-04-07
CH1132/92 1992-04-07

Publications (2)

Publication Number Publication Date
EP0565481A1 true EP0565481A1 (en) 1993-10-13
EP0565481B1 EP0565481B1 (en) 1997-06-11

Family

ID=4203248

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93810137A Expired - Lifetime EP0565481B1 (en) 1992-04-07 1993-02-25 Label detection apparatus

Country Status (5)

Country Link
US (1) US5349339A (en)
EP (1) EP0565481B1 (en)
JP (1) JPH06103472A (en)
AT (1) ATE154459T1 (en)
DE (1) DE59306713D1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0700026A1 (en) 1995-07-25 1996-03-06 Actron Produktion AG Method and apparatus for remotely detecting electric resonant circuits
EP0706142A2 (en) * 1994-09-30 1996-04-10 Sensormatic Electronics Corporation Method and apparatus for detecting an EAS marker using wavelet transform signal processing
EP0707295A1 (en) 1994-10-15 1996-04-17 Esselte Meto International GmbH Electronic article surveillance system
EP0707296A1 (en) 1994-10-15 1996-04-17 Esselte Meto International GmbH Electronic article surveillance system
NL9500397A (en) * 1995-03-01 1996-10-01 Nedap Nv Item security system with a pseudo-random generator
WO1996031855A1 (en) * 1995-04-07 1996-10-10 Minnesota Mining And Manufacturing Company Electronic article surveillance system with adaptative filtering and digital detection
EP0837432A1 (en) * 1996-10-18 1998-04-22 Meto International GmbH Device for monitoring a security element in an interrogation area
DE19644927A1 (en) * 1996-10-29 1998-04-30 Esselte Meto Int Gmbh Device for monitoring an electronic security element in an interrogation zone
EP0902932A1 (en) * 1996-06-06 1999-03-24 Sensormatic Electronics Corporation Electronic article surveillance system with cancellation of interference signals
CN112633022A (en) * 2020-12-04 2021-04-09 北京信息科技大学 Radio frequency tag security check machine

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993016444A1 (en) * 1992-02-18 1993-08-19 Citizen Watch Co., Ltd. Data carrier system
FR2711440B1 (en) * 1993-10-18 1996-02-02 France Telecom Spectral purity device for the remote exchange of information between a portable object and a station.
US5537094A (en) * 1995-01-27 1996-07-16 Sensormatic Electronics Corporation Method and apparatus for detecting an EAS marker using a neural network processing device
DE19647905A1 (en) * 1996-11-20 1998-05-28 Meto International Gmbh Device for monitoring an electronic security element in an interrogation zone
US5790031A (en) * 1997-01-13 1998-08-04 Trw Inc. Apparatus and method for sensing a rearward facing child seat with error detection
US7877387B2 (en) * 2005-09-30 2011-01-25 Strands, Inc. Systems and methods for promotional media item selection and promotional program unit generation
EP2437158A1 (en) * 2005-12-19 2012-04-04 Apple Inc. User-to-user recommender
US20090300008A1 (en) * 2008-05-31 2009-12-03 Strands, Inc. Adaptive recommender technology
US8311485B2 (en) * 2010-01-13 2012-11-13 Sensormatic Electronics, LLC Method and system for receiver nulling using coherent transmit signals

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4686517A (en) * 1982-07-21 1987-08-11 N.V. Nederlandsche Apparatenfabriek Nedap Field disturbance detection system
WO1991019278A1 (en) * 1990-05-29 1991-12-12 Monarch Marking Systems, Inc. Periodic pulse discrimination system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4531117A (en) * 1983-07-05 1985-07-23 Minnesota Mining And Manufacturing Company Variable frequency RF electronic surveillance system
CA1234892A (en) * 1984-02-16 1988-04-05 Pierre Taillefer Security tag detection system
US5023598A (en) * 1990-01-02 1991-06-11 Pitney Bowes Inc. Digital signal processor for electronic article gates

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4686517A (en) * 1982-07-21 1987-08-11 N.V. Nederlandsche Apparatenfabriek Nedap Field disturbance detection system
WO1991019278A1 (en) * 1990-05-29 1991-12-12 Monarch Marking Systems, Inc. Periodic pulse discrimination system

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0706142A2 (en) * 1994-09-30 1996-04-10 Sensormatic Electronics Corporation Method and apparatus for detecting an EAS marker using wavelet transform signal processing
EP0706142A3 (en) * 1994-09-30 1996-08-07 Sensormatic Electronics Corp Method and apparatus for detecting an EAS marker using wavelet transform signal processing
EP0707295A1 (en) 1994-10-15 1996-04-17 Esselte Meto International GmbH Electronic article surveillance system
EP0707296A1 (en) 1994-10-15 1996-04-17 Esselte Meto International GmbH Electronic article surveillance system
DE4436977A1 (en) * 1994-10-15 1996-04-18 Esselte Meto Int Gmbh System for electronic article surveillance
DE4436978A1 (en) * 1994-10-15 1996-04-18 Esselte Meto Int Gmbh System for electronic article surveillance
NL9500397A (en) * 1995-03-01 1996-10-01 Nedap Nv Item security system with a pseudo-random generator
WO1996031855A1 (en) * 1995-04-07 1996-10-10 Minnesota Mining And Manufacturing Company Electronic article surveillance system with adaptative filtering and digital detection
EP0700026A1 (en) 1995-07-25 1996-03-06 Actron Produktion AG Method and apparatus for remotely detecting electric resonant circuits
EP0902932A1 (en) * 1996-06-06 1999-03-24 Sensormatic Electronics Corporation Electronic article surveillance system with cancellation of interference signals
EP0902932A4 (en) * 1996-06-06 2001-05-02 Sensormatic Electronics Corp Electronic article surveillance system with cancellation of interference signals
EP0837432A1 (en) * 1996-10-18 1998-04-22 Meto International GmbH Device for monitoring a security element in an interrogation area
US6064296A (en) * 1996-10-18 2000-05-16 Esselte Meto International Gmbh Apparatus for the surveillance of an electronic security element in an interrogation zone
DE19644927A1 (en) * 1996-10-29 1998-04-30 Esselte Meto Int Gmbh Device for monitoring an electronic security element in an interrogation zone
US5894270A (en) * 1996-10-29 1999-04-13 Esselte Meto International Gmbh Apparatus for the surveillance of an electronic security element in an interrogation zone
CN112633022A (en) * 2020-12-04 2021-04-09 北京信息科技大学 Radio frequency tag security check machine
CN112633022B (en) * 2020-12-04 2023-06-27 北京信息科技大学 Radio frequency label security inspection machine

Also Published As

Publication number Publication date
ATE154459T1 (en) 1997-06-15
DE59306713D1 (en) 1997-07-17
US5349339A (en) 1994-09-20
EP0565481B1 (en) 1997-06-11
JPH06103472A (en) 1994-04-15

Similar Documents

Publication Publication Date Title
EP0565481B1 (en) Label detection apparatus
DE2843293A1 (en) ELECTRONIC SECURITY SYSTEM
DE19847135B4 (en) Method for reading the data stored in a transponder and transponder system for carrying out the method
DE2340187C3 (en) Method and device for identifying a source generating electromagnetic vibrations
DE3505052A1 (en) PEDESTAL SECURITY SYSTEM
DE4141469C2 (en) Method for operating an optical sensor arrangement for the detection of objects present in a monitoring area, and such an optical sensor arrangement
CH666974A5 (en) MONITORING OF ELECTRICAL PARAMETERS AND THEIR SETTING OF A BURGLAR DETECTOR.
DE2309036A1 (en) DEVICE FOR A RADAR SYSTEM
DE3516007C2 (en) Monolithically integrable telephone circuit with control signal generator for charge indicators
DE3100936C2 (en) Intruder warning system
EP1360464A1 (en) Level- measuring device which functions with microwaves
DE2723355A1 (en) METHOD FOR EVALUATING RADAR IMPULSES
DE1591219A1 (en) Method for resolving the ambiguities in the determination of the Doppler frequency and the range in a coherent pulse Doppler radar device
EP2269095B1 (en) Device for detecting metallically conductive parts
DE2808544C2 (en) Combined radar and communications equipment
DE1904261C3 (en) Doppler navigation arrangement
DE3212603A1 (en) DETECTING DEVICE
EP0422732B1 (en) Adaptive apparatus for identification of a periodic signal
DE1541506B2 (en) Device for suppressing interference in a radar system
EP1020737B1 (en) Method and apparatus for electromagnetic detection of objects
DE2920269A1 (en) FIRE MONITORING DEVICE
EP0367860B1 (en) Amplitude measuring process of a periodic electrical signal g(t) in a band of signals u(t)
DE845107C (en) Process for the control of moving objects according to the reflection principle by sending out and re-receiving vibrations in pulses
DE2606302C3 (en) Ultrasound detector
DE2805873B2 (en) Ultrasonic monitoring system for moving objects

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

17P Request for examination filed

Effective date: 19931119

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19960920

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19970611

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19970611

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19970611

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19970611

Ref country code: DK

Effective date: 19970611

REF Corresponds to:

Ref document number: 154459

Country of ref document: AT

Date of ref document: 19970615

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: HUG INTERLIZENZ AG

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970612

REF Corresponds to:

Ref document number: 59306713

Country of ref document: DE

Date of ref document: 19970717

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19970911

Ref country code: PT

Effective date: 19970911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980225

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980225

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980228

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980330

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 74574

Country of ref document: IE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
BERE Be: lapsed

Owner name: ACTRON ENTWICKLUNGS A.G.

Effective date: 19980228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980901

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980225

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19980901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981103

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST