EP0560436A1 - Cathode with solid element - Google Patents

Cathode with solid element Download PDF

Info

Publication number
EP0560436A1
EP0560436A1 EP93200613A EP93200613A EP0560436A1 EP 0560436 A1 EP0560436 A1 EP 0560436A1 EP 93200613 A EP93200613 A EP 93200613A EP 93200613 A EP93200613 A EP 93200613A EP 0560436 A1 EP0560436 A1 EP 0560436A1
Authority
EP
European Patent Office
Prior art keywords
metallic
range
oxidic
components
cathode according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP93200613A
Other languages
German (de)
French (fr)
Other versions
EP0560436B1 (en
Inventor
Georg Dr. Gärtner
Hans Dr. Lydtin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Philips Intellectual Property and Standards GmbH
Koninklijke Philips NV
Original Assignee
Philips Patentverwaltung GmbH
Philips Gloeilampenfabrieken NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Patentverwaltung GmbH, Philips Gloeilampenfabrieken NV, Koninklijke Philips Electronics NV filed Critical Philips Patentverwaltung GmbH
Publication of EP0560436A1 publication Critical patent/EP0560436A1/en
Application granted granted Critical
Publication of EP0560436B1 publication Critical patent/EP0560436B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/13Solid thermionic cathodes
    • H01J1/14Solid thermionic cathodes characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/13Solid thermionic cathodes
    • H01J1/20Cathodes heated indirectly by an electric current; Cathodes heated by electron or ion bombardment
    • H01J1/28Dispenser-type cathodes, e.g. L-cathode

Definitions

  • the invention relates to a cathode with a solid element, which contains metallic components and oxidic components.
  • Replenishment cathodes consist of a porous metal matrix with more than 70% metal volume, which ensures good electrical conductivity, as well as an oxide component such as Alkaline earth oxides BaO or CaO or 4BaO.CaO.Al2O3, which is located in the pores of the metal matrix or in a storage area.
  • an oxide component such as Alkaline earth oxides BaO or CaO or 4BaO.CaO.Al2O3, which is located in the pores of the metal matrix or in a storage area.
  • atomic films consisting of the metal (s) (Ba) and atomic oxygen (O) contained in the oxide form on the metal cathode surface (W) and ensure a low work function.
  • Known cathodes of this type are the I cathode (cf. EP-A 0333 369) and the scandate cathode (cf. EP-A 0442 163). Such cathodes have the features mentioned above.
  • Oxide cathodes consist of a relatively thick porous oxide layer made of alkaline earth oxides (for example BaO.SrO) and other oxide dopants (for example Sc2O3, Eu2O3) on a metal support such as nickel. They allow significantly lower operating temperatures of approx. 730 to 850 ° C with emission current densities of 10 to 50A / cm2, but only in the ⁇ sec range. Due to the 50A / cm2, but only in the ⁇ sec range. Due to the low electrical conductivity of the oxide components, the permanent load capacity is limited to 1-3 A / cm2.
  • alkaline earth oxides for example BaO.SrO
  • other oxide dopants for example Sc2O3, Eu2O3
  • the invention has for its object to design a solid element of the type mentioned in such a way that high emission current densities result in a long service life even at low operating temperatures.
  • the solution is achieved in that the structure of the components and the volume ratio v m of the metallic components relative to the total volume of the solid element are chosen such that the specific resistance ⁇ is a value in the range ⁇ O ⁇ 10 ⁇ 4> ⁇ > ⁇ m ⁇ 102 has, where ⁇ O or ⁇ m are the specific resistances of the pure oxidic components or the pure metallic components determined at 20 ° C.
  • the specific electrical resistance ⁇ of a solid-state element according to the invention has a value in the range of the so-called percolation threshold.
  • Cathodes with solid-state elements according to the invention can therefore be referred to as percolation cathodes.
  • the metallic conductivity changes to the oxide conductivity.
  • the specific resistance ⁇ lies between ⁇ O 10 ⁇ 4 and ⁇ m 102, preferably in the range between 103 ⁇ cm and 10 ⁇ 3 ⁇ cm.
  • the specific electrical resistance ⁇ (measured at room temperature) of a solid composed of BaO and W particles of average size 30 nm is represented on a logarithmic scale as a function of the percentage metal volume fraction v m .
  • a metallic conductance behavior is determined in the range v ma ⁇ v m ⁇ V mb of the percolation threshold.
  • the relative volume composition of a solid-state element according to the invention is selected, with volume fractions in the hatched area being particularly favorable for cathodes. For this shaded area, the additional condition is that d4log ⁇ / d V m 4 is positive.
  • the steepness of the characteristic curve P depends to a large extent on the structure of the solid element according to the invention, namely on the size of the metallic and / or oxidic particles and on the homogeneity of their distribution.
  • An advantageous embodiment is characterized in that the oxidic volume fraction is larger than the metallic one.
  • Particles in the sense of the present invention are particles which are formed separately (laser ablation, sputtering of a target) and to a solid element, or grains, which were formed on a substrate by chemical precipitation from the vapor phase (CVD). Furthermore, separately formed further particles can be mixed in between CVD grains (cf. EP-A 0442 163), so that, for example, BaO particles supplied to the substrate via a gas stream are embedded in a tungsten matrix formed on the substrate by CVD.
  • Solid-state elements according to the invention consist of fine and homogeneously mixed structures of individual chemically different types of solid-state elements, a spatial network of metallic particles being nested in a spatial network of oxidic components or vice versa and possibly including tunnel current paths. Furthermore, both the oxidic and the metallic constituents can also be present as particles or grains.
  • Particularly high emission current densities are achieved in that the metallic constituents or the oxidic constituents in the form of particles in the other constituent are distributed so homogeneously that volume ranges of size (20 d ⁇ ) 3 the number of particles differs by less than + -20% from the corresponding volume fraction in the entire solid element, whereby d ⁇ is the average diameter of the particles. Large local agglomerations of particles should be avoided.
  • the solid-state element according to the invention is preferably characterized in that the metallic particles are arranged in such a way that - possibly via tunnel sections - tracks with metallic conductivity through the oxidic braid exist.
  • Heavy-duty cathodes were also obtained in that the average diameter d ⁇ the particle is selected to be smaller than 800 nm, preferably in the range from 0.5 to 100 nm and in particular in the range from 1 to 20 nm.
  • solid-state elements according to the invention can be produced particularly reliably with the desired percolation properties.
  • the solid properties for example electrical resistance
  • the solid properties are sufficiently isotropic when the particles are thoroughly mixed.
  • the specific electrical resistance ⁇ is set in the range from 10 2 to 10 12 ⁇ cm and that the mean diameter d ⁇ the particle is selected in the range from 0.5 to 4 nm.
  • the desired data can be advantageously achieved while at the same time being economically viable in that the diameters d ⁇ the particles are monomodal and have a half-width of ⁇ 50% and the mean d ⁇ have.
  • both the metallic and the oxidic constituents are in the form of particles, the mean diameter d ⁇ 1 the particles of a component less than about 100 nm and the average diameter d ⁇ 2 the body of the particles of the other component is less than 10 times the value d ⁇ 1 are selected, and that the particles of both components are distributed so homogeneously that in a volume range of size (20 d ⁇ 2) 3 the number of particles of each component deviate by less than ⁇ 20% from the corresponding volume fraction in the entire solid element.
  • Percolation cathodes constructed with solid-state elements according to the invention can be subjected to higher loads than oxide cathodes, lower operating temperatures being required than with subsequent delivery cathodes.
  • Solid-state elements according to the invention require only relatively low operating temperatures in the range from 730 to 850 ° C. Since neither a high-temperature impregnation step at temperatures of more than 1500 ° C. nor a longer activation at temperatures of about 1100 ° C. are necessary, the structure of a solid-state element structured according to the invention remains largely stable, even when components are used whose solid solubility in one another is not negligible is.
  • a solid-state element according to the invention can be heated by direct current passage.
  • Such a solution is advantageously characterized in that the proportions and / or the particle sizes of the oxidic (negative temperature coefficient) and / or metallic (positive temperature coefficient) components are selected such that the specific resistance in the range from room temperature to operating temperature is less than 5 %, preferably 1%, changes.
  • This has the advantage that when the solid-state element is heated directly, the heating current and voltage do not have to be readjusted, or only slightly, when heating up to a certain operating temperature.
  • Solid-state elements according to the invention can be produced in any known manner. For example, suitable processes are described in EP-A 0442 163 or in EP-A 0333 369.
  • a solid-state element according to the invention are not only achieved with a compact and 100% leakproof construction.
  • a porosity of up to about 20% is even advantageous because it facilitates the subsequent delivery of the emitting film components to the surface.
  • the electrical conductivity is nevertheless only insignificantly determined by electron gas conduction, but almost exclusively by the percolation structure.
  • the percolation cathode indicated in cross section in FIG. 1 consists of a tungsten heating coil 1, a molybdenum heating cap 2, a metal base 3 made of tungsten or nickel and a solid element 4 structured according to the invention, the specific electrical resistance ⁇ of which in the area of the percolation threshold on the characteristic branch P.
  • Figure 2 lies.
  • a volume element of the solid element 4 is shown greatly enlarged in cross section in FIG.
  • the metallic particles 5 consist of tungsten (28 vol.%).
  • the oxide particles 6 (closely hatched) consist of scandium oxide Sc2O3 (2 vol.%), while the oxidic particles 7 (not hatched) consist of barium oxide / strontium oxide (BaO / SrO) with a share of 60 vol.% Of the total volume.
  • pulse emission current densities of more than 160A / cm2 and permanent loads of 20A / cm2 were measured.
  • the specified values for permanent load capacity apply for a service life of more than 104 hours.
  • Similar good values were achieved with a modified pore-free structure according to FIG. 4, in which otherwise the same proportions for the constituents W, Sc2O3 or BaO / SrO were provided as for the structure according to FIG. 3.
  • W and Sc2O3 are particles 8 or 9 with an average diameter of 10 nm embedded in a solid matrix 10 of BaO / SrO.

Landscapes

  • Solid Thermionic Cathode (AREA)

Abstract

The invention relates to a cathode having a solid element (4) which contains metallic components and oxidic components. High emission flow densities with a long life are achieved, even at low operating temperatures, in that the structure of the components and the volume ratio vm of the metallic components relative to the total volume of the solid element is selected in such a manner that the resistivity rho has a value in the range rho o.10<-4>> rho > rho m.10<2>, rho 0 and rho m being the resistivities, defined at 20 DEG C of the pure oxidic components and of the pure metallic components respectively. <IMAGE>

Description

Die Erfindung bezieht sich auf eine Kathode mit einem Festkörperelement, welches metallische Bestandteile sowie oxidische Bestandteile enthält.The invention relates to a cathode with a solid element, which contains metallic components and oxidic components.

Nachlieferungskathoden bestehen aus einer porösen Metallmatrix mit mehr als 70% Metall-Volumenanteil, wodurch eine gute elektrische Leitfähigkeit erhalten wird, sowie eine Oxidkomponente wie z.B. Erdalkalioxide BaO oder CaO oder 4BaO.CaO.Al₂O₃, die sich in den Poren der Metallmatrix oder in einem Vorratsbereich befindet. Bei Betrieb einer solchen Kathode bei 900 bis 1000°C bilden sich atomare Filme, bestehend aus dem im Oxid enthaltenden Metall/en (Ba) und atomarem Sauerstoff (O) auf der Metall-Kathodenoberfläche (W) aus und sorgen für eine niedrige Austrittsarbeit. Bekannte Kathoden dieser Art sind die I-Kathode (vgl. EP-A 0333 369) und die Scandat-Kathode (vgl. EP-A 0442 163). Derartige Kathoden weisen die eingangs genannten Merkmale auf.Replenishment cathodes consist of a porous metal matrix with more than 70% metal volume, which ensures good electrical conductivity, as well as an oxide component such as Alkaline earth oxides BaO or CaO or 4BaO.CaO.Al₂O₃, which is located in the pores of the metal matrix or in a storage area. When such a cathode is operated at 900 to 1000 ° C., atomic films consisting of the metal (s) (Ba) and atomic oxygen (O) contained in the oxide form on the metal cathode surface (W) and ensure a low work function. Known cathodes of this type are the I cathode (cf. EP-A 0333 369) and the scandate cathode (cf. EP-A 0442 163). Such cathodes have the features mentioned above.

Bei Betriebstemperaturen zwischen 900°C und 1000°C werden Sättigungsstromdichten zwischen 10 und 150A/cm² erreicht. Solche Kathoden erfordern relativ hohe Heiztemperaturen, die zu Lebensdauerbegrenzung infolge Zerstörung der W-Heizwendel fuhren.At operating temperatures between 900 ° C and 1000 ° C, saturation current densities between 10 and 150A / cm² are achieved. Such cathodes require relatively high heating temperatures, which lead to limitation of the service life due to the destruction of the W heating coil.

Oxidkathoden (vgl. EP-A 0395 157) bestehen aus einer relativ dicken porösen Oxidschicht aus Erdalkalioxiden (beispielsweise BaO.SrO) und weiteren Oxiddotierungen (beispielsweise Sc₂O₃, Eu₂O₃) auf einem Metallträger wie Nickel. Sie erlauben deutlich niedrigere Betriebstemperaturen von ca. 730 bis 850°C mit Emissionsstromdichten von 10 bis 50A/cm², allerdings nur im µsec-Bereich. Auf Grund der 50A/cm², allerdings nur im µsec-Bereich. Auf Grund der geringen elektrischen Leitfähigkeit der Oxidkomponenten ist die Dauerbelastbarkeit auf 1-3 A/cm² begrenzt.Oxide cathodes (cf. EP-A 0395 157) consist of a relatively thick porous oxide layer made of alkaline earth oxides (for example BaO.SrO) and other oxide dopants (for example Sc₂O₃, Eu₂O₃) on a metal support such as nickel. They allow significantly lower operating temperatures of approx. 730 to 850 ° C with emission current densities of 10 to 50A / cm², but only in the µsec range. Due to the 50A / cm², but only in the µsec range. Due to the low electrical conductivity of the oxide components, the permanent load capacity is limited to 1-3 A / cm².

Der Erfindung liegt die Aufgabe zugrunde, ein Festkörperelement der eingangs genannten Art derart zu gestalten, daß sich auch bei niedrigen Betriebstemperaturen hohe Emissionsstromdichten bei hoher Lebensdauer ergeben.The invention has for its object to design a solid element of the type mentioned in such a way that high emission current densities result in a long service life even at low operating temperatures.

Die Lösung gelingt dadurch, daß die Struktur der Bestandteile und das Volumenverhältnis vm der metallischen Bestandteile relativ zum Gesamtvolumen des Festkörperelements derart gewählt sind, daß der spezifische Widerstand ρ einen Wert im Bereich ρ O ·10⁻⁴>ρ>ρ m ·10²

Figure imgb0001
hat, wobei ρO bzw. ρm die bei 20°C bestimmten spezifischen Widerstände der reinen oxidischen Bestandteile bzw. der reinen metallischen Bestandteile sind.The solution is achieved in that the structure of the components and the volume ratio v m of the metallic components relative to the total volume of the solid element are chosen such that the specific resistance ρ is a value in the range ρ O · 10⁻⁴>ρ> ρ m · 10²
Figure imgb0001
has, where ρ O or ρ m are the specific resistances of the pure oxidic components or the pure metallic components determined at 20 ° C.

Der Begriff "Perkolation" wird im Zusammenhang mit dem Verhalten granularer Metalle in "Adv. Physics 24 (1975), Seite 424 ff, verwendet.The term "percolation" is used in connection with the behavior of granular metals in "Adv. Physics 24 (1975), page 424 ff.

Der spezifische elektrische Widerstand ρ eines erfindungsgemäßen Festkörperelements hat einen Wert im Bereich der sogenannten Perkolationsschwelle. Kathoden mit erfindungsgemäßen Festkörperelementen können deshalb als Perkolationskathoden bezeichnet werden.The specific electrical resistance ρ of a solid-state element according to the invention has a value in the range of the so-called percolation threshold. Cathodes with solid-state elements according to the invention can therefore be referred to as percolation cathodes.

Im Bereich der Perkolationsschwelle einer aus metallischen und oxidischen feinen Partikeln gebildeten Materialzusammensetzung wechselt die metallische zur oxidischen Leitfähigkeit. In Abhängigkeit vom prozentualen Volumenanteil des Metalls (vm) des Festkörperelements ändert sich der spezifische Widerstand ρ im Bereich zwischen vm = 0 bis vm = 1 mit einem typisch S-förmigen Verlauf, wobei der Bereich der Perkolationsschwelle durch den steilen Kennlinienbereich bei mittleren Werten von vm definiert ist. Dieser Bereich kann auch durch d²logρ/dV m ²=0

Figure imgb0002
und d³logρ/dVm³<0 mathematisch eingegrenzt werden. In diesem Bereich liegt der spezifische Widerstand ρ zwischen ρO10⁻⁴ und ρm10², vorzugsweise im Bereich zwischen 10³ Ωcm und 10⁻³ Ωcm. Zur näheren Erläuterung des erfindungsgemäß vorzusehenden Bereichs wird auf Fig. 2 Bezug genommen. Dort ist der spezifische elektrische Widerstand ρ (gemessen bei Raumtemperatur) eines aus BaO- und W-Partikeln der mittleren Größe 30 nm zusammengesetzten Festkörpers in logarithmischem Maßstab in Abhängigkeit des prozentualen Metallvolumenanteils vm dargestellt. Im Bereich vm = 0 ergibt sich der hohe spezifische Widerstand ρo eines BaO-Festkörpers, im Bereich vm = 100% der spezifische Widerstand ρm von Wolfram. Im Bereich 0<vm<vma wird ein oxidisches, im Bereich vmb<vm 100% ein metallisches Leitwertverhalten festgestellt. Ein Mischverhalten ergibt sich im Bereich vma<vm<Vmb der Perkolationsschwelle. Im steilen Kennlinienbereich p zwischen den Grenzwerten vma und vmb ist die relative Volumenzusammensetzung eines erfindungsgemäßen Festkörperelements gewählt, wobei Volumenanteile im schraffierten Bereich für Kathoden besonders günstig sind. Für diesen schraffierten Bereich gilt in etwa als zusätzliche Bedingung, daß d⁴logρ/d Vm⁴ positiv ist. Die Grenzwerte vma und vmb können den Bereich von vm = 20% bis vm = 80% einschließen. Die Steilheit der Kennlinie P hängt in starkem Maße von der Struktur des erfindungsgemäßen Festkörperelements ab, nämlich von der Größe der metallischen und/oder oxidischen Partikel sowie von der Homogenität ihrer Verteilung. Eine vorteilhafte Ausführung ist dadurch gekennzeichnet, daß der oxidische Volumenanteil größer als der metallische ist. Partikel im Sinne der vorliegenden Erfindung sind Teilchen, die separat gebildet (Laserablation, Sputtern von einem Target) und zu einem Festkörperelement verbunden wurden, oder auch Körner, die auf einem Substrat durch chemischen Niederschlag aus der Dampfphase (CVD) gebildet wurden. Ferner können zwischen CVD-Körnern auch separat gebildete weitere Teilchen eingemischt werden (vgl. EP-A 0442 163), so daß beispielsweise dem Substrat über einen Gasstrom zugeführte BaO-Partikel in eine per CVD auf dem Substrat gebildete Wolfram-Matrix eingelagert werden.In the area of the percolation threshold of a material composition formed from metallic and oxidic fine particles, the metallic conductivity changes to the oxide conductivity. Depending on the percentage volume of the metal (v m ) of the solid element, the specific resistance ρ changes in the range between v m = 0 to v m = 1 with a typical S-shaped course, the range of the percolation threshold being defined by the steep range of characteristic curves with average values of v m . This area can also pass through d²logρ / dV m ² = 0
Figure imgb0002
and d³logρ / dV m ³ <0 can be mathematically limited. In this range the specific resistance ρ lies between ρ O 10⁻⁴ and ρ m 10², preferably in the range between 10³ Ωcm and 10⁻³ Ωcm. For a more detailed explanation of the area to be provided according to the invention, reference is made to FIG. 2. There, the specific electrical resistance ρ (measured at room temperature) of a solid composed of BaO and W particles of average size 30 nm is represented on a logarithmic scale as a function of the percentage metal volume fraction v m . The high specific resistance ρ o of a BaO solid results in the range v m = 0, and the specific resistance ρ m of tungsten in the range v m = 100%. In the range 0 <v m <v ma an oxidic conductance behavior and in the range v mb <v m 100% a metallic conductance behavior is determined. A mixing behavior results in the range v ma <v m <V mb of the percolation threshold. In the steep characteristic curve range p between the limit values v ma and v mb , the relative volume composition of a solid-state element according to the invention is selected, with volume fractions in the hatched area being particularly favorable for cathodes. For this shaded area, the additional condition is that d⁴logρ / d V m ⁴ is positive. The limit values v ma and v mb can include the range from v m = 20% to v m = 80%. The steepness of the characteristic curve P depends to a large extent on the structure of the solid element according to the invention, namely on the size of the metallic and / or oxidic particles and on the homogeneity of their distribution. An advantageous embodiment is characterized in that the oxidic volume fraction is larger than the metallic one. Particles in the sense of the present invention are particles which are formed separately (laser ablation, sputtering of a target) and to a solid element, or grains, which were formed on a substrate by chemical precipitation from the vapor phase (CVD). Furthermore, separately formed further particles can be mixed in between CVD grains (cf. EP-A 0442 163), so that, for example, BaO particles supplied to the substrate via a gas stream are embedded in a tungsten matrix formed on the substrate by CVD.

Erfindungsgemäße Festkörperelemente bestehen aus feinen und homogen gemischten Strukturen individueller chemisch verschiedenartiger Festkörperelemente, wobei ein räumliches Netzwerk metallischer Partikel in ein räumliches Netzwerk oxidischer Bestandteile oder umgekehrt verschachtelt ist und gegebenenfalls Tunnelstromstrecken mit einbezogen werden. Weiterhin können auch sowohl die oxidischen als auch die metallischen Bestandteile als Partikel bzw. Körner vorliegen.Solid-state elements according to the invention consist of fine and homogeneously mixed structures of individual chemically different types of solid-state elements, a spatial network of metallic particles being nested in a spatial network of oxidic components or vice versa and possibly including tunnel current paths. Furthermore, both the oxidic and the metallic constituents can also be present as particles or grains.

Besonders hohe Emissionsstromdichten werden dadurch erreicht, daß die metallischen Bestandteile oder die oxidischen Bestandteile in Form von Partikeln im jeweils anderen Bestandteil derart homogen verteilt sind, daß sich in Volumenbereichen der Größe (20 d ¯

Figure imgb0003
)³ die Anzahl der Partikel um weniger als +-20% von dem entsprechenden Volumenanteil im gesamten Festkörperelement unterscheidet, wobei d ¯
Figure imgb0004
der mittlere Durchmesser der Partikel ist. Große lokale Agglomarationen von Partikeln sind dabei zu vermeiden.Particularly high emission current densities are achieved in that the metallic constituents or the oxidic constituents in the form of particles in the other constituent are distributed so homogeneously that volume ranges of size (20 d ¯
Figure imgb0003
) ³ the number of particles differs by less than + -20% from the corresponding volume fraction in the entire solid element, whereby d ¯
Figure imgb0004
is the average diameter of the particles. Large local agglomerations of particles should be avoided.

Das erfindungsgemäße Festkörperelement ist vorzugsweise dadurch gekennzeichnet, daß die metallischen Partikel so angeordnet sind, daß - gegebenenfalls über Tunnelstrecken - Bahnen mit metallischer Leitfähigkeit durch das oxidische Geflecht bestehen.The solid-state element according to the invention is preferably characterized in that the metallic particles are arranged in such a way that - possibly via tunnel sections - tracks with metallic conductivity through the oxidic braid exist.

Hochbelastbare Kathoden wurden auch dadurch erhalten, daß der mittlere Durchmesser d ¯

Figure imgb0005
der Partikel kleiner als 800 nm, vorzugsweise im Bereich von 0,5 bis 100 nm und insbesondere im Bereich von 1 bis 20 nm gewählt ist.Heavy-duty cathodes were also obtained in that the average diameter d ¯
Figure imgb0005
the particle is selected to be smaller than 800 nm, preferably in the range from 0.5 to 100 nm and in particular in the range from 1 to 20 nm.

Bei kleinen Partikelabmessungen lassen sich erfindungsgemäße Festkörperelemente besonders zuverlässig mit den gewünschten Perkolationseigenschaften herstellen. Die Festkörpereigenschaften (beispielsweise elektrischer Widerstand) sind bei inniger Durchmischung der Partikel ausreichend isotrop.With small particle dimensions, solid-state elements according to the invention can be produced particularly reliably with the desired percolation properties. The solid properties (for example electrical resistance) are sufficiently isotropic when the particles are thoroughly mixed.

Bei einer Dimensionierung außerhalb des in Figur 2 schraffierten Bereichs ist es vorteilhaft, daß der spezifische elektrische Widerstand ρ im Bereich von 10² bis 10¹² Ωcm eingestellt ist und daß der mittlere Durchmesser d ¯

Figure imgb0006
der Partikel im Bereich von 0,5 bis 4 nm gewählt ist.In the case of dimensioning outside the area hatched in FIG. 2, it is advantageous that the specific electrical resistance ρ is set in the range from 10 2 to 10 12 Ωcm and that the mean diameter d ¯
Figure imgb0006
the particle is selected in the range from 0.5 to 4 nm.

Die gewünschten Daten können bei gleichzeitig wirtschaftlicher Herstellungsmöglichkeit vorteilhaft dadurch erreicht werden, daß die Durchmesser d ¯

Figure imgb0007
der Partikel monomodal verteilt sind und eine Halbwertsbreite von ≦ 50% und den Mittelwert d ¯
Figure imgb0008
besitzen.The desired data can be advantageously achieved while at the same time being economically viable in that the diameters d ¯
Figure imgb0007
the particles are monomodal and have a half-width of ≦ 50% and the mean d ¯
Figure imgb0008
have.

Gemäß einer bevorzugten Lösung ist vorgesehen, daß sowohl die metallischen als auch die oxidischen Bestandteile in Form von Partikeln vorliegen, wobei der mittlere Durchmesser d ¯

Figure imgb0009
₁ der Partikel des einen Bestandteils kleiner als etwa 100 nm und die mittleren Durchmesser d ¯
Figure imgb0010
₂ der Körper der Partikel des anderen Bestandteils kleiner als das 10-fache des Wertes d ¯
Figure imgb0011
₁ gewählt sind, und daS die Partikel beider Bestandteile derart homogen verteilt sind, daß in einem Volumenbereich der Größe (20 d ¯
Figure imgb0012
₂)³ die Anzahlen der Partikel eines jeden Bestandteiles um weniger als ± 20% vom entsprechenden Volumenanteil im gesamten Festkörperelement abweichen.According to a preferred solution, it is provided that both the metallic and the oxidic constituents are in the form of particles, the mean diameter d ¯
Figure imgb0009
₁ the particles of a component less than about 100 nm and the average diameter d ¯
Figure imgb0010
₂ the body of the particles of the other component is less than 10 times the value d ¯
Figure imgb0011
₁ are selected, and that the particles of both components are distributed so homogeneously that in a volume range of size (20 d ¯
Figure imgb0012
₂) ³ the number of particles of each component deviate by less than ± 20% from the corresponding volume fraction in the entire solid element.

Dann liegt ein insgesamt granularer Festkörper vor, welcher insbesondere dann, wenn die Durchmesser sämtlicher Partikel im Bereich von 0,5 bis 100 nm liegen, besonders isotrope Festkörpereigenschaften aufweist, dessen Eigenschaften auch bei einer Serienfertigung mit geringer Streubreite eingehalten werden können.Then there is an overall granular solid which, particularly when the diameters of all the particles are in the range from 0.5 to 100 nm, has particularly isotropic solid properties, the properties of which can be maintained even in series production with a narrow spread.

Mit erfindungsgemäßen Festkörperelementen aufgebaute Perkolationskathoden sind höher belastbar als Oxidkathoden, wobei niedrigere Betriebstemperaturen als bei Nachlieferungskathoden benötigt werden.Percolation cathodes constructed with solid-state elements according to the invention can be subjected to higher loads than oxide cathodes, lower operating temperatures being required than with subsequent delivery cathodes.

Folgende Materialkombinationen sind besonders geeignet: Oxidischer Anteil Metallischer Anteil Ba0 Ca0 Al₂O₃ Sc₂O₃ W BaO SrO W, Ni, Mg Ba0 Sr0 Sc₂O₃ W Ni ThO₂ W* Re La₂O₃ Mo* Pt *: Eine Beimischung von W₂C bzw. Mo₂ zu W bzw. Mo kann vorteilhaft sein. The following material combinations are particularly suitable: Oxidic content Metallic part Ba0 Ca0 Al₂O₃ Sc₂O₃ W BaO SrO W, Ni, Mg Ba0 Sr0 Sc₂O₃ W Ni ThO₂ W * re La₂O₃ Mon * Pt *: An admixture of W₂C or Mo₂ to W or Mo can be advantageous.

Erfindungsgemäße Festkörperelemente erfordern nur relativ niedrige Betriebstemperaturen im Bereich von 730 bis 850°C. Da weder ein Hochtemperatur-Imprägnierschritt bei Temperaturen von mehr als 1500°C noch eine längere Aktivierung bei Temperaturen von etwa 1100°C notwendig sind, bleibt die Struktur eines erfindungsgemäß strukturierten Festkörperelements weitgehend stabil, auch wenn Komponenten verwendet werden, deren feste Löslichkeit ineinander nicht vernachlässigbar ist.Solid-state elements according to the invention require only relatively low operating temperatures in the range from 730 to 850 ° C. Since neither a high-temperature impregnation step at temperatures of more than 1500 ° C. nor a longer activation at temperatures of about 1100 ° C. are necessary, the structure of a solid-state element structured according to the invention remains largely stable, even when components are used whose solid solubility in one another is not negligible is.

Ein erfindungsgemäßes Festkörperelement kann durch direkten Stromdurchgang beheizt werden. Eine solche Lösung ist vorteilhaft dadurch gekennzeichnet, daß die Anteile und/oder die Partikelgrößen der oxidischen (negativer Temperaturkoeffizient) und/oder metallischen (positiver Temperaturkoeffizient) Bestandteile derart gewählt sind, daß sich der spezifische Widerstand im Bereich von Raumtemperatur bis Betriebstemperatur um weniger als 5%, vorzugsweise 1%, ändert. Das hat den Vorteil, daß bei direkter Heizung des Festkörperelements Heizstrom und - Spannung beim Aufheizen auf eine bestimmte Betriebstemperatur nicht oder nur unwesentlich nachgeregelt werden müssen.A solid-state element according to the invention can be heated by direct current passage. Such a solution is advantageously characterized in that the proportions and / or the particle sizes of the oxidic (negative temperature coefficient) and / or metallic (positive temperature coefficient) components are selected such that the specific resistance in the range from room temperature to operating temperature is less than 5 %, preferably 1%, changes. This has the advantage that when the solid-state element is heated directly, the heating current and voltage do not have to be readjusted, or only slightly, when heating up to a certain operating temperature.

Festkörperelemente gemäß der Erfindung sind in beliebiger bekannter Weise herstellbar. Beispielsweise geeignete Verfahren sind in EP-A 0442 163 oder in EP-A 0333 369 beschrieben.Solid-state elements according to the invention can be produced in any known manner. For example, suitable processes are described in EP-A 0442 163 or in EP-A 0333 369.

Die vorteilhaften Eigenschaften eines erfindungsgemäßen Festkörperelements werden nicht nur bei kompaktem und 100% dichtem Aufbau erreicht. Eine Porosität bis etwa 20% ist sogar vorteilhaft, weil dadurch die Nachlieferung der emittierenden Filmkomponenten zur Oberfläche erleichtert wird. Die elektrische Leitfähigkeit ist dennoch nur unwesentlich durch Elektronengas-Leitung, sondern nahezu ausschließlich durch die Perkolationsstruktur bestimmt.The advantageous properties of a solid-state element according to the invention are not only achieved with a compact and 100% leakproof construction. A porosity of up to about 20% is even advantageous because it facilitates the subsequent delivery of the emitting film components to the surface. The electrical conductivity is nevertheless only insignificantly determined by electron gas conduction, but almost exclusively by the percolation structure.

Die Erfindung wird anhand der Beschreibung von in der Zeichnung dargestellten Ausführungsbeispielen näher erläutert.

Figur 1
zeigt den Prinzipaufbau einer Kathode mit einem erfindungsgemäßen Festkörperelement
Figur 2
zeigt den spezifischen Widerstand ρ in Abhängigkeit des prozentualen Volumenanteils vm metallischer Bestandteile einer nanostrukturierten, aus metallischen und oxidischen Bestandteilen bestehenden Festkörpers.
Figur 3
zeigt den Strukturaufbau eines Volumenelements des Festkörperelements nach Figur 1.
Figur 4
zeigt einen alternativen Strukturaufbau für ein Festkörperelement nach Fig. 1.
The invention is explained in more detail with reference to the description of exemplary embodiments shown in the drawing.
Figure 1
shows the basic structure of a cathode with a solid element according to the invention
Figure 2
shows the specific resistance ρ in dependence the percentage by volume v m of metallic components of a nanostructured solid consisting of metallic and oxidic components.
Figure 3
shows the structure of a volume element of the solid element according to Figure 1.
Figure 4
shows an alternative structure for a solid element according to FIG. 1.

Die in Figur 1 im Querschnitt angedeutete Perkolationskathode besteht aus einer Wolfram-Heizwendel 1, einer Molybdän-Heizkappe 2, einer Metallbasis 3 aus Wolfram oder Nickel und einem erfindungsgemäß strukturierten Festkörperelement 4, dessen spezifischer elektrischer Widerstand ρ im Bereich der Perkolationsschwelle auf dem Kennlinienast P nach Figur 2 liegt.The percolation cathode indicated in cross section in FIG. 1 consists of a tungsten heating coil 1, a molybdenum heating cap 2, a metal base 3 made of tungsten or nickel and a solid element 4 structured according to the invention, the specific electrical resistance ρ of which in the area of the percolation threshold on the characteristic branch P. Figure 2 lies.

Ein Volumenelement des Festkörperelements 4 ist in Figur 3 im Querschnitt stark vergrößert dargestellt. Man erkennt einen relativ kompakten Aufbau aus miteinander verbundenen Partikeln bei niedrigem porenanteil von etwa 10 Vol%. Die metallischen Partikel 5 (schraffiert) bestehen aus Wolfram (28 Vol.%). Die oxidischen Partikel 6 (eng schraffiert) bestehen aus Scandiumoxid Sc₂O₃ (2 Vol.%), während die oxidischen Partikel 7 (nicht schraffiert) aus Bariumoxid/Strontiumoxid (BaO/SrO) bestehen mit einem Anteil von 60 Vol.% am Gesamtvolumen. Der mittlere Durchmesser der Partikel 5,6 und 7 beträgt d ¯

Figure imgb0013
= 3 nm.A volume element of the solid element 4 is shown greatly enlarged in cross section in FIG. One can see a relatively compact structure made up of interconnected particles with a low pore content of about 10% by volume. The metallic particles 5 (hatched) consist of tungsten (28 vol.%). The oxide particles 6 (closely hatched) consist of scandium oxide Sc₂O₃ (2 vol.%), While the oxidic particles 7 (not hatched) consist of barium oxide / strontium oxide (BaO / SrO) with a share of 60 vol.% Of the total volume. The mean diameter of the particles is 5.6 and 7 d ¯
Figure imgb0013
= 3 nm.

Bei einer Betriebstemperatur von 730° C, einem Umgebungsdruck von 10⁻⁸ Torr wurde eine Pulsemission (5 µsec) von 25 A/cm² erreicht. Als Dauerbelastung waren 10A/cm² im raumladungsbeschränkten Bereich möglich, also trotz niedriger Betriebstemperatur 4- fach höhere Werte als bei Oxidkathoden.At an operating temperature of 730 ° C and an ambient pressure of 10⁻⁸ Torr, a pulse emission (5 µsec) of 25 A / cm² was achieved. A permanent load of 10A / cm² was possible in the space charge restricted area, i.e. 4 times higher values than with oxide cathodes despite the low operating temperature.

Bei einer Betriebstemperatur von 880°C wurden Puls-Emissionsstromdichten von mehr als 160A/cm² und Dauerlasten von 20A/cm² gemessen. Die angegebenen Werte für Dauerbelastbarkeit gelten für Lebensdauer von mehr als 10⁴ Stunden. Ähnlich gute Werte wurden mit einer abgewandelten porenfreien Struktur nach Fig. 4 erzielt, bei welcher ansonsten die gleichen Anteile für die Bestandteile W, Sc²O₃ oder BaO/SrO vorgesehen wurden wie bei der Struktur nach Fig. 3. Allerdings sind hier W und Sc₂O₃ als Partikel 8 bzw. 9 mit einem mittleren Durchmesser von 10 nm in einer Festkörpermatrix 10 von BaO/SrO eingebettet.At an operating temperature of 880 ° C, pulse emission current densities of more than 160A / cm² and permanent loads of 20A / cm² were measured. The specified values for permanent load capacity apply for a service life of more than 10⁴ hours. Similar good values were achieved with a modified pore-free structure according to FIG. 4, in which otherwise the same proportions for the constituents W, Sc²O₃ or BaO / SrO were provided as for the structure according to FIG. 3. However, here W and Sc₂O₃ are particles 8 or 9 with an average diameter of 10 nm embedded in a solid matrix 10 of BaO / SrO.

Claims (10)

Kathode mit einem Festkörperelement (4), welches metallische Bestandteile sowie oxidische Bestandteile enthält,
dadurch gekennzeichnet, daß die Struktur der Bestandteile und das Volumenverhältnis vm der metallischen Bestandteile relativ zum Gesamtvolumen des Festkörperelements derart gewählt sind, daß der spezifische Widerstand ρ einen Wert im Bereich ρ O ·1O⁻⁴>ρ>ρ m ·10²
Figure imgb0014
hat, wobei ρO bzw. ρm die bei 20°C bestimmten spezifischen Widerstände der reinen oxidischen Bestandteile bzw. der reinen metallischen Bestandteile sind.
Cathode with a solid element (4), which contains metallic components as well as oxidic components,
characterized in that the structure of the components and the volume ratio v m of the metallic components relative to the total volume of the solid element are chosen such that the specific resistance ρ is a value in the range ρ O · 1O⁻⁴>ρ> ρ m · 10²
Figure imgb0014
has, where ρ O or ρ m are the specific resistances of the pure oxidic components or the pure metallic components determined at 20 ° C.
Kathode nach Anspruch 1,
dadurch gekennzeichnet, daß der spezifische Widerstand zwischen 10³ Ω cm und 10⁻³ Ω cm beträgt.
Cathode according to claim 1,
characterized in that the resistivity is between 10³ Ω cm and 10⁻³ Ω cm.
Kathode nach Anspruch 1 oder 2,
dadurch gekennzeichnet, daß der Metallanteil vm im Bereich von 20 bis 80 Vol.% liegt.
Cathode according to claim 1 or 2,
characterized in that the metal content v m is in the range from 20 to 80% by volume.
Kathode nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet, daß der metallische Volumenanteil kleiner als der oxidische ist, und vorzugsweise im Bereich von 33-50% liegt.
Cathode according to one of claims 1 to 3,
characterized in that the metallic volume fraction is smaller than the oxidic, and is preferably in the range of 33-50%.
Kathode nach einem der Ansprüche 1 bis 4,
dadurch gekennzeichnet, daß die metallischen Partikel so angeordnet sind, daß - gegebenenfalls über Tunnelstrecken - Bahnen mit metallischer Leitfähigkeit durch das oxidische Geflecht bestehen.
Cathode according to one of claims 1 to 4,
characterized in that the metallic particles are arranged in such a way that - possibly via tunnel sections - there are tracks with metallic conductivity through the oxidic mesh.
Kathode nach einem der Ansprüche 1 bis 5,
dadurch gekennzeichnet, daß der mittlere Durchmesser d ¯
Figure imgb0015
der Partikel (5 bis 9) kleiner als 800 nm, vorzugsweise im Bereich von 0,5 bis 100 nm und insbesondere im Bereich von 1 bis 20 nm gewählt ist.
Cathode according to one of claims 1 to 5,
characterized in that the mean diameter d ¯
Figure imgb0015
the particle (5 to 9) is selected to be less than 800 nm, preferably in the range from 0.5 to 100 nm and in particular in the range from 1 to 20 nm.
Kathode nach einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet, daß Mittel vorgesehen sind, durch welche ein Heizstrom durch das Festkörperelement leitbar ist.
Cathode according to one of claims 1 to 6,
characterized in that means are provided by which a heating current can be conducted through the solid element.
Kathode nach Anspruch 7,
dadurch gekennzeichnet, daß die Anteile und/oder die Partikelgrößen der oxidischen und/oder metallischen Bestandteile derart gewählt sind, daß sich der spezifische elektrische Widerstand ρ im Bereich von der Raumtemperatur bis Betriebstemperatur um weniger als 5%, vorzugsweise um weniger als 1% ändert.
Cathode according to claim 7,
characterized in that the proportions and / or the particle sizes of the oxidic and / or metallic constituents are selected such that the specific electrical resistance ρ changes in the range from room temperature to operating temperature by less than 5%, preferably by less than 1%.
Kathode nach Anspruch 1,
dadurch gekennzeichnet, daß jeder metallische Bestandteil mindestens einen Repräsentant der Gruppe W, Ni, Mg, Re, Mo, Pt enthält.
Cathode according to claim 1,
characterized in that each metallic component contains at least one representative of the group W, Ni, Mg, Re, Mo, Pt.
Kathode nach Anspruch 1 oder 9,
dadurch gekennzeichnet, daß jeder oxidische Bestandteil mindestens einen Repräsentant der Gruppe BaO, CaO, Al₂O, Sc₂O₃, ThO, La₂O₃ enthält.
Cathode according to claim 1 or 9,
characterized in that each oxidic component contains at least one representative of the group BaO, CaO, Al₂O, Sc₂O₃, ThO, La₂O₃.
EP93200613A 1992-03-07 1993-03-04 Cathode with solid element Expired - Lifetime EP0560436B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4207220 1992-03-07
DE4207220A DE4207220A1 (en) 1992-03-07 1992-03-07 SOLID ELEMENT FOR A THERMIONIC CATHODE

Publications (2)

Publication Number Publication Date
EP0560436A1 true EP0560436A1 (en) 1993-09-15
EP0560436B1 EP0560436B1 (en) 1995-07-26

Family

ID=6453449

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93200613A Expired - Lifetime EP0560436B1 (en) 1992-03-07 1993-03-04 Cathode with solid element

Country Status (4)

Country Link
US (1) US5592043A (en)
EP (1) EP0560436B1 (en)
JP (1) JPH0628968A (en)
DE (2) DE4207220A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2308495A (en) * 1995-12-20 1997-06-25 Lg Electronics Inc Cathodes
US7138754B2 (en) 2002-03-21 2006-11-21 Samsung Sdi Co., Ltd. Cathode for electron tube and method for manufacturing the same

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4400353A1 (en) * 1994-01-08 1995-07-13 Philips Patentverwaltung Controllable thermionic electron emitter
JPH0850849A (en) * 1994-05-31 1996-02-20 Nec Kansai Ltd Cathode member and electronic tube using it
DE4421793A1 (en) * 1994-06-22 1996-01-04 Siemens Ag Thermionic electron emitter used for electron tubes
US6051165A (en) * 1997-09-08 2000-04-18 Integrated Thermal Sciences Inc. Electron emission materials and components
KR100249714B1 (en) * 1997-12-30 2000-03-15 손욱 Cathode used in an electron gun
US6140753A (en) * 1997-12-30 2000-10-31 Samsung Display Devices Co., Ltd. Cathode for an electron gun
FR2810446A1 (en) * 2000-06-14 2001-12-21 Thomson Tubes & Displays Improved oxide coated cathode incorporating electrical conducting grains acting as conducting bridges between the metal support and the oxide layer through the interface layer formed between them
US7019450B2 (en) * 2000-09-19 2006-03-28 Koninklijke Philips Electronics N.V. Cathode ray tube with a particle-particle cathode coating
KR100393047B1 (en) * 2001-03-14 2003-07-31 삼성에스디아이 주식회사 Metal cathode and indirectly heated cathode assembly having the same
US20020195919A1 (en) * 2001-06-22 2002-12-26 Choi Jong-Seo Cathode for electron tube and method of preparing the cathode
KR20030047054A (en) * 2001-12-07 2003-06-18 삼성에스디아이 주식회사 Metal cathode for electron tube and method of manufacturing the same
DE112006002464T5 (en) 2005-09-14 2008-07-24 Littelfuse, Inc., Des Plaines Gas-filled surge arrester, activating connection, ignition strips and manufacturing process therefor
DE102008020187A1 (en) * 2008-04-22 2009-10-29 Siemens Aktiengesellschaft Cathode, has flat emitter emitting electrons, and emission layer with circular cross section arranged on emitter, where material of emission layer has lower emission function than that of material of emitter
US8495784B2 (en) 2011-04-21 2013-07-30 The Procter & Gamble Company Device having dual renewable blades for treating a target surface and replaceable cartridge therefor
US8578543B2 (en) 2011-04-21 2013-11-12 The Procter & Gamble Company Squeegee having at least one renewable blade surface for treating a target surface

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4369392A (en) * 1979-09-20 1983-01-18 Matsushita Electric Industrial Co., Ltd. Oxide-coated cathode and method of producing the same
EP0333369A1 (en) * 1988-03-18 1989-09-20 Varian Associates, Inc. Solid solution matrix cathode

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5528162B1 (en) * 1969-12-26 1980-07-25
NL165880C (en) * 1975-02-21 1981-05-15 Philips Nv DELIVERY CATHOD.
NL7711927A (en) * 1977-10-31 1979-05-02 Philips Nv PROCEDURE FOR THE PREPARATION OF RESISTANCE MATERIAL AND RESISTANCE BODIES PREPARED THEREFORE.
US4273683A (en) * 1977-12-16 1981-06-16 Hitachi, Ltd. Oxide cathode and process for production thereof
JPS5566819A (en) * 1978-11-15 1980-05-20 Hitachi Ltd Oxide cathode for electron tube
US4391846A (en) * 1979-04-05 1983-07-05 The United States Of America As Represented By The United States Department Of Energy Method of preparing high-temperature-stable thin-film resistors
US4298505A (en) * 1979-11-05 1981-11-03 Corning Glass Works Resistor composition and method of manufacture thereof
JPS58154131A (en) * 1982-03-10 1983-09-13 Hitachi Ltd Impregnation type cathode
US4548742A (en) * 1983-12-19 1985-10-22 E. I. Du Pont De Nemours And Company Resistor compositions
US4675570A (en) * 1984-04-02 1987-06-23 Varian Associates, Inc. Tungsten-iridium impregnated cathode
JPS6314782A (en) * 1986-07-07 1988-01-21 Nippon Tokushu Noyaku Seizo Kk Novel dialkylmaleinimide compound and herbicide
NL8701584A (en) * 1987-07-06 1989-02-01 Philips Nv METHOD FOR MANUFACTURING A SUPPLY CATHOD DELIVERY CATHOD MANUFACTURED ACCORDING TO THE METHOD; RUNNING WAVE TUBE, KLYSTRON AND TRANSMITTER CONTAINING A CATHOD MANUFACTURED BY THE METHOD.
JPH0690907B2 (en) * 1988-02-02 1994-11-14 三菱電機株式会社 Electron tube cathode
US5092805A (en) * 1988-11-11 1992-03-03 Samsung Electron Devices Co., Ltd. Manufacturing method for dispenser code
NL8901076A (en) * 1989-04-28 1990-11-16 Philips Nv OXIDE CATHODE.
KR920001335B1 (en) * 1989-11-10 1992-02-10 삼성전관 주식회사 Dispenser cathode
NL8902793A (en) * 1989-11-13 1991-06-03 Philips Nv SCANDAT CATHOD.
KR0170221B1 (en) * 1989-12-30 1999-02-01 김정배 Dispenser cathode
DE4000690A1 (en) * 1990-01-12 1991-07-18 Philips Patentverwaltung PROCESS FOR PRODUCING ULTRAFINE PARTICLES AND THEIR USE
KR920003185B1 (en) * 1990-01-31 1992-04-23 삼성전관 주식회사 Dispensor cathode and the manufacturing method of the same
KR920004900B1 (en) * 1990-03-13 1992-06-22 삼성전관 주식회사 Impregnated type cathode body and manufacturing the same
US5007874A (en) * 1990-10-15 1991-04-16 The United States Of America As Represented By The Secretary Of The Army Method of making a cathode from tungsten and iridium powders using a reaction product from reacting a group III A metal with barium peroxide as an impregnant

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4369392A (en) * 1979-09-20 1983-01-18 Matsushita Electric Industrial Co., Ltd. Oxide-coated cathode and method of producing the same
EP0333369A1 (en) * 1988-03-18 1989-09-20 Varian Associates, Inc. Solid solution matrix cathode

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ADVANCES IN PHYSICS Bd. XXIV, Nr. 1-6, 1975, LONDON Seiten 407 - 461 B.ABELES ET AL. 'Structural and electrical properties of granular metal films' *
RCA REVIEW Bd. 35, Dezember 1974, Seiten 520 - 538 T.N.CHIN ET AL. 'Electronic processes in oxide cathodes' *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2308495A (en) * 1995-12-20 1997-06-25 Lg Electronics Inc Cathodes
GB2308495B (en) * 1995-12-20 2000-08-30 Lg Electronics Inc A Cathode structure body and a method of coating an emitter
US7138754B2 (en) 2002-03-21 2006-11-21 Samsung Sdi Co., Ltd. Cathode for electron tube and method for manufacturing the same

Also Published As

Publication number Publication date
EP0560436B1 (en) 1995-07-26
JPH0628968A (en) 1994-02-04
DE4207220A1 (en) 1993-09-09
DE59300389D1 (en) 1995-08-31
US5592043A (en) 1997-01-07

Similar Documents

Publication Publication Date Title
EP0560436B1 (en) Cathode with solid element
DE2723873A1 (en) PART OF A FUEL ELEMENT COMPRISING THE CATHOD AND THE ELECTROLYTE
DE1671857B1 (en) ELECTROCHEMICAL DEVICE WITH AN IONIC CONDUCTIVE SOLID ELECTROLYTE
DE112010004954T5 (en) Fuel cell with selectively conducting anode component
DE2723872A1 (en) PART OF A FUEL ELEMENT COMPRISING THE CATHOD AND THE ELECTROLYTE
DE3026717A1 (en) SUPPLY CATHODE
DE2454260A1 (en) METAL OXYDE VARISTOR WITH DISCREET METAL BODIES INSIDE AND PROCESS FOR PRODUCING IT
EP0974564B1 (en) Perovskites for coating interconnectors
DE1771829A1 (en) Electrode for fuel element with solid electrolyte
EP0040881B1 (en) Voltage-dependent resistor and method of manufacturing it
EP0138082A1 (en) Gas-discharge arrester and fabrication method
DE2635772A1 (en) DIRECTLY HEATED OXIDE CATHOD
DE2904653A1 (en) OXIDE-COATED CATHODES FOR ELECTRON TUBES
EP0065806B1 (en) Voltage-dependent resistor and its manufacturing process
DE1275221B (en) Process for the production of an electronic solid state component having a tunnel effect
EP0022974B1 (en) Plasma image display device
DE10044451C1 (en) Electrode and capacitor with the electrode
EP0559283B1 (en) Cathode with porous cathode element
DE1930970A1 (en) A ceramic voltage-dependent resistor and a process for its manufacture
DE60102648T2 (en) OXIDE CATHODE AND ASSOCIATED METHOD OF MANUFACTURE
EP0620582B1 (en) Liquid metal ion source for producing cobalt ion beams
DE3814653A1 (en) IMPROVED NICHROME RESISTANCE ELEMENT AND METHOD FOR THE PRODUCTION THEREOF
DE2820118C2 (en) Oxide varistor and process for its manufacture
DE2028242A1 (en) Process for the production of alkaline earth metal oxide emission material stabilized against the action of air
DE2322695A1 (en) ELECTROCHEMICAL COMPONENT

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19940311

17Q First examination report despatched

Effective date: 19940729

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 59300389

Country of ref document: DE

Date of ref document: 19950831

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19951024

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030328

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030331

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030515

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041001

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST