EP0564530B1 - Method and device for placing a liquid between electrodes in a shock wave apparatus - Google Patents

Method and device for placing a liquid between electrodes in a shock wave apparatus Download PDF

Info

Publication number
EP0564530B1
EP0564530B1 EP92902101A EP92902101A EP0564530B1 EP 0564530 B1 EP0564530 B1 EP 0564530B1 EP 92902101 A EP92902101 A EP 92902101A EP 92902101 A EP92902101 A EP 92902101A EP 0564530 B1 EP0564530 B1 EP 0564530B1
Authority
EP
European Patent Office
Prior art keywords
electrodes
electrically conductive
resistance
liquid medium
conductive liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92902101A
Other languages
German (de)
French (fr)
Other versions
EP0564530A1 (en
Inventor
Dominique Cathignol
Jean-Louis Mestas
Paul Dancer
Maurice Bourlion
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institut National de la Sante et de la Recherche Medicale INSERM
Technomed Medical Systems SA
Original Assignee
Institut National de la Sante et de la Recherche Medicale INSERM
Technomed Medical Systems SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut National de la Sante et de la Recherche Medicale INSERM, Technomed Medical Systems SA filed Critical Institut National de la Sante et de la Recherche Medicale INSERM
Publication of EP0564530A1 publication Critical patent/EP0564530A1/en
Application granted granted Critical
Publication of EP0564530B1 publication Critical patent/EP0564530B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K15/00Acoustics not otherwise provided for
    • G10K15/04Sound-producing devices
    • G10K15/06Sound-producing devices using electric discharge

Definitions

  • the invention essentially relates to a method and a device interposing an electrically conductive liquid between electrodes and shock wave apparatus with application thereof.
  • a device for generating shock waves of high frequency comprising a truncated ellipsoidal reflector 80 in which shock waves are generated by discharge or electric arc between two concurrent electrodes at the first focal point of the ellipsoid, so as to destroy a target placed at the second focal point of the ellipsoid, located outside of the truncated reflector 80 (see FIG. 3 and column 7, line 51, column 9, line 30) .
  • Electrodes 12 and 13 are made of highly conductive material such as copper or brass and are mounted on an insulator 26 which is pivotally supported by means of a device 11a, 11b, so as to adjust the spacing between them (see column 4, lines 42 to 53 and column 8, lines 40 to 47).
  • the discharge or electric arc between the electrodes is produced and, by the sudden discharge of a capacitor 11, by the closing of a high voltage switch (see FIG. 2b) .
  • the circuit between the electrodes includes a capacitor, as well as an associated self-inductance. It has been observed that the discharge of the capacitor is of the damped oscillatory type. In other words, the capacitor will discharge and then recharge in the opposite direction at a lower voltage than the initial voltage, which is very high and of the order of 15,000 to 20,000 V, then again recharge in the direct direction until 'when the charges contained in the capacitor have been exhausted.
  • FIG. 1a represents the timing diagram of the voltages
  • FIG. 1b represents the timing diagram of the currents established in the RIEBER type discharge circuit. It can be seen that when the circuit is closed at time t1, the voltage across the electrodes rises sharply to the value of the voltage across the capacitor (see Figure 1a).
  • a weak current is installed between the two electrodes ( Figure 1b) because on the one hand, the liquid in which the electrodes are immersed, usually water, is always slightly electrically conductive, and on the other hand, for reasons of safety and ignition of the arc, a high resistance is arranged in parallel with the electrode supply capacitor.
  • the arc is established between the electrodes.
  • the current increases sharply by several KA as is clearly visible in FIG. 1b.
  • the arc consists of a plasma whose resistance is extremely low (of the order of 1/100 or 1/1000 ohm) and it is the low value of this resistance which explains the importance of current (Figure 1b) and voltage ( Figure 1a) oscillations during the discharge of a capacitor in an RL type circuit.
  • the energy contained and dissipated by the arc contributes to the vaporization of the liquid in which the electrodes bathe, usually water, to the creation of a vapor bubble and consequently to the formation of the shock wave.
  • the main object of the present invention is to solve the new technical problem consisting in providing a solution allowing the sudden delivery in a relatively short time of most of the energy stored by the charge of the capacitor of the discharge circuit. between two electrodes, completely or substantially completely eliminating the latency time usually required to generate an electrical discharge between the electrodes.
  • the present invention also aims to solve the new technical problem consisting in providing a solution making it possible to completely or substantially completely eliminate the latency time of generation of an electric discharge between two electrodes while considerably improving the reproducibility of the shock wave thanks to a significant improvement in the localization of the generation of the electric discharge.
  • the present invention also aims to solve the new technical problem consisting in providing a solution making it possible to completely or substantially completely eliminate the latency time of generation of the electric discharge between the electrodes, while carrying out an electric discharge of the type critical damping resulting in sudden or relatively short delivery of most of the energy stored by the charge of the discharge circuit capacitor between the electrodes.
  • the present invention also aims to solve the aforementioned new technical problems while providing a solution making it possible to reduce the wear of the electrodes, and by limiting the importance of the modifications to be carried out on previously existing devices.
  • the present invention also aims to solve the new technical problems stated above in an extremely simple manner, usable on an industrial scale, in particular in the context of extracorporeal lithotripsy.
  • a method for improving the electrical discharge regime produced in a liquid medium such as water, between at least two electrodes generating such a discharge characterized in that that the resistance to the passage of the electric discharge is considerably reduced at least between the electrodes to bring it to a resistance value close to the critical resistance of the discharge circuit by interposing at least between the electrodes an electrically conductive liquid medium contained in an essentially closed reservoir surrounding the electrodes, the resistance of the electrically conductive liquid medium being less than or equal to 1/10 of the resistance value of normally ionized water, serving as a reference.
  • This reservoir is made of a material which does not substantially disturb the propagation of shock waves.
  • a material which does not substantially disturb the propagation of shock waves. Examples of such a material are a latex, a silicone, or a metallic strip, which is well known to those skilled in the art.
  • the electrodes support the reservoir, and are removable. They can therefore be supplied with the tank, the assembly therefore being consumable and disposable, which reduces maintenance costs compared to previous solutions.
  • an electrically conductive liquid medium is used, the electrical resistance of which is less than or equal to 1/100 of the electrical resistance value of the normally ionized water serving as a reference. More preferably, the electrical resistance of the electrically conductive medium according to the invention, expressed in linear resistivity, is less than about 15 Ohm.cm.
  • Electrically conductive liquid media can consist of an aqueous or non-aqueous electrolyte.
  • aqueous electrolyte mention may be made of water charged with ionizable compounds, in particular salts, such as halide salts, for example NaCl, NH4Cl, sulfates or nitrates with alkali or alkaline earth metals or transition metals. such as copper.
  • a currently preferred electrically conductive aqueous liquid medium consists of salt water at 100 or 200 g / l having respectively a linear resistivity value of 10 and 5 Ohm.cm.
  • a more preferred electrically conductive aqueous liquid medium comprises approximately 10% by weight of NaCl (approximately 100 g / l) and between 0.5 and 2% by weight of phosphate salt, in particular disodium phosphate (Na2HPO 4.12 H2O) .
  • the linear resistivity of such an electrically conductive medium is approximately 8 Ohm.cm. It is advantageously possible to add a dye, for example methylene blue, in a proportion of 2 mg / l, in order to make it possible to recognize a possible leak from the reservoir.
  • non-aqueous conductive liquid medium there may be mentioned conductive oils, made conductive by the addition of particles conductive, such as metal particles, which are well known to those skilled in the art.
  • the present invention also provides a device for improving the electrical discharge regime produced in a liquid medium such as water, between at least two electrodes generating such a discharge, characterized in that it comprises means for reducing the resistance to the passage of an electrical discharge at least between the electrodes to bring it to a resistance value close to the critical resistance comprising a substantially closed reservoir surrounding the electrodes filled with an electrically conductive liquid medium.
  • a substantially closed reservoir surrounding the electrodes filled with an electrically conductive liquid medium comprising a substantially closed reservoir surrounding the electrodes filled with an electrically conductive liquid medium.
  • This reservoir can be made of latex, silicone, or a metallic strip. It may have the form of a membrane surrounding the electrodes.
  • the present invention also relates to an apparatus for generating shock waves by electrical discharge between at least two electrodes immersed in a liquid discharge medium, in particular of the extracorporeal type, characterized in that it comprises a device to improve the discharge regime as defined above.
  • this device comprises a truncated ellipsoidal reflector comprising an internal focal point where the shock waves are generated by electrical discharge between at least two electrodes and a focal point external to the reflector where the shock waves are focused, said ellipsoidal reflector truncated being filled with a liquid coupling medium.
  • the above-mentioned essentially closed reservoir is provided surrounding the electrodes and therefore the internal hearth, filled with electrically conductive liquid medium, while outside this reservoir, inside the truncated ellipsoidal reflector, another liquid medium is used, especially water.
  • the discharge takes place through an electrically conductive medium which completely or substantially completely eliminates the latency time. This also results in a considerable increase in the reproducibility of the shock wave generated between the electrodes. This is mainly due to the fact that in the classic case, the arc strikes randomly in time and space, inducing a vapor bubble not perfectly localized, which is not the case according to the present invention. Also, according to the invention, the presence of an oscillating current is eliminated, so that the discharge is of the critical damped type, which will appear clearly from the description given with reference to the accompanying drawings.
  • the quantity of electrically conductive liquid used is greatly limited, that being not in contact with the patient.
  • the electrical discharge takes place in a confined area, which limits the electrical risks.
  • FIG. 2 there is shown schematically an apparatus for generating shock waves, for example for extracorporeal lithotripsy, comprising a truncated ellipsoidal reflector generally referenced 10, which is of the type described in US patent RIEBER 2 559 227.
  • This reflector 10 is provided with two discharge electrodes 12, 14 arranged facing one another, here in a cage structure as is known from document DE-A-26 35 635. These two discharge electrodes 12, 14 are concurrent with the internal focus symbolized by the reference F.
  • the second focal point of the ellipsoid is disposed outside the truncated ellipsoidal reflector 10 and it is at this second focal point that a target which is to be destroyed is made to coincide, as described at length in the US RIEBER patent.
  • this target can also be constituted by a concretion.
  • the electrode 12 is for example connected to earth or ground as shown in FIG. 2 and to one side of a capacitor C.
  • the other electrode 14 is connected to the capacitor C via a switch device I , for example a gas spark gap, which is intermittently closed by a command referenced 20 symbolically.
  • a resistance R of high value or a choke is arranged.
  • the capacitor is placed under high voltage of the order of 10,000 to 20,000 V by a power source as is for example described in FIG. 1 of document EP-A-0 296 912 of the applicants, this circuit not being not shown here.
  • the ellipsoidal reflector 10 is filled with a shock wave transmission liquid usually consisting of water, the resistance of which to the passage of a current electric is not negligible.
  • a shock wave transmission liquid usually consisting of water, the resistance of which to the passage of a current electric is not negligible.
  • This electrical resistance value, of normally ionized water, expressed as a linear resistivity value, on average, is of the order of 1,500 Ohm.cm.
  • the value of linear resistivity is of the order of 3 to 5 M.Ohm.cm.
  • a substantially closed reservoir 30 is used, filled with an electrically conductive liquid 32, which makes it possible to bring the resistance to the passage of the electric discharge between the electrodes 12, 14 in the vicinity or advantageously below the resistance critical, which constitutes a solution which goes against that which was recommended in document EP-A-0 296 912 by depositors, which on the contrary recommended considerably increasing the electrical resistance between the electrodes by interposing an element insulator between the electrodes.
  • This reservoir 30 is itself surrounded by a liquid coupling medium 34 filling the truncated ellipsoidal reflector 10, in particular water, which makes it possible to bring the skin of a patient into contact only with ordinary water .
  • This reservoir is made of a material which does not substantially disturb the shock waves generated by the electrical discharge between the electrodes 12, 14. Such materials are well known to those skilled in the art. In particular, there may be mentioned a latex, silicone, a metal strip. Practical embodiments are a membrane suitably attached, for example to the electrically conductive external electrode member 12a, as is well understood by those skilled in the art.
  • the electrodes support the reservoir, and are removable, as shown in FIG. 2. They can therefore be supplied with the reservoir 30, all the electrodes and the reservoir therefore being consumable and disposable, which reduces costs maintenance compared to previous solutions.
  • the electrically conductive liquid medium 32 contained in the reservoir 30, has an electrical resistance which is less than or equal to 1/10 and preferably less than or equal to 1/100, the value electrical resistance of normally ionized water, serving as a reference and which is usually of the order, expressed in linear resistivity, of 1500 Ohm.cm.
  • the electrical resistance of the electrically conductive medium according to the invention, expressed in linear resistivity is less than about 15 Ohm.cm.
  • any aqueous or non-aqueous electrically conductive liquid can be used.
  • an aqueous electrolyte can be used, made from pure water, to which are added soluble ionizable compounds such as salts such as halides, in particular chlorides, sulfates, nitrates.
  • a particularly preferred aqueous electrolyte is water to which NaCl or NH4Cl has been added.
  • a preferred medium is salt water at 100 or 200 g / l, the respective linear resistivity of 10 and 5 Ohm.cm.
  • a more preferred electrically conductive aqueous medium comprises about 10% by weight of NaCl and from 0.5 to 2% by weight of disodium phosphate (Na2HPO 4.12 H2O) which has a linear resistivity of the order of 8 Ohm.cm to 25 ° C.
  • the NaCl / phosphate proportion is not critical and allows the resistivity to be adjusted up to 10 Ohm.cm. It is preferred to maintain at least 0.5% by weight of phosphate.
  • a dye can also be added to the electrically conductive medium, which makes it possible to observe any leakage in the sealing of the reservoir 30.
  • non-aqueous electrolyte there may be mentioned electrically conductive oils, that is to say oils which have been made conductive by the addition of electrically conductive particles, such as metallic particles.
  • the timing diagram of FIG. 3 was obtained with the use of salt water at 200 g / l as an electrically conductive liquid medium bathing the electrodes 12, 14, using a capacitor having a capacitance of 100 nF, a spacing of the electrodes 0.4 mm, the discharge circuit of Figure 2 having a total internal choke L of 80 nH.
  • the present invention also covers an apparatus for generating shock waves by generating an electric arc between two electrodes, characterized in that it uses a method or a device for improving the discharge regime as described above.
  • this shock wave generating apparatus is characterized in that it comprises a truncated ellipsoidal reflector comprising a reservoir filled with an electrically conductive liquid, as defined above, as well as another surrounding liquid coupling medium the tank and filling the reflector.
  • a particular application relates to extracorporeal lithotripsy.

Abstract

A method and a device for producing an electric discharge between two electrodes are described. The method is characterized in that the electric arc resistance is substantially reduced at least between the electrodes to a resistance value which is close to or even lower than the critical resistance. This is achieved by placing between the electrodes an electrically conductive liquid medium (32) held in a substantially sealed container (30) surrounding the electrodes, whereby the electrical discharge rate between two electrodes can be improved while completely or substantially completely eliminating the latency time.

Description

L'invention concerne essentiellement un procédé et un dispositif interposant un liquide électriquement conducteur entre des électrodes et appareil d'ondes de choc en comportant application.The invention essentially relates to a method and a device interposing an electrically conductive liquid between electrodes and shock wave apparatus with application thereof.

Il est connu par le document RIEBER US-A-2 559 227 un appareil de génération d'ondes de choc de fréquence élevée, comprenant un réflecteur ellipsoïdal tronqué 80 dans lequel sont générées des ondes de choc par décharge ou arc électrique entre deux électrodes concourantes au premier foyer de l'ellipsoïde, de manière à détruire une cible disposée au deuxième foyer de l'ellipsoïde, se trouvant à l'extérieur du réflecteur tronqué 80 (voir figure 3 et colonne 7, ligne 51, colonne 9, ligne 30).It is known from the document RIEBER US-A-2 559 227 a device for generating shock waves of high frequency, comprising a truncated ellipsoidal reflector 80 in which shock waves are generated by discharge or electric arc between two concurrent electrodes at the first focal point of the ellipsoid, so as to destroy a target placed at the second focal point of the ellipsoid, located outside of the truncated reflector 80 (see FIG. 3 and column 7, line 51, column 9, line 30) .

Des électrodes 12 et 13 sont réalisées en matériau hautement conducteur tel que du cuivre ou du laiton et sont montées sur un isolateur 26 qui est supporté de manière pivotante à l'aide d'un dispositif 11a, 11b, de manière à régler l'espacement entre celles-ci (voir colonne 4, lignes 42 à 53 et colonne 8, lignes 40 à 47).Electrodes 12 and 13 are made of highly conductive material such as copper or brass and are mounted on an insulator 26 which is pivotally supported by means of a device 11a, 11b, so as to adjust the spacing between them (see column 4, lines 42 to 53 and column 8, lines 40 to 47).

Lors de l'emploi de l'appareil RIEBER ou appareil similaire, on produit la décharge ou arc électrique entre les électrodes et grâce à la brusque décharge d'un condensateur 11, par la fermeture d'un interrupteur haute tension (voir figure 2b). Selon l'appareil RIEBER, le circuit entre les électrodes, comprend un condensateur, ainsi qu'une self-inductance associée. On a pu observer que la décharge du condensateur est de type oscillatoire amorti. Autrement dit, le condensateur va se décharger puis se recharger en sens inverse à une tension plus basse que la tension initiale, qui est très élevée et de l'ordre de 15 000 à 20 000 V, puis de nouveau se recharger en sens direct jusqu'à épuisement des charges contenues dans le condensateur.When using the RIEBER device or similar device, the discharge or electric arc between the electrodes is produced and, by the sudden discharge of a capacitor 11, by the closing of a high voltage switch (see FIG. 2b) . According to the RIEBER device, the circuit between the electrodes includes a capacitor, as well as an associated self-inductance. It has been observed that the discharge of the capacitor is of the damped oscillatory type. In other words, the capacitor will discharge and then recharge in the opposite direction at a lower voltage than the initial voltage, which is very high and of the order of 15,000 to 20,000 V, then again recharge in the direct direction until 'when the charges contained in the capacitor have been exhausted.

Simultanément, il s'établit un arc électrique entre les deux électrodes dont le courant sera aussi, par voie de conséquence, de type oscillatoire amorti comme cela se conçoit bien en référence à la figure 1a, 1b et 1c. Ainsi, la figure 1a représente le chronogramme des tensions, tandis que la figure 1b représente le chronogramme des courants s'établissant dans le circuit de décharge du type RIEBER. On constate qu'à la fermeture du circuit au temps t₁, la tension aux bornes des électrodes monte brusquement à la valeur de la tension aux bornes du condensateur (voir figure 1a). Un faible courant s'installe entre les deux électrodes (figure 1b) car d'une part, le liquide dans lequel baignent les électrodes, habituellement de l'eau, est toujours légèrement électriquement conducteur, et d'autre part, pour des raisons de sécurité et d'amorçage de l'arc, une résistance élevée est disposée en parallèle au condensateur d'alimentation des électrodes.Simultaneously, an electric arc is established between the two electrodes, the current of which will also, consequently, be of the damped oscillatory type, as is well conceived with reference in Figure 1a, 1b and 1c. Thus, FIG. 1a represents the timing diagram of the voltages, while FIG. 1b represents the timing diagram of the currents established in the RIEBER type discharge circuit. It can be seen that when the circuit is closed at time t₁, the voltage across the electrodes rises sharply to the value of the voltage across the capacitor (see Figure 1a). A weak current is installed between the two electrodes (Figure 1b) because on the one hand, the liquid in which the electrodes are immersed, usually water, is always slightly electrically conductive, and on the other hand, for reasons of safety and ignition of the arc, a high resistance is arranged in parallel with the electrode supply capacitor.

Au bout d'un certain temps, c'est-à-dire au temps t₂, qui est appelé temps de latence, l'arc s'établit entre les électrodes. A cet instant, le courant croît brusquement de plusieurs KA comme cela est clairement visible à la figure 1b. On sait que l'arc est constitué par un plasma dont la résistance est extrêmement faible (de l'ordre du 1/100 ou 1/1000 d'ohm) et c'est la faible valeur de cette résistance qui explique l'importance des oscillations de courant (figure 1b) et de tension (figure 1a) lors de la décharge d'un condensateur dans un circuit de type RL.After a certain time, that is to say at time t₂, which is called the latency time, the arc is established between the electrodes. At this instant, the current increases sharply by several KA as is clearly visible in FIG. 1b. We know that the arc consists of a plasma whose resistance is extremely low (of the order of 1/100 or 1/1000 ohm) and it is the low value of this resistance which explains the importance of current (Figure 1b) and voltage (Figure 1a) oscillations during the discharge of a capacitor in an RL type circuit.

L'énergie contenue et dissipée par l'arc contribue à la vaporisation du liquide dans lequel baignent les électrodes, habituellement de l'eau, à la création d'une bulle de vapeur et par conséquent à la formation de l'onde de choc. Plus cette énergie sera dissipée rapidement, plus l'onde de choc sera efficace.The energy contained and dissipated by the arc contributes to the vaporization of the liquid in which the electrodes bathe, usually water, to the creation of a vapor bubble and consequently to the formation of the shock wave. The more quickly this energy is dissipated, the more effective the shock wave will be.

On constate ainsi que, du fait du caractère oscillatoire du courant, comme représenté figure 1b, l'énergie fournie au milieu extérieur se fait progressivement comme cela est clairement illustré à la figure 1c.It can thus be seen that, due to the oscillatory nature of the current, as shown in FIG. 1b, the energy supplied to the external medium takes place gradually as is clearly illustrated in FIG. 1c.

On comprend ainsi que plus la vaporisation du liquide, en particulier de l'eau, sera rapide, plus l'onde de pression sera forte et plus son temps de montée sera bref.It is thus understood that the faster the vaporization of the liquid, in particular of the water, the stronger the pressure wave and the shorter its rise time.

Ainsi, pour qu'une quantité importante de liquide, en particulier d'eau, soit vaporisée, il sera nécessaire de délivrer soudainement une énergie importante.Thus, for a large quantity of liquid, in particular water, to be vaporized, it will be necessary to suddenly deliver a large energy.

Or, pratiquement la totalité des dispositifs actuellement connus aboutissent à des décharges qui sont toutes de type oscillatoire amorti, comme représenté aux figures 1a et 1b, aboutissant à une dissipation progressive de l'énergie au cours du temps (figure 1c).However, almost all of the currently known devices result in discharges which are all of the damped oscillatory type, as shown in FIGS. 1a and 1b, resulting in a gradual dissipation of energy over time (FIG. 1c).

Dans le document EP-A-0 296 912 antérieur des déposants, on a proposé une première solution pour délivrer soudainement ou en un temps relativement bref la plus grande partie de l'énergie emmagasinée par la charge du condensateur du circuit de décharge entre deux électrodes. Pour se faire, on a proposé d'augmenter la résistance électrique au passage de l'arc électrique au moins entre les électrodes par interposition d'un élément isolant (32) à résistance élevée, entre les électrodes 12, 14 génératrices de l'arc. Cette solution donne entièrement satisfaction pour générer des ondes de choc dont l'onde de pression initiale est sensiblement sphérique.In the prior document EP-A-0 296 912 of the depositors, a first solution has been proposed for delivering suddenly or in a relatively short time most of the energy stored by the charge of the capacitor of the discharge circuit between two electrodes . To do this, it has been proposed to increase the electrical resistance to the passage of the electric arc at least between the electrodes by interposing an insulating element (32) with high resistance, between the electrodes 12, 14 generating the arc. . This solution is entirely satisfactory for generating shock waves whose initial pressure wave is substantially spherical.

Cependant, cette solution antérieure est difficilement réalisable mécaniquement à cause de la faible dimension des électrodes et de la résistance mécanique aux ondes de choc. En outre, le problème du temps de latence n'est pas résolu étant donné qu'elle ne vise qu'à améliorer le régime de décharge une fois que l'arc électrique est établi ce qui n'améliore pas la reproductibilité de la décharge et donc de l'onde de choc.However, this prior solution is difficult to achieve mechanically because of the small size of the electrodes and the mechanical resistance to shock waves. In addition, the problem of the latency time is not resolved since it only aims to improve the discharge regime once the electric arc is established which does not improve the reproducibility of the discharge and so of the shock wave.

Ainsi, la présente invention a pour but principal de résoudre le nouveau problème technique consistant en la fourniture d'une solution permettant de délivrer soudainement en un temps relativement bref la plus grande partie de l'énergie emmagasinée par la charge du condensateur du circuit de décharge entre deux électrodes, en éliminant complètement ou sensiblement complètement le temps de latence habituellement nécessaire pour générer une décharge électrique entre les électrodes.Thus, the main object of the present invention is to solve the new technical problem consisting in providing a solution allowing the sudden delivery in a relatively short time of most of the energy stored by the charge of the capacitor of the discharge circuit. between two electrodes, completely or substantially completely eliminating the latency time usually required to generate an electrical discharge between the electrodes.

La présente invention a encore pour but de résoudre le nouveau problème technique consistant en la fourniture d'une solution permettant de supprimer complètement ou sensiblement complètement le temps de latence de génération d'une décharge électrique entre deux électrodes tout en améliorant de manière considérable la reproductibilité de l'onde de choc grâce à une amélioration importante de la localisation de la génération de la décharge électrique.The present invention also aims to solve the new technical problem consisting in providing a solution making it possible to completely or substantially completely eliminate the latency time of generation of an electric discharge between two electrodes while considerably improving the reproducibility of the shock wave thanks to a significant improvement in the localization of the generation of the electric discharge.

La présente invention a encore pour but de résoudre le nouveau problème technique consistant en la fourniture d'une solution permettant de supprimer complètement ou sensiblement complètement le temps de latence de génération de la décharge électrique entre les électrodes, tout en réalisant une décharge électrique de type amorti critique aboutissant à une délivrance soudaine ou en un temps relativement bref de la plus grande partie de l'énergie emmagasinée par la charge du condensateur de circuit de décharge entre les électrodes.The present invention also aims to solve the new technical problem consisting in providing a solution making it possible to completely or substantially completely eliminate the latency time of generation of the electric discharge between the electrodes, while carrying out an electric discharge of the type critical damping resulting in sudden or relatively short delivery of most of the energy stored by the charge of the discharge circuit capacitor between the electrodes.

La présente invention a encore pour but de résoudre les nouveaux problèmes techniques précités tout en fournissant une solution permettant de réduire l'usure des électrodes, et en limitant l'importance des modifications à réaliser sur les appareils antérieurement existants.The present invention also aims to solve the aforementioned new technical problems while providing a solution making it possible to reduce the wear of the electrodes, and by limiting the importance of the modifications to be carried out on previously existing devices.

La présente invention a encore pour but de résoudre les nouveaux problèmes techniques énoncés ci-dessus d'une manière extrêmement simple, utilisable à l'échelle industrielle, notamment dans le cadre de la lithotritie extracorporelle.The present invention also aims to solve the new technical problems stated above in an extremely simple manner, usable on an industrial scale, in particular in the context of extracorporeal lithotripsy.

Tous ces nouveaux problèmes techniques sont résolus pour la première fois par la présente invention de manière satisfaisante, peu coûteuse, utilisable à l'échelle industrielle, notamment dans le cadre de la lithotritie extracorporelle.All these new technical problems are solved for the first time by the present invention in a satisfactory, inexpensive manner, usable on an industrial scale, in particular in the context of extracorporeal lithotripsy.

Ainsi, selon la présente invention, on fournit, selon un premier aspect, un procédé pour améliorer le régime de décharge électrique produit dans un milieu liquide tel que l'eau, entre au moins deux électrodes génératrices d'une telle décharge, caractérisé en ce qu'on réduit considérablement la résistance au passage de la décharge électrique au moins entre les électrodes pour l'amener à une valeur de résistance voisine de la résistance critique du circuit de décharge en interposant au moins entre les électrodes un milieu liquide électriquement conducteur contenu dans un réservoir essentiellement fermé entourant les électrodes, la résistance du milieu liquide électriquement conducteur étant inférieure ou égale à 1/10 de la valeur de résistance de l'eau normalement ionisée, servant de référence.Thus, according to the present invention, there is provided, according to a first aspect, a method for improving the electrical discharge regime produced in a liquid medium such as water, between at least two electrodes generating such a discharge, characterized in that that the resistance to the passage of the electric discharge is considerably reduced at least between the electrodes to bring it to a resistance value close to the critical resistance of the discharge circuit by interposing at least between the electrodes an electrically conductive liquid medium contained in an essentially closed reservoir surrounding the electrodes, the resistance of the electrically conductive liquid medium being less than or equal to 1/10 of the resistance value of normally ionized water, serving as a reference.

Ce réservoir est réalisé en un matériau ne perturbant pas sensiblement la propagation des ondes de choc. Des exemples d'un tel matériau sont un latex, un silicone, ou un feuillard métallique, ce qui est bien connu à l'homme de l'art.This reservoir is made of a material which does not substantially disturb the propagation of shock waves. Examples of such a material are a latex, a silicone, or a metallic strip, which is well known to those skilled in the art.

Selon un autre mode de réalisation avantageux, les électrodes supportent le réservoir, et sont amovibles. Elles peuvent donc être fournies avec le réservoir, l'ensemble étant donc consommable et jetable, ce qui réduit les coûts de maintenance par rapport aux solutions antérieures.According to another advantageous embodiment, the electrodes support the reservoir, and are removable. They can therefore be supplied with the tank, the assembly therefore being consumable and disposable, which reduces maintenance costs compared to previous solutions.

Selon un mode de réalisation particulièrement avantageux, on utilise un milieu liquide électriquement conducteur dont la résistance électrique est inférieure ou égale à 1/100 de la valeur de résistance électrique de l'eau normalement ionisée servant de référence. Encore de préférence, la résistance électrique du milieu électriquement conducteur selon l'invention, exprimée en résistivité linéaire, est inférieure à environ 15 Ohm.cm. Des milieux liquides électriquement conducteurs peuvent être constitués par un électrolyte aqueux ou non aqueux. Comme électrolyte aqueux, on peut citer de l'eau chargée de composés ionisables notamment des sels, tels que des sels d'halogénures par exemple NaCl, NH₄Cl, des sulfates ou des nitrates avec des métaux alcalins ou alcalino-terreux ou des métaux de transition tels que le cuivre. Un milieu liquide aqueux électriquement conducteur actuellement préféré est constitué par de l'eau salée à 100 ou 200 g/l ayant respectivement une valeur de résistivité linéaire de 10 et 5 Ohm.cm.According to a particularly advantageous embodiment, an electrically conductive liquid medium is used, the electrical resistance of which is less than or equal to 1/100 of the electrical resistance value of the normally ionized water serving as a reference. More preferably, the electrical resistance of the electrically conductive medium according to the invention, expressed in linear resistivity, is less than about 15 Ohm.cm. Electrically conductive liquid media can consist of an aqueous or non-aqueous electrolyte. As aqueous electrolyte, mention may be made of water charged with ionizable compounds, in particular salts, such as halide salts, for example NaCl, NH₄Cl, sulfates or nitrates with alkali or alkaline earth metals or transition metals. such as copper. A currently preferred electrically conductive aqueous liquid medium consists of salt water at 100 or 200 g / l having respectively a linear resistivity value of 10 and 5 Ohm.cm.

Un milieu liquide aqueux électriquement conducteur davantage préféré comprend environ 10 % en poids en NaCl (environ 100 g/l) et entre 0,5 et 2 % en poids de sel de phosphate, en particulier de phosphate disodique (Na₂HPO4,12H₂O). La résistivité linéaire d'un tel milieu électriquement conducteur est environ 8 Ohm.cm. Il peut avantageusement être ajouté un colorant, par exemple du bleu de méthylène, à une proportion de 2 mg/l, afin de permettre de reconnaître une fuite éventuelle du réservoir.A more preferred electrically conductive aqueous liquid medium comprises approximately 10% by weight of NaCl (approximately 100 g / l) and between 0.5 and 2% by weight of phosphate salt, in particular disodium phosphate (Na₂HPO 4.12 H₂O) . The linear resistivity of such an electrically conductive medium is approximately 8 Ohm.cm. It is advantageously possible to add a dye, for example methylene blue, in a proportion of 2 mg / l, in order to make it possible to recognize a possible leak from the reservoir.

Comme milieu liquide conducteur non aqueux, on peut citer des huiles conductrices, rendues conductrices par addition de particules conductrices, telles que des particules métalliques, qui sont bien connues à l'homme de l'art.As non-aqueous conductive liquid medium, there may be mentioned conductive oils, made conductive by the addition of particles conductive, such as metal particles, which are well known to those skilled in the art.

Selon un deuxième aspect, la présente invention fournit également un dispositif pour améliorer le régime de décharge électrique produit dans un milieu liquide tel que l'eau, entre au moins deux électrodes génératrices d'une telle décharge, caractérisé en ce qu'il comprend des moyens pour diminuer la résistance au passage d'une décharge électrique au moins entre les électrodes pour l'amener à une valeur de résistance voisine de la résistance critique comprenant un réservoir essentiellement fermé entourant les électrodes remplies d'un milieu liquide électriquement conducteur. Le matériau de ce réservoir est prévu pour ne pas perturber sensiblement la propagation des ondes de choc. En particulier, ce réservoir peut être réalisé en latex, en silicone, ou en un feuillard métallique. Il peut présenter la forme d'une membrane entourant les électrodes.According to a second aspect, the present invention also provides a device for improving the electrical discharge regime produced in a liquid medium such as water, between at least two electrodes generating such a discharge, characterized in that it comprises means for reducing the resistance to the passage of an electrical discharge at least between the electrodes to bring it to a resistance value close to the critical resistance comprising a substantially closed reservoir surrounding the electrodes filled with an electrically conductive liquid medium. The material of this reservoir is provided so as not to substantially disturb the propagation of shock waves. In particular, this reservoir can be made of latex, silicone, or a metallic strip. It may have the form of a membrane surrounding the electrodes.

Selon un troisième aspect, la présente invention concerne également un appareil de génération d'ondes de choc par décharge électrique entre au moins deux électrodes immergées dans un milieu liquide de décharge, en particulier de type extracorporel, caractérisé en ce qu'il comprend un dispositif pour améliorer le régime de décharge tel que précédemment défini. Selon un mode de réalisation avantageux, cet appareil comprend un réflecteur ellipsoïdal tronqué comprenant un foyer interne où sont générées les ondes de choc par décharge électrique entre au moins deux électrodes et un foyer externe au réflecteur où sont focalisées les ondes de choc, ledit réflecteur ellipsoïdal tronqué étant rempli d'un milieu liquide de couplage. Dans ce cas, il est prévu le réservoir précité essentiellement fermé entourant les électrodes et donc le foyer interne, rempli de milieu liquide électriquement conducteur, tandis qu'à l'extérieur de ce réservoir, à l'intérieur du réflecteur ellipsoïdal tronqué, un autre milieu liquide est utilisé, en particulier de l'eau.According to a third aspect, the present invention also relates to an apparatus for generating shock waves by electrical discharge between at least two electrodes immersed in a liquid discharge medium, in particular of the extracorporeal type, characterized in that it comprises a device to improve the discharge regime as defined above. According to an advantageous embodiment, this device comprises a truncated ellipsoidal reflector comprising an internal focal point where the shock waves are generated by electrical discharge between at least two electrodes and a focal point external to the reflector where the shock waves are focused, said ellipsoidal reflector truncated being filled with a liquid coupling medium. In this case, the above-mentioned essentially closed reservoir is provided surrounding the electrodes and therefore the internal hearth, filled with electrically conductive liquid medium, while outside this reservoir, inside the truncated ellipsoidal reflector, another liquid medium is used, especially water.

D'autres caractérisques du milieu électriquement conducteur selon l'invention ont été décrites en relation avec le procédé et sont évidemment applicables au dispositif.Other characteristics of the electrically conductive medium according to the invention have been described in relation to the method and are obviously applicable to the device.

Grâce à l'invention, la décharge se fait à travers un milieu électriquement conducteur ce qui supprime complètement ou sensiblement complètement le temps de latence. On aboutit également à une augmentation considérable de la reproductibilité de l'onde de choc générée entre les électrodes. Ceci est principalement dû au fait que dans le cas classique, l'arc s'amorce de façon aléatoire dans le temps et dans l'espace, induisant une bulle de vapeur non parfaitement localisée, ce qui n'est pas le cas selon la présente invention. Egalement, selon l'invention, on supprime la présence d'un courant oscillant, de sorte que la décharge est de type amorti critique, ce qui apparaîtra clairement à partir de la description faite en référence aux dessins annexés.Thanks to the invention, the discharge takes place through an electrically conductive medium which completely or substantially completely eliminates the latency time. This also results in a considerable increase in the reproducibility of the shock wave generated between the electrodes. This is mainly due to the fact that in the classic case, the arc strikes randomly in time and space, inducing a vapor bubble not perfectly localized, which is not the case according to the present invention. Also, according to the invention, the presence of an oscillating current is eliminated, so that the discharge is of the critical damped type, which will appear clearly from the description given with reference to the accompanying drawings.

Egalement, grâce à la présence du réservoir rempli de liquide électriquement conducteur, on limite grandement la quantité de liquide électriquement conducteur utilisé, celui n'étant pas en contact avec le patient. En outre, la décharge électrique a lieu dans un domaine confiné, ce qui limite les risques électriques.Also, thanks to the presence of the reservoir filled with electrically conductive liquid, the quantity of electrically conductive liquid used is greatly limited, that being not in contact with the patient. In addition, the electrical discharge takes place in a confined area, which limits the electrical risks.

On comprend ainsi que selon l'invention; on obtient tous les avantages techniques inattendus, non évidents pour un homme de l'art, précédemment énoncés.It is thus understood that according to the invention; one obtains all the unexpected technical advantages, not obvious to a person skilled in the art, previously stated.

D'autres buts, caractéristiques et avantages de l'invention apparaîtront également à l'homme de l'art au vu de la description explicative qui va suivre faite en référence aux dessins annexés, en particulier représentant un mode de réalisation actuellement préféré de l'invention, donné simplement à titre d'illustration et qui ne saurait donc en aucune façon limiter la portée de l'invention. Dans les dessins :

  • les figures 1a, 1b et 1c représentent respectivement les courbes de tension, de courant et d'énergie lors de la décharge classique d'un arc électrique généré entre deux électrodes selon un circuit de décharge type RIEBER du brevet US-A-2 559 227 ;
  • la figure 2 représente schématiquement, en coupe partielle, un appareil de génération d'ondes de choc, notamment pour la lithotritie extracorporelle, comportant un dispositif de décharge électrique selon la présente invention, qui comprend un réservoir sensiblement fermé rempli d'un milieu liquide électriquement conducteur dans lequel est générée la décharge électrique entre deux électrodes ; et
  • les figures 3a, 3b, 3c représentent respectivement comme les figures 1a, 1b, 1c les courbes de tension, de courant et d'énergie obtenues selon la présente invention avec utilisation d'un milieu liquide électriquement conducteur interposé au moins entre les électrodes, conforme à la figure 2.
Other objects, characteristics and advantages of the invention will also appear to those skilled in the art in the light of the explanatory description which will follow made with reference to the appended drawings, in particular representing a currently preferred embodiment of the invention, given simply by way of illustration and which therefore cannot in any way limit the scope of the invention. In the drawings:
  • Figures 1a, 1b and 1c respectively represent the voltage, current and energy curves during the conventional discharge of an electric arc generated between two electrodes according to a RIEBER type discharge circuit of US-A-2,559,227 ;
  • FIG. 2 schematically represents, in partial section, an apparatus for generating shock waves, in particular for extracorporeal lithotripsy, comprising an electrical discharge device according to the present invention, which comprises a substantially closed reservoir filled with a liquid medium electrically conductive in which the electric discharge is generated between two electrodes; and
  • Figures 3a, 3b, 3c respectively represent like Figures 1a, 1b, 1c the voltage, current and energy curves obtained according to the present invention with the use of an electrically conductive liquid medium interposed at least between the electrodes, conforming in Figure 2.

En référence à la figure 2, on a représenté schématiquement un appareil de génération d'ondes de choc, par exemple pour la lithotritie extracorporelle, comprenant un réflecteur ellipsoïdal tronqué référencé de manière générale 10, qui est du type de celui décrit dans le brevet US RIEBER 2 559 227. Ce réflecteur 10 est pourvu de deux électrodes de décharge 12, 14 disposées en regard l'une de l'autre, ici selon une structure en cage comme cela est connu par le document DE-A-26 35 635. Ces deux électrodes de décharge 12, 14 sont concourantes au foyer interne symbolisé par la référence F.Referring to Figure 2, there is shown schematically an apparatus for generating shock waves, for example for extracorporeal lithotripsy, comprising a truncated ellipsoidal reflector generally referenced 10, which is of the type described in US patent RIEBER 2 559 227. This reflector 10 is provided with two discharge electrodes 12, 14 arranged facing one another, here in a cage structure as is known from document DE-A-26 35 635. These two discharge electrodes 12, 14 are concurrent with the internal focus symbolized by the reference F.

Le deuxième foyer de l'ellipsoïde est disposé à l'extérieur du réflecteur ellipsoïdal tronqué 10 et c'est à ce second foyer que l'on fera coïncider une cible qui est à détruire, comme cela est longuement décrit dans le brevet US RIEBER. Evidemment, cette cible peut également être constituée par une concrétion. L'électrode 12 est par exemple reliée à la terre ou la masse comme représenté à la figure 2 et à un côté d'un condensateur C. L'autre électrode 14 est reliée au condensateur C par l'intermédiaire d'un dispositif interrupteur I, par exemple un éclateur à gaz, qui est fermé par intermittence par une commande référencée 20 symboliquement. En parallèle au condensateur C, est disposée une résistance R de valeur élevée ou une self. Le condensateur est mis sous tension élevée de l'ordre de 10 000 à 20 000 V par une source de puissance comme cela est par exemple décrit à la figure 1 du document EP-A-0 296 912 des déposants, ce circuit n'étant pas représenté ici.The second focal point of the ellipsoid is disposed outside the truncated ellipsoidal reflector 10 and it is at this second focal point that a target which is to be destroyed is made to coincide, as described at length in the US RIEBER patent. Obviously, this target can also be constituted by a concretion. The electrode 12 is for example connected to earth or ground as shown in FIG. 2 and to one side of a capacitor C. The other electrode 14 is connected to the capacitor C via a switch device I , for example a gas spark gap, which is intermittently closed by a command referenced 20 symbolically. In parallel with the capacitor C, a resistance R of high value or a choke is arranged. The capacitor is placed under high voltage of the order of 10,000 to 20,000 V by a power source as is for example described in FIG. 1 of document EP-A-0 296 912 of the applicants, this circuit not being not shown here.

Selon l'art antérieur, le réflecteur ellipsoïdal 10 est rempli d'un liquide de transmission d'ondes de choc habituellement constitué par de l'eau, dont la résistance au passage d'un courant électrique n'est pas négligeable. Cette valeur de résistance électrique, de l'eau normalement ionisée, exprimée en valeur de résistivité linéaire, en moyenne, est de l'ordre de 1 500 Ohm.cm. Dans le cas d'huiles, qui sont très isolantes, comme dans le cas du brevet US RIEBER 2 559 227, la valeur de résistivité linéaire est de l'ordre de 3 à 5 M.Ohm.cm.According to the prior art, the ellipsoidal reflector 10 is filled with a shock wave transmission liquid usually consisting of water, the resistance of which to the passage of a current electric is not negligible. This electrical resistance value, of normally ionized water, expressed as a linear resistivity value, on average, is of the order of 1,500 Ohm.cm. In the case of oils, which are very insulating, as in the case of US Patent RIEBER 2,559,227, the value of linear resistivity is of the order of 3 to 5 M.Ohm.cm.

Si l'on réalise une décharge électrique dans un tel circuit antérieur, où le milieu liquide entre les électrodes 12, 14 est constitué par de l'eau normalement ionisée, on obtient un chronogramme de décharge tel que représenté aux figures 1a, 1b et 1c pour lequel il existe un temps de latence non négligeable tandis que le régime de décharge est du type oscillatoire, ce qui délivre progressivement l'énergie au milieu extérieur.If an electrical discharge is carried out in such an anterior circuit, where the liquid medium between the electrodes 12, 14 consists of normally ionized water, a discharge timing diagram is obtained as shown in FIGS. 1a, 1b and 1c for which there is a significant latency time while the discharge regime is of the oscillatory type, which gradually delivers energy to the outside environment.

Selon présente invention, on utilise un réservoir 30 essentiellement fermé, rempli d'un liquide électriquement conducteur 32, ce qui permet d'amener la résistance au passage de la décharge électrique entre les électrodes 12, 14 au voisinage ou avantageusement en dessous de la résistance critique, ce qui constitue une solution qui va à l'encontre de celle qui a été préconisée dans le document EP-A-0 296 912 des déposants, qui préconisait au contraire d'augmenter considérablement la résistance électrique entre les électrodes en interposant un élément isolant entre les électrodes.According to the present invention, a substantially closed reservoir 30 is used, filled with an electrically conductive liquid 32, which makes it possible to bring the resistance to the passage of the electric discharge between the electrodes 12, 14 in the vicinity or advantageously below the resistance critical, which constitutes a solution which goes against that which was recommended in document EP-A-0 296 912 by depositors, which on the contrary recommended considerably increasing the electrical resistance between the electrodes by interposing an element insulator between the electrodes.

Ce réservoir 30 est lui-même entouré par un milieu liquide de couplage 34 remplissant le réflecteur ellipsoïdal tronqué 10, en particulier de l'eau, ce qui permet de mettre en contact la peau d'un patient qu'avec de l'eau ordinaire.This reservoir 30 is itself surrounded by a liquid coupling medium 34 filling the truncated ellipsoidal reflector 10, in particular water, which makes it possible to bring the skin of a patient into contact only with ordinary water .

Ce réservoir est réalisé en un matériau qui ne perturbe sensiblement pas les ondes de choc générées par la décharge électrique entre les électrodes 12, 14. De tels matériaux sont bien connus à l'homme de l'art. En particulier, on peut citer un latex, du silicone, un feuillard métallique. Des réalisations pratiques sont une membrane fixée de manière appropriée par exemple sur l'élément porte électrode externe 12a électriquement conducteur comme cela est bien compréhensible à l'homme de l'art.This reservoir is made of a material which does not substantially disturb the shock waves generated by the electrical discharge between the electrodes 12, 14. Such materials are well known to those skilled in the art. In particular, there may be mentioned a latex, silicone, a metal strip. Practical embodiments are a membrane suitably attached, for example to the electrically conductive external electrode member 12a, as is well understood by those skilled in the art.

On prévoit avantageusement que les électrodes supportent le réservoir, et sont amovibles, comme représenté à la figure 2. Elles peuvent donc être fournies avec le réservoir 30, l'ensemble des électrodes et du réservoir étant donc consommable et jetable, ce qui réduit les coûts de maintenance par rapport aux solutions antérieures.Advantageously, it is provided that the electrodes support the reservoir, and are removable, as shown in FIG. 2. They can therefore be supplied with the reservoir 30, all the electrodes and the reservoir therefore being consumable and disposable, which reduces costs maintenance compared to previous solutions.

Selon un mode de réalisation avantageux de l'invention, le milieu liquide électriquement conducteur 32, contenu dans le réservoir 30, présente une résistance électrique qui est inférieure ou égale à 1/10 et de préférence inférieure ou égale à 1/100, la valeur de résistance électrique de l'eau normalement ionisée, servant de référence et qui est habituellement de l'ordre, exprimée en résistivité linéaire, de 1 500 Ohm.cm. De préférence, la résistance électrique du milieu électriquement conducteur selon l'invention, exprimée en résistivité linéaire, est inférieure à environ 15 Ohm.cm.According to an advantageous embodiment of the invention, the electrically conductive liquid medium 32, contained in the reservoir 30, has an electrical resistance which is less than or equal to 1/10 and preferably less than or equal to 1/100, the value electrical resistance of normally ionized water, serving as a reference and which is usually of the order, expressed in linear resistivity, of 1500 Ohm.cm. Preferably, the electrical resistance of the electrically conductive medium according to the invention, expressed in linear resistivity, is less than about 15 Ohm.cm.

Comme milieu liquide électriquement conducteur selon l'invention, on peut utiliser tout liquide électriquement conducteur aqueux ou non aqueux. Comme liquide électriquement conducteur aqueux, on peut utiliser un électrolyte aqueux constitué à partir de l'eau pure auquel on ajoute des composés solubles ionisables comme des sels tels que les halogénures, en particulier les chlorures, les sulfates, les nitrates. Un électrolyte aqueux particulièrement préféré est de l'eau à laquelle on a ajouté du NaCl ou du NH₄Cl. Un milieu préféré est de l'eau salée à 100 ou 200 g/l dont la résistivité linéaire respective est de 10 et 5 Ohm.cm.As the electrically conductive liquid medium according to the invention, any aqueous or non-aqueous electrically conductive liquid can be used. As the aqueous electrically conductive liquid, an aqueous electrolyte can be used, made from pure water, to which are added soluble ionizable compounds such as salts such as halides, in particular chlorides, sulfates, nitrates. A particularly preferred aqueous electrolyte is water to which NaCl or NH₄Cl has been added. A preferred medium is salt water at 100 or 200 g / l, the respective linear resistivity of 10 and 5 Ohm.cm.

Un milieu aqueux électriquement conducteur davantage préféré comprend environ 10 % en poids de NaCl et de 0,5 à 2 % en poids de phosphate disodique (Na₂HPO4,12H₂O) qui présente une résistivité linéaire de l'ordre de 8 Ohm.cm à 25°C. La proportion NaCl/phosphate n'est pas critique et permet d'ajuster la résistivité jusqu'à 10 Ohm.cm. Il est préféré de maintenir au moins 0,5 % en poids de phosphate. On peut ajouter également un colorant dans le milieu électriquement conducteur ce qui permet d'observer toute fuite d'étanchéité du réservoir 30.A more preferred electrically conductive aqueous medium comprises about 10% by weight of NaCl and from 0.5 to 2% by weight of disodium phosphate (Na₂HPO 4.12 H₂O) which has a linear resistivity of the order of 8 Ohm.cm to 25 ° C. The NaCl / phosphate proportion is not critical and allows the resistivity to be adjusted up to 10 Ohm.cm. It is preferred to maintain at least 0.5% by weight of phosphate. A dye can also be added to the electrically conductive medium, which makes it possible to observe any leakage in the sealing of the reservoir 30.

Comme électrolyte non aqueux, on peut citer des huiles électriquement conductrices, c'est-à-dire qui ont été rendues conductrices par l'ajout de particules électriquement conductrices, telles que des particules métalliques.As non-aqueous electrolyte, there may be mentioned electrically conductive oils, that is to say oils which have been made conductive by the addition of electrically conductive particles, such as metallic particles.

Avec l'invention, utilisant un milieu liquide électriquement conducteur, on obtient un chronogramme de décharge tel que représenté aux figures 3a, 3b, 3c. On constate que, dès la mise sous tension au temps t₁ des électrodes, la génération de l'arc est quasi-instantanée. En outre, cette décharge est du type amorti critique, et n'est plus du type oscillatoire. L'énergie est également délivrée au milieu extérieur pendant un temps beaucoup plus court que dans le cas d'un régime oscillant, ou dans le cas des régimes antérieurs avec temps de latence.With the invention, using an electrically conductive liquid medium, a discharge timing diagram is obtained as shown in Figures 3a, 3b, 3c. It can be seen that, as soon as the electrodes are energized at time t₁, the generation of the arc is almost instantaneous. Furthermore, this discharge is of the critical damped type, and is no longer of the oscillatory type. Energy is also delivered to the outside environment for a much shorter time than in the case of an oscillating regime, or in the case of previous regimes with lag time.

On aboutit à une augmentation considérable de la reproductibilité de l'onde de choc grâce au fait que l'arc ne s'amorce plus de façon aléatoire dans le temps et dans l'espace, mais au contraire au temps t₁ et induit une bulle de vapeur parfaitement localisée. Le chronogramme de la figure 3 a été obtenu avec l'utilisation d'une eau salée à 200 g/l comme milieu liquide électriquement conducteur baignant les électrodes 12, 14, en utilisant un condensateur ayant une capacitance de 100 nF, un écartement des électrodes de 0,4 mm, le circuit de décharge de la figure 2 ayant au total une self interne L de 80 nH.This leads to a considerable increase in the reproducibility of the shock wave thanks to the fact that the arc no longer starts randomly in time and in space, but on the contrary at time t₁ and induces a bubble of perfectly localized vapor. The timing diagram of FIG. 3 was obtained with the use of salt water at 200 g / l as an electrically conductive liquid medium bathing the electrodes 12, 14, using a capacitor having a capacitance of 100 nF, a spacing of the electrodes 0.4 mm, the discharge circuit of Figure 2 having a total internal choke L of 80 nH.

Dans la description et les revendications, on rappelera que la résistance critique est la valeur de la résistance interélectrodes pour laquelle la relation : R c = L C

Figure imgb0001
est sensiblement satisfaite.
formule dans laquelle L est la valeur de self interne du circuit de décharge du condensateur C, et C est la valeur de capacitance du condensateur.In the description and the claims, it will be recalled that the critical resistance is the value of the interelectrode resistance for which the relation: R vs = L VS
Figure imgb0001
is substantially satisfied.
formula in which L is the internal self value of the discharge circuit of the capacitor C, and C is the capacitance value of the capacitor.

On observera qu'avec l'invention, utilisant un milieu liquide électriquement conducteur, on obtient une excellente reproductibilité des ondes de choc, le coéfficient de dispersion étant inférieur à 5%, en particulier dans le cas de l'utilisation d'eau salée, tandis que cet écart type est de l'ordre de 30% dans le cas d'utilisation d'eau normalement ionisée. L'invention permet donc d'aboutir à tous les avantages techniques innatendus, non évidents précédemment énoncés et permet donc bien de résoudre les problèmes techniques précédemment énoncés. L'invention permet également de mettre oeuvre le procédé précédemment énoncé.It will be observed that with the invention, using an electrically conductive liquid medium, an excellent reproducibility of the shock waves is obtained, the dispersion coefficient being less than 5%, in particular in the case of the use of salt water, while this standard deviation is of the order of 30% in the case of the use of normally ionized water. The invention therefore makes it possible to achieve all the unexpected, non-obvious technical advantages previously stated and therefore makes it possible to resolve the technical problems previously stated. The invention also makes it possible to implement the method previously stated.

Enfin, la présente invention couvre également un appareil de génération d'ondes de choc par génération d'un arc électrique entre deux électrodes, caractérisé en ce qu'il utilise un procédé ou un dispositif d'amélioration du régime de décharge tel que précédemment décrit. En particulier, cet appareil de génération d'ondes de choc est caractérisé en ce qu'il comprend un réflecteur ellipsoïdal tronqué comprenant un réservoir rempli d'un liquide électriquement conducteur, tel que précédemment défini, ainsi qu'un autre milieu liquide de couplage entourant le réservoir et remplissant le réflecteur. Une application particulière concerne la lithotritie extracorporelle.Finally, the present invention also covers an apparatus for generating shock waves by generating an electric arc between two electrodes, characterized in that it uses a method or a device for improving the discharge regime as described above. . In particular, this shock wave generating apparatus is characterized in that it comprises a truncated ellipsoidal reflector comprising a reservoir filled with an electrically conductive liquid, as defined above, as well as another surrounding liquid coupling medium the tank and filling the reflector. A particular application relates to extracorporeal lithotripsy.

Claims (14)

  1. Method for improving in particular the reproducibility of the rate of electric discharge produced in a liquid medium, such as water, between at least two electrodes generating such a discharge, characterized in that it consists in considerably reducing the resistance to the passage of the electric discharge at least between the electrodes to a resistance value approaching the critical resistance of the discharge circuit, by interposing at least between the electrodes an electrically conductive medium contained in an essentially closed reservoir (30) surrounding the electrodes, the resistance of the electrically conductive liquid medium being less than or equal to 1/10 of the resistance value of the normally ionised water, used as reference.
  2. Method according to claim 1, characterized in that the resistance of said electrically conductive liquid medium is less than or equal to 1/100 of the value of the resistance of the normally ionised water, used as reference.
  3. Method according to claim 2, characterized in that the electrical resistance of said electrically conductive liquid medium, as expressed in linear resistivity, is less than about 15 Ohm.cm.
  4. Method according to one of claims 1 to 3, characterized in that the electrically conductive liquid medium is constituted by an aqueous or non-aqueous electrolyte, advantageously salted water.
  5. Device for improving the rate of electric discharge produced in a liquid medium, such as water, between at least two electrodes generating such a discharge, characterized in that it comprises means for considerably reducing the resistance to the passage of the electric discharge at least between the electrodes so as to bring it close to the critical resistance of the discharge circuit, said means comprising an essentially closed reservoir (30) surrounding the electrodes and filled with an electrically conductive liquid medium (32) having a resistance less than or equal to 1/10 of the resistance value of the normally ionised water, used as reference.
  6. Device according to claim 5, characterized in that the electrodes support the reservoir (30) and are removable, the assembly being therefore usable and disposable.
  7. Device according to claim 5 or 6, characterized in that said electrically conductive liquid medium has an electrical resistance , measured in terms of linear resistivity, which is less than or equal to 1/100 of the resistance value of the normally ionised water, used as reference.
  8. Device according to claim 7, characterized in that the electrically conductive medium is constituted by an aqueous or non-aqueous electrolyte.
  9. Device according to one of claims 7 or 8, characterized in that the electrically conductive liquid medium is constituted by an aqueous electrolyte formed from pure water in which ionisable compounds have been added, notably salts such as halide salts, sulphates or nitrates.
  10. Device according to one of claims 7 to 9, characterized in that the electrically conductive medium has an electrical resistance, expressed in terms of linear resistivity lower than about 15 Ohm.cm, for example salted at 100 or 200 g/l.
  11. Device according to one of claims 7 to 10, characterized in that the electrically conductive liquid medium is constituted by an aqueous electrolyte formed from pure water in which about 10% by weight of sodium chloride and 0.5 to 2% by weight of sulphate, notably disodium sulphate, are added.
  12. Apparatus for generating shockwaves by generating an electric arc between two electrodes, in particular of extracorporeal type, characterized in that it comprises a device such as described in any one of claims 5 to 11, or in that it uses the method such as defined in any one of claims 1 to 4.
  13. Shockwave generating apparatus according to claim 12, characterized in that it comprises a truncated ellipsoidal reflector (10) comprising a reservoir (30) filled with an electrically conductive liquid (32), as previously defined, as well as another coupling liquid medium (34) surrounding the reservoir (30) and filling the reflector (10), said electrically conductive liquid (30) being as defined in any one of claims 7 to 11.
  14. Apparatus according to claim 12 or 13, characterized in that it is an apparatus for extracorporeal lithotripsy.
EP92902101A 1990-12-26 1991-12-19 Method and device for placing a liquid between electrodes in a shock wave apparatus Expired - Lifetime EP0564530B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR909016282A FR2671239B1 (en) 1990-12-26 1990-12-26 METHOD AND DEVICE INTERPOSING AN ELECTRICALLY CONDUCTIVE LIQUID BETWEEN ELECTRODES AND SHOCK WAVE APPARATUS INCLUDING APPLICATION.
FR9016282 1990-12-26
PCT/FR1991/001033 WO1992012513A1 (en) 1990-12-26 1991-12-19 Method and device for placing a liquid between electrodes in a shock wave apparatus

Publications (2)

Publication Number Publication Date
EP0564530A1 EP0564530A1 (en) 1993-10-13
EP0564530B1 true EP0564530B1 (en) 1996-04-24

Family

ID=9403675

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92902101A Expired - Lifetime EP0564530B1 (en) 1990-12-26 1991-12-19 Method and device for placing a liquid between electrodes in a shock wave apparatus

Country Status (9)

Country Link
EP (1) EP0564530B1 (en)
JP (1) JPH06505648A (en)
AT (1) ATE137353T1 (en)
DE (1) DE69119093T2 (en)
DK (1) DK0564530T3 (en)
ES (1) ES2090602T3 (en)
FR (1) FR2671239B1 (en)
IL (1) IL100463A0 (en)
WO (1) WO1992012513A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2097848T3 (en) * 1992-09-28 1997-04-16 Hmt Ag APPARATUS FOR THE GENERATION OF SHOCK WAVES FOR THE CONTACTLESS DESTRUCTION OF CONCRETIONS IN BODIES OF ORGANISMS.
CN102781350B (en) 2010-01-19 2016-09-14 得克萨斯大学体系董事会 Produce the device of high-frequency percussion ripple and system and using method
AR087170A1 (en) 2011-07-15 2014-02-26 Univ Texas APPARATUS FOR GENERATING THERAPEUTIC SHOCK WAVES AND ITS APPLICATIONS
US10835767B2 (en) 2013-03-08 2020-11-17 Board Of Regents, The University Of Texas System Rapid pulse electrohydraulic (EH) shockwave generator apparatus and methods for medical and cosmetic treatments
WO2016183307A1 (en) 2015-05-12 2016-11-17 Soliton, Inc. Methods of treating cellulite and subcutaneous adipose tissue
TWI793754B (en) 2016-07-21 2023-02-21 美商席利通公司 Apparatus for generating therapeutic shock waves, apparatus for use in generating therapeutic shock waves, and method of producing shockwaves
CN106983537A (en) * 2017-02-14 2017-07-28 北京索迪医疗器械开发有限责任公司 A kind of height leads sparking electrode
KR20230144665A (en) 2017-02-19 2023-10-16 솔리톤, 인코포레이티드 Selective laser induced optical breakdown in biological medium
WO2022127506A1 (en) * 2020-12-16 2022-06-23 深圳市赛禾医疗技术有限公司 Pressure wave generating apparatus and medical device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1277716B (en) * 1964-05-21 1968-09-12 Prakla Gmbh Spark sound transmitter
US4715376A (en) * 1986-11-07 1987-12-29 Trutek Research, Inc. Isolation of gas in hydraulic spark gap shock wave generator
GB2231152A (en) * 1989-03-30 1990-11-07 Natural Environment Res Positioning transducers in boreholes
FR2649252B1 (en) * 1989-06-30 1993-01-15 Technomed Int Sa METHOD AND DEVICE FOR DISCHARGING AN ELECTRIC ARC IN AN ELECTRICALLY CONDUCTIVE LIQUID AND APPLICATION TO A LITHOTRYPTER

Also Published As

Publication number Publication date
IL100463A0 (en) 1992-09-06
JPH06505648A (en) 1994-06-30
FR2671239B1 (en) 1994-09-30
ATE137353T1 (en) 1996-05-15
DE69119093T2 (en) 1996-10-24
FR2671239A1 (en) 1992-07-03
DK0564530T3 (en) 1996-08-12
ES2090602T3 (en) 1996-10-16
WO1992012513A1 (en) 1992-07-23
DE69119093D1 (en) 1996-05-30
EP0564530A1 (en) 1993-10-13

Similar Documents

Publication Publication Date Title
EP0564530B1 (en) Method and device for placing a liquid between electrodes in a shock wave apparatus
EP0086136B1 (en) Electromagnetic high-voltage pulse generator
FR2649252A1 (en) METHOD AND DEVICE FOR DISCHARGING AN ELECTRIC ARC IN AN ELECTRICALLY CONDUCTIVE LIQUID AND APPLICATION TO THE LITHOTRYPTOR
US5251614A (en) Method and device interposing an electrically conductive liquid between electrodes and shockwave apparatus for method and device
JPH0363232B2 (en)
FR2529400A1 (en) GAS LASER WITH EXCITATION BY TRANSVERSE ELECTRIC DISCHARGE TRIGGERED BY PHOTOIONIZATION
EP0167746B1 (en) Gas laser
FR2620277A1 (en) OPTICAL MODULATOR
FR2551614A1 (en) INTENSE X-RAY SOURCE WITH A PLASMA CYLINDRICAL COMPRESSION, WHICH IS OBTAINED FROM AN EXPLOSIVE SHEET
EP1097773B1 (en) Process and apparatus for electric discharge machining
CA2925509A1 (en) Spark-gap of an electric arc generation device, and corresponding electric arc generation device
FR2640090A1 (en) DEVICE FORMING AN ECLATOR COMPRISING AN INTERNAL SHAPING IN ELECTRICALLY INSULATING REFRACTORY MATERIAL AND SHOCKWAVE GENERATING APPARATUS, IN PARTICULAR FOR HYDRAULIC LITHOTRITIS, PROVIDED WITH SUCH A DEVICE
EP0296912A1 (en) Method and apparatus to improve the discharge regime of an electric arc between two electrodes by interposing a high resistive insulating element, shock-wave generator using such a method and apparatus, particularly for hydraulic lithotrypsie
EP0261999B1 (en) Apparatus for the generation of shock waves having a tubular element for limiting electromagnetic losses
EP0389531A1 (en) Device for generating shock waves fitted with an ellipsoidal reflector
WO1994001859A1 (en) Electric discharge electrode with moving ring
EP0298833B1 (en) Process and device for electric under-water welding
FR2656744A1 (en) ELECTRIC DISCHARGE DEVICE FORMING SPLITTER OR "SPARK GAP" WITH REDUCED INDUCTANCE AND SHOCK WAVE GENERATING APPARATUS INCLUDING APPLICATION.
FR2593382A1 (en) Apparatus generating high-frequency shock waves and its use for destroying targets such as tissues, concretions, in particular renal and biliary calculus
FR2636167A1 (en) GAS PROTECTOR CONTAINING A MINERAL ADDITIVE
FR2669724A1 (en) Laser detonator operating by sheet (plate) projection effect
FR2593383A1 (en) HIGH FREQUENCY IMPACT WAVE GENERATOR APPARATUS WITH A SCREEN REDUCING ELECTRIC LEAKS AND ITS USE FOR THE DESTRUCTION OF TARGETS SUCH AS TISSUE CONCRETIONS, IN PARTICULAR RENAL CALCULATIONS, BILIARY
EP3579990B1 (en) Electrohydraulic forming device
FR2688947A1 (en) KRCL EXIMER LASER DEVICE.
FR2555828A1 (en) Gas laser generator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19930604

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19950814

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE

Owner name: TECHNOMED MEDICAL SYSTEMS

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 137353

Country of ref document: AT

Date of ref document: 19960515

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD AG PATENTANWAELTE

REF Corresponds to:

Ref document number: 69119093

Country of ref document: DE

Date of ref document: 19960530

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960603

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2090602

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2090602

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 19981221

Year of fee payment: 8

Ref country code: AT

Payment date: 19981221

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19990111

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991219

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991231

BERE Be: lapsed

Owner name: INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE M

Effective date: 19991231

Owner name: TECHNOMED MEDICAL SYSTEMS

Effective date: 19991231

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20031125

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20031126

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20031127

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20031217

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041220

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050701

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20041219

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20050701

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20041220

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20101126

Year of fee payment: 20

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: TECHNOMED MEDICAL SYSTEMS

Free format text: TECHNOMED MEDICAL SYSTEMS#4, RUE DU DAUPHINE#F-69120 VAULX-EN-VELIN (FR) $ INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE (INSERM)#101, RUE DE TOLBIAC#F-75654 PARIS CEDEX 13 (FR) -TRANSFER TO- TECHNOMED MEDICAL SYSTEMS#4, RUE DU DAUPHINE#F-69120 VAULX-EN-VELIN (FR) $ INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE (INSERM)#101, RUE DE TOLBIAC#F-75654 PARIS CEDEX 13 (FR)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20101129

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101208

Year of fee payment: 20

Ref country code: FR

Payment date: 20110120

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69119093

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69119093

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20111220